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Abstract

We investigate the behavior of the equilibrium price-rent ratio for housing in a standard

asset pricing model and compare the model predictions to survey evidence on the return

expectations of real-world housing investors. We allow for time-varying risk aversion (via

external habit formation) and time-varying persistence and volatility in the stochastic

process for rent growth, consistent with U.S. data for the period 1960 to 2013. Under

fully-rational expectations, the model significantly underpredicts the volatility of the U.S.

price-rent ratio for reasonable levels of risk aversion. We demonstrate that the model can

approximately match the volatility of the price-rent ratio in the data if near-rational agents

continually update their estimates for the mean, persistence and volatility of fundamental

rent growth using only recent data (i.e., the past 4 years), or if agents employ a simple

moving-average forecast rule for the price-rent ratio that places a large weight on the

most recent observation. These two versions of the model can be distinguished by their

predictions for the correlation between expected future returns on housing and the price-

rent ratio. Only the moving-average model predicts a positive correlation such that agents

tend to expect high future returns when prices are high relative to fundamentals–a feature

that is consistent with a wide variety of survey evidence from real estate and stock markets.
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1 Introduction

1.1 Overview

House prices in the United States increased dramatically in the years prior to 2007. During the

boom years, many economists and policymakers argued that a bubble did not exist and that

numerous fundamental factors were driving the run-up in prices.1 But in retrospect, many

studies now attribute the run-up to a classic bubble driven by over-optimistic projections

about future house price growth which, in turn, led to a collapse in lending standards.2 Rem-

iniscent of the U.S. stock market mania of the late-1990s, the mid-2000s housing market was

characterized by an influx of unsophisticated buyers and record transaction volume. When the

optimistic house price projections eventually failed to materialize, the bubble burst, setting

off a chain of events that led to a financial and economic crisis. The “Great Recession,” which

started in December 2007 and ended in June 2009, was the most severe economic contraction

since 1947, as measured by the peak-to-trough decline in real GDP (Lansing 2011).

This paper investigates the behavior of the equilibrium price-rent ratio for housing in

a standard Lucas-type asset pricing model and compares the model predictions to survey

evidence on the return expectations of real-world housing investors. We allow for time-varying

risk aversion (via external habit formation) and time-varying persistence and volatility in the

stochastic process for rent growth, consistent with U.S. data for the period 1960 to 2013.

Under fully-rational expectations, the model significantly underpredicts the volatility of the

U.S. price-rent ratio for reasonable levels of risk aversion. We demonstrate that the model can

approximately match the volatility of the price-rent ratio in the data if near-rational agents

continually update their estimates for the mean, persistence and volatility of fundamental rent

growth using only recent data (i.e., the past 4 years), or if agents employ a simple moving-

average forecast rule for the price-rent ratio that places a large weight on the most recent

observation. These two versions of the model can be distinguished by their predictions for

the correlation between expected future returns on housing and the price-rent ratio. Only

the moving-average model predicts a positive correlation such that agents tend to expect high

future returns when prices are high relative to fundamentals–a feature that is consistent with

a wide variety of survey evidence from real estate and stock markets.3

1See, for example, McCarthy and Peach (2004) and Himmelberg, et al. (2005). In an October 2004 speech,

Fed Chairman Alan Greenspan (2004) argued that there were “significant impediments to speculative trading”

in the housing market that served as “an important restraint on the development of price bubbles.” In a July 1,

2005 media interview, Ben Bernanke, then Chairman of the President’s Council of Economic Advisers, asserted

that fundamental factors such as strong growth in jobs and incomes, low mortgage rates, demographics, and

restricted supply were supporting U.S. house prices. In the same interview, Bernanke stated his view that a

substantial nationwide decline in house prices was “a pretty unlikely possibility.” For additional details, see

Jurgilas and Lansing (2013).
2For a comprehensive review of events, see the report of the U.S. Financial Crisis Inquiry Commission (2011).

Recently, in a review of the Fed’s forecasting record leading up to the crisis, Potter (2011) acknowledges a

“misunderstanding of the housing boom. . . [which] downplayed the risk of a substantial fall in house prices.”
3The survey evidence on expected returns is discussed in more detail in the next section. For an overview

the evidence, see Williams (2013).

1



As part of our quantitative analysis, we apply the Campbell and Shiller (1988) log-linear

approximation of the return identity to the housing market. According to this identity, the

variance of the log price-rent ratio must equal the sum of the ratio’s covariances with: (1)

future rent growth rates, and (2) future realized housing returns. The magnitude of each

covariance term is a measure of the predictability of future rent growth or future realized

returns when the current price-rent ratio is employed as the sole regressor in a forecasting

equation. As in the U.S. data, the moving-average model exhibits the property that a higher

price-rent ratio in the current period strongly predicts lower realized returns in the future,

but the predictive power for future rent growth is very weak. Interestingly, even though a

higher price-rent ratio in the data predicts lower realized returns, the survey evidence shows

that real-world investors fail to take this relationship into account; instead they continue to

forecast high future returns following a sustained run-up in the price-rent ratio. Such behavior

is consistent with a moving-average forecast rule but is inconsistent with the fully-rational and

near-rational versions of the model.

We also show that the moving-average model can deliver either a positive or negative

regression coefficient on the price-rent ratio when the ratio is used to predict future rent growth.

The sign of the regression coefficient is influenced by the value of a utility curvature parameter.

Our simulation results can therefore help account for the empirical findings of Engsted and

Pedersen (2012), who document significant cross-country and sub-sample instability in the

sign of this regression coefficient using housing market data from 18 OECD countries over the

period 1970 to 2011.

An additional contribution of the paper is to derive an approximate analytical solution for

the fully-rational house price in the case when fundamental rent growth exhibits time-varying

persistence and volatility. Our specification for rent growth employs the bilinear time series

model originally developed Granger and Andersen (1978) which allows for nonlinear behavior

within a continuous state space. Our solution procedure makes use of a change of variables to

preserve as much of the model’s nonlinear characteristics as possible.

Standard dynamic stochastic general-equilibrium (DSGE) models with fully-rational ex-

pectations have difficulty producing large swings in house prices that resemble the patterns

observed in the U.S. and other countries over the past decade. Indeed, it is common for such

models to postulate extremely large and persistent exogenous shocks to rational agents’ pref-

erences for housing in an effort to bridge the gap between the model and the data.4 Leaving

aside questions about where these preference shocks actually come from and how agents’ re-

sponses to them could become coordinated, we demonstrate numerically that an upward shift

in the representative agent’s preference for housing raises the mean price-rent ratio under all

three expectations regimes. At the same time, the preference shift lowers the average realized

return on housing. Under rational expectations, the agent will take this relationship into ac-

count when forecasting such that the conditional expected future return on housing will move

4See for example, Iacoviello and Neri (2010), among others.
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in the opposite direction as the price-rent ratio in response to a shift in housing preferences.

Hence, while a fully-rational model with housing preference shocks could potentially match

the volatility of the price-rent ratio in the data, such a model would still predict a negative

correlation between the expected future return on housing and the price-rent ratio–directly at

odds with the survey evidence to be described in section 2. Moreover, since preference shocks

influence the utility dividend, or “imputed rent” received from housing, a preference-driven

run-up in house prices would be accompanied by an increase in the imputed rent–something

which is not observed in U.S. data during the boom years of the mid-2000s.

1.2 Related Literature

Numerous empirical studies starting with Shiller (1981) and LeRoy and Porter (1981) have

shown that stock prices appear to exhibit excess volatility when compared to the discounted

stream of ex post realized dividends.5 Similarly, Campbell, et al. (2009) find that movements

in U.S. house price-rent ratios cannot be fully explained by movements in subsequent rent

growth.

A large body of research seeks to explain asset price behavior using some type of distorted

belief mechanism or misspecified forecast rule in a representative agent framework. Examples

along these lines include Barsky and Delong (1993), Timmerman (1996), Barberis, Shleifer,

and Vishney (1998), Lansing (2006, 2010), Adam, Marcet, and Nicolini (2008), Branch and

Evans (2010), Fuster, et al. (2012), and Hommes and Zhu (2014), among others.

An empirical study by Chow (1989) finds that an asset pricing model with adaptive expec-

tations outperforms one with rational expectations in accounting for observed movements in

U.S. stock prices and interest rates. Huh and Lansing (2000) show that a model with backward-

looking expectations is better able to capture the temporary rise in long-term nominal interest

rates observed in U.S. data at the start of the Volcker disinflation in the early-1980s. Some

recent research that incorporates moving-average forecast rules or adaptive expectations into

otherwise standard models include Sargent (1999, Chapter 6), Evans and Ramey (2006), Lans-

ing (2009), and Huang, et. al (2009), among others. Huang, et al. (2009) state that “adaptive

expectations can be an important source of frictions that amplify and propagate technology

shocks and seem promising for generating plausible labor market dynamics.”

Coibion and Gorodnichencko (2012) find robust evidence against full-information rational

expectations in survey forecasts for U.S. inflation and unemployment. Using an estimated New

Keynesian DSGE model, Levine, et al. (2012) find that the fraction of agents who employ

a moving-average type forecast rule lies in the range of 0.65 to 0.83. Gelain, et al. (2013)

show that the introduction of simple moving-average forecast rules for a subset of agents can

significantly magnify the volatility and persistence of house prices and household debt in a

standard DSGE model with housing. Granziera and Kozicki (2012) show that a simple Lucas-

type asset pricing model with backward-looking, extrapolative-type expectations can roughly

5Lansing and LeRoy (2014) provide a recent update on this literature.
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match the run-up in U.S. house prices from 2000 to 2006 as well as the subsequent sharp

downturn.

Constant-gain learning algorithms of the type described by Evans and Honkapoja (2001)

are similar in many respects to moving-average expectations; both formulations assume that

agents apply exponentially-declining weights to past data when constructing forecasts of future

variables. Adam, et al. (2012) show that the introduction of constant-gain learning can help

account for recent cross-country patterns in house prices and current account dynamics. In

contrast to our setup, their model assumes the presence of volatile and persistent exogenous

shocks to the representative agent’s preference for housing services, a feature that helps their

model to fit the data. A strength of their model is that it takes into account the positive

supply response of residential construction to rising house prices–a feature that is evident

in most historical real estate booms (Shiller 2008). When the new housing supply becomes

available with a lag, it can reinforce an expectation-driven decline in house prices.

There is also a large literature on “rational bubbles” in which agents are fully cognizant of

the fundamental asset price, but nevertheless are willing to pay more than this amount. This

can occur if expectations of future price appreciation are large enough to satisfy the rational

agent’s required rate of return.6 A drawback of rational bubble models is the prediction that

the equilibrium price-dividend ratio (or price-rent ratio) has a unit root. A more elaborate

version assumes that the rational bubble will periodically crash according to some universally-

known probability function (Evans 1991), but this is an ad hoc feature that is determined

completely outside of the model. Recently, Doblas-Madrid (2012) develops a model with

only rational agents who ride bubbles while optimally weighing potential profits if they can

successfully time the market versus the potential losses if the bubble bursts before they can sell.

In his model, price run-ups relative to fundamentals can coincide with the speculators’ rational

expectations of higher future profits for an extended period, a feature which is consistent with

the survey evidence.

2 Evidence on Investor Expectations

The fundamental value of an asset is typically measured by the present-value of expected

future cash or service flows that will accrue to the owner. Service flows from housing are

called “imputed rents.” The discount rate used in the present-value calculation is comprised of

a risk-free yield and a compensation for perceived risk, i.e., a risk premium. Their sum defines

the rate of return that an investor expects to receive to justify purchase of the asset. All else

equal, a lower risk premium implies a lower expected return and a lower discount rate in the

present-value calculation. Future service flows will be discounted less and the fundamental

value will rise.

6Lansing (2010) derives a continuum of rational bubble solutions in a standard Lucas-type asset pricing

model.
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Making use of the above logic, Cochrane (2011) argues that one cannot easily tell the

difference between a bubble and a situation where rational investors have low risk premia,

implying lower expected returns on the risky asset. Specifically, he remarks “Crying bubble

is empty unless you have an operational procedure for distinguishing them from rationally

low risk premiums.” Along similar lines, Favilukis, et al. (2013) argue that the run-up in

U.S. house prices relative to rents was largely due to a financial market liberalization (easier

lending standards and lower mortgage transaction costs) that reduced buyers’ perceptions of

the riskiness of housing assets. In the words of the authors, “a financial market liberaliza-

tion drives price-rent ratios up because it drives risk premia down. . . Procyclical increases in

[fundamental] price-rent ratios reflect rational expectations of lower future returns.”

In our view, the relaxation of lending standards in the mid-2000s was an endogenous

consequence of the house price run-up, not an exogenous fundamental driver of the run-

up. Standards were relaxed because lenders (and willing borrowers) expected house price

appreciation to continue indefinitely. Empirical evidence supports this view. Within the

United States, past house price appreciation in a given area had a significant positive influence

on subsequent loan approval rates in the same area (Dell’Ariccia, et al. 2012, Goetzmann, et

al. 2012).

One way in which a bubble might be distinguished from a situation with rationally low risk

premiums is to examine investors’ expectations about future returns on the asset. Rational

investors with low risk premiums would expect low future returns after a sustained price

run-up, whereas irrationally exuberant investors in the midst of a bubble would expect high

future returns because they simply extrapolate recent price action into the future. Survey

data from both real estate and stock markets show that real-world investors typically expect

high future returns near market peaks, not low future returns. Overall, the survey evidence

directly contradicts the view that declining risk premiums (resulting in low expected returns)

were the explanation for the run-up in U.S. house prices relative to rents.

In a study of data from the Michigan Survey of Consumers, Piazzesi and Schneider (2009)

report that “starting in 2004, more and more households became optimistic after having

watched house prices increase for several years.” In a review of the time series evidence on

housing investor expectations from 2002 to 2008, Case, Shiller, and Thompson (2012) conclude

(p. 282) that “1-year expectations [of future house prices changes] are fairly well described as

attenuated versions of lagged actual 1-year price changes.”

Anecdotal evidence further supports the view that U.S. housing investors had high expected

returns near the market peak. The June 6, 2005 cover of Fortune magazine was titled “Real

Estate Gold Rush–Inside the hot-money world of housing speculators, condo-flippers and

get-rich-quick schemers.” One week later, the June 13, 2005 cover of Time magazine was titled

“Home $weet Home–Why we’re going gaga over real estate.” Both covers depicted happy and

celebrating housing investors–all suggesting a rosy outlook for U.S. real estate.

With regard to the stock market, studies by Fischer and Statman (2002), Vissing-Jorgenson
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Figure 1: Long-run real house price indices for U.S. and Norway. Periods of stagnant real

house prices are interspersed with booms and busts. Norway experienced a major housing

price boom in the late 1980s followed by a crash in the early 1990s. The earlier boom-bust

pattern in Norway is similar in magnitude to the recent boom-bust pattern in U.S. house

prices. Real house prices are indexed to 100 in 1890.

(2004) and Amromin and Sharpe (2014) all find evidence of extrapolative or procyclical ex-

pected returns among investors. Recently, in a comprehensive study of the expectations of U.S.

stock market investors using survey data from a variety of sources, Greenwood and Shleifer

(2013) find that measures of investor expectations about future stock returns are positively

correlated with (1) the price-dividend ratio, (2) past stock returns, and (3) investor inflows

into mutual funds. They conclude (p. 30) that “[O]ur evidence rules out rational expecta-

tions models in which changes in market valuations are driven by the required returns of a

representative investor...Future models of stock market fluctuations should embrace the large

fraction of investors whose expectations are extrapolative.” We apply their advice here to a

model of housing market fluctuations.

3 Housing Market Data

Figure 1 plots real house price indices in the U.S. and Norway from 1890 to 2013. The U.S.

data are updated from Shiller (2005) while data for Norway are updated from Eitrheim and

Erlandsen (2004, 2005). Both series show that real house prices were relatively stagnant for
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Figure 2: Price-rent indices for U.S. and Norway. The U.S. price-rent ratio peaked in early 2006

and has since fallen to its pre-boom level. The price-rent ratio for Norway has continued to

trend upwards and currently stands more than 60 percent above the last major peak achieved

two decades ago. Price-rent ratios are indexed to 100 in 1960.

most of the 20th century. Norway and other Nordic countries experienced a major house

price boom in the late 1980s followed by a crash in the early 1990s . The earlier boom-bust

pattern in Norway is similar in magnitude to the recent boom-bust pattern in U.S. house prices

(Knutsen 2012). After peaking in 2006, U.S. real house prices have since dropped by nearly 40

percent. Starting in the late 1990s, Norwegian house prices experienced another major boom

but so far no bust. On the contrary, real house prices in Norway have continued to rise by

nearly 30 percent since 2006.

Figure 2 plots price-rent ratios in the U.S. and Norway from 1960 onwards. The U.S. ratio

peaked in early 2006 and has since returned to its pre-boom level. The price-rent ratio for

Norway has continued to trend upwards and currently stands more than 60 percent above the

last major peak achieved two decades ago. Although not plotted, price-income ratios for the

two countries display a similar pattern.7

Figure 3 plots the results of a survey which asks Norwegian households about expected

house price changes over the next year. The percentage of households who believe that property

prices will keep rising went up from a low of 10 percent in 2008 to nearly 70 percent in 2012.

7See Jurgilas and Lansing (2013).
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Figure 3: Norwegian survey data. The percentage of Norwegian households who believe that

property prices will keep rising went up from a low of 10 percent in 2008 to nearly 70 percent

in 2012. The data suggest that Norwegians expect high future returns on real estate even after

a sustained run-up in the price-rent ratio. Data source: Financial Supervisory Authority of

Norway.

Comparing Figure 3 to the price-rent ratio for Norway in Figure 2 suggests that Norwegians

expect high future returns on real estate even after a sustained run-up in the price-rent ratio.

This pattern is directly at odds with the idea of rationally low risk premiums driving the run-

up. Jurgilas and Lansing (2013) show that the balance of Norwegian households expecting a

house price increase over the next year is strongly correlated with nominal house price growth

over the preceding year, suggestive of a moving-average type forecast rule.

Figure 4 provides a more detailed look at U.S. house prices and rents using quarterly data

from 1960.Q1 to 2013.Q3.8 The bottom two panels plot the quarterly net real return on

housing together with the quarterly log real price change (in percent).9 Returns and log price

changes were consistently positive and rising during the U.S. housing boom of the mid-2000s.

After observing a long string of high housing returns, it seems quite natural that lenders and

8Quarterly data for U.S. nominal house prices and nominal rents are from www.lincolninst.edu, using the

Case-Shiller-Weiss price data from the year 2000 onwards, as documented in Davis, Lehnert, and Martin (2008).

Nominal values are converted to real values using the Consumer Price Index (all items) from the Federal Reserve

Bank of St Louis.
9The first-order condition for housing services in our model (4) implies that the quarterly gross housing

return in period +1 is given by +1 ( − )  where  is the “cum dividend” real house price and  is the

quarterly housing dividend (imputed real rent) which is received by the agent at time 
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Figure 4: U.S. housing market data. Quarterly housing returns and log price changes were

consistently positive and rising during the U.S. housing boom of the mid-2000s.

homebuyers would have expected the high returns to continue, as confirmed by the survey

evidence.

Figure 5 plots quarterly rent growth in the data together with rolling summary statistics

for window lengths of 4-years and 10-years. All of the summary statistics exhibit considerable

variation. For example, the rolling 10-year autocorrelation coefficient (lower left panel) ranges

from a low of −017 to a high of 0.75. Variation of this magnitude can have significant

implications for the quantitative predictions of rational asset pricing models, particularly in

the presence of habit formation (Otrok, et al. 2002). To capture this feature of the data, we

allow fundamental rent growth in the model to exhibit time varying persistence and volatility,

as described in the next section.

4 Model

Housing services are priced using a version of the frictionless pure exchange model of Lucas

(1978). The representative agent’s problem is to choose sequences of  and  to maximize

b0 ∞X
=0



³


1−
 − 

−1
1−
−1
´1−

− 1
1− 

 (1)
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Figure 5: Properties of real rent growth in U.S. data. Real rent growth exhibits time-varying

mean, persistence and volatility.

subject to the budget constraint

 +  ( − −1) =    ≥ 0 (2)

where  is the individual agent’s consumption in period   is the individual agent’s housing

service flow,  is income,  is the subjective time discount factor, and  is a curvature

parameter that influences the coefficient of relative risk aversion. We use the capital letters

 and  to denote the aggregate per capita quantities of consumption and housing which

the agent views as outside of his control. After individual choices are made, we impose the

aggregate equilibrium conditions  =  and  =  for all When  = 1 the within-period

utility function can be written as log
³


1−
 − 

−1
1−
−1
´
 To allow for time-varying risk

aversion, we assume that an individual agent’s felicity is measured relative to the lagged

aggregate consumption basket.10 The parameter  ≥ 0 governs the importance of the external
habit stock. The symbol b represents the agent’s subjective expectation, conditional on

information available at time  as explained more fully below. Under rational expectations,b corresponds to the mathematical expectation operator  evaluated using the objective

distribution of shocks, which are assumed known by the rational household. The symbol  is

the price of housing services in consumption units.

10Maurer and Meier (2008) find strong empirical evidence for “peer-group effects” on individual consumption

decisions using panel data on U.S. household expenditures. Otrok, et al. (2002) show that a one-lag habit

specification similar to (1) can match the historical mean U.S. equity premium.
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We formulate the current-period Lagrangian £ as

max
 

£ =

³


1−
 − 

−1
1−
−1
´1−

− 1
1− 

+  [ +  (−1 − )− ]  (3)

where  is the Lagrange multiplier on the budget constraint (2). The first-order condition

that governs the agent’s choice of housing services  is given by

 =

µ
1− 



¶
| {z }

≡

+ b+1 +1 (4)

where we have divided both sides by the marginal utility of consumption  and imposed the

equilibrium condition that housing exists in unit net supply such that  = 1 for all  The term

+1 ≡  (+1) is the stochastic discount factor and  ≡  (1− )  is the imputed rent

(or utility dividend) from housing, which is received by the agent in period . Consequently,

 represents a “cum dividend” asset price.

Substituting  = −1 into the budget constraint (2) yields,  =  for all 
11 In equilib-

rium, the exponential growth rates of rent (), consumption (), and income () are identical.

In the data, imputed rent reflects not only the utility dividend, but also the marginal collateral

value of the house in the case when the agent’s borrowing constraint is binding. We illustrate

this point analytically in Appendix A. Although we abstract from directly modeling a borrow-

ing constraint, we can implicitly take the effects of leverage into account by calibrating the

effective cash flows in the model to match the stochastic properties of U.S. rent growth.12

Rent growth in the model is governed by the following nonlinear law of motion

+1 ≡ log

µ
+1



¶
= + (+ ) ( − ) + +1  ∼ 

¡
0 2

¢
 (5)

where  is the steady state growth rate which differs from the ergodic mean  () =  +

2 (1− ) whenever  6= 0 Equation (5) is a simple version of the bilinear time series

model originally developed by Granger and Andersen (1978) and explored further by Sesay

and Subba Rao (1988). By appropriate choice of the parameters    and  the above

specification can match the unconditional moments of U.S. rent growth and deliver time-

varying persistence and volatility, consistent with the data.

The equilibrium stochastic discount factor (after imposing  = 1) is

+1 = 

µ
+1



¶−−1+ "
1−  (+1)

−

1−  (−1)−

#−


=  exp [(−− 1 + )+1]

∙
1−  exp (−+1)
1−  exp (−)

¸−
 (6)

11Following Otrok, et al. (2002) we impose an upper bound on the ratio −1 to ensure that the utility
function (1) is always well defined. The upper bound is never reached in the model simulations.
12Ayuso and Restoy (2006) and Piazzesi, et al. (2007) similarly abstract from modeling a borrowing constraint

in the context of equilibrium asset pricing models applied to housing.
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where we have made use of the fact that model consumption growth and model rent growth

are identical.13

Dividing both sides of the first-order condition (4) by the current period rent  and

substituting in the expression for +1 yields




= 1 +  b exp {[ (1− )]+1}

∙
1−  exp (−+1)
1−  exp (−)

¸−
+1

+1
 (7)

which shows that the price-rent ratio in period  depends on the agent’s subjective joint forecast

of next period’s rent growth +1 and next period’s price-rent ratio +1+1. It is convenient

to transform equation (7) using a nonlinear change of variables to obtain

 =  () +  exp {[ (1− )]} b+1 (8)

where  ≡  ()




 () ≡ exp {[ (1− )]}
[1−  exp (−)]

Under this formulation,  represents the composite variable that the agent must forecast. In

the special case when  = 1 and  = 0 (log utility, no habit formation), we have  () = 1

such that  =  The transformed first-order condition (8) shows that the value of the

composite variable  in period  depends on the agent’s subjective forecast of that same

variable.

By making use of the definition of  equation (7) can be written as




= 1 +  [1−  exp (−)] b+1 (9)

which shows that the agent’s subject forecast b+1 has a direct influence on the dynamics

of the equilibrium price-rent ratio .

Equation (4) can be rearranged to obtain the standard relationship

1 = b [+1+1]  +1 ≡ +1

 − 
 (10)

where +1 is the gross return on housing from period  to + 1

4.1 Rational Expectations

Our solution for the composite variable  employs an analytical perturbation method. The

point of approximation for the solution is the ergodic mean, not the deterministic steady state,

which helps to improve accuracy.14

13Over the period 1960 to 2013, the correlation coefficient in U.S. data between quarterly real rent growth

and quarterly real per capita consumption growth (nondurables and services) is 0.47.
14Lansing (2010) demonstrates the accuracy of this solution method for the case of AR(1) dividend growth.

Use of the ergodic mean as the approximation point eliminates a significant source of error in the constant term

of the approximate solution, as shown by Collard and Juillard (2001).
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Proposition 1. An approximate analytical solution for the value of the composite variable

 ≡  ()  under rational expectations is given by

 = 0 exp
©
1 [ − ()] + 2

¡
 − 2

¢ª


where  ≡  ( − ) such that  () = 2 The constants 0 ≡ exp { [log ()]}  1 and
2 are Taylor series coefficients that depend on the preference parameters     and the

rent growth parameters    and 

Proof : See Appendix B.

The approximate solution in Proposition 1 preserves the nonlinear features of the model

in several ways. First, rent growth  is a state variable that follows a nonlinear law of

motion, as given by equation (5). Second, the solution for  depends on the state variable

 ≡  ( − ) which also follows a nonlinear law of motion, as derived in Appendix B. Third,

given the solution for , the price-rent ratio is determined as a nonlinear function of the state

variable  such that  =  (). In the model simulations, we use the approximate

solution in Proposition 1 to construct the conditional forecast +1 each period using the

expression derived in Appendix A. We then substitute the resulting forecast value into the

nonlinear first-order condition (8) to obtained the realized value of the composite variable 

each period.

To compute the expected return on housing, we rewrite the gross housing return as

+1 =

∙
+1+1

 − 1
¸
exp (+1) 

=

∙
[1−  exp (−+1)] exp {[− (1− )]+1} +1

 [1−  exp (−)] +1

¸
exp (+1) 

=

∙
1−  exp (−+1)
1−  exp (−)

¸
exp {[1−  (1− )]+1} +1

+1
 (11)

where we have eliminated +1+1 using the definitional relationships for +1 and  (+1) 

and we have eliminated  using the transformed first-order condition (9).
15

From equation (11), the conditional expectation of the log return is given by

 log (+1) = − log ()−  log [1−  exp (−)] +  log (+1) − log (+1)

+  log [1−  exp (−+1)] + [1−  (1− )] +1 (12)

where the conditional forecasts for terms involving +1 are computed using the true law

of motion for rent growth (5) and the conditional forecasts +1 and  log +1 are com-

puted using the approximate rational solution from Proposition 1, as detailed in the appen-

dix. To derive an analytical expression for  log (+1)  we approximate the nonlinear term

15Our procedure for expressing the rational return on the risky asset in terms of the composite forecast

variable  follows Lansing and LeRoy (2014).

13



log [1−  exp (−+1)] in (12) using the expression 0 + 1 [+1 − ()]  where 0 and 1

are Taylor series coefficients.

The conditional expectation of the 4-quarter compound return is formulated as

 [+1→ +4]| {z }
4−quarter return

= 

4P
=1

log (+)  (13)

where the terms  log (+) for  = 2 3 4 are computed by iterating equation (11) forward,

taking logs, linearizing where necessary, and then applying the law of iterated expectations.

4.2 Near-Rational Expectations

The rational expectations solution in Proposition 1 is based on strong assumptions about

the representative agent’s information set. Specifically, the fully-rational solution assumes

that agents know the true stochastic process for rent growth (5) which exhibits time-varying

persistence and volatility. An agent with less information may be inclined to view rent growth

as being governed by an AR(1) process with shifting parameters–a specification that could

also account for the appearance of time-varying moments in the observed rent growth data.

Along these lines, we consider a near-rational agent who has the following perceived law of

motion (PLM) for rent growth.

+1 =  +  ( − ) + +1  ∼ 
¡
0 2

¢
 (14)

where ,  and   are the perceived time-varying AR(1) parameters.

Following the learning literature, we assume that agents estimate the parameters of the

PLM (14) using recent data. In this way, agents seek to account for perceived shifts in the

parameters governing rent growth. Specifically, we assume that the near-rational agent infers

the parameters of (14) by computing moments over a rolling sample window of length :

 =  ({})  where  ∈ [−  + 1 ]  (15)

 =  ({}  {−1})  (16)

  =

q
  ({})

¡
1− 2

¢
 (17)

where {} represents the sample of rent growth observations in the most-recent moving
window. The learning mechanism summarized by equations (15) through (17) is a version of

the sample autocorrelation learning (SAC) algorithm described by Hommes and Sorger (1998).

The advantage of this algorithm is that it endogenously enforces the restriction  ∈ (−1 1) 
which ensures that perceived rent growth is always stationary.16

16For other applications of the SAC learning algorithm, see Lansing (2009, 2010) and Hommes and Zhu

(2014).
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If the true law of motion for rent growth was governed by an AR(1) process with constant

parameters, then the rational expectations solution would take the form shown in Proposition

1, but with 2 = 0 Under “near-rational” expectations, we assume that the representative

agent employs the correct perceived form of the rational solution, but the agent continually

updates the parameters of the perceived rent growth process (14), which in turn delivers

shifting coefficients in the perceived optimal forecast rule.

As shown in Appendix C, the near-rational agent’s conjectured solution for the composite

variable  takes the form

 ' 0 exp [1 ( − )]  (PLM) (18)

b +1 = 0 exp
h
1  ( − ) +

1
2
(1)

2 2 

i
 (19)

where 0 and 1 depend on the most recent estimates of the AR(1) parameters  

and   We follow the common practice in the learning literature by assuming that the

representative agent views the most recent parameter estimates as permanent when computing

the subjective forecast b +1
17

Substituting the subjective forecast (19) into the nonlinear first-order condition (8), yields

the following actual law of motion (ALM) for the composite variable :

 =  () + 0 exp
n
[ (1− )]  + 1  ( − ) +

1
2
(1)

2 2 

o
 (20)

Following the methodology described earlier for rational expectations, the near-rational

conditional expectation of the log return is given byb log (+1) = − log ()−  log [1−  exp (−)] + b log (+1) − log
³ b+1

´
+  b log [1−  exp (−+1)] + [1−  (1− )] b +1 (21)

where the subjective forecasts involving +1 are now computed using the agent’s perceived

law of motion (14) and the subjective forecasts b+1 and b log +1 are computed using the

agent’s conjectured solution (18), as shown in Appendix C. To derive an analytical expression

for b log (+1)  we approximate the nonlinear term log [1−  exp (−+1)] in (21) using the
expression 0+ 1 (+1 − )  where 0 and 1 are time-varying Taylor series coefficients

that shift over time due to the agent’s perception that the approximation point  is shifting.

The near-rational agent’s forecast for the 4-quarter compound return is formulated along

the lines of equation (13), but now the subjective expectation operator b is used in place of

the mathematical expectation operator  and the agent’s perceived laws of motion are used

in place of the actual laws of motion when computing the subjective forecasts.

17Otrok, et al. (2002) employ a similar procedure which they describe (p. 1275) as “a kind of myopic

learning.” For an earlier example of this type of learning applied to the U.S. stock market, see Barsky and

Delong (1993). More recently, Collin-Dufresne, et al. (2012) examine the asset pricing implications of fully-

rational learning about the parameters of dividend growth. In their model, the agent’s rational forecast takes

into account the expected future shifts in the estimated parameters via Bayes law.
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4.3 Moving-Average Expectations

Motivated by the survey evidence described in Section 2, we consider a forecast rule that is

based on an exponentially-weighted moving-average of past observed values of the relevant

forecast variable. Such a forecast requires only a minimal amount of computational and infor-

mational resources. Specifically, the agent does not need to know or estimate the underlying

stochastic process for rent growth.18 The agent’s subjective forecast rule is given by:b +1 =   + (1− ) b−1   ∈ [0 1] 

= 
h
 + (1− ) −1 + (1− )2 −2 + 

i
 (22)

where we formulate the moving average in terms of the composite variable  that appears

in the transformed first-order condition (8). In simulations of the moving average model, the

composite variable  exhibits a correlation coefficient of 0.98 with the price-rent ratio 

Hence, we can roughly think of the agent as applying a moving average forecast rule to the

price-rent ratio itself.

Substituting b +1 from equation (22) into the transformed first-order condition (8) yields

the following actual law of motion for the composite variable :

 =
 ()

1−  exp {[ (1− )]} +
 (1− ) exp {[ (1− )]}
1−  exp {[ (1− )]}

b−1

(23)

where the previous subjective forecast b−1 is an endogenous state variable that evolves
according to the following law of motion:

b +1 =
  ()

1−  exp {[ (1− )]} +

∙
1− 

1−  exp {[ (1− )]}
¸ b−1 (24)

We postulate that the agent’s subjective forecast for the 4-quarter compound return is

constructed in the same way as the forecast for +1 Specifically, the subjective return forecast

is constructed as a moving-average of past observed 4-quarter returns, where the same weight

 is applied to the most recent return observation.b [+1→ +4]| {z }
4−quarter return

=  [−4→ ] + (1− ) b−1 [−4→ ] (25)

5 Calibration

Table 1 shows the baseline parameter values used in the model simulations. We also examine

the sensitivity of the results to a range of values for some key parameters, namely the utility

function parameters  and  and the forecast rule parameters  and 

18As noted by Nerlove (1983, p. 1255): “Purposeful economic agents have incentives to eliminate errors up

to a point justified by the costs of obtaining the information necessary to do so...The most readily available

and least costly information about the future value of a variable is its past value.”
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Table 1. Baseline Parameter Values

Parameter Value Description/Target

 2 Utility function curvature parameter.

 08 Utility function habit parameter.

 099 Match mean of U.S. price/quarterly rent ratio = 823

 087 Match mean of U.S. price/quarterly income ratio = 12

 00122% Match mean of U.S. quarterly real rent growth.

 0392 Match autocorrelation of U.S. rent growth.

 0450% Match std. dev. of U.S. quarterly real rent growth.

 662 Match skewness of U.S. quarterly real rent growth.

 16 quarters Match std. dev. of U.S. price/quarterly rent = 1365

 094 Match std. dev. of U.S. price/quarterly rent = 1365

The utility function (1) implies the following expression for the coefficient of relative risk

aversion (CRRA):

CRRA = − 


=



1−  exp (− ) + 1−  (26)

which yields CRRA = 8.8 for the baseline calibration when  =  ()  During the simu-

lations of the baseline model, the risk aversion coefficient ranges from a low of 7.7 to a high

of 9.4. Hence, our baseline calibration keeps the risk aversion coefficient below the maximum

level of 10 considered plausible by Mehra and Prescott (1985).19 Later in Figure 8, we consider

values for  and  that allow for much higher values of the risk aversion coefficient.

The parameters  and  are chosen simultaneously so that the rational expectations model

exhibits a mean price-rent ratio and a mean price-income ratio which are close to the sample

means in U.S. data.20 Quarterly data on U.S. price-rent ratios from 1960 to 2013 are from the

Lincoln Land Institute (see footnote 8). Data on U.S. price-income ratios for the period 1985

to 2012 are from Gudell (2012). The same values of  and  are used for the near-rational

model and the moving-average model.

We choose the rent growth parameters    and  to match the mean, first-order auto-

correlation, standard deviation, and skewness of real rent growth in U.S. data over the period

1960.Q2 to 2013.Q3. The analytical moment formulas for model rent growth are contained in

Appendix D. The calibrated value of  turns out to be considerably smaller than the mean

growth rate in the data because the analytical moments imply  () =  + 2 (1− ) 

Table 2 compares the properties of U.S. rent growth to those produced by a long simulation

of the model. In addition to hitting the four target moments, the model does a reasonably

good job of replicating the second-order autocorrelation of U.S. rent growth, the kurtosis of

rent growth, and some moments of rent growth changes, i.e., ∆ ≡  − −1

19 In the habit formation model of Campbell and Cochrane (1999), the calibration implies an extremely high

coefficient of relative risk aversion–around 80 in the model steady state.
20Since  = (1− )  and  = 1 we have  = (1 − 1) , which is used to pin down the

value of  The value of  is pinned down using the analytical expression for the Taylor series coefficient 0 in

Proposition 1.
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Figure 6: Properties of model rent growth. Model rent growth exhibits time-varying mean,

persistence and volatility, similar to that exhibited by the U.S. data plotted in Figure 5. In the

model, the near-rational agent’s perception that the AR(1) parameters for real rent growth

are shifting appears to be justified.

Table 2. Properties of Quarterly Real Rent Growth: Data versus Model

Statistic

U.S. Data

1960.Q2 to 2013.Q3 Model

 () 0232% 0226%

  () 0571% 0569%

 ( −1) 048 049

 ( −2) 027 018

 () 062 062

 () 51 44

  (∆) 0583% 0577%

 (∆ ∆−1) −029 −020
Note: Model statistics are computed from a 15,000 period simulation.

6 Quantitative Results

Figure 6 plots simulated rent growth from the model together with 4-year and 10-year rolling

summary statistics. The model statistics exhibit considerable variation over time, similar to
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Figure 7: Price-rent ratios from model simulations. The standard deviation of the model

price-rent ratio under rational expectations is 2.86 versus 13.65 in the data. Under the other

two expectation regimes, the standard deviation of the model price-rent ratio is very close to

that in the data.

the U.S. data statistics plotted earlier in Figure 5. An agent observing such variation would

be inclined to believe that the parameters governing the stochastic process for rent growth are

indeed changing over time, consistent with the near-rational PLM (14).

Figure 7 plots simulated price-rent ratios for the three different expectation regimes. The

standard deviation of the model price-rent ratio under rational expectations is 2.86 versus

13.65 in the data. For the other two expectation regimes, the standard deviation of the

simulated price-rent ratio is very close to that in the data. This is a direct consequence of

our calibration of the forecast rule parameters  and  Due to the self-referential nature of

the transformed first-order condition (8), the form of the agent’s subjective forecast b+1

influences the dynamics of the object that is being forecasted. Interestingly, the near-rational

and the moving-average forecast regimes produce similar patterns for the simulated price-rent

ratio. The contemporaneous correlation between the simulated price-rent ratios in the two

regimes is 0.80. As we shall see, however, these two models have different implications for the

correlation between the agent’s expected future return on housing and the price-rent ratio.

Only the moving-average model predicts a positive correlation between these two variables,

consistent with the survey evidence summarized in section 2.
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Figure 8: Sensitivity analysis. Using long-run simulations, the figure plots how different

parameter values affect the volatility of the model price-rent ratio under each of the three

expectation regimes. The rational expectations model can match the observed volatility in

the data (dashed horizontal line) when  ' 0945 which implies a mean coefficient of relative
risk aversion ' 30.

Table 3. Comparison of Percentage Forecast Errors

Model Simulations

Statistic RE Near-RE MAE

 (+1) 0.00 0.00 0.00q


¡
2+1

¢
0.009 0.045 0.074

 (+1 ) 0.01 0.39 0.36

 (+1 −1) −0.01 0.11 0.02

Note: Model statistics are computed from a 15,000 period simulation. RE = rational

expectations, Near-RE = near-rational expectations, MAE = moving-average expectations.

Table 3 summarizes the quantitative properties of the representative agent’s forecast errors

under each of the three expectations regimes. The percentage forecast error for the composite

variable +1 is given by

+1 = log

Ã
+1b+1

!
 (27)

All three expectation regimes deliver unbiased forecasts such that  (+1) = 0 The
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Figure 9: Correlation between expected housing returns and the price-rent ratio. Under

rational expectations, the correlation coefficient between the price-rent ratio and the coefficient

of relative risk aversion is close to −1, implying that risk aversion is low when the price-rent
ratio is high, and vice versa. The bottom panels show that under rational and near-rational

expectations, the rolling correlation coefficient between the expected 4-quarter compound

return and the price-rent ratio is strongly negative. However, the rolling correlation coefficient

is typically positive under moving-average expectations, implying that agents tend to expect

high future returns when the price-rent ratio is high, consistent with the survey evidence.

accuracy of each forecast rule can be measured by the root mean squared percentage error

(RMSPE), defined as
q


¡
2+1

¢
. The rational expectations model exhibits the lowest

RMSPE whereas the moving-average model exhibits the highest RMSPE. It is important to

recognize, however, that an individual atomistic agent could not do better in the moving-

average model by switching to the fundamentals-based forecast rule derived in the rational

expectations model. When the actual law of motion for the composite variable  is given

by (23), the fundamentals-based forecast rule is no longer the most accurate forecast. In

particular, using the fundamentals-based forecast rule from the rational expectations model

to predict +1 in the moving-average model delivers a RMSPE of 0.186–considerably higher

than the value of 0.074 delivered by the moving-average forecast rule itself (24). Hence an

individual atomistic agent can become “locked-in” to the use of a moving-average forecast rule
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so long as other agents in the economy are using the same forecasting approach.21

Table 3 also shows that the autocorrelation of the forecast errors in both the near-rational

model and moving-average model are reasonably low–less than 0.4. Hence, a large amount of

data would be required for the representative agent in either model to reject the null hypothesis

of uncorrelated forecast errors, making it difficult for the agent to detect a misspecification of

the subjective forecast rule.

Figure 8 shows how some key parameter values affect the volatility of the model price-rent

ratio under each expectation regime. The dashed horizontal line in each panel marks the

observed standard deviation of 13.65 in U.S. data. In the top left panel, we examine the effect

of varying the utility curvature parameter  over the range 0 ≤  ≤ 3 while holding  and  at
the baseline values shown in Table 1. From equation (26) with  =  ()  we have CRRA

= 0.13 when  = 0 and CRRA = 13.1 when  = 3. In the top right panel, we examine the

effect of varying the habit formation parameter  over the range 0 ≤  ≤ 0975 while holding
 and  at the baseline values shown in Table 1. In this case, the implied value of CRRA

with  =  () ranges from a low of 19 to a high of 64 The top right panel shows that the

rational expectations model can match the observed volatility in the data when  ' 0945

which together with the baseline values of  = 087 and  = 2 delivers CRRA ' 30 when

 =  () 

The bottom two panels of Figure 8 show that lower values of  (near-rational model)

or higher values of  (moving-average model) both serve to magnify the volatility of the

simulated price-rent ratio. By construction, the baseline calibrated values of  = 16 quarters

and  = 094 deliver price-rent ratio volatilities that are close to those in the data.

Table 4 compares unconditional moments from the model to the corresponding moments

in U.S. data. The near-rational model and the moving-average model are both successful

in matching the volatility and persistence of the U.S. price-rent ratio. However, only the

moving-average model comes close to matching the strong persistence of U.S. housing returns,

delivering an autocorrelation coefficient for returns of 0.63 versus 0.59 in the data. Unfortu-

nately, none of the three expectation regimes can reproduce the strong negative skewness and

the large excess kurtosis of U.S. housing returns. The consideration of additional nonlineari-

ties, such as endogenous shifts between forecast rules, along the lines of Brock and Hommes

(1998), might allow the model to better match the higher return moments in the data.

21Lansing (2006) investigates the concept of forecast lock-in using a standard Lucas-type asset pricing model.
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Table 4. Unconditional Moments: Data versus Model

U.S. Data Model Simulations

Statistic 1960.Q2-2013.Q3 RE Near-RE MAE

 82.3 82.3 84.6 85.9

  13.65 2.86 13.03 13.57
Price

Rent
  1 0.99 0.46 0.96 0.95

 2.01 0.37 0.27 000

 7.05 4.37 3.26 3.10

 1.63% 1.54% 1.54% 1.56%

  1.60% 4.07% 4.07% 4.82%

Real

Return
  1 0.59 −022 0.27 0.63

 −113 0.31 0.29 −011
 7.77 4.26 3.23 3.40

Note: Model statistics are computed from a 15,000 period simulation. RE = rational expectations,

Near-RE = near-rational expectations, MAE = moving-average expectations.

The top panels of Figure 9 show the correlations between the model price-rent ratios and the

coefficient of relative risk aversion computed from equation (26). Under rational expectations,

the correlation coefficient is close to −1, implying that risk aversion is low when the price-rent
ratio is high, and vice versa. Under near-rational expectations, the correlation coefficient is

close to zero at 0.09. Under moving-average expectations, the correlation coefficient is positive

at 0.41.

The bottom panels of Figure 9 illustrate a key distinguishing feature of the three expecta-

tion regimes, namely, the correlation between the agent’s conditional forecast of the 4-quarter

compound return b [+1→ +4] and the current price-rent ratio  We plot rolling corre-

lation coefficients over a 10—year sample window to roughly capture the time duration of the

recent boom-bust cycle in the U.S. housing market. Under rational expectations (bottom left

panel), the rolling 10-year correlation remains close to −1, implying that expected returns
are low when the price-rent ratio is high–a feature that is directly at odds with the survey

evidence. The near-rational model (bottom center panel) suffers from a similar problem–

exhibiting a rolling 10-year correlation that is always in negative territory, averaging around

−07 over the full simulation. However, the moving-average model (bottom right panel) de-

livers a rolling 10-year correlation that is typically positive, averaging around 06 over the full

simulation. In this case, agents tend to expect high future returns when the price-rent ratio is

high, consistent with the survey evidence. Although not shown, the rolling 10-year correlation

coefficient between the expected 8-quarter compound return and the price-rent ratio in the

moving-average model is even higher, averaging close to 07 over the full simulation. The

corresponding correlation coefficients in the rational and near-rational models remain strongly

negative.

Figure 10 plots simulated house prices (in logarithms) under rational expectations and

moving-average expectations, together with the common simulated rent series. The moving-
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Figure 10: Real house prices and rent from model simulations. The moving-average model

delivers periods of relatively stagnant real house prices interspersed with booms and busts,

reminiscent of the long-run house price data plotted in Figure 1.

average model delivers periods of relatively stagnant real house prices interspersed with booms

and busts, reminiscent of the long-run house price data plotted earlier in Figure 1.

As mentioned in the introduction, standard DSGE models with housing typically postulate

large and persistent exogenous shocks to rational agents’ preferences for housing services in

an effort to magnify the volatility of house prices generated by the model. Table 5 shows the

effects of a permanent upward shift in the agent’s preference for housing services  relative

to consumption  The preference shift is accomplished by reducing the parameter  in the

utility function (1) from the baseline value of 0.87 to a new value of 0.5, while holding other

parameters constant at the baseline values shown in Table 1. After the preference shift, the

relative weight on housing services 1−  is roughly quadrupled from the baseline value of 0.13

to a new value of 0.5. Table 5 shows that an upward shift in the agent’s preference for housing

raises the mean price-rent ratio under all three expectations regimes. At the same time, the

preference shift lowers the mean realized return on housing and lowers the mean value of

CRRA. Under rational expectations, the agent will take this relationship into account when

forecasting such that the conditional expected return on housing,  [+1→ +4] will tend to

move in the opposite direction as the price-rent ratio  in response to a persistent shift
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in housing preferences. Hence, while a fully-rational model with housing preference shocks

could potentially match the volatility of the price-rent ratio in the data, such a model would

still predict a negative correlation between the expected return on housing and the price-rent

ratio, which is contrary to the survey evidence described in section 2.

The relatively flat trajectory of U.S. housing rents during boom years of the mid-2000s

(top left panel of Figure 4) provides further evidence against a preference-driven run-up in

house prices. From the first-order condition (4), we see that a sustained increase in housing

preference, as measured by 1−  would give rise to a sustained increase in the imputed rent

 i.e., something which is not observed in the U.S. data during the boom years.

Table 5. Effect of a Permanent Increase in Housing Preference

Housing

Preference
Model Simulations

1−   RE Near-RE MAE

0.13


+1→ +4

CRRA

82.3

5.80%

8.8

84.6

5.78%

8.8

85.9

5.73%

8.8

0.5


+1→ +4

CRRA

88.4

5.46%

5.5

89.4

5.41%

5.5

89.8

5.43%

5.5

Note: Model statistics are computed from a 15,000 period simulation. RE = rational

expectations, Near-RE = near-rational expectations, MAE = moving-average expectations.

6.1 Predictability Regressions

Campbell and Shiller (1988) show that a log-linear approximation of the stock market return

identity implies that the variance of the log price-dividend ratio must equal the sum of the

ratio’s covariances with: (1) future dividend growth rates, and (2) future realized stock market

returns. Applying the Campbell-Shiller methodology to the housing market return identity

+1 ≡ +1 ( − ) = (+1+1) exp (+1)  ( − 1) yields

log (+1) = log (+1+1)− log ( − 1) + +1

' 0 + log (+1+1)− 1 log () + +1 (28)

where 0 and 1 are Taylor series coefficients. Solving for log () yields

log () ' (01) + (11) log (+1+1) + (11) +1 − (11) log (+1)  (29)

where 1 = exp [ log ()]  {exp [ log ()]− 1}  1 such that 11  1 The next step
is to iterate equation (29) forward and successively eliminate log (++) for  = 1 2 3 
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Applying a transversality condition such that lim→∞ (11)  log (++) = 0 yields

log () ' 0

1 − 1 +
∞P
=1

(11)
 [+ − log (+)]  (30)

which shows that movements in the log price-rent ratio must be accounted for by movements

in either future rent growth rates or future log housing returns (both measured in real terms).

The variables in the approximate return identity (30) can be expressed as deviations from

their unconditional means, while the means are consolidated into the constant term. Multi-

plying both sides of the resulting expression by log ()− log () and then taking the

unconditional expectation of both sides yields

  () = 

"
log () 

∞P
=1

(11)
 +

#

− 

"
log () 

∞P
=1

(11)
 log(+)

#
 (31)

Equation (31) states that the variance of the log price-rent ratio must be accounted for

by the covariance of the log price-rent ratio with either: (1) future rent growth rates, or (2)

future realized housing returns. The magnitude of each covariance term is a measure of the

predictability of future rent growth or future realized returns when the current price-rent ratio

is employed as the sole regressor in a forecasting equation.

To investigate the predictability implications of our model versus those in the data, we

estimate the following regression equations:

+1→ +4 ≡
4P

=1

log (+) = constant + b log () + +1 (32)

+1→ +4 ≡
4P

=1

+ = constant + b log () + +1 (33)

where +1 and +1 are statistical error terms.

Table 6 reports the results of predictability regressions in the form of equations (32) or (33).

In the case of the U.S. stock market, it is well documented that the log price-dividend ratio

exhibits strong predictive power for future realized stock returns but weak predictive power

for future dividend growth rates (Cochrane 2008, Engsted, et al. 2012). Table 6 shows that

analogous results are obtained for the U.S. housing market, particularly in the more recent

sample period starting in the year 2000. The 2 statistic is much larger in the regression that

seeks to predict future returns versus the regression that seeks to predict future rent growth.

In the return regression (top panel of Table 6), the estimated coefficient b is consistently large
and negative, implying that a higher price-rent ratio predicts lower realized returns in the

future. In the rent growth regression (bottom panel of Table 6), b is negative and significant
over the full sample starting in 1960, but insignificant and very close to zero in the more recent

sample starting in the year 2000.
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For the models, Table 6 reports results for two values for the utility curvature parameter

 while holding  and  at the baseline values shown in Table 1. From equation (26) with

 =  ()  we have CRRA = 8.8 when  = 2 (baseline calibration) and CRRA = 2.3 when

 = 05 (alternative calibration).

All of the models produce a negative and significant value of b in the first regression that
seeks to predict future returns. The magnitude of the b coefficients produced by the near-
rational model (−0284 or −0252) and the moving-average model (−0454 or −0437) are
reasonably close to those in the data (−0183 or −0278). In contrast, the magnitude of the b
coefficients produced by the rational expectations model (−0895 or −0603) are much larger
than those in the data. With a few exceptions, the 2 statistics in the model regressions are

reasonably close to those in the data. The model calibration with  = 05 delivers somewhat

lower 2 statistics in the return regression since this value implies a less volatile stochastic

discount factor and hence less movement in the dependent variable, +1→ +4

The intuition for the predictability of realized returns in both the data and the model is

straightforward. A high price-rent ratio implies that the ratio is more likely to be above its

long-run mean. If the price-rent ratio is stationary, then the ratio will eventually revert to

its long-run mean. The inevitable drop in the price-rent ratio over a long horizon produces a

lower realized return. Interestingly, even though a higher price-rent ratio in the data predicts

lower realized returns, the survey evidence shows that real-world investors fail to take this

relationship into account; instead they continue to forecast high future returns following a

sustained run-up in the price-rent ratio, consistent with a moving-average forecast rule.

In sharp contrast to the U.S. data, the rational expectations model produces a large positive

and significant value of b in the regression that seeks to predict future rent growth. This is
to be expected since time-varying rent growth (together with time-varying risk aversion) is an

important fundamental driver of house prices under rational expectations. Similar to the U.S.

data, both the near-rational model and the moving-average model produce small estimated

coefficients in the rent growth regression. Moreover, the sign of b in both models can be either
positive or negative, depending on the calibrated value of  Lower values of  (implying lower

risk aversion on average) produce positive values of b.
Equation (7) provides some intuition for why the rent growth regression coefficient b can

be either positive or negative in the near-rational and moving-average models, depending on

the value of the utility curvature parameter  In both models, the agent’s forecast is based on

recent observations, not the true underlying laws of motion for the relevant variables. Hence,

the agent does not properly take into account how a shock innovation at time +1 will influence

future rent growth rates and future price-rent ratios. The value of  is important because it

governs the relative magnitude of the income and substitution effects of a shock to rent growth.

This can be seen from the term exp {[ (1− )]+1} that appears on the right side of equation
(7). When   1 an increase in +1 contributes to a lower price-rent ratio  but the

effect is reversed when   1 A fully-rational agent would take into account that the increase
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in +1 also serves to increase +1+1 but that forecast channel is distorted in the near-

rational and moving-average models. Consequently, the term involving exp {[ (1− )]+1}
tends to dominate the sign of the rent growth regression coefficient in these two models. In

contrast, the return regression coefficient exhibits a consistent negative sign across all models,

regardless of the value of  because the sign of the coefficient is driven by the mean-reverting

properties of the price-rent ratio.

In a recent study using price and rent data from the housing markets of 18 OECD countries

over the period 1970 to 2011, Engsted and Pedersen (2012) find evidence of cross-country and

sub-sample instability in the estimated coefficients for predictive regressions that take the form

of equations (32) or (33). Using data either before or after 1995, they find that the estimated

regression coefficients for a given country can be either positive or negative when predicting

future rent growth along the lines of equation (33). Table 6 confirms a similar sort of instability

in the sign of b when attempting to predict future U.S. rent growth using either the full sample
of data from 1960 to 2011 or the more recent sample from 2000 to 2011. Engsted and Pedersen

(2012) also find that the relative magnitude of the 2 statistics for the two types of predictive

regressions can differ across countries and across time periods for a given country. In line with

their overall empirical findings, our simulation results show that, depending on the nature of

the expectation regime and the degree of curvature in the agent’s utility function, the signs

and magnitudes of the estimated regression coefficients and the resulting 2 statistics can vary

substantially, particularly with respect to rent growth predictability.

Table 6. Predictability Regressions: Data versus Model

Model Simulations

U.S. Data RE Near-RE MAEb b b b
Predictive

Regression

1960.Q2-

2013.Q3

2000.Q1-

2013.Q3
 = 2  = 05  = 2  = 05  = 2  = 05

+1→ +4
−0183
(0024)

−0278
(0077)

−0895 −0603
(0011) (0017)

−0284 −0252
(0005) (0006)

−0453 −0437
(0006) (0008)

2 (%) 21.4 21.3 317 78 197 92 301 170

+1→ +4
−0039
(0007)

−0001
(0014)

0111 0398

(0004) (0011)

−0002 0021

(0001) (0002)

−0008 0026

(0001) (0001)

2 (%) 11.9 0.0 58 85 00 12 08 23

Notes: Standard errors in parenthesis. Model regressions use data from a 15,000 period simulation. RE =

rational expectations, Near-RE =near-rational expectations, MAE = moving-average expectations. Returns

and rent growth in U.S. data are measured in real terms.
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7 Conclusion

Stories involving speculative bubbles can be found throughout history in various countries and

asset markets. These episodes can have important consequences for the economy as firms and

investors respond to the price signals, potentially resulting in capital misallocation.22 The

typical transitory nature of these run-ups should perhaps be viewed as a long-run victory

for fundamental asset pricing theory. Still, it remains a challenge for fundamental theory to

explain the ever-present volatility of asset prices within a framework of efficient markets and

fully-rational agents.

Like stock prices, real-world house prices exhibit periods of stagnation interspersed with

boom-bust cycles. A reasonably-parameterized rational expectations model significantly un-

derpredicts the volatility of the U.S. price-rent ratio, even when allowing for time-varying risk

aversion and time-varying stochastic properties of rent growth. We showed that a standard

asset pricing model can match the volatility and persistence of the U.S. price-rent ratio, as

well as other quantitative and qualitative features of the data, if agents in the model employ

simple moving-average forecast rules. With such a forecast rule, agents tend to expect higher

future returns when house prices are high relative to fundamentals–a feature that is consistent

with survey evidence on the expectations of real-world housing investors. The moving average

model is also successful in generating data that is broadly consistent with the predictabil-

ity properties of future realized housing returns and future rent growth that are observed in

housing market data for the U.S. and other countries.

22Lansing (2012) examines the welfare consequences of speculative bubbles in a model where excessive asset

price movements can affect the economy’s trend growth rate.
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A Appendix: Effect of a Borrowing Constraint

Here we show analytically how imputed rent can reflect not only a utility dividend, but also the

marginal collateral value of the house in the case when the representative agent’s borrowing

constraint is binding. Following Campbell and Hercowitz (2009), the representative agent’s

problem in the presence of a borrowing constraint can be formulated as

max
  +1

b0 ∞X
=0

£ (A.1)

where the current-period Lagrangian £ is given by

£ =

³


1−
 − 

−1
1−
−1
´1−

− 1
1− 

+  [ + +1 +  (−1 − )−  −]

+   [  − +1]  (A.2)

In the above expression, +1 is the stock of mortgage debt at the end of period  and  is the

gross real interest rate on the debt. The last term of the Lagrangian reflects the borrowing

constraint which says that the agent may only borrow up to a fraction  ≥ 0 of the current
housing value . When the Lagrange multiplier   0 the borrowing constraint is binding.

From (A.2), the first-order conditions with respect to  and +1 are given by

 =

µ
1− 



¶
 +   | {z }
≡ 

+ b
+1

| {z }
≡ +1

+1 (A.3)

 = 1 − +1 (A.4)

where we have divided both sides by  and imposed the equilibrium condition  = 1 Com-

paring equation (A.3) to the original first-order condition (4) shows that the imputed rent 

now consists of two terms: the standard utility dividend plus the marginal collateral value

of the house in the case when the borrowing constraint is binding, i.e., when   0 Hence,

by calibrating the effective cash flows in the model to mimic the stochastic properties of rent

growth in the data, we implicitly (but imperfectly) take into account the effect of a binding

borrowing constraint on the equilibrium house price.

B Appendix: Approximate Rational Solution

The methodology for computing the rational expectations solution in Proposition 1 follows

the procedure in Lansing (2010). First we rewrite the law of motion for rent growth (5) as
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follows

+1 − () =  [ − ()] + (1− ) [− ()]| {z }
=
−2
1−

++1 +   ( − )| {z }
≡ 



=  [ − ()] + +1 + 
¡
 − 2

¢
 (B.1)

where  is the deterministic steady state growth rate,  () is the ergodic mean growth rate,

and we have made use of  [ ( − )] =  () = 2

The law of motion for +1 − 2 follows directly from the law of motion for rent growth

(5) and the rewritten version (B.1):

+1 − 2 = +1 (+1 − )− 2

= +1 [+1 − ()] + +1 [ ()− ]| {z }
=
2
1−

−2

= +1

½
 [ − ()] + 

¡
 − 2

¢
+

2
1− 

¾
+
¡
2+1 − 2

¢
 (B.2)

Iterating ahead the conjectured law of motion for  yields

+1 = 0 exp
©
1 [+1 − ()] + 2

¡
+1 − 2

¢ª
 (B.3)

Substituting equations (B.1) and (B.2) into equation (B.3) and then taking the conditional

expectation yields

 +1 = 0 exp
n
1 [ − ()] + 1

¡
 − 2

¢
+ (2)

2 4 +
1
2
2 

2


o
 (B.4)

where  ≡ 1 + 2 [ − ()] + 2
¡
 − 2

¢
+ 2

2
1− 



In deriving (B.4), we have used the properties of the conditional lognormal distribution which

imply

 exp
¡
2

2
+1

¢
= exp

©


¡
2 

2
+1

¢
+ 1
2
 

¡
2 

2
+1

¢ª


= exp
n


¡
2 

2
+1

¢
+ 1
2


h¡
2 

2
+1

¢2i− 1
2

£


¡
2 

2
+1

¢¤2o


= exp
n
2 

2
 +

1
2
(2)

2 34 − 1
2
(2)

2 4

o


= exp
h
2 

2
 + (2)

2 4

i
 (B.5)
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Next, we substitute the conditional expectation (B.4) into the transformed first-order con-

dition (8) and then take logarithms to obtain

log () =  ( ) = log { () +

0 exp
h
 (1− ) + 1 [ − ()] + 1

¡
 − 2

¢
+ (2)

2 4 +
1
2
2 

2


io


' log (0) + 1 [ − ()] + 2
¡
 − 2

¢
 (B.6)

The expressions for the Taylor-series coefficients 0 = exp [ log ()]  1 and 2 are derived

as follows

log (0) =  [ ()   ()]  (B.7)

1 =




¯̄̄̄
() ()

 (B.8)

2 =




¯̄̄̄
() ()

 (B.9)

where  () = +2 (1− ) and  () = 2 Solving the above three equations yields the

values for the three undetermined coefficients.

Taking logs of equation (B.3) and then forming the conditional expectation yields

 log (+1) = log (0) + 1 [+1 − ()] + 2

¡
+1 − 2

¢


= log (0) + 1 [ − ()] + 1
¡
 − 2

¢
 (B.10)

where 

¡
+1 − 2

¢
= 0 from equation (B.2). The above expression and equation (B.4) are

used to compute the expected log return in equation (12).

C Appendix: Approximate Near-Rational Solution

First we solve for the perceived rational solution in the case when the perceived AR(1) pa-

rameters for rent growth are constant such that  =   =  and  =  for all  The

near-rational agent’s conjectured law of motion in this case is given by

 '  0 exp [ 1 ( − )]  (C.1)

Iterating ahead the conjectured law of motion for  and taking the subjective conditional

expectation yields b+1 = 0 exp
h
1 ( − ) + 1

2
(1)

2 2


i
 (C.2)
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Substituting the conditional forecast (C.2) into the transformed first-order condition (8) and

then taking logarithms yields

log () =  () = log
n
 () + 0 exp

h
 (1− ) + 1 ( − ) + 1

2
(1)

2 2

io
' log (0) + 1 ( − )  (C.3)

where 0 ≡ exp [ log ()] and 1 are Taylor-series coefficients. The expressions for the Taylor

series coefficients are are derived as follows

log (0) =  () = log
n
 () + 0 exp

h
 (1− )+ 1

2
(1)

2 2

io
 (C.4)

1 =  0 () =
1

0

n
 0 () + 0 [ (1− ) + 1] exp

h
 (1− )+ 1

2
(1)

2 2

io


(C.5)

which yield a set of two equations that can be solved for the two undetermined coefficients 0

and 1

For the case when the perceived AR(1) parameters are shifting as in the near-rational PLM

(14), equations (C.4) and (C.5) can be rewritten as

0 =
 ()

1−  exp
h
 (1− ) +

1
2
(1)

2 2

i  (C.6)

1 =
 0 ()
0

+  [ (1− ) + 1 ] exp
h
 (1− ) +

1
2
(1)

2 2

i
 (C.7)

where we have substituted in the most recent estimates for the perceived AR(1) parameters, as

given by   and We follow the common practice in the learning literature by assuming

that the agent views the most recent parameter estimates as permanent when computing

the subjective forecast b +1 Given the most recent estimates for the AR(1) parameters,

equations (C.6) and (C.7) are solved simultaneously each period to obtain values for 0 and

1 for use in the subjective forecast (19). The subjective forecast is substituted into the

transformed first-order condition (8) to obtain the actual law of motion (20).

Iterating ahead the perceived law of motion (18) and then taking logs and forming the

subjective conditional expectation yieldsb log (+1) = b [log (0+1) + 1+1 (+1 − +1)] 

= log (0) + 1 ( − )  (C.8)

where once again we assume that the agent views the most recent parameter estimates  and

 as permanent such that the most recent values for 0 and 1 are also viewed as permanent.

The above expression and b +1 from equation (19) are used to compute the expected log

return in equation (21).
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D Appendix: Moments of Rent Growth

This section summarizes the formulas for the unconditional moments of rent growth which are

used to calibrate the true law of motion (5). From Granger and Andersen (1978) and Sesay

and Subba Rao (1988), we have

 ( − ) ≡1 =
2
1− 

(D.1)


h
( − )2

i
≡2 =

2
£
1 + 222 + 41

¤
1− 2 − 22

(D.2)

 [( − ) (−1 − )] ≡11 = 2 + 2
2
1 (D.3)


h
( − )3

i
≡3 =

2
£
634 + 3

¡
1 + 622

¢
1 + 9

¡
2 + 22

¢
2

¤
1− 3 − 322

(D.4)


h
( − )4

i
≡4 =

2{32(844−1)+96341+6[1+1222(2+22)]2+16(2+322)3}
1−4−6222−344

(D.5)

Given the above expressions, the moments of  can be computed as follows

 () = +1 (D.6)

  () = 2 − (1)
2  (D.7)

 ( −1) =
11 − (1)

2

  ()
 (D.8)

 () =
3 − (1)

3 − 31  ()

  ()
15

 (D.9)

 () =
4 + (1)

4 − 41

h
3 + (1)

3
i
+ 62 (1)

2

  ()
2

 (D.10)
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