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Abstract

In expositions of the equity premium, risk-free rate, and equity variability puzzles,

the subjective distribution of future growth rates has its mean and variance calibrated

to known past sample averages. This paper shows that Bayesian estimation of unknown

structural growth parameters adds to future expectations an irreducible fat-tailed back-

ground layer of uncertainty, which can explain all three puzzles parsimoniously by one

uni�ed theory. The Bayesian statistical-economic equilibrium has essentially one de-

gree of freedom, yet the data generating process of the model matches simultaneously

all three empirically-observed values of the equity premium, risk-free rate, and equity

variability.

1 Introduction: Structural Uncertainty and Asset Prices

The �equity premium puzzle�refers to the spectacular failure of the standard neoclassical

representative-agent model of stochastic general-equilibrium growth to explain a historical

di¤erence of some six or so percentage points between the average return to a representative

stock market portfolio and the average return from a representative portfolio of relatively

safe stores of value. To justify such a large risk premium suggests either that people are

perceiving more uncertainty about the future than past data would appear to indicate, or

else that something is fundamentally wrong with the standard formulation of the problem

�(e-address: mweitzman@harvard.edu) For helpful detailed comments on an earlier draft of this paper,
but without blaming them for its remaining defects, I am grateful to Andrew Abel, Evan Anderson, Gary
Chamberlain, Xavier Gabaix, Alfred Galichon, John Geweke, Joseph Kadane, Naranya Kocherlakota, Angelo
Melino, and Jonathan Parker.
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in terms of a non-bizarre, comfortably-familiar coe¢ cient of relative risk aversion, say with

values 
 � 2� 1:
For this same risk-aversion coe¢ cient of 
 � 2, the stochastic generalization of the basic

Ramsey formula from equilibrium growth theory predicts a risk-free interest rate in the

approximate neighborhood rf � 5�6%, while what is actually observed is more in the rangebrf � 0 � 1%. The large discrepancy between these numbers is the �risk-free rate puzzle,�

which represents another big disappointment with the standard neoclassical model.

In principle, aggregate returns on comprehensive economy-wide equity should re�ect

fundamental growth expectations about the underlying real economy. What I am calling

in this paper the �equity variability puzzle� refers to the counterintuitive empirical fact

that actual returns on a representative stock market index appear to be about an order of

magnitude excessively more variable than any �fundamental�that might be driving them.

Taken together, this unholy trinity of theoretical predictions that miss their empirical

targets by entire orders of magnitude is devastating for the credibility of the neoclassical

paradigm. The proper interpretation of these equity macro-puzzles has important rami-

�cations throughout all branches of economics because it goes centrally to the core issue

of discounting for risk and time. These three intuitively-related macroeconomic paradoxes

are fairly crying out that something is deeply wrong with the standard paradigm �some-

thing which is unlikely to be corrected by tinkering with small modi�cations of the basic

model. Some big critical element, which would capture the characteristic that appears to

make stocks comparatively so risky, seems to be missing from the formulation. At least for

asset pricing applications, a consensus has developed among economists that the standard

model is seriously �awed.

Not surprisingly, this family of equity macro-puzzles has stimulated a lot of economic

research. In attempting to explain the paradoxes, an enormous post-puzzles literature has

developed, which is �lled with some imaginatively fruitful variations on the standard model.

For example, to overcome one or another equity puzzle many new models feature exotic

(and complicated) reverse-engineered formal (or behavioral informal) preferences having ag-

gregated coe¢ cients of relative risk aversion that are typically very high, time-varying, and

correlated with the real economy. Some valuable insights have come out of these recent

models, but it still seems fair to say that no new consensus has yet emerged from within the

economics profession as a whole that the puzzles have been satisfactorily resolved.

The point of departure for this paper is the observation that, throughout the expository

literature, the equity premium and the risk-free rate are calibrated by plugging into the rel-

evant expectation formulas the sample mean and sample variance of past growth rates. But

the agent-investor presumably is like the Bayesian econometrician in having a full subjective
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probability distribution for uncertain structural parameters of the model, not just a point

estimate. Missing from the standard framework is a formal incorporation of the decision-

theoretic speci�cation required to make a rigorous statistical-economic general-equilibrium

growth model. In e¤ect, the implicit statistical methodology assumes that the time series

are long enough that the law of large numbers allows substituting the sample moments of

past growth rates for the population moments of future growth rates. While this intuitive

methodology may well be justi�ed for some economic applications, the paper will show that

such point calibration can be a fatally �awed procedure for the particular application of an-

alyzing aversion to model-structure uncertainty, which underlies (or, more accurately, should

underlie) all asset-pricing calculations. The core essence of the problem is that, for any �nite

number of observations, mimicking the sample frequencies of past growth rates can under-

state enormously the researcher�s (and the agent-investor�s) predictive uncertainty about the

future marginal-utility-weighted stochastic discount factor. This forecast-expectation bias

spills over into severe pricing-kernel errors, which in turn cascade into dramatically incorrect

asset valuations, that �nally culminate in the equity family of �puzzles.�

This paper attempts to shed light on the equity-premium, risk-free-rate, and equity-

variability puzzles by simultaneously rooting all three issues together deeply into the common

ground of Bayesian statistical inference. The goal here is to ascertain whether the most basic

speci�cation of the standard model can be rehabilitated when only the simplest imaginable

structural uncertainty is included in the formation of expectations. The fact that structural

parameters of the model are unknown will introduce an extra layer of Bayesian posterior

background uncertainty, which is inherited from the prior and which, counter-intuitively,

does not converge uniformly to zero as the number of subsequent observations increases to

in�nity. Such ubiquitous background uncertainty fattens critically the tails of the posterior

distribution of future growth rates and acts strongly upon asset prices to increase signi�cantly

the values of both the equity premium and equity variability, while simultaneously decreasing

markedly the risk-free interest rate.

To convey the essential statistical insights as sharply as possible, only most basic con-

ceivable speci�cation of the interplay between Bayesian statistical inference and stochastic

general equilibrium growth is modeled. Thus, to ease the computational burdens from de-

livering its core message the model analyzes a very stark competitive equilibrium over just

two time periods, with a single representative agent whose utility function is isoelastic, for a

pure endowment-exchange fruit-tree economy (having no genuine production or investment),

where the return to representative equity and the growth of aggregate consumption are both

i.i.d. normal, and so on. Abstracted away are such diversionary complications as leverage

e¤ects, labor income, human capital, distortionary taxes, heterogeneous beliefs, idiosyncratic
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risk, and the like. The central issue, to be addressed by this paper at a very high level of

abstraction, is whether the three equity macro-puzzles are �essentially explained�when only

the most basic form of structural uncertainty is added to the core macro-model. For analyti-

cal clarity the only change made from the simplest possible stochastic speci�cation (wherein

all parameter values are assumed known) is to have the model include a consistent Bayesian

treatment of just two of its structural parameters: the mean and the variance of the normally

distributed future growth rate.

In this model the prior probability density of growth rates is essentially characterized by

a single critical positive number �, whose inverse 1=� quanti�es the amount of background

uncertainty that later shows up in the Bayesian posterior distribution. As the modeler (or

the representative agent-investor) decreases this �-coe¢ cient continuously (which amounts

to moving from a normal distribution of future growth rates towards a fatter-tailed t dis-

tribution), the equity premium and equity variability both increase without limit while the

risk-free rate simultaneously decreases, also without limit. Furthermore, essentially the same

value of � comes very close to matching simultaneously the equity premium, risk-free rate,

and equity variability that are observed empirically in the time-series data. Although the

formal model employs only familiar, analytically tractable, garden-variety speci�cations in

order to be able to derive a relatively transparent expression for the family of equity discrep-

ancies, it will become apparent that the basic insights have much broader applicability.

This paper is far from being the �rst to investigate the e¤ects of Bayesian statistical

uncertainty on asset pricing. Earlier examples having some Bayesian features include Barsky

and DeLong (1993), Timmerman (1993), Bossaerts (1995), Cecchetti, Lam and Mark (2000),

Veronesi (2000), Brennan and Xia (2001), Abel (2002), Brav and Heaton (2002), Lewellen

and Shanken (2002), and several others. Broadly speaking, these papers indicate or hint,

either explicitly or implicitly, that the need for Bayesian learning about structural parameters

may reduce the degree of one or another equity anomaly. What has been utterly missing from

this literature, however, is any sense of the generic strong force that tail-fattening structural

parameter uncertainty can bring to bear on asset pricing equations by its overwhelming

ability to dominate the numerical evaluation of standard expectation formulas involving

stochastic discount factors. In e¤ect, the direction of this Bayesian component of structural

model uncertainty is (somewhat) appreciated in (some of) the literature, but not the stunning

magnitude of the �strong force�it can exert on expected-marginal-utility calculations.

The single possible exception is an important note by Geweke (2001), who applies a

Bayesian framework to the most standard model prototypically used to analyze behavior

towards risk and then demonstrates the extraordinary fragility of the existence of �nite
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expected utility itself.1 In a sense the present paper begins by accepting this non-robustness

insight, but pushes it further to argue that the inherent sensitivity of the standard prototype

formulation constitutes an important clue for unraveling what may be causing the equity

puzzles and for giving them a uni�ed general-equilibrium interpretation that simultaneously

�ts the stylized time-series facts.

This paper will end up arguing that the three equity macro-puzzles are not �puzzling�in

a Bayesian framework that includes structural model-parameter uncertainty. Instead, the

arrow of causality in a uni�ed Bayesian explanation is reversed: the �puzzling�numbers being

observed empirically are trying to tell us a consistent and revealing story about the implicit

background prior distribution of structural model-parameter uncertainty that is generating

such data. In the �nal section of the paper the three �puzzling�time-series sample averages of

the equity premium, risk-free rate and equity variability are inverted to back out the implicit

subjective probability distribution of the future growth rate. Measured in the appropriate

welfare-equivalent state space of expected utility, a world view about the subjective uncer-

tainty of future growth prospects emerges from this Bayesian calibration exercise that is

much closer to what is being suggested by the relatively stormy volatility record of stock

market wealth than it is to the far more placid smoothness of past consumption.

2 The Family of Equity Macro-Puzzles

The critical issue for this paper is whether or not the appearance of the three related equity

�macro-puzzles�might essentially be attributable to the presence of Bayesian structural un-

certainty. To cut sharply to the analytical essence of this central issue, a super-stark model is

used where everything else except the most basic abstract structure has been set aside. The

prototype model used here is a pruned-down reduced-form version of the textbook workhorse

formulation employed throughout the �nancial economics literature.2

In this core prototype model there are two periods, the present and the future. By

limiting the analysis to just two periods we do not have to take a stand on any critically-

consequential properties of a fully-dynamic version. Thus, we need not say whether a

fully-speci�ed formulation involves overlapping generations or in�nitely-long-lived agents.

1I am grateful to two readers of a previous draft of this paper for informing me of Geweke�s pioneering
earlier article, after noticing that I had independently derived results with a similar �avor.

2See, for example, the survey articles of Campbell (2003) or Mehra and Prescott (2003), both of which
also give due historical credit to the pioneering originators of the important set of ideas and the stylized
empirical facts used throughout this paper. Citations for the many sources of these (and related) seminal
asset-pricing ideas are omitted here only to save space, and because they are readily available, e.g., in the
above two review articles and in the textbook expositions of Cochrane (2001), Du¢ e (2001), or Gollier
(2001).
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Nor must we commit to whether the underlying dynamics are stationary or non-stationary.

With just two periods, we also �nesse the controversial unresolved issue of whether �rational

bubbles� are a substantive component of equity price variability, or not. The one-period-

ahead properties of all such multi-period models must reduce to the two-period form analyzed

here.

The population consists of a large �xed number of identical people. Present per-capita

consumption is given as C0, while future per-capita consumption is the random variable

C1. The utility U of consumption C is speci�ed by the Von Neumann-Morgenstern utility

function U(C). The pure-time-preference multiplicative factor for discounting future utility

into present utility is �. Future consumption C1 is a random variable having some present

subjective probability distribution, but whose future realization is presently unknown. The

growth rate of everything in this simple endowment-exchange economy is the random variable

g � lnC1 � lnC0; (1)

while the expected growth rate is calculated as E[g] = E[lnC1]� lnC0:
The primitive driving force throughout this model is the unknown growth rate g, which

quanti�es the future state of the system and serves as its sole �fundamental.� A one-period

asset � is viewed abstractly here as being a security promising to pay a contingent claim in

future state g equal to the gross payo¤ H�(g), denominated in units of consumption. The

expression H�(g) symbolizes the unit payo¤ function for asset �. Let the price of this asset

be P�. Then the corresponding asset return function is

R�(g) =
H�(g)

P�
: (2)

Within this model all asset markets are in some sense phantom entities, because no one

actually ends up taking a net position in any of them. They exist as shadow exchange

possibilities, but in this pure endowment economy there is no avoiding the ultimate reality

that everyone�s future consumption will end up being the future endowment, no matter how

the asset markets equilibrate. The fundamental Euler equation of asset-pricing equilibrium

for this economy is

U 0(C0) = �E[U 0(C1)R�(g)]: (3)

For practical purposes of analysis, throughout the paper expressions like (3) will be

further simpli�ed by following the literature in choosing the utility function to be of the

standard iso-elastic form

U(C) =
C1�


1� 

(4)
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with corresponding marginal utility

U 0(C) = C�
; (5)

where the coe¢ cient of relative risk aversion is the positive constant 
. Substituting (1),

(2), (5) into (3) and rearranging terms gives the expression

P� = �E[exp(�
g)H�(g)]: (6)

Plugging (6) into (2) and taking expected values results in the basic relationship

E[R�(g)] =
E[H�(g)]

�E[exp(�
g)H�(g)]
: (7)

An immediate application of (7) is to derive the risk-free interest rate. For this situation

we use the standard notation � = f to indicate that we are treating the special case of a

deterministic asset paying one unit of consumption in the future. The corresponding unit

payo¤ function here is

Hf (g) = 1; (8)

for which case (7) becomes

Rf =
1

�E[exp(�
g)] ; (9)

whose more familiar logarithmic form is

rf = �� lnE[exp(�
g)]; (10)

where � � � ln � is the instantaneous rate of pure time preference and the usual de�nition
rf � lnRf is applied.
Another important application of formula (7) is to the special case of a comprehensive

broad-based equity index representing the entire economy. In this very simple two-period

model, the relevant macroeconomic abstraction is that the one-period-ahead total payo¤ to

comprehensive equity (what would be aggregate dividends plus aggregate capital gains in

a multi-period version) essentially reduces in this two-period world to a unit claim on the

future aggregate output of the underlying real economy. For this case we use the notation

� = e to indicate that we are treating the situation of economy-wide one-period-ahead equity.

The corresponding unit payo¤ function here is then

He(g) = exp(g); (11)
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for which case equation (7) becomes

E[Re] =
E[exp(g)]

�E[exp((1� 
)g)]
: (12)

Dividing (12) by (9) and taking logarithms, the equity premium is

lnE[Re]� rf = lnE[exp(g)] + lnE[exp(�
g)]� lnE[exp((1� 
)g)]: (13)

Equation (13) gives a theoretical formula for calculating the equity risk premium, given

any coe¢ cient of relative risk aversion 
, and, more importantly here, given the subjective

probability distribution of the uncertain future growth rate g. Concerning the relative-risk-

aversion parameter 
, there seems to be some agreement within the economics profession as

a whole that an array of evidence from a variety of sources suggests that it is somewhere

between about one and about three. More accurately stated, any proposed solution which

does not explain the equity premium for 
 � 4 would likely be viewed suspiciously by most
members of the broadly-de�ned community of professional economists as being dependent

upon an unacceptably high degree of risk aversion.

By way of contrast, much less is known about what is the appropriate probability dis-

tribution to use for representing future growth rates. The reason for this traces back to the

unavoidable truth that, even under the best of circumstances (with a given, stable, stationary

stochastic speci�cation that can accurately be extrapolated from the past onto the future),

we cannot know the critical structural parameters of the distribution of g unless there is

an in�nitely long time series of historical growth rates. At this point in the story, the best

anyone can do is to infer from the past some estimate of the probability distribution of g.

The rest of the story hinges on specifying the form of the assumed density function of g,

and then looking to see what the data are saying about its likely parameter values. The

functional form that naturally leaps to mind is the normal probability density function

g � N(�; V ); (14)

which is the ubiquitous benchmark case assumed throughout the asset-pricing literature.

The equity premium literature generally proceeds by implicitly presuming that the struc-

tural parameters � and V are constants known by the agents inside the economy (but perhaps

not known by an outsider econometrician), and then continues on by substituting the normal

distribution (14) into formula (13), which reduces (13) to a simple well-known expression.

Instead of allowing the representative agent in the economy to recognize that � and V are
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themselves unknown random variables, the standard practice essentially plugs in the �rst

two sample moments and then goes on pretending that normality still holds (in place of

substituting into (13) the relevant t-distribution to account for sampling error).

Throughout the paper, it is assumed for simplicity that the n data points fgig are i.i.d.
realizations of (14). The observed sample variance is

bV =
1

n

nX
i=1

(gi � bg)2; (15)

where bg = 1

n

nX
i=1

gi (16)

is the sample mean. Implicitly in the equity premium literature, the sample size n is pre-

sumed large enough to make (16) and (15) su¢ ciently accurate estimates of their underlying

true values, but no formal attempt is made either to de�ne �su¢ ciently accurate� or to

con�rm exactly what happens to formula (13) in this model if the estimates, and therefore

the approximations, are not �su¢ ciently accurate.�In the expository literature the value of

(13) is calculated to be what it reduces to when there is no structural uncertainty because �

is known precisely to be bg and V is known precisely to be bV . When (14) is assumed along
with the extreme point-mass case � = bg, V = bV , then using the formula for the expectation
of a lognormal random variable and cancelling the many redundant terms simpli�es (13) into

the standard expression

lnE[Re]� rf = 
 bV ; (17)

and for this special deterministic-structure case the equity premium puzzle is readily stated.

Considering the U.S. as a prime example, in the last century or so the average annual real

arithmetic return on the broadest available stock market index is taken to be lnE[Re] � 7%.3

The historically observed real return on an index of the safest available short-maturity bills

is less than 1% per annum, implying for the equity premium that lnE[Re]� rf � 6%. The
mean yearly growth rate of U.S. per capita consumption over the last century or so is about

2%, with standard deviation taken to be about 2%, meaning bV � 0:04%. Suppose 
 � 2.

Plugging these values into the right hand side of (17) gives 
 bV � 0:08%.
Thus, the actually observed equity premium on the left hand side of equation (13) exceeds

the estimate (17) of the right hand side by some seventy-�ve times. If this were to be

explained with the above data by a di¤erent value of 
, it would require the coe¢ cient of

3These numbers are from Prescott and Mehra (2003) and/or Campbell (2003), who also show essentially
similar summary statistics based on other time periods and other countries (but most of which naturally
have somewhat lower values of lnE[Re] than �America in the American century�).
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relative risk aversion to be 150, which is away from acceptable reality by about two orders of

magnitude. This is the form or variant of the equity premium puzzle applicable to the above

macro-model, and it is apparent why characterizing such a result as �disturbing� (for the

standard neoclassical paradigm) may be putting it very mildly. Plugging in some reasonable

alternative speci�cations or parameter values can have the e¤ect of chipping away at the

puzzle, but the overwhelming impression is that the equity premium is o¤ by at least an

order of magnitude. There just does not seem to be enough variability in the recent past

historical growth record of advanced capitalist countries to warrant such a high risk premium

as is observed. Of course, the underlying model is extremely crude and can be criticized

on any number of valid counts. Economics is not physics, after all, so there is plenty of

wiggle room for a paradigm aspiring to be the �standard economic model.�Still, two orders

of magnitude seems like an awfully large base-case discrepancy to be explained away ex post

factum.

Turning to the risk-free rate puzzle, the meaning given in the asset-pricing literature

to equation (10) parallels the interpretation given to the equity premium formula. Equa-

tion (10) is a theoretical formula for calculating the risk-free interest rate, given 
 and the

subjective probability distribution of the future growth rate g. Concerning the behavioral

risk-aversion parameter 
, a value that would be accepted by the economics profession as a

whole is about two, roughly. By contrast, the true subjective probability distribution of the

future growth rate g is unknown and the best that can be done is to make some statistical

inference about the likely probabilities of g from observing its past realizations.

The literature typically proceeds from (10) by postulating the normal distribution (14),

but then imagines that the representative agent ignores the statistical uncertainty inherent

in estimating � and V . Instead, these two structural parameters are usually treated by

plugging in their sample values and then pretending that normality still holds. Substituting

the deterministic-structure point-mass-parameter version � = bg, V = bV into (10), and then

using the formula for the expectation of a lognormal distribution gives

rf = �+ 
bg � 1
2

2bV ; (18)

which is a ubiquitous generic equation appearing in one form or another throughout equi-

librium stochastic-growth theory. (Its origins trace back to the famous neoclassical Ramsey

model of the 1920�s.)

Non-controversial estimates of the relevant parameters appearing in (18) (calculated on

an annual basis) are: bg � 2%, bV � :04%, � � 2%, 
 � 2. With these representative

parameter values plugged into the right hand side of (18), the left hand side of (10) becomes
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rf � 5:9%. When compared with an actual real-world risk-free rate brf � 1%, the theoretical
formula is too high by � 4:9%. This gross discrepancy is the risk-free rate puzzle. With the
other base-case parameters set at the above values, the value of 
 required to explain the

risk-free interest rate discrepancy is essentially 
 � 0, whereas 
 � 150 is required to explain
the equity risk premium. Choosing a coe¢ cient of relative risk aversion to ease the risk-

free rate puzzle exacerbates the equity premium puzzle, and vice versa. The simultaneous

existence of two strong contradictions with reality, which, in addition, seem to be strongly

contradicting each other, might be characterized as being disturbing �times three.�

As if all of the above were not vexing enough, there is also the enigmatic appearance in

the data of what is being called throughout this paper the �equity variability puzzle.� In

this ultra-simple i.i.d. endowment-exchange model, the sole genuine �fundamental�of the

system is the random variable g. From combining (2) with (11) and then taking logs, the

continuously-compounded deviation of returns on one-period comprehensive equity re�E[re]
should, for this austere representation, have the same distribution as the deviation of its

underlying �fundamental� g � E[g]. In the data, however, the (geometrically-calculated)

standard deviation of equity returns b�[re] � 17% is much bigger than the (geometrically-

calculated) standard deviation of growth rates b�[g] � 2%. For the highly abstract tree model
of this paper (with i.i.d. fruit and isoelastic utility), the relevant macroeconomic form of

an �equity variability puzzle� is taken to be the empirical observation that b�[re] � b�[g].
Thus, the �equity variability puzzle� is understood in this paper to be the stylized macro-

economic fact that the one-period return to representative equity counterintuitively appears

to be about an order of magnitude more variable than the underlying fundamental of an

aggregate-output real-growth payo¤, for which it is the implicit claimant. Conforming here

with the usual equity macro-puzzle family pattern, it turns out that substituting alterna-

tive speci�cations or parameter values can lessen somewhat the initial order-of-magnitude

discrepancy (here of excess equity volatility), but something central still seems way o¤ base.

Summing up the scorecard for this super-simple version of the standard neoclassical

general-equilibrium growth model, all in all we have three strong contradictions with reality

and at least one serious internal contradiction, making the grand total add up to being a

conundrum that is disturbing times four. The next section of the paper examines what

happens to the family of equity puzzles when the structural parameters � and V take on

the standard familiar sampling distributions that arise naturally when n sample points are

drawn randomly from a normal population.
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3 Subjective Expectations of Future Growth

As a preliminary guide to indicate roughly where the argument is now and where it is

heading, the outline of the ultimate full model is here sketched. The Euler equation (3)

is presumed to hold in subjective expectations for the utility function (4). The assumed

probability distributions are: g � N(E[g]; V [g]) and re � N(E[re]; V [re]). The following �ve

quasi-constants of the model are e¤ectively assumed known: E[re], V [re], rf , �, 
. Only the

following two structural parameters are unknown and must be estimated statistically: E[g],

V [g]. This section e¤ectively derives the Bayesian subjective distributions of E[g] and V [g],

which will then be applied to the model throughout the remainder of the paper.

Assuming the normal speci�cation (14), de�ne the random variable

w � 1=V; (19)

which is commonly called the precision of a normal probability distribution. Let the random

variable e� denote the unknown mean of g. Conditional on known values of w and e�,
g = e�+ "; (20)

where " � N(0; 1=w).

Purely for simplicity here suppose that initially, before any observations are made, the

Bayesian pre-sample estimate of the random variable e� is distributed as a non-informative
di¤use prior. Let g1; : : : ; gn be a random i.i.d. sample corresponding to the normal prob-

ability structure (20), which is drawn from a normal distribution with known precision w,

but whose Bayesian pre-sample prior estimate of e� is a di¤use-normal distribution. With a
known variance, the posterior distribution of e� after n independent sample observations is

e� � N(bg; 1=nw): (21)

From (20) and (21), E[g] = E[e�] = bg. For given values of both w and e�, the random
variable g is distributed according to (20) as

g � N(e�; 1=w); (22)

while, for any given value of w alone, the random variable e� is distributed according to
(21). Combining these two quasi-independent realizations of normal processes, the random

variable g must be distributed normally with mean bg and variance equal to the sum of the

variance of the normal process (21) plus the variance of the conditionally-independent normal
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process (22). After adding together the two variances (1=nw from (21) plus 1=w from (22)),

the posterior distribution of g comes out to be

g � N(bg; (n+ 1)=nw): (23)

Thus far, the speci�cation has proceeded as if w were known. When w is not known,

Bayesian statistical theory has developed a rigorous and elegantly symmetric isomorphism

with the classical statistics of the familiar linear-normal regression setup.4 The Bayesian dual

counterpart to classical statistics works with a normal-gamma family of so-called �natural

conjugate�distributions. For reasons that later will become apparent, we work here with

a three-parameter generalization of the two-parameter gamma distribution, which forms a

normal-truncated-gamma family of natural conjugate distributions.

Consider a non-negative random variable w representing the precision. Let � be a non-

negative hyperparameter representing an arbitrarily imposed lower-bound support for the

Bayesian prior distribution of w. (For the time being, think of � as an arbitrarily-small pos-

itive number.) Assume that the Bayesian prior distribution of the precision is a truncated-

gamma probability density function (with truncation hyperparameter �) of the form:

'0(w) =
wa0�1 e�b0w

1R
�

wa0�1 e�b0w dw

(24)

for w � �, while '0(w) = 0 for w < �. Hyperparameters a0, b0, � are treated as quasi-�xed.

When choosing � to be positive, the model is dogmatically eliminating a priori all vari-

ances above 1=�. As will later become clear, the technical reason for declaring impermissible

worlds of unboundedly high variance is to make the integral de�ning the moment generat-

ing function of g converge to a �nite value. An economic rationale presumably has to do

with the di¢ culty of envisioning the unbounded loss function arising from possibly unlimited

variability in growth rates. Whatever the story, the implicit subtext is that nobody has the

slightest idea about what is actually an appropriate value of �, which would appear to exist

in the �rst place only for the seemingly minor mathematical technicality of placing some

�nite upper bound above expected marginal utility.

The three non-negative hyperparameters �, a0, b0 of the truncated gamma distribution

(24) represent prior beliefs about the precision. In the limit as � ! 0+, the mean of the

truncated-gamma prior (24) approaches a0=b0, while the variance approaches a0=b02. Thus,

at least for small �, the prior mean and variance can be assigned any values just by judiciously

4Among several other places, clear expositions of Bayesian-classical duality are contained in DeGroot
(1970), Zellner (1971), Leamer (1978), Hamilton (1994), Poirier (1995), and Koop (2003).
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selecting a0 and b0. Classical statistical analysis is exactly isomorphic to the limiting case

of a non-informative di¤use prior: � ! 0+, a0 ! 0+, b0 ! 0+. Therefore, the analysis

presented here can be viewed as paralleling the classical speci�cation very closely, except

that it is slightly more general by allowing positive hyperparameter values other than the

limit 0+.

Let 'n(w) be the posterior distribution of the precision w at a time just after observ-

ing the n independent realizations g1; : : : ; gn. When � = 0, it is well known (see any of

the references cited in footnote 4) that the normal-gamma distribution constitutes a self-

regenerating conjugate family of priors. When � > 0, we have the same conjugate family of

priors, except that w is subject to a lower-bound constraint. Therefore, the posterior is of

the same form as the prior, and subject to the same bounding constraint. The modi�cation

of a basic conjugate-prior result in the Bayesian statistical literature needed for this paper

is the following lemma (stated here without proof):

'n(w) =
wa�1 e�bw

1R
�

wa�1 e�bw dw

; (25)

for w � �;while 'n(w) = 0 for w < �. The parameters a and b are de�ned by the equations

a =
n

2
+ a0 (26)

and

b =
1

2

nX
i=1

(gi � bg)2 + b0: (27)

It is analytically very convenient (and, in the context of this model, comes at the cost

of only an insigni�cant loss of generality) to presume that there is insu¢ cient reason to

believe that the distribution of the imposed prior precision is biased relative to the observed

sample precision, meaning E0[w] � 1=bV . Since (for the small-� case of a truncated-

gamma prior distribution) E0[w] � a0=b0, this unbiasedness assumption allows compressing

the two hyperparameters a0 and b0 into just one hyperparameter, by e¤ectively imposing the

additional conditions

a0 =
m

2
(28)

and

b0 =
m

2
bV ; (29)

where the single hyperparameter m now quanti�es the one remaining degree of freedom.
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With the above unbiasedness speci�cation, m has a natural interpretation �as if� bV were

the sample variance calculated from a pre-observation �ctitious earlier sample of sizem drawn

from the same underlying population that generated the data. Under this interpretation, m

quanti�es the �degree of prior con�dence�in the value bV (of V ), which was in fact calculated
from the n �real�sample points that were actually observed. The overall situation is then

�as if�bV were the sample variance from a total sample of size m+n. With this unbiasedness
simpli�cation, the prior distribution of the precision is now characterized by just two non-

negative hyperparameters: � and m.

To summarize here, with the unbiased-prior assumption (28), (29) the posterior distrib-

ution of the precision w is given by the probability density function

 n(w j �;m) = k� w
a�1 e�bw; (30)

for w � �; while  n(w j �;m) = 0 for w < �. The constants k�; a and b in (30) are de�ned

by the equations

1=k� =

1Z
�

wa�1 e�bw dw; (31)

a =
n+m

2
; (32)

b =
n+m

2
bV: (33)

From combining (30) with (23), the unconditional or marginal posterior probability den-

sity function of g is

fn(g j �;m) = k0�

1Z
�

exp(�(g � bg)2nw=2(n+ 1)) wa� 1
2 e�bw dw; (34)

where a and b are de�ned by (32) and (33), while k0� is a constant of integration satisfying

1=k0� =

1Z
�1

dx

1Z
�

exp(�x2nw=2(n+ 1)) wa� 1
2 e�bw dw: (35)

The two non-negative hyperparameters � and m are highlighted in formulas (30) and

(34) merely to remind us that (among many other things, such as bV and n, which o¤hand

seem intuitively like they should end up being far more important in practice) the posterior

probability density function of the future growth rate depends in principle on the lower bound
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� and the �ctitious-sample size m that are conceptualized by us today as characterizing the

prior distribution of the precision prescribed n periods ago. Of course nobody today has

the slightest notion about what reasonable values of � or m might have been way back

then, before anyone looked at any data. It is for just this reason that everyone�s favorite

candidate today is the non-informative di¤use prior � ! 0+ andm! 0+, which corresponds

exactly to familiar dual-classical statistical regression analysis. In this dual-classical case,

straightforward integration (after taking the limits � ! 0+ and m ! 0+) shows that (34),

(35) reduces to the t distribution

fn(g j 0; 0) =
�((n+ 1)=2)

�(n=2)
p
�bV n

"
1 +

(g � bg)2
(n+ 1)bV

#�n+1
2

; (36)

whose moment generating function is unboundedly large because the relevant integral di-

verges to plus in�nity. (It is essentially in order to make this moment-generating integral

converge that the condition � > 0 is imposed in the �rst place.)

Of course, this entire preliminary discussion of the future consequences of what people

now think that people long ago �might have been thinking�about an upper bound on V (of

1=�) or a degree of prior con�dence in bV (of m) has an unreal tone about it. In practice such
issues ought to be non-operational �and therefore not worth contemplating �because the

intervening n observations should have e¤ectively bleached the prior hyperparameters out of

the posterior distribution. Intuitively, we might say that if the number of data points n is

large enough, �it should not matter now what values of � or m we select to represent prior

beliefs.�

In the setup of this model, the formula for expected marginal utility essentially re�ects

the mathematical properties of the moment generating function of g. The intuition that �it

should not matter now what values we select to represent prior beliefs�is true, it turns out,

for the hyperparameter m, whose e¤ects on expected marginal utility converge uniformly in

n for all m > 0. However, the hyperparameter � behaves fundamentally di¤erently, because

its e¤ects on the moment generating function of g �and therefore on expected marginal utility

�do not converge uniformly in n for all � > 0 (essentially because the moment generating

function of (36) is in�nite). In this sense there is an absolutely critical distinction, which

is crucial for all marginal-utility-weighted asset-pricing expectation formulas, between not

knowing what value to assign now to the prior hyperparameter m and not knowing what

value to assign now to the prior hyperparameter �.

The fact that expected utility is not uniformly convergent in n for all positive � has

enormous signi�cance for the family of equity puzzles. A prior distribution is our imputation
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now of what �they might have imposed� n periods ago during the pre-data past. It is

essentially a mental arti�ce for framing a subjective thought-experimental back-and-forth

dialogue between the present and a hypothetical past, about what to expect from the future.

In such a setting, pointwise convergence of expected utility in n for a given � is not nearly

enough to guarantee posterior robustness, because the prior is a subjective creature of our

imagination now, not an objective unchangeable reality that a real person carved in stone

n periods ago to represent some intrinsic characteristic of the then-observable world. Non-

uniform convergence in stochastic-discount-factor space means that the �ckle whimsicality

of current investors concerning what value of the structural hyperparameter � to select for

representing the model�s initial con�guration never loses its potential ability to dominate

posterior behavior under risk, regardless of the amount of data accumulated during the

interim. This tremendous sensitivity to the �background shadow of �� permeates every

aspect of asset pricing and represents the critical component of a uni�ed Bayesian theory

capable of resolving simultaneously all three of the so-called equity puzzles.

A necessary precondition for the validity here of the classical frequentist idea to �just

let the data speak for themselves�is that the e¤ects of � or m on the posterior distribution

of g should be negligible for su¢ ciently large n. This condition holds (in the space of

subjectively-expected utility) for m, but such a posterior robustness condition does not hold

(in the space of subjectively-expected utility) for �. The value of � that has been chosen

now to represent the past manifests itself as a piece of current background risk that refuses

to become invisible with the passage of time. From a Bayesian perspective, we �just let the

data speak for themselves�in a di¤erent sense from the classical statistical interpretation of

this phrase. Here, data �speak for themselves�by telling us what is the implied value of �

that real-world investors must implicitly be using in their priors, in order to be compatible

with what we researchers are observing in the data.

Taking (30) and (34) as subjective posterior probability density functions, we are now

ready to compute the Bayesian equity premium, the Bayesian risk-free interest rate, and

Bayesian equity variability. The next three sections of the paper do these calculations, in

turn. In the last section of the paper, implicit parameter values of the subjective probability

distribution of future growth rates are backed out of the data by Bayesian inverse calibration.

For each application, the sharpest insight comes from having in mind the mental image

of a limiting situation where m is very big, while simultaneously � is very small. This

limiting situation comes arbitrarily close to the standard familiar textbook case of normally

distributed purely-stochastic growth-rate risk, only the model never quite gets to a stationary

distribution because some very small (but consequential for asset pricing) amount of learning

takes place wheneverm <1. Whenm is �very big�but less than in�nity (one quadrillion is
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a nice round number to keep in mind), the subjective Bayesian distribution of future growth

rates is essentially unchanged by the arrival of a new datum point. Such a limiting situation

where 1015 � m < 1 nulli�es sampling error or learning e¤ects and focuses the mind very

sharply on understanding the core Bayesian structural model-uncertainty mechanism driving

the entire family of equity �puzzles.�

4 The Bayesian Equity Premium

We now use the statistical apparatus developed in the last section of the paper to compute

the Bayesian equity premium. For �xedm and n, let �(�) represent the value of lnE[Re]�rf
as a function of � that is obtained from formula (13) when the probability density function

of g is fn(g j �;m) de�ned by equation (34). Plugging the subjective posterior distribution
(34) into formula (13), we obtain

�(�) � ln

1R
�1
eg fn(g j �;m) dg

1R
�1
e�
g fn(g j �;m) dg

1R
�1
e(1�
)g fn(g j �;m) dg

: (37)

We then have the following proposition.

Theorem 1 Suppose that 
 > 0 and m + n < 1. Let lnE[Re] � rf be any given positive

value of the equity premium. Then there exists some positive �e such that

lnE[Re]� rf = �(�e): (38)

Proof. Using (23) and the formula for the expectation of a lognormal random variable

rewrite (37) (after cancelling terms in bg) as
�(�) = ln

1R
�

e(n+1)=2nw  n(w j �;m) dw
1R
�

e(n+1)

2=2nw  n(w j �;m) dw

1R
�

e(n+1)(1�
)2=2nw  n(w j �;m) dw
: (39)

It is readily apparent from examining (30) that as � ! 0+, all three integrals in (39)

approach +1. Therefore,

lim
�!0

�(�) = lim
w!0

ln
exp((n+ 1)=2nw) exp((n+ 1)
2=2nw)

exp((n+ 1)(1� 
)2=2nw)
: (40)
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Since

ln
exp((n+ 1)=2nw) exp((n+ 1)
2=2nw)

exp((n+ 1)(1� 
)2=2nw)
=
(n+ 1)


nw
; (41)

plugging (41) into (40) gives

�(0) = lim
w!0

(n+ 1)
=nw = +1: (42)

At the other extreme of �, it is apparent that �(1) = 0+, because there is no equity

premium when there is no uncertainty. The function �(�) de�ned by (37) is continuous in

�. Since

�(1) < lnE[Re]� rf < �(0); (43)

condition (38) follows.

The essence of the Bayesian statistical mechanism driving the theorem can be intuited by

examining what happens in the limiting case. As � ! 0+, the limit of (34) is a t distribution

of the form (36) �except that m+n essentially replaces n. With the presumed case of large

m+ n and small �, the central part of the t-like distribution (34) is approximated well by a

normal curve with mean bg and standard deviation b�[g] �tting the data in its middle range.
However, for applications involving the implications of risk aversion, such as calculating

the equity premium, to ignore what is happening away from the middle of the distribution

has the potential to wreak havoc on the calculations. For these applications, such a normal

distribution may be a very bad approximation indeed, because the relatively fatter tail of the

dampened-t distribution (34) is capable in principle of producing an explosion in formulas

like (10) or (13), implying in the limit as � ! 0+ an unboundedly large equity premium.

In this normal-gamma Bayesian framework, the statistical fact that the moment generating

function of a t-distribution is in�nite has the important economic interpretation that, at

least in principle, model-structure uncertainty has the potential to be a far more important

determinant of asset prices than purely-stochastic risk. As � ! 0+, the representative agent

becomes incomparably more averse to the �strong force�of statistical uncertainty about the

future growth process (whose structural parameters are unknown and must be estimated)

than is this agent averse to the �weak force�of the pure risk per se of being exposed to the

same underlying stochastic growth process (except with known structural parameters).

An explosion of the equity premium does not happen in the real world, of course, but

a tamed near-explosive outcome remains the mathematical driving force behind the scene,

which imparts the statistical illusion of an enormous equity premium incompatible with

the standard neoclassical paradigm. When people are peering into the future they are also

peering into the past, and they are intuitively sensing there the spooky background presence
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of a low-� prior variability that could leave them holding the bag by wiping out their stock-

market investments. This eerie sensation of low-� background structural shadow-risk may

not be simple to articulate, yet it frightens investors away from taking a more aggressive

stance in equities and scares them into a position of wanting to hold instead a portfolio

of some safer stores of value, such as cash, inventories of real goods, precious metals, or

government treasury bills �as a hedge against low-consumption states. Consequently, these

relatively-safe assets bear very low, even negative, rates of return.

I do not believe that it will be easy to dismiss such type of Bayesian statistical explanation.

The equity premium puzzle is the quantitative paradox that the observed value of lnE[Re]�
rf is too big to be reconciled with the standard neoclassical stochastic growth paradigm with

standard parameter values. But compared to what is the observed value of lnE[Re]�rf �too
big�? The answer given in the equity-premium literature is: �compared to the right hand

side of formula (17).�Unfortunately for this logic, the point-calibrated right hand side of

(17) is in practice a terrible estimate of the true value of lnE[Re]� rf as given by equation

(13). Anyone wishing to downplay this line of reasoning in favor of the status quo ante would

be hard pressed to come up with their own Bayesian rationale for calibrating variances of

non-observable subjectively-distributed future growth rates by point estimates equal to past

sample averages. In essence, the frequentist-inspired approach that produces the family of

equity puzzles avoids the consequences (on marginal-utility-weighted asset-pricing kernels)

of non-uniform convergence in � only by e¤ectively imposing from the very beginning the

pointwise-convergent extreme stationary case m =1.
In an important early attempt to explain the equity premium puzzle, Rietz (1988) argued

that we cannot exclude the possibility that our sample size is not large enough to describe

adequately the full macro-risk of unknown future growth rates. The impact on �nancial

equilibrium of a situation where there is a tiny probability of a catastrophic out-of-sample

event has been dubbed the �peso problem.� In a peso problem, the small probability of a

disastrous future happening (such as a collapse of the presumed structure from a natural

or socio-economic catastrophe) is taken into account by real-world investors (in the form of

a �peso premium�) but not by the calibrated model, because such an event is not in the

sample being used for the calibration.

Theorem 1 is trying to tell us that the statistical architecture of a peso problem is

genetically hardwired into the �deep structure�of how Bayesian inferences about exponential

processes (of future economic growth, at unknown rates) interact with any curved utility

function U(C) having the innocuous curvature property that �CU 00(C)=U 0(C) > 0+ for all
C > 0. Bayesian inferences from �nite data fatten the posterior tails of probability density

functions with dramatic consequences when expressed in subjective-expectation units of
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future marginal utility � as the example of replacing the workhorse normal distribution

by its t-like posterior distribution demonstrates. This �Bayesian-statistical peso problem�

means that it may not be so absurd to believe that no �nite sample size is large enough to

capture all of the relevant structural model uncertainty concerning future economic growth.

The Bayesian peso problem is e¤ectively saying that to calibrate an exponential process

having an unknown growth rate, which is essentially intended to describe future worldwide

economic prospects, by plugging the sample variance of observed past growth rates into a

�very bad� approximation of the subjectively-distributed stochastic discount factor, is to

underestimate �very badly�the comparative utility-risk of a real world gamble on the state

of the future world�s economy relative to a safe investment in a near-money sure thing.

Of course, what is being presented here is just one illustrative example of the economic

consequences of such a tail-fattening e¤ect, but I believe that it is very di¢ cult to get around

the moral of this story. For any �nite value of n, however large, the e¤ects of Bayesian tail-

fattening will cause the equity premium to be extraordinarily sensitive to seemingly innocu-

ous and negligible changes in the assumed prior of the precision �within a very broad class of

non-dogmatic probability distributions obeying standard regularity conditions. The driving

statistical-economic force is that seemingly thin-tailed probability distributions, which actu-

ally are only thin-tailed conditional on known structural parameters of the model, become

thick-tailed after integrating out the parameter uncertainty. Intuitively, no �nite sample

can eliminate the possibility of fat tails, and therefore the attitude of a risk-averse Bayesian

agent towards investing in various risk-classes of assets may be driven to an arbitrarily large

extent by this unavoidable feature of Bayesian expectational uncertainty.

The important result in Schwarz (1999) can be interpreted as saying that, for essentially

any reasonably-speci�ed model whose conclusions are invariant to measurement units, the

moment generating function of the posterior distribution is in�nite (i.e., the posterior distri-

bution has a �thick�tail), even when the random variable is being drawn from a thin-tailed

parent distribution whose moment generating function is �nite. It means that there is a

generic sense in which people are potentially much more afraid of not knowing what are the

structural-parameter settings inside the black box, whose data generating process drives the

purely-stochastic growth rates, than are they averse to the purely-stochastic growth-rate risk

itself. When investors are modeled as perceiving and acting upon these inevitably-fat-tailed

subjective posterior distributions, then a fully-rational general equilibrium interpretation in-

tegrates together seamlessly a uni�ed Bayesian theory of the entire family of equity �puzzles,�

as the next three sections of the paper will show in turn.
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5 The Bayesian Risk-Free Rate

We can use the same mathematical-statistical apparatus to calculate the Bayesian risk-free

interest rate. For �xed m and n, let �(�) be the value of rf as a function of � that comes out

of formula (10) when the probability density function of g is fn(g j �;m) de�ned by equation
(34). Plugging the subjective posterior distribution (34) into the right hand side of equation

(10), the result is

�(�) � �� ln
1Z
�1

exp(�
g) fn(g j �;m) dg: (44)

We then have the following proposition.

Theorem 2 Suppose 
 > 0 and m + n < 1 . Let rf be any given value of the risk-free

interest rate that satis�es rf < �+ 
bg. Then there exists a positive �f such that
rf = �(�f ): (45)

Proof. Use (23) and take the expectation of a lognormal distribution to rewrite (44) as

�(�) = �+ 
bg � ln 1Z
�

exp((n+ 1)
2=2nw)  n(w j �;m) dw: (46)

From examining (30), it is apparent that as � is made to approach zero, the integral

on the right hand side of (46) becomes unbounded. Therefore, �(0) = �1. At the other
extreme of � is the deterministic Ramsey formula �(1) = �+ 
bg. Thus,

�(0) < rf < �(1); (47)

and, since �(�) de�ned by (44) is continuous in �, the conclusion (45) follows.

The discussion of Theorem 2 so closely parallels the discussion of Theorem 1 that it is

largely omitted in the interest of space. The driving mechanism again is that the random

variable of subjective future growth rates behaves somewhat like a t statistic in its tails

and carries with it a potentially explosive moment generating function re�ecting an intense

aversion to high-volatility low-precision situations. The bottom line once more is that a

�Bayesian peso problem� causes false inferences about expected future utility, which are

based upon mimicking the observed historical behavior of past growth rates, to underestimate

enormously just how relatively much more attractive are safe stores of value when compared

with a real-world Bayesian gamble on the growth-structure of an unknown future economy.
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6 Normal-Equivalent Growth and Equity Variability

The methodology in this section of the paper unavoidably stretches the mind more than what

was previously encountered, because we are forced now to �ush out logical inconsistencies

and to confront conceptual modeling issues previously swept under the rug. We begin with

the standard de�nition

re(g) � lnRe(g); (48)

and then apply (2) and (11) to obtain

re � E[re] = g � E[g]: (49)

In this ultra-stark tree model with i.i.d. fruit and isoelastic utility, the only genuine

�fundamental� of the system is the growth rate g. Stocks are being understood here as

e¤ectively representing one-period-ahead unit claims on future realizations of g in the form of

the consumption payo¤ function exp(g). The idea that stock-market returns should vibrate

consistently with the vibrations of their underlying �fundamentals��nds expression in this

bare-bones macro-model by equation (49). A further decomposition of the one-period-

ahead equity payo¤-return into conventional dividends plus capital gains � with capital

gains contributing most of the actual vibrating �can �ll in some interesting and very useful

supplementary details but, be that as it may, any dynamic generalization of this basic model

(whether it be overlapping generations or in�nitely-long-lived agents, stationary or non-

stationary structure, with or without rational bubbles) should exhibit the same one-period-

ahead properties as the simple reduced-form two-period speci�cation of this paper.

According to (49), for an economy-wide comprehensive stock index, which embodies an

implicit claim on the future aggregate output of the underlying real economy, the second

order (and higher) central moments of g and re should coincide. Alas, the second moments

of g and re are not even remotely equal in the time-series data. For the super-simple fruit-

tree model of this paper, the �equity variability puzzle� is taken to be the empirical fact

that b�[re] is about an order of magnitude larger than b�[g]. This section of the paper can be
interpreted as essentially posing sharply and answering precisely the basic question: between

these two alternatives, which one of the two empirically-observed variabilities (b�[re] standing
in for the left hand side of equation (49), or b�[g] standing in for the right hand side) better
represents the true welfare situation (of the representative risk-averse agent, who is uncertain

about what to expect from the unknown structure of future growth prospects)?

Because b�[re]� b�[g], clearly expression (49) fails empirically to be a literal equality be-
tween random variables in an ex-post realized-frequency sense. The next question is: might
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an equation like (49) be holding more �guratively here in some welfare-equivalent ex-ante

sense of perceived subjective expectations? After all, the whole point of the paper is that

g is a subjectively-distributed random variable, whose perceived �strong force�of marginal-

utility-weighted subjective future variability is much greater than what might appear to be

indicated by point calibration to its un-weighted past sample variability. The representative

agent here understands that, due to the �Bayesian peso problem,�the realized sample vari-

ance understates signi�cantly in subjective-discount-factor units the true parent-population

variance, which includes the out-of-sample low-g (and high-g) extreme outliers in the tails

that have yet to be experienced. It follows that a subjective expected-utility-equivalent

future growth rate speci�ed to be normally distributed with the same mean bg as the poste-
rior distribution fn(g j �;m) must have a signi�cantly higher as-if-known variance than the
realized sample variance from past data.

Suppose, for the sake of argument, that the representative agent feels more comfortable

conceptualizing (or the modeler feels more comfortable telling a story about) the uncertainty

of future growth prospects in terms of a familiar normal probability distribution. We now

examine the connections between equity variability and a welfare-equivalent subjective belief

in normally-distributed growth rates. Let

gN � N(E[gN ]; �
2[gN ]) (50)

be a random variable representing the agent�s subjective perception of a normally-distributed

future growth rate with known parameters E[gN ] and �[gN ]. Let

HN(gN) � exp(gN) (51)

be the subjective perception of a stock-market payo¤ implicitly representing a unit claim on

the lognormally distributed future aggregate output corresponding to (50). Such a unit claim

gives rise to the subjective perception of a (geometrically measured) return on comprehensive

economy-wide equity rN(gN) satisfying the equation

rN � E[rN ] = gN � E[gN ]; (52)

which is exactly the normal counterpart here of (49).

The following representation theorem establishes the existence of a useful form of expected-

utility indi¤erence between gN and g. This last proposition of the paper can be interpreted

as providing a basic sense in which there might be some rationale for telling an as-if parable

wherein the representative agent has a subjective normally-distributed welfare-equivalent
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perception, which is consistent with (52), �as if� the future growth rate is gN with known

variability equal to the observed variability of returns on equity. In this as-if-normal in-

terpretation, the true welfare situation is represented by the relatively high variability of

returns on equity rather than by the relatively low variability of realized past growth rates.

Because here �[rN ] = �[gN ], at least from within the framework of this welfare-equivalent

as-if-normal parable there is no longer a �puzzling�mismatch of variabilities wanting to be

explained.

Theorem 3 Suppose m + n <1 . For any given positive value of b�[re], there exists some
positive �N such that the following four conditions are simultaneously satis�ed:

E[U(C0 exp(gN))] = E[U(C0 exp(g))]; (53)

E[gN ] = E[g] = bg; (54)

E[rN ] = E[re]; (55)

�[rN ] = �[gN ] = b�[re]: (56)

Proof. De�ne S(�) to be the implicit solution of the equation:

1p
2�S(�)

1Z
�1

exp((1� 
)gN � (gN � bg)2=2S(�))dgN = 1Z
�1

exp((1� 
)g)fn(g j �;m)dg (57)

and note that for this de�nition (53) and (54) are satis�ed by construction.

From plugging (11) into (6) into (2) and then taking logs,

re = g + f�� lnE[exp((1� 
)g)]g; (58)

and, from plugging (51) into (6) into (2) and then taking logs,

rN = gN + f�� lnE[exp((1� 
)gN)]g; (59)

so that (55) then follows from (54), (57), (58), (59).

For � = 1, the integral on the right hand side of equation (57) becomes exp((1 � 
)bg),
implying S(1) = 0: As � ! 0, the integral on the right hand side of equation (57) becomes

unbounded, implying S(0) =1: Thus,

S(1) < b�[re] < S(0); (60)
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and, by continuity of the function S(�), there must exist a �N > 0 satisfying

S(�N) = b�[re]; (61)

which, when combined with (52), proves (56) and concludes the proof.

The force behind Theorem 3 is the same �strong force�that is driving the previous two

theorems: intense aversion to the structural parameter uncertainty embodied in fat-tailed

t-distributed subjective future growth rates. Compared with the t-distribution g � fn(g j
0;m), a representative agent will always prefer �for any �nite S �the normal distribution

g � N(bg; S2). Theorem 3 results when the limiting explosiveness of the moment generating
function of fn(g j 0+;m) is contained by the substitution of fn(g j �N ;m) with �N > 0.

In the model of this paper, the standard deviation of normally-distributed equity returns

is presumed to be known by the agents, while the standard deviation of the growth rate is

unknown, but has been observed in the sample to be b�[g]. To convey a very sharp mental
image of what Theorem 3 is saying here, picture the following thought experiment. Imagine

generating a future time-series data sample from the prototype limiting case of the model

where m is extremely big (but less than in�nity, say one quadrillion), while simultaneously

� is extremely small (but greater than zero). Being arbitrarily close to (but not quite at)

the pure-stochastic-risk stationary limit where all parameter values are known exactly, the

subjective distribution of the precision of future growth rates is arbitrarily close to a point

mass and remains almost (but not exactly) unchanged as new data arrive over time.

With the above near-stationary setup, the data generating process for future g is es-

sentially a simulation of the t-like distribution (34), meaning that with very large m the

generated growth rates are statistically indistinguishable from a simulation of i.i.d. draws

from the distribution g � N(bg; b�2[g]). Simultaneously in this thought experiment, agents

are maintaining a subjective perception of the future as if gN �bg, which is known to be nor-
mally distributed, is statistically indistinguishable from a linear ampli�cation of g�bg by the
magnifying factor b�[re]=b�[g]. Consistent with (52), the data generating process for future

rN is essentially a simulation of random draws from a known normal distribution, so that,

except for sampling errors, rN � N(bre; b�2[re]). Therefore, in this thought experiment the

numerically-generated excess volatility of equity will simulate statistically b�[re]�b�[g]. Such
a discrepancy in variabilities seems almost mind-bogglingly contradictory, however, because

year after year of new realizations from the above data generating process are con�rming that

g appears as if it is normally distributed with standard deviation b�[g], yet rational agent-
investors in this economy nevertheless appear to an outside observer to be clinging stubbornly

in their mind�s eye to an unshakably-consistent irrational mental image as if their future
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Quasi-Constant Parameter Value
Mean arithmetic return on equity lnE[Re] � 7%
Geometric standard deviation of return on equity �[re] � 17%
Risk-free interest rate rf � 1%
Implied equity premium lnE[Re]� rf � 6%
Mean growth rate of per-capita consumption E[g] � 2%
Standard deviation of growth rate of per-capita consumption �[g] � 2%
Rate of pure time preference � � 2%
Coe¢ cient of relative risk aversion 
 � 2

Table 1: Some Economic "Stylized Facts"

welfare depends upon the realization of a much more variable normally-distributed growth

rate, whose standard deviation is �[gN ] (= b�[re]� b�[g]).
7 Some Bayesian Calibration Exercises

Viewing the three partial-equilibrium theorems of the paper through the lens of the welfare-

equivalent as-if-normal growth story of Theorem 3 gives an analytically-tractable relationship

among �, �, and S implied by the lognormality simpli�cation. The following question then

arises naturally: is there a reasonable sense in which approximately the same value of the

hyperparameter � comes close to matching simultaneously the actually-observed values of the

equity premium, risk-free rate, and equity volatility? In other words, can the three degrees

of freedom represented by �(�), �(�), and S(�) be essentially explained by the one degree of

freedom represented parsimoniously by � in this theory? The answer is basically �yes,�which

we will now proceed to show. The experimental outcome that all three empirically-observed

values of the equity premium, risk-free rate, and equity variability come close to matching

simultaneously their theoretically-predicted relationship conveys some overall sense of the

degree to which the model is a relatively tight-�tting theoretical-empirical construct.

The proposed exercise will test whether the welfare-equivalent interpretation of Theorem

3 that the future growth rate g is subjectively distributed as if it were the normal random

variable gN with mean E[gN ] = bg and standard deviation �[gN ] = b�[re] renders, along with
(52), an internally-consistent as-if story connecting together the actual stylized facts of our

economic world. In Table 1, quasi-constant parameter settings have been selected that, I

think, represent stylized-fact numbers well within the �comfort zone�for most economists.

All rates are real and given by annual values. The data are intended to be an overall

approximation of what has been observed for many countries over long time periods.

The model is explaining endogenously three quasi-constants �(�), �(�), and S(�) as
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functions of the one free hyperparameter �. We do not observe the underlying primitive value

of � directly, although we know that it is operationally indistinguishable from zero when m

is conceptualized as being very large because m!1 implies � ! 0+. However, and more

usefully, � can be calibrated indirectly by setting any one of the three quasi-constants �(�),

�(�), and S(�) equal to its observed value in Table 1 and then backing out the implied

values of the other two remaining quasi-constants by inverting the two as-if-normal-growth

reduced-form equations (17) and (18).

De�ning �N to be the implicit solution of

�N = S�1(b�[re]) = S�1(17%);

we then have, from (17) with bV � S2(�N),

lnE[Re]� rf = 
S2(�N) = 5:8% = � j �N ;

to be compared with �(�e) = 6%. From (18) with bV � S2(�N),

rf = �+ 
bg � 1
2

2S2(�N) = 0:2% = � j �N ;

to be compared with �(�f ) = 1%.

De�ning �e to be the implicit solution of

�e = �
�1(ln bE[Re]� brf ) = ��1(6%);

we then have, from (18) and (17),

rf = �+ 
bg � 
�(�e)=2 = 0% = � j �e;

to be compared with �(�f ) = 1%. From (17) with bV � �2[re],

�[re] =
p
�(�e)=
 = 17% = S j �e;

to be compared with S(�N) = 17%.

De�ning �f to be the implicit solution of

�f = �
�1(brf ) = ��1(1%);
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we then have, from (18) and (17),

lnE[Re]� rf = 2[�+ 
bg � �(�f )]=
 = 5% = � j �f ;

to be compared with �(�e) = 6%. From (18) with bV � �2[re],

�[re] =
q
2[�+ 
bg � �(�f )]=
 = 16% = S j �f ;

to be compared with S(�N) = 17%.

As a rough test for the internal consistency and raw �t of this general-equilibrium story,

the results of these Bayesian as-if-normal calibration exercises speak for themselves.

Continuing with the above as-if-normal-growth scenario, consider next a purely hypo-

thetical thought experiment in which the magic trick is performed of eliminating all future

macroeconomic variability about the trend growth rate. Applying the formula for the ex-

pectation of a lognormal random variable to (4), the resulting welfare gain of certain growth

is equivalent in expected utility to a change in the trend rate of

�g =

 � 1
2

�2[g]: (62)

When 
 � 2 and the historical value of �[g] � 2% is used in (62), then �g � 0:02%,

which is roughly the order of magnitude of numbers widely circulated as indicating that

the cost of growth variability is so low that even a complete removal of macroeconomic

uncertainty would be worth very little. Such a number, however, captures only the �weak

force�of purely stochastic growth-rate risk. The trend-growth welfare equivalent of a strictly

hypothetical elimination of all uncertainty about the future growth process, which includes

the �strong force�of structural parameter uncertainty, is more accurately assessed by using

the subjective value �[g] = b�[re] � 17% in formula (62), which paints a very di¤erent picture
since in this case �g � 1:45%.

8 Conclusion

The �-theory model of this paper is predicting that, when viewed through the lens of the

standard frequentist calibration paradigm, there will simultaneously appear to be an �eq-

uity variability puzzle,� a �risk-free rate puzzle,� and an �equity premium puzzle,�whose

magnitudes of discrepancy are close numerically to what is actually observed in the data.

This paper shows that such numerical �discrepancies�are puzzles, however, only when seen

through a non-Bayesian lens. From a Bayesian perspective, the �puzzling�numbers being ob-
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served in the data are telling an internally-consistent rational story about the implicit prior

distribution of background structural-parameter uncertainty stemming from the unknown

future growth process that is generating such data.

In principle, consumption-based representative agent models provide a complete answer

to all asset pricing questions and give a uni�ed theory integrating together the economics of

�nance with the real economy. In practice, consumption-based representative agent models

with standard preferences and a traditional degree of relative risk aversion work poorly when

the variance of the growth of future consumption is point-calibrated to the sample variance

of its past values. The theme of this paper is that there is an internally consistent theoretical

justi�cation for treating the non-observable variability of the subjective future growth rate

as if it were equal to the observed variability of a comprehensive economy-wide index of

equity returns, for which as-if interpretation the simple standard neoclassical model has the

potential to work well in practice.
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