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Abstract

We introduce the class of linear-rational term structure models, where the
state price density is modeled such that bond prices become linear-rational
functions of the current state. This class is highly tractable with several dis-
tinct advantages: i) ensures non-negative interest rates, ii) easily accommo-
dates unspanned factors affecting volatility and risk premia, and iii) admits
analytical solutions to swaptions. For comparison, affine term structure mod-
els can match either i) or ii), but not both simultaneously, and never iii). A
parsimonious specification of the model with three term structure factors and
one, or possibly two, unspanned factors has a very good fit to both interest
rate swaps and swaptions since 1997. In particular, the model captures well
the dynamics of the term structure and volatility during the recent period of
near-zero interest rates.

1 Introduction

The current environment with near-zero interest rates creates difficulties for many
existing term structure models, most notably Gaussian models that invariably place
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large probabilities on negative future rates. Models that respect the zero lower
bound on interest rates exist but are often restricted in their ability to accommodate
unspanned factors affecting volatility and risk premia and to price many interest
rate derivatives. In light of these limitations, the purpose of this paper is twofold:
First, we introduce a new class of term structure models, the linear-rational, which is
highly tractable and i) ensures non-negative interest rates, ii) easily accommodates
unspanned factors affecting volatility and risk premia, and iii) admits analytical
solutions to swaptions—an important class of interest rate derivatives that underlie
the pricing and hedging of mortgage-backed securities, callable agency securities, life
insurance products, and a wide variety of structured products. Second, we perform
an extensive empirical analysis, focusing in particular on the recent period of near-
zero interest rates.

The first contribution of the paper is to introduce the class of linear-rational term
structure models. A sufficient condition for the absence of arbitrage opportunities
in a model of a financial market is the existence of a state price density: a positive
adapted process (; such that the price II(¢,T') at time ¢ of any time T cash-flow, Cr
say, is given by

(t, T) = éE[cTcT | Fil. 1)

where we suppose there is a filtered probability space (€2, F, F;,P) on which all
random quantities are defined. Following Constantinides (1992), our approach to
modeling the term structure is to directly specify the state price density. Specifically,
we assume a multivariate factor process with a drift that is affine in the current state,
and a state price density, which is also an affine function of the current state. In this
case, zero-coupon bond prices and the short rate become linear-rational functions of
the current state, which is why we refer to the framework as linear-rational. One
attractive feature of the framework is that one can easily ensure non-negative interest
rates. Another attractive feature is that the martingale component of the factor
process does not affect the term structure. This implies that one can easily allow for
factors that affect prices of interest rate derivatives without affecting bond prices.
Assuming that the factor process has diffusive dynamics, we show that the state
vector can be partitioned into factors that affect the term structure, factors that affect
interest rate volatility but not the term structure (unspanned stochastic volatility,
or USV, factors), and factors that neither affect the term structure nor interest rate
volatility but may nevertheless have an indirect impact on interest rate derivatives.
Assuming further that the factor process is of the square-root type, we show how
swaptions can be priced analytically. This specific model is termed the linear-rational
square-root (LRSQ) model.



The second contribution of the paper is an extensive empirical analysis of the
LRSQ model. We utilize a panel data set consisting of term structures of swap
rates and swaption implied volatilities. The sample period is from January 1997 to
November 2012. Previous research has shown that a large fraction of the variation
in interest rate volatility is largely unrelated to variation in the term structure.!
Here, we provide an important qualification to this result: volatility becomes gradu-
ally more level-dependent as the underlying interest rate approaches the zero lower
bound. For instance, conditional on the 1-year swap rate being between zero and one
percent, a regression of weekly changes in the implied volatility of the 1-year swap
rate on weekly changes in the 1-year swap rate itself produces a highly significant and
positive regression coefficient and an R? of 0.46. For comparison, unconditionally,
the regression coefficient is much lower and the R? only 0.05.

The model is estimated by maximum likelihood in conjunction with the Kalman
filter. We show that a specification of the model with three term structure factors
and one, or possibly two, USV factors gives a very good fit to both interest rate
swaps and swaptions simultaneously. This holds true also for the part of the sample
period where short-term rates were very close to the zero lower bound. Moreover, we
show that the model captures the increasing level-dependence in volatility as interest
rates approach the zero lower bound.

A special case of our general linear-rational framework is the model considered
by Carr, Gabaix, and Wu (2009). However, the factor process in their model is
time-inhomogeneous and non-stationary, while the LRSQ model that we evaluate
empirically is time-homogeneous and stationary. Furthermore, the volatility struc-
ture in their model is very different from the one in the LRSQ model.?

The affine framework, see, e.g., Duffie and Kan (1996) and Dai and Singleton
(2000), is arguably the dominant one in the term structure literature. In the affine
framework one can either ensure non-negative interest rates (which requires all fac-
tors to be of the square-root type) or accommodate USV (which requires at least
one conditionally Gaussian factor), but not both.®> Furthermore, no affine model
admits analytical solutions to swaptions. In contrast, the linear-rational framework
accommodates all three features.

1See, e.g., Collin-Dufresne and Goldstein (2002), Heidari and Wu (2003), Andersen and Benzoni
(2010), Li and Zhao (2006), Li and Zhao (2009), Trolle and Schwartz (2009), and Collin-Dufresne,
Goldstein, and Jones (2009).

2More generally, the linear-rational framework is related to the frameworks in Rogers (1997) and
Flesaker and Hughston (1996).

3 Alternatively, the “shadow rate” model of Black (1995) ensures non-negative interest rates;
see, e.g., Kim and Singleton (2012), Bauer and Rudebusch (2013), and Christensen and Rudebusch
(2013) for recent applications of this framework.



The paper is structured as follows. Section 2 lays out the general framework,
leaving the martingale term of the factor process unspecified. Section 3 specializes to
the case where the factor process has diffusive dynamics. Section 4 further specializes
to the case where the factor process is of the square-root type. Section 5 describes the
data and the estimation approach. Section 6 presents the empirical results. Section 7
concludes. All proofs are given in the appendix.

2 The Linear-Rational Framework

In this section the linear-rational framework is introduced, and explicit formulas
for zero-coupon bond prices and short rate are presented. We then discuss how
unspanned factors arise in this setting, and how the factor process after a change of
coordinates can be decomposed into spanned and unspanned components. We then
describe interest rate swaptions, and derive a swaption pricing formula. Finally, the
linear-rational framework is compared and contrasted with existing models.

2.1 Term Structure Specification

A linear-rational term structure model consists of two components: a multivariate
factor process X; whose state space is some subset £ C R%, and a state price density
(; given as a deterministic function of the current state. The linear-rational class
becomes tractable due to the interplay between two basic structural assumptions we
impose on these components: the factor process is assumed to have a drift that is
affine in the current state, and the state price density is similarly required to be an
affine function of the current state. More specifically, we assume that X, is of the
form

for some k € R4 § € R? and some martingale M,;.* Typically X, will follow
Markovian dynamics, although this is not necessary for this section. Next, the state
price density is assumed to be given by

G=ec"(o+v'Xy), (3)

4One could replace the drift k(6 — X,) in (2) with the slightly more general form b+ 3X for some
b€ R?and B € R™ 9, The gain in generality is moderate (the two parameterizations are equivalent
if b lies in the range of ) and is trumped by the gain in notational clarity that will be achieved
by using the form (2). The latter form also has the advantage of allowing for a “mean-reversion”
interpretation of the drift.




for some ¢ € R and 1 € R? such that ¢+ "z > 0 for all x € E, and some o € R.
As we discuss below, the role of the parameter « is to ensure that the short rate
stays nonnegative.

The affine drift of the factor process implies that conditional expectations have
the following simple form, as can be seen from Lemma A.1:

EXr | F]=0+e T 0(X,—0), t<T (4)

An immediate consequence is that the zero-coupon bond prices and the short rate
become linear-rational functions of the current state, which is is why we refer to this
framework as linear-rational. Indeed, the basic pricing formula (1) with C' = 1 shows
that the zero-coupon bond prices are given by P(t,T) = F(T — t, X;), where

((Z) 4 wTH)e_O‘T 4 w—re—(oﬁ-f{)‘r(x _ 9)
o+yTa '

The short rate is then obtained via the formula r, = —0rlog P(t,T')|7=, and is given
by

F(r,z) = (5)

TR0 — X)) (6)
¢+YTX,
The latter expression clarifies the role of the parameter «; provided that the short
rate is bounded from below, we may guarantee that it stays nonnegative by choosing
a large enough. This leads to an intrinsic choice of o as the smallest value that yields
a nonnegative short rate. In other words, we define

af=s ¢TFL(9 —2) and « inf me(G —7)
= sup ————= « =1 _—
meg o+vTx weE Qp+Plx

and set a = o, provided this is finite. The short rate then satisfies

T =«

(7)

re € [0, 0" — (ry € [0,00) if e = —00).

Notice that o* and «, depend on the parameters of the process X;, which are deter-
mined through calibration. A crucial step of the model validation process is therefore
to verify that the range of possible short rates is sufficiently wide. Finally, notice
that whenever the eigenvalues of x have nonnegative real part, one easily verifies the
equality

lim 1 log F(1,z) = «,

T—00 T

valid for any x € E. In other words, a can be interpreted as an infinite-maturity
forward rate.



2.2 Unspanned Factors

Our focus is now to describe the directions ¢ € R? such that the term structure
remains unchanged when the state vector moves along &. It is convenient to carry
out this discussion in terms of the kernel of a function.’

Definition 2.1. The term structure kernel, denoted by U, is given by

U= ﬂ ker (7, -).

>0

That is, U consists of all £ € R? such that VF(r,z)"¢ = 0 for all 7 > 0 and
all x € E.% Therefore the location of the state X, along the direction & cannot
be recovered solely from knowledge of the time ¢ bond prices P(t,t + 1), 7 > 0.
In this sense the term structure kernel is unspanned by the term structure. In
Section 3.1 we will discuss how this notion relates to spanning in the sense of bond
market completeness. The following result characterizes U in terms of the model
parameters.

Proposition 2.2. Assume the term structure is not trivial.” Then

d—1

U= m ker ¢ " kP. (8)

p=0
In the case where k is diagonalizable, this leads to the following corollary.

Corollary 2.3. Assume k is diagonalizable with real eigenvalues, i.e. Kk = S™'AS
with A diagonal and real. ThenU = {0} if and only if all eigenvalues of k are distinct
and all components of S~ are nonzero.

5We define the kernel of a differentiable function f on E by

ker f={¢eR": Vf(z)'¢=0forallz e E}.
This notion generalizes the standard one: if f(z) = vz is linear, for some v € RY, then Vf(z) = v
for all z € E, so ker f = kerv' coincides with the usual notion of kernel.

SHere and in the sequel, VF(r, ) denotes the gradient with respect to the z variables.

"We say that the term structure is trivial if the short rate 7, is constant. In view of (6), this
happens if and only if ¢ is an eigenvector of £ with eigenvalue \ satisfying A(¢+1"6) = 0. In this
case, we have r; = a4+ A and U = R?, while the right side of (8) equals kert)". The assumption
that the term structure be not trivial will be in force throughout the paper.



We now transform the state space so that the unspanned directions correspond
to the last components of the state vector. To this end, first let S be any invertible
linear transformation on R?. The transformed factor process X; = SX, satisfies the
affine drift dynamics

where

R=0SkS™, 0=50, M, =SM,. (9)

Defining also R N
b=9¢, Y=8Ty, (10)

we have (; = e_at(g/g + @w )A(t) This gives a linear-rational term structure model that
is equivalent to the original one. Suppose now that S maps the term structure kernel
into the standard basis of R? = R™ x R",

SU) = {0} x R (11)

where n = dim# and m = d — n. Decomposing the transformed factor process
accordingly, X; = (Z;,U;), our next result and the subsequent discussion will show
that Z; affects the term structure, while U; does not.

Theorem 2.4. Let m,n > 0 be integers with m +n = d. Then (11) holds if and
only if the transformed model parameters (9)—(10) satisfy:

(i) ¥ = (¥7,0) € R™ x R";

(ii) R has block lower triangular structure,

B = ( EZZ AO ) c ]R(m-i-n)x(m—l—n)7
Ruz Kuu

(iii) The upper left block Kz of R satisfies
m—1
(M ker v, 7Y, = {0}.
p=0

In this case, the dimension of the term structure kernel U equals n.



Assuming that (11) holds, and writing Sz = (z,u) € R™ x R™ and = (52, §U),
we now see that
(¢ + 9g307)e 0" + e @Rz (z — §)

F(r,2)=F(r,2) = S olz
zZ

~

does not depend on u. Hence the bond prices are given by P(¢t,T) = F(T —t, Z;).
This gives a clear interpretation of the components of U; as unspanned factors: their
values do not influence the current term structure. As a consequence, a snapshot
of the term structure at time ¢ does not provide any information about U;. The
sub-vector Z;, on the other hand, directly impacts the term structure, and can be
reconstructed from a snapshot of the term structure at time ¢, under mild technical
conditions. For this reason we refer to the components of 7, as term structure factors.
The following proposition formalizes the above discussion.

Proposition 2.5. The term structure 1/7\(7, z) is injective if and only if Kzz is in-
vertible and ¢ + 1,0, # 0.8

In view of Theorem 2.4, the dynamics of X, = (Z;,U;) can be decomposed into
term-structure dynamics

dZt = //%ZZ(é\Z - Zt)dt + d]/\izt (12)
and unspanned factor dynamics

AU, = (gUz(é\Z — Z) + Fov (O — Ut)> dt + dMy,

where we denote ]\Z = (]\7 Tt M\Ut). Moreover, the state price density can be written

G = e‘“t($+ @Zt)' (13)

Now, since the process Z; has an affine drift that depends only on Z; itself, and
since the state price density also depends only on Z;, we can view Z; as the factor
process of an m-dimensional linear-rational term structure model (12)—(13), which
is equivalent to (2)—(3). In view of Proposition 2.2, this leads to an interpretation
of Theorem 2.4(iii): the model (12)—(13) is minimal in the sense that its own term
structure kernel is trivial.

8Tnjectivity means that if F(r, z) = F(r, 2) for all 7 > 0, then z = z’. In other words, if F(r, Z;)
is known for all 7 > 0, we can back out the value of Z;.



Carrying this observation further, we see that if the unspanned factors U; do
not enter into the dynamics of My, then Z; is a fully autonomous Markov process,
assuming that X, is Markovian. In this case U; would be redundant and play no
role in the model. However, if U; does enter into the dynamics of My, then the
unspanned factors would not be redundant. This situation is what gives rise to
USV, and is discussed in Section 3.2.

Finally, note that even if the term structure kernel is trivial, & = {0}, the short
end of the term structure may nonetheless be insensitive to movements of the state
along certain directions. In view of Proposition 2.2, for d > 3 we can have U = {0}
while still there exists a non-zero vector & such that ¢ "¢ = ¢ k¢ = 0. This implies
that the short rate function is constant along &, see (6). On the other hand, we
can still, in the generic case, recover X; from a snapshot of the term structure, see
Proposition 2.5.

2.3 Swaps and Swaptions

The linear-rational term structure models have the important advantage of allowing
for tractable swaption pricing.

A fixed versus floating interest rate swap is specified by a tenor structure of reset
and payment dates Ty < 17 < --- < T},, where we take A = T; —T;_1 to be constant
for simplicity, and a pre-determined annualized rate K. At each date T;, i =1,...,n,
the fixed leg pays AK and the floating leg pays LIBOR accrued over the preceding
time period.? From the perspective of the fixed-rate payer, the value of the swap at
time t < T is given by

Y = P(t,Ty) — P(t,T,) — AK Z P(t,T)). (14)

i=1

The time-t forward swap rate, S;, is the strike rate K that makes the value of the

9For expositional ease, we assume that the payments on the fixed and floating legs occur at the
same frequency. In reality, in the USD market fixed-leg payments occur at a semi-annual frequency,
while floating-leg payments occur at a quarterly frequency. However, only the frequency of the
fixed-leg payments matter for the valuation of the swap.

10This valuation equation, which was the market standard until a few years ago, implicitly as-
sumes that payments are discounted with a rate that incorporates the same credit and liquidity
risk as LIBOR. In reality, swap contracts are virtually always collateralized, which makes swap
(and swaption) valuation significantly more involved; see, e.g., Johannes and Sundaresan (2007)
and Filipovic and Trolle (2013). In the present paper we simplify matters by adhering to the
formula (14).



swap equal to zero. It is given by
P(t> TO) B P(t> Tn)
2 i AP(t,T5)
The forward swap rate becomes the spot swap rate at time 7Ty,
A payer swaption is an option to enter into an interest rate swap, paying the
fixed leg at a pre-determined rate and receiving the floating leg. A European payer

swaption expiring at Ty on a swap with the characteristics described above has a
value at expiration of

n + n -
CTO = (H;‘gap)—‘r = (Z CiP(TmTi)) = é ( ¢ [CTZ fTo]) )
0 \imo

1=0

S, = (15)

for coefficients ¢; that can easily be read off the expression (14).

In a linear-rational term structure model, the conditional expectations E [(r, | Fr,]
are affine functions of Xy, with coefficients that are explicitly given in terms of the
model parameters, see Lemma A.1. Specifically, we have

1
CTO = C?pswap (XT() ) - )
0

where psyap 15 the explicit affine function

Pswap(Z) = Z cie T (p+ 70+ P Te " Ti=To) (g — 0)) .
i=0
The swaption price at time t < Tj is then obtained by an application of the funda-
mental pricing formula (1), which yields

= éEKToCTo | Fil = éE [pswap(XTo)+ | ]:t] . (16)

To compute the price one has to evaluate the conditional expectation on the right
side of (16). If the conditional distribution of X7, given F; is known, this can be done
via direct numerical integration over R?. This appears to be a challenging problem
in general; fortunately there is an alternative approach based on Fourier transform
methods that tends to perform better in practice.

Theorem 2.6. Define q(z) = E [exp (2 pswap(X1,)) | Ft] for every z € C such that
the conditional expectation is well-defined. Pick any p > 0 such that q(pu) < oo.
Then the swaption price is given by

- L[>, Talp+iN)
[ AlalR DY
t m/o Re[ww

swpt
Ht

10



Theorem 2.6 reduces the problem of computing an integral over R? to that of
computing a simple line integral. Of course, there is a price to pay: we now have to
evaluate (11 +1\) efficiently as A varies through R, . This problem can be approached
in various ways depending on the specific class of factor processes under consider-
ation. In our empirical evaluation we focus on affine factor processes, for which
computing g(z) amounts to solving a system of ordinary differential equations, see
Section 4.2.

It is often more convenient to represent swaption prices in terms of implied volatil-
ities. In the USD market, the market standard is the “normal” (or “absolute” or
“basis point”) implied volatility, which is the volatility parameter that matches a
given price when plugged into the pricing formula that assumes a normal distribu-
tion for the underlying forward swap rate.!’ When the swaption strike is equal to the
forward swap rate (K = S;, see (15)), there is a particularly simple relation between
the swaption price and the normal implied volatility, ox, given by

1 n
Y = /Ty — t—— AP(t,T, : 17
t 0 \/ﬁ (; ( )) ONt ( )
see, e.g., Corp (2012).

2.4 Comparison with Other Models

When the factor process X; is Markovian, the linear-rational framework falls in the
broad class of models contained under the potential approach laid out in Rogers
(1997). There the state price density is modeled by the expression

Gt = e_atRag(Xt)u

where R, is the resolvent operator corresponding to the Markov process X;, and g
is a suitable function. In our setting we would have R,g(x) = ¢ + ¢ 'x, and thus
g(z) = (@ — G)Rug(x) = ap — "k + ¢ (v + k), where G is the generator of X;.

Another related setup which slightly pre-dates the potential approach is the
framework of Flesaker and Hughston (1996). The state price density now takes
the form

G = /too My pi(u)du,

1 Alternatively, a price may be represented in terms of “log-normal” (or “percentage”) implied
volatility, which assumes a log-normal distribution for the underlying forward swap rate.

11



where for each u, (My,)o<t<y is @ martingale. The Flesaker-Hughston framework is
related to the potential approach (and thus to the linear-rational framework) via the
representation

e Rog(X,) = / E [e"g(X,) | 7] du,
t

which implies My, p(u) = Ele”*"g(X,) | Fi]. The linear-rational framework fits into
this template by taking u(u) = e and My, = E[g(X,) | F] = a¢p +ap'0 +
VT (o + k)e " (x — 0), where g(z) = adp — ¥ k0 + T (a + k)r was chosen as
above. One member of this class, introduced in Flesaker and Hughston (1996), is
the one-factor rational log-normal model. The simplest time-homogeneous version
of this model is, in the notation of (2)—(3), obtained by taking ¢ and v positive,
k =60 = 0, and letting the martingale part M, of the factor process X; be geometric
Brownian motion.

Finally, a more recently introduced set of models that are closely related to those
mentioned above is the linearity-generating family studied in Gabaix (2009) and
Carr, Gabaix, and Wu (2009). The model considered by Carr, Gabaix, and Wu
(2009) falls within the linear-rational class: One sets ¢ = 0, « = 0, § = 0, and lets
the martingale part M, of the factor process X; be given by

th = e_“tﬁdZt,
where 3 is a vector in R? and Z, is an exponential martingale of the form

4z, &
— = 2 VB,

1=1

for independent Brownian motions B;; and processes v;; following square-root dynam-
ics. The factor process in this model is non-stationary due the time-inhomogeneous
volatility specification. In fact, assuming the eigenvalues of k have positive real part
(which is the case in Carr, Gabaix, and Wu (2009)), the volatility of X; tends to
zero as time goes to infinity, and the state itself converges to zero almost surely. The
models we consider in our empirical analysis are time-homogeneous and stationary.
They also have a volatility structure that is very different from the specification in
Carr, Gabaix, and Wu (2009).

A common feature of all the above models is that bond prices are given as a ratio
of two functions of the state. This is of course an artifact of the form of the pricing
equation (1), and the fact that the state price density is the primitive object that is
being modeled.

12



3 Linear-Rational Diffusion Models

We now specialize the linear-rational framework (2)—(3) to the case where the factor
process has diffusive dynamics of the form

dXt = li(e — Xt)dt + O'(Xt)dBt. (18)

Here 0 : E — R%? is measurable, and B, is d-dimensional Brownian motion. We
denote the diffusion matrix by a(x) = o(z)o(z)", and assume that it is differentiable.
The goal of this section is two-fold: we first discuss how the notion of spanning in
Section 2.2 relates to bond market completeness. Then, in the case where unspanned

factors are present, we answer the question of when these unspanned factors give rise
to USV.

3.1 Bond Markets

Bond price volatilities will be central to the discussion, so we begin by considering
the dynamics of bond prices. To this end, first observe (via a short calculation using
It6’s formula) that the dynamics of the state price density can be written

d
6 _ —r,dt — A\ dB,,

¢

where the short rate 7, is given by (6), and \; = —o(X;) "9 /(¢+ T X,) is the market
price of risk. It then follows that the dynamics of P(¢,T) is
dP(t,T)

P(t T) = (Tt + I/(t, T)T)\t) dt + V(t, T)TdBt, (19)
where the volatility vector is given by

o(X)TVF(T — t,X;)
F(T —t,X,)

v(t,T) =

It is intuitively clear that a non-trivial term structure kernel gives rise to bond
market incompleteness in the sense that not every contingent claim can be hedged
using bonds. Conversely, one would expect that whenever the term structure kernel
is trivial, bond markets are complete. In this section we confirm this intuition. The
following definition of completeness is standard.

13



Definition 3.1. We say that bond markets are complete if for any T > 0 and any
bounded Fr-measurable random variable Cr, there is a set of maturities T, ..., T,
and a self-financing trading strategy in the bonds P(t,T1), ..., P(t,T,,) and the money
market account, whose value at time T is equal to Cr.

Our next result clarifies the connection between bond market completeness and
the existence of unspanned factors. We assume that the filtration is generated by
the Brownian motion, and that the volatility matrix of the factor process itself is
almost surely invertible. Otherwise there would be measurable events which cannot
be generated by the factor process, and bond market completeness would fail.

Theorem 3.2. Assume that the filtration F; is generated by the Brownian motion By,
that o(X,) is invertible dt @ dP-almost surely, and that ¢ + "0 # 0. Then the
following conditions are equivalent:

(i) bond markets are complete;

)
(ii) span{VF (7, X;) : 7 > 0} = R?, dt ® dP-almost surely;
(iii) U = {0} and K is invertible;

)

(iv) The term structure F(1,x) is injective.

3.2 Unspanned Stochastic Volatility Factors

We now refine the discussion in Section 2.2 by singling out those unspanned factors
that give rise to USV. To this end we describe directions ¢ € R? with the prop-
erty that movements of the state vector along ¢ influence neither the bond return
volatilities, nor the covariations between returns on bonds with different maturities.
According to (19), the covariation at time ¢ between the returns on two bonds
with maturities Ty and Ty is given by v(¢, T1) "v(t, Ty) = G(Ty —t, Ty — t, X;), where
we define
VF(r,z) a(x)VF(ry,2)
F(r,2) F(m, ) '

In analogy with Definition 2.1 we introduce the following notion:

G(m, 1, x) =

Definition 3.3. The variance-covariance kernel, denoted by W, is given by

W = ﬂ ker G(71, 7o, ).

71,7220

14



That is, W consists of all ¢ € R? such that VG(r, 7, 2) "¢ = 0 for all 7,75 > 0
and all x € E. We say that the model exhibits USV if there are elements of the term
structure kernel that do not lie in the variance-covariance kernel—i.e., if U \ W # ().

Analogously to Section 2.2 we may now transform the state space so that the
intersection U NW of the term structure kernel and variance-covariance kernel corre-
sponds to the last components of the state vector. To this end, let S be an invertible
linear transformation satisfying (11), with the additional property that

SUNW) ={0} x {0} x RY

where ¢ = dimU N W, and p + q = n = dimU. The unspanned factors then
decompose accordingly into U, = (V;, W;). Movements of W; affect neither the term
structure, nor bond return volatilities or covariations. In contrast, movements of V;,
while having no effect on the term structure, do impact bond return volatilities or
covariations. For this reason we refer to V; as USV factors, whereas W; is referred
to as residual factors. Note that the residual factors W, may still have an indirect
impact on the distribution of future bond prices. Example A.9 in the appendix
illustrates this fact.

Whether a given linear-rational term structure model exhibits USV depends on
how ¢ interacts with the other parameters of the model. Proposition A.7 in the
appendix gives a description of the variance-covariance kernel VW, which facilitates
checking the presence of USV. As a corollary we obtain the following useful sufficient
condition for USV. This condition is, for example, satisfied for the square root model
discussed in Section 4. It is stated in terms of the diffusion matrix a(z,u) of the
transformed factor process X, = (Z,U,), given by a(z,u) = Sa(S~(z,u))ST.

Corollary 3.4. Assume for every j € {1,...,n}, there exists i € {1,...,m} such
that @;;(z,w) is not constant in u;. ThenUNW = {0}, and therefore every unspanned
factor is in fact a USV factor.

4 The Linear-Rational Square-Root Model

The primary example of a linear-rational diffusion model (18) with state space E =
R? is the linear-rational square-root (LRSQ) model. It is based on a multivariate
square-root factor process of the form

dX, = k(0 — X,)dt + Diag (alx/xu, 04 th) dB,, (20)
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with parameters o; > 0. In this section we consider this model, focusing on how
unspanned stochastic volatility can be incorporated, and how swaption pricing can
be done efficiently. This lays the groundwork for our empirical analysis.

4.1 Unspanned Stochastic Volatility

The aim is now to construct a large class of LRSQ specifications with m term struc-
ture factors and n USV factors. Other constructions are possible, but the one given
here is more than sufficient for the applications we are interested in.

As a first step we show that the LRSQ model admits a canonical representation.

Theorem 4.1. The short rate (6) is bounded from below if and only if, after a
coordinatewise scaling of the factor process (20), we have { = e (1 +17X,). In
this case, the extremal values in (7) are given by a* = maxS and a, = minS where

S = {1Tm9, —1"ky, ..., —led} )

In accordance with this result, we always let the state price density be given by
¢ = e (14 17 X,) when considering the LRSQ model.

Now fix nonnegative integers m > n with m + n = d, representing the desired
number of term structure and USV factors, respectively. We start with the invertible
linear transformation S on R? given by

(14, A 1 ldy —A
s=("r ) =0 w),

where A € R"™*" is given by
Id,,
as (1Y,

The parameters appearing in the description (20) of the factor process X; can then
be specified, and for this it is convenient to introduce the index sets I = {1,...,m}
and J = {m+1,...,d}. We write the mean reversion matrix » in block form as

. R Rrig
R = 9
Rjr RjJ

where x7; denotes the submatrix whose rows are indexed by I and columns by J,
and similarly for k77, k7, kK7;. We require that x;; satisfy the restriction

Rijg = K,]]A—AI{JJ—I—A/{J]A. (21)
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The level of mean reversion is taken to be a vector § = (0;,0;) € R™ x R", and
we fix some volatility parameters o; > 0,7 =1,...,d. To guarantee that a solution
to (20) exists, we impose the standard admissibility conditions that xf € R and the
off-diagonal elements of x be nonpositive, see e.g. Filipovi¢ (2009, Theorem 10.2).

To confirm that this model indeed exhibits USV, we consider the dynamics of
the transformed state vector X; = SX; = (Z;, U;). The transformed parameters are
obtained from (9). Due to (21) and the form of S we get

//%:S/{S_1:<HII+AKJI 0 ) A:<¢9[+A¢9J)

KJI Kyg — KA
The following result shows that this specification gives rise to at least n USV factors.

Proposition 4.2. The dimension of the term structure kernel is at least n, dimU >
n, with equality if Kzz = ki + Akyr satisfies Theorem 2.4(iii). In this case, if
0; # Omai fori=1,...,n, then all the unspanned factors are in fact USV factors.

For our empirical analysis, we employ the following parsimonious specification
that falls within the class described above.

Definition 4.3. The LRSQ(m,n) specification is obtained by letting in the above
construction ky; = 0 and ky; = ATk A (this is the upper left n x n block of Ky ).

As an illustration, consider the LRS(Q)(1,1) specification, where we have one term
structure factor and one unspanned factor. It shows in particular that a linear-
rational term structure model may exhibit USV even in the two-factor case.'?

Example 4.4. Under the LRSQ)(1,1) specification the mean reversion matrix is given

by
o — K11 0
N 0 kn '

The term structure factor and unspanned factor thus become Z; = Xy, + X9 and
U; = Xy, respectively. The transformed mean reversion matrix < coincides with «,

k\_ K11 0
N 0 kn ’

and the corresponding volatility matrix is
~ . ( 01\ 21 — U1 024/U1 )
o(z,u) = :
0 094/ U7

12This contradicts the statement of Collin-Dufresne and Goldstein (2002, Proposition 3), which
thus is incorrect.

17



Thus the transformed diffusion matrix @(z, u) satisfies @1,(z, u) = 0?2 + (03 — 0?)u.

This is non-constant in u as long as o1 # 0y, as it should in view of Proposition 4.2.
In particular, U; is a USV factor.

Example 4.5. Consider now the LRSQ(3,1) specification. In this case we have

ki1 ki ki3 0
Ro1 Koz Ka3 Kol

K31 K32 K33 K31
0 0 0 K11

K =

where it is straightforward to impose admissibility conditions on k. The term struc-
ture factors and unspanned factors become

21 X+ Xy
Loy Xoy
L3y ! X3t
Ult X4t

and the transformed mean reversion matrix is given by

ki1 ki K1z 0
Ko1 Koo Koz 0
K31 K32 K3z 0

0 0 0 K11

The corresponding volatility matrix is

o171 — Uy 0 0 O44/U1
0 NI 0
0 0 o35 O
0 0 0 o/

We now have a11(z,u) = 0221 + (07 — 0% )uy, which again demonstrates the presence
of USV, provided o1 # 0y4.

o(z,u) =

4.2 Swaption Pricing

Swaption pricing becomes particularly tractable in the LRSQ model. Since the factor
process X, is affine, the function ¢(z) in Theorem 2.6 can be expressed using the
exponential-affine transform formula that is available for such processes. Computing
q(z) then amounts to solving a system of ordinary differential equations, which takes
the following well-known form, see Filipovi¢ (2009, Theorem 10.3).
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Theorem 4.6 (Exponential-Affine Transform Formula). Suppose X; follows the
affine dynamics (20). Then, for any x € RL, ¢t > 0, u € C, v € C* such that
E,[|exp(v" X})|] < oo we have

Ex [eu-i—vTXt] — e<I>(t)+xT\I/(t)’

where ® : R, — C, ¥ : R, — C?¢ solve the system
(1) =b"V(r)
1
Wi(r) = BIU(r) + SofWi(r)?, =14,

with initial condition ®(0) = u, ¥(0) = v. The solution to this system is unique.

In order for Theorem 2.6 to be applicable, it is necessary that some exponential
moments of pgyap(X;) be finite. We therefore remark that for X; of the form (20),
and for any v € R%, x € Ri, t > 0, there is always some p > 0 (depending on v, x,
t) such that E,[exp(uv X;)] < co. While it may be difficult a priori to decide how
small p should be, the choice is easy in practice since numerical methods diverge if
1 is too large, resulting in easily detectable outliers.

5 Data and Estimation

5.1 Swaps and Swaptions

We estimate the model on a panel data set consisting of swaps and swaptions. At each
observation date, we observe rates on spot-starting swap contracts with maturities
of one, two, three, five, seven, and ten years, respectively. We also observe prices
on swaptions with three-month option maturities, the same six swap maturities,
and strikes equal to the forward swap rates. Such at-the-money-forward (ATMF)
swaptions are the most liquid. We convert swaption prices into normal implied
volatilities using (17) with zero-coupon bonds bootstrapped from the swap curve.
The data is from Bloomberg and consists of composite quotes computed from quotes
that Bloomberg collects from major banks and inter-dealer brokers. The sample
period consists of 827 weekly observations from January 29, 1997 to November 28,
2012.

Table 1 shows summary statistics of swap rates (Panel A) and swaption IVs
(Panel B). The term structure of swap rates is upward-sloping, on average, while the
standard deviation of swap rates decreases with maturity. Time series of the 1-year,
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5-year, and 10-year swap rate are displayed in Panel Al of Figure 1. The 1-year
swap rate fluctuates between a minimum of 0.32 percent (on October 17, 2012) and
a maximum of 7.51 percent (on May 17, 2000), while the longer-term swap rates
exhibit less variation. A principal component analysis (PCA) of weekly changes in
swap rates shows that the first three factors explain 90, 7, and 2 percent, respectively,
of the variation.

The term structure of swaption IVs is hump-shaped, on average, increasing from
81 bps at the 1-year swap maturity to 107 bps at the 7-year swap maturity. The
standard deviation of swaption I'Vs is also a hump-shaped function of maturity. Time
series of swaption IVs at the 1-year, 5-year, and 10-year swap maturities are displayed
in Panel B1 of Figure 1. The swaption IV at the 1-year swap maturity fluctuates
between a minimum of 17 bps (on October 10, 2012) and a maximum of 224 bps
(on October 15, 2008), while swaption Vs at longer swap maturities fluctuate in a
tighter range. Swaptions also display a high degree of commonality, with the first
three factors from a PCA of weekly changes in swaption IVs explaining 87, 7, and 2
percent, respectively, of the variation.

5.2 Volatility Dynamics at the Zero Lower Bound

A large literature has investigated the dynamics of interest rate volatility. A par-
ticular focus has been on the extent to which variation in volatility is related to
variation in the term structure, with most papers finding that a significant compo-
nent of volatility is only weakly related to term structure movements.!3> Here, we
revisit this issue in the context of interest rates being close to the zero lower bound.
We focus on the volatility of the 1-year swap rate, since this is the rate that is nearest
to the zero lower bound during the sample period. Figure 2 shows the swaption IV
at the 1-year swap maturity (in basis points) plotted against the 1-year swap rate.
It strongly indicates that volatility becomes more level-dependent as the underlying
interest rate approaches the zero lower bound.

To investigate the issue more formally, we regress weekly changes in the swaption
IV at the 1-year swap maturity on weekly changes in the 1-year swap rate (including
a constant); i.e.,

AO’N’t = 50 + ﬁlASt + €t. (22)

13See Collin-Dufresne and Goldstein (2002) and subsequent papers by Heidari and Wu (2003),
Andersen and Benzoni (2010), Li and Zhao (2006), Li and Zhao (2009), Trolle and Schwartz (2009),
and Collin-Dufresne, Goldstein, and Jones (2009), among others. The issue is not without contro-
versy, however, with Fan, Gupta, and Ritchken (2003), Jacobs and Karoui (2009), and Bikbov and
Chernov (2009) providing a sceptical appraisal of the evidence.
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Result are displayed in the upper part of Table 2, with Newey and West (1987) t-
statistics using four lags in parentheses. The first column shows results using the
entire sample period. (31 is positive and statistically significant (t-statistic of 2.77);
however, the R? is small at 0.05."* That is, unconditionally, a large fraction of the
variation in volatility is unrelated to variation in rates, consistent with the existing
unspanned stochastic volatility literature.

The second to sixth column shows results conditional on the 1-year swap rate
being in the intervals 0-0.01, 0.01-0.02, 0.02-0.03, 0.03-0.04, and 0.04-0.08, respec-
tively. A clear pattern emerges. At low interest rates, (i is positive and highly
statistically significant (t-statistic of 10.1), and the R? is very high at 0.46. In other
words, there is a strong and positive relation between volatility and rate changes,
when rates are close to the zero lower bound. However, as interest rates increase, the
relation between volatility and rate changes becomes progressively weaker. Both (;
and R? decrease, and when the 1-year swap rate is above 0.03, the R? is essentially
zero. Capturing the increasing level-dependence in volatility as the underlying inter-
est rate approaches the zero lower bound poses a significant challenge for dynamic
term structure models.

5.3 Model Specifications

For our empirical evaluation we use an LRSQ(m, n) specification, see Definition 4.3,
with m term structure factors and n USV factors. We always set m = 3 and consider
specifications with n = 1 (volatility of Z3; containing an unspanned component),
n = 2 (volatility of Z;; and Zs, containing unspanned components), and n = 3
(volatility of all term structure factors containing unspanned components).

5.4 Maximum Likelihood Estimation

We estimate the model specifications using maximum likelihood in conjunction with
Kalman filtering. For this purpose, we cast the model in state space form with a
measurement equation describing the relation between the state variables and the

MTrolle and Schwartz (2013) also document a positive level-dependence in swaption IVs. An
earlier literature has estimated generalized diffusion models for the short-term interest rate; see,
e.g. Chan, Karolyi, Longstaff, and Sanders (1992), Ait-Sahalia (1996), Conley, Hansen, Luttmer,
and Scheinkman (1997), and Stanton (1997). These papers generally find a relatively strong level-
dependence in interest rate volatility. However, much of this level-dependence can be attributed
to the 1979-1982 monetary policy experiment, which is not representative of the current monetary
policy regime.
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observable swap rates and swaption IVs, as well as a transition equation describing
the discrete-time dynamics of the state variables.

Let X; denote the vector of state variables and let Y; denote the vector consisting
of the term structure of swap rates and swaption IVs observed at time ¢t. The
measurement equation is given by

Y; = h(Xt, @) + Uy, U ~ N(O, Z), (23)

where h is the pricing function, © is the vector of model parameters, and u; is a vector
of i.i.d. Gaussian pricing errors with covariance matrix . To reduce the number of
parameters in Y, we assume that the pricing errors are cross-sectionally uncorrelated
(that is, ¥ is diagonal), and that one variance, 02, ., applies to all pricing errors
for swap rates, and that another variance, afwaptim, applies to all pricing errors for
swaption IVs.

While the transition density of X; is unknown, its conditional mean and variance
is known in closed form, because X; follows an affine diffusion process. We approxi-
mate the transition density with a Gaussian density with identical first and second
moments, in which case the transition equation is of the form

Xi=Q0+OxXi1 +w, wy~ N(0,Qy), (24)

where (); is an affine function of X;_;.

As both swap rates and swaption IVs are non-linearly related to the state vari-
ables, we apply the nonlinear unscented Kalman filter.!> The Kalman filter produces
one-step-ahead forecasts for Y;, Yt“_l, and the corresponding error covariance matri-
ces, Fy;—1, from which we construct the log-likelihood function

T
1 N N
£(6) = -3 3 (#log27r +log| Fyjya| + (Y = Vi) FL (Ve — Y;|t_1)) , (25)

t=1

where T is the number of observation dates and # is the number of observations in
Y;. The (quasi) maximum likelihood estimator, ©, is then

O = arg max L(O). (26)

When estimating the model, we found that the upper-triangular elements of
were always very close to zero. The same was true of k3;. To obtain more parsi-
monious model specifications, we reestimate the models after setting to zero these

15Leippold and Wu (2007) appear to be the first to apply the unscented Kalman filter to the
estimation of dynamic term structure models. Christoffersen, Jacobs, Karoui, and Mimouni (2009)
show that it has very good finite-sample properties when estimating models using swap rates.
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elements of the mean-reversion matrix. The likelihood functions were virtually un-
affected by this, so we henceforth study these constrained model specifications.

6 Results

6.1 Maximum Likelihood Estimates

Table 3 displays parameter estimates and their asymptotic standard errors. All
parameters are statistically significant. The structure of the mean-reversion matrix
is such that the first term structure factor drives the mean-reversion level of the
second factor, which in turn drives the mean-reversion level of the third factor. In all
specifications, the first term structure factor exhibits the most persistence, followed
by the third factor, and the second factor. Recall that if the ¢’th term structure
factor exhibits USV, its instantaneous volatility is given by \/0?z; + (02,5 — 02)u;
We always have 0,3 > o0; implying that the volatility of the term structure factors
are increasing in the USV factors.

Since all model specifications are stationary (all eigenvalues of x are positive),
a equals the infinite-maturity forward rate. This lies in a range from 0.0540 to
0.0636 across specifications, which appears reasonable. The table also reports the
upper bound on possible short rates, which lies in a range from 0.2288 to 0.3195
across specifications. This is larger than the maximum short rate that has been
observed historically in the U.S.'6 Furthermore, simulations show that the likelihood
of observing short rates close to the upper bound is virtually zero.!” As such, the
upper bound on interest rates is not a restrictive feature of the model framework.

6.2 Factors

Figure 3 displays the estimated factors. The first, second, and third column shows
the factors of the LRSQ(3,1), LRSQ(3,2), and LRSQ(3,3) model specification, re-
spectively. The first, second, and third row shows (Z;,U;), (Z,,Us), and (Z3,Us),
respectively. The factors are highly correlated across specifications, which is indica-
tive of a stable factor structure. U; and U, are occasionally large relative to Z;

16The historical maximum for the effective federal funds rate is 0.2236 and was reached on July
22, 1981, during the monetary policy experiment.

In a simulation of 10,000 years of weekly data, the maximum short rate is 0.2071, 0.2644, and
0.2564, respectively, for LRSQ(3,1), LRSQ(3,2), and LRSQ(3,3). This is below the upper bounds
of 0.2288, 0.3042, and 0.3195, respectively.

23



and Z,. In contrast, Uz is almost always small relative to Z3, providing a first
indication that adding a third USV factor is not important for pricing.

To better understand the factor dynamics, Figure 4 plots the instantaneous
volatility of each term structure factor against its level. Again, the first, second,
and third column corresponds to the LRSQ(3,1), LRSQ(3,2), and LRSQ(3,3) speci-
fication, respectively, while the first, second, and third row corresponds to Z;;, Zs,
and Zs,, respectively. The grey areas mark the possible range of factor volatilities,
which is given by 0;,/z; to 0;43,/2; in case the i’th term structure factor exhibits
USV. For Z,, and Z,, and whenever USV is allowed, there appears to be significant
variation in factor volatilities that is unrelated to the factor level. For Zs,, allowing
for USV appears to have less of an effect.

6.3 Specification Analysis

For each of the model specifications, we compute the fitted swap rates and swap-
tion IVs based on the filtered state variables. We then compute weekly root mean
squared pricing errors (RMSEs) separately for swap rates and swaption IVs, thereby
constructing two time series of RMSEs. The first three rows in Table 4 reports the
sample means of the RMSE time series for the three specifications. To investigate
the performance of the model when interest rates are close to the zero lower bound,
we also split the sample period into a zero interest rate policy (ZIRP) sample period
and a pre-ZIRP sample period. The beginning of ZIRP is taken to be December 16,
2008, when the Federal Reserve reduced the federal funds rate from one percent to
a target range of 0 to 1/4 percent. The next two rows report the mean difference
in RMSEs between two model specifications along with the associated t-statistics
corrected for heteroscedasticity and serial correlation in parenthesis.

Even the most parsimonious LRSQ(3,1) specification has a reasonable fit to the
data. For instance, for the full sample period, the mean RMSEs for swap rates
and swaption IVs are 5.73 bps and 7.31 bps, respectively. Adding one more USV
factor decreases the mean RMSEs by 1.86 bps and 1.42 bps, respectively, which
is both economically important and strongly statistically significant. Adding an
additional USV factor decreases the mean RMSEs by a further 0.13 bps and 0.47 bps,
respectively, which is only a modest improvement economically, if still statistically
significant.

Comparing across sub-samples, for all the specifications the fit is better in the
pre-ZIRP period than in the ZIRP period, particularly for swap rates. Nevertheless,
even during the ZIRP period, the model performs well. For instance, in case of the
LRSQ(3,2) specification, the mean RMSEs for swap rates and swaption IVs are 6.08
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bps and 6.19 bps, respectively. The performance of the LRSQ(3,2) specification over
time is illustrated in Figure 1 which shows the fitted time series of selected swap
rates (Panel A2) and swaption IVs (Panel B2) as well as time series of the RMSEs
for swap rates (Panel A3) and swaption IVs (Panel B3).'®

As always, there is a tradeoff between parsimony and (in-sample) pricing per-
formance. LRSQ(3,1) is valued for its parsimony and LRSQ(3,2) is valued for its
better pricing performance. LRSQ(3,3) appears overparameterized given the data
at hand and will not be considered in the remainder of the paper.

6.4 Capturing Volatility Dynamics at the Zero Lower Bound

We now investigate if the model can capture the volatility dynamics at the zero lower
bound discussed in Section 5.2. We focus on the population properties of the model
as this is much more demanding than using the fitted data. To infer the population
properties, we redo the analysis in Section 5.2 using simulated time series from the
LRSQ(3,1) and LRSQ(3,2) specifications consisting of 520,000 weekly observations.
The middle and lower part of Table 2 shows the population regression coefficients
and R?s for the two specifications. In terms of R?s, the specifications closely match
the pattern in the data with an R? of approximately 0.50 when rates are close to zero,
and a fast decay in the R? as rates increase. In terms of the regression coefficient,
the specifications do not quite match the degree of level-dependence, but do match
the decay in the regression coefficient as rates increase.

7 Conclusion

We introduce the class of linear rational term structure models, where the state
price density is modeled such that bond prices become linear-rational functions of
the current state. This class is highly tractable with several distinct advantages:
i) ensures non-negative interest rates, ii) easily accommodates unspanned factors
affecting volatility and risk premia, and iii) has analytical solutions to swaptions. A
parsimonious specification of the model with three term structure factors and one,
or possibly two, unspanned factors has a very good fit to both interest rate swaps
and swaptions since 1997. In particular, the model captures well the dynamics of
the term structure and volatility during the recent period of near-zero interest rates.

18 As a further check, Table 5 reports RMSEs of individual swap rates and swaption IVs. The
quality of the fit appears to be relatively uniform across swap maturities.
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A  Proofs

A.1 Proofs for Section 2

The following lemma directly implies formula (4). It is also used in the proof of
Lemma A.10.

Lemma A.1. Assume that X is of the form (2) with integrable starting point X.
Then for any bounded stopping time p and any deterministic T > 0, the random
variable X, ; is integrable, and we have

E[Xpr | Fpl =047 (X, —0).

Proof. We first prove the result for p = 0. An application of It6’s formula shows that
the process
Y, =60+e"00(X, —0)

satisfies dY; = e *("=YdM,, and hence is a local martingale. It is in fact a true
martingale. Indeed, integration by parts yields

t
Y, =Y, +e "0 — / M, ke " T=9)(s,
0

from which the integrability of X, and L'-boundedness of the martingale M imply
that Y is bounded in L'. Fubini’s theorem then yields, for any 0 < t < u,

E[Y,|F]=Y+ e FT=w g, — /u M, ke "9 ds
0
—Y, + M, [e—n(T—u) N e—H(T_t) B /“ ,{e_ﬁ(T_s)ds}
= YZ’ t
showing that Y is a true martingale. Since Y, = X, it follows that
E[X, | Fo]=Yo=0+¢e"" (X, —0),
as claimed. If p is a bounded stopping time, then the L'-boundedness of Y, and

hence of X, implies that X, is integrable. The result then follows by applying the
p = 0 case to the process (X,+5)s>0 and filtration (F,1s)s>0. O
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Proof of Proposition 2.2. Observe, by taking the orthogonal complement in (8), that
we must prove U+ = span {(/@T)pw :p=0,....,d— 1}. By the Cayley-Hamilton
theorem (see Horn and Johnson (1990, Theorem 2.4.2)) we may equivalently let p
range over all nonnegative integers. In other words, we need to prove

span {VF(r,2) : 7> 0,2 € E} = span { (k" )Py : p > 0} . (27)

Denote the left side by §. A direct computation shows that the gradient of F' is
given by
e oT

p+vTa
whence S = span{e ™ "¢h — e F(r,z)1) : 7 > 0,z € E}. By the non-triviality
assumption there are z,y € E and 7 > 0 such that F(r,z) # F(71,y). It follows
that e*™(F(r,z) — F(7,y))¥, and hence ¢ itself, lies in S. We deduce that S =
span{e_“TT@D : 7 > 0}, which coincides with the right side of (27), as desired. O

VE(r,z) = {e—“w TR (r, x)w} : (28)

Proof of Corollary 2.3. Write A = Diag(Ay, ..., \;) and consider the matrix
A=[o /7Y - ()]
Writing @E = S~ T4, the determinant of A is given by

det A = det (ST) det (¢ AJ -+ A“1])

D VI )\‘11—1
= det (ST) ¥y - - - Uy det :
1 Ny --- )\3—1
= det (ST) @1 . "l//)\d H (A — Ni),
1<i<j<d

where the last equality uses the formula for the determinant of the Vandermonde
matrix. Proposition 2.2 now shows that the term structure kernel is trivial precisely
when all eigenvalues of k are distinct and all components of ) are nonzero, as was
to be shown. O

Proof of Theorem 2.4. The case n = 0 is immediate, so we consider the case n > 1.
We write Y = S(U) and assume (11) holds. That is, we have

U={0} xR"CR" x R", (29)
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On the other hand, Proposition 2.2 yields

:{EGRd:QTEpE:Oforp:(),l,...,d—l}. (30)

Partition @E and K to conform with the product structure of R™ x R™:

— ( %Z ) E Rm—i—n’ k\: ( EZZ :KEZU ) 6 R(m—i—n)x(m-{—n).

Yy Kuz Kyuu

<)

It then follows from (29) and (30) that we have @EU = 0 for any & € R". Hence
Yy = 0, which proves (i). As a consequence, we have

@ETEP = (A;R%Z Yy K’Z_Zl/"%ZU> (31)

for p = 1. Suppose we know (31) holds for some p > 1. Then (29) and (30) imply,
for any &y € R,

N 0 _
0= {p\l—’ip (’\ ) @’f%zl’fZUgUa

and hence

{[ZI—HZZIHZU = 0. (32)
Multiplying both sides of (31) by & from the right then shows that (31) holds also
for p + 1. It follows by induction that (31) and (32) hold for all p > 1.

Now, pick any £Z such that ¢Z/<LZZ£Z = 0 for all p > 0 Then the vector § =
(52, 0) € R™ x R" satisfies YTRPE = 0 for all p > 0. Hence & € U by (30), and then
E 7z = 0 by (29). This proves (iii). Finally, since (32) holds for all p > 1, the range of
Rzy lies in the kernel of @EZ}I for all p > 1. But by (iii) this implies that the range
of Kzu consists of the zero vector, which is to say that Kzy = 0. This proves (ii).

We now prove the converse part of the theorem, and assume that ¥ and @ given
in (9) and (10) satisfy (i)—(iii). We first show that (i)—(ii) imply S(U) D {0} x R™.
Letting {ey, ..., eq} denote the canonical basis of R?, we have for p =0,...,d — 1,

YT KRPS e, = 1?%”62-.

Note that P has the same block triangular structure as k for all p > 1. Thus for
i=m-+1,...,d, the right side above is zero for all p > 0, so S~'e; € U. We deduce
that S(U) D {0} xR™ holds, as claimed. Suppose now in addition that (iii) holds, and
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consider a vector ¢ in the span of S~le;,..., S te,,. Then S¢ = (EZ,O) € R™ x R".
By (i) and (ii) we have

WTRPE = PTRPSE = OLRY L.

If £ € U, the left side is zero for all p = 0,...,d— 1. Hence so is the right side, which
by (iii) implies £ = 0. We deduce that & = span{S~'e,.1,...,S " e;} and hence
S(U) = {0} x R, as claimed. O

The proof of the converse direction of Theorem 2.4 directly leads to the following
result, which is a useful sufficient condition that guarantees the existence of at least
a given number of unspanned factors.

Lemma A.2. Let m,n > 0 be integers with m +n = d. If the transformed model
parameters (9)—(10) satisfy (1)—(ii) in Theorem 2.4, we have S(U) D {0} x R™. In
this case, we have dimU > n.

Proof of Proposition 2.5. We first assume U = {0}, so that m = d. Expanding
F(7,z) as a power series in 7 shows that for any fixed =,y € E we have F(7,x) =
F(7,y) for all 7 > 0 if and only if

VI RP(z—0) TRy —0)
o+vTr o+ yTy

To prove sufficiency, assume x is invertible and ¢ + "6 # 0. Then pick =,y
such that (33) is satisfied; we must prove that x = y. Lemma A.5 implies that
k1, ..., (kT)%) span RY, so we may find coefficients a,, . . . , ag so that ) = ZZ:1 ay (k)P
Multiplying both sides of (33) by a, and summing over p =1,...,d yields

ST —0) 4Ty —6)
btz erey’ P

or, equivalently, ¢ (x—y)(¢+1"0) = 0. Since ¢+ "6 # 0 we then deduce from (33)
that " kP(z—y) = 0 for all p > 0, which by the aforementioned spanning property of
Y 'KP, p > 0, implies z = y as required. This finishes the proof of the first assertion.

To prove necessity, we argue by contradiction and suppose it is not true that
k is invertible and ¢ + ¥ '0 # 0. There are two cases. First, assume r is not
invertible. We claim that there is an element 1 € ker xk such that 6 + sn lies in the
set {x € R?: ¢+ x # 0} for all large s. Indeed, if this were not the case we would
have ker ks C kert", which would contradict & = {0}. So such an 7 exists. Now

p>1. (33)

29



simply take z = 0 4 s1m, y = 0 + son for large enough sy # sy—clearly (33) holds for
this choice, proving that injectivity fails.
The second case is where « is invertible, but ¢+ "6 = 0. In particular ¢+ 'z =
Y (z — 0). Together with the fact that s, ..., (k)% span R? (see Lemma A.5),
this shows that (33) is equivalent to
x—0 y—0

Pz —0) ¢T(y—0)

We deduce that F'(7,x) is constant along rays of the form 6 + s(z — ), where z is
any point in the state space, and thus that injectivity fails.

The proof of the proposition is now complete for the case U = {0}. The general
case where U it not necessarily trivial follows by applying the & = {0} case to the
model with factor process Z and state price density ¢, = e_at(qg + @ Z;). Indeed,
this model has a trivial term structure kernel in view of Theorem 2.4 (iii). O

Proof of Theorem 2.6. The proof uses the following identity from Fourier analysis,
valid for any p > 0 and s € R (see for instance Bateman and Erdélyi (1954, For-
mula 3.2(3))):
1 . 1
= — [ TV ———d\.
P2 A Ve
Let ¢(ds) denote the conditional distribution of the random variable pgyap(Xt,),
given JFy, so that

st (34)

a(z) = / e%*g(ds)

for every z € C such that the right side is well-defined and finite. Pick p > 0 such
that [, e"q(ds) < co. Then,

J.

ets

d\ @ g(ds) = / @ g(ds)
Rz M

e(u-i—i)\)s

+ X2

s 1
:/Re” (J(dS)/R;md)\<OO,

where the second equality follows from Tonelli’s theorem. This justifies applying
Fubini’s theorem in the following calculation, which uses the identity (34) on the

(k1 +1X)?
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second line:

E [powap(X1)" | Fi] = / s*q(ds)

R
1 . 1
= [ (5= [ ¥ —md) ] g(d
/R<27r/Re (h+i07? )q( ”
1 qA(,u+i)\)d>\

2w Jg (n4iN)?

:%/OmRe[%]dx

Here the last equality uses that the left, and hence right, side is real, together with
the observation that the real part of (1 + i\)"2g(u + i)\) is an even function of A
(this follows from a brief calculation.) The resulting expression for the conditional
expectation, together with (16), gives the result. O

A.2 Proofs for Section 3

The proof of Theorem 3.2 requires some notation and two lemmas. For a multiindex
k = (ki,...,ks) € N¢ we write [k| = ky + - + kg, 2 = 28 ... 2% and 9% =
Ol Joxkr ... 9gha.

Lemma A.3. Assume o(X;) is invertible dt ® dP-almost surely. For any function
f e Ch (R, x E) we have

{f(t. X)) =0} C [ {of(t. X)) =0},
keNd
up to a dt ® dP-nullset.
Proof. Let n > 0 and suppose we have, up to a nullset,
{f(t, X;) =0} C {9"f(t, X,) = 0} (35)

for all k € N& with |k| = n. Fix such a k and set g(¢,z) = 0¥ f(¢, z). The occupation
time formula, see Revuz and Yor (1999, Corollary VI.1.6), yields

Loy xn-0yVa(t, Xi) Ta(X)Vg(t, X;) =0 dt @ dP-a.s.

This implies {g(t, X;) = 0} C {Vg(t, X;)"a(X;)Vg(t, X;) = 0} up to a nullset. Since
a(Xy) is invertible dt ® dP-almost surely we get, again up to a nullset,
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We deduce that (35) holds for all k € N¢ with |[k| = n + 1. Since (35) is trivially
true for n = 0, the result follows by induction. O

Lemma A.4. For any x € E we have the identity

span {VF (1, x) :TEO}zSpan{(KT)pw_%ﬁ@b p= 1,...,d}.

Proof. This follows directly from the power series expansion in 7 of the expres-
sion (28) for VF(r, x). O

Lemma A.5. Assume ¢+ 0 # 0 and consider any x € E. The following conditions
are equivalent:

(i) The vectors (k")P1p, p=1,...,d, are linearly independent;
(i) w is invertible and U = {0};
(iii) span {VF(r,z):7 >0} = R%L
Moreover, conditions (i) and (i) are equivalent even if 1 + 170 = 0.
Proof. The equivalence of (i) and (ii) is deduced from the identity
det (mTw e (/@T)d@D) = det (KJT) det (w e (KT)d_1¢) ,

together with Proposition 2.2, which in particular states that the second determinant
on the right side is zero if and only if & = {0}.

We next prove that (i) implies (iii). Since (x")P¥, p=1,...,d, span R¢ we can
find aq,...,aq such that ¢ = Zzzl ay(k")P1p. Together with the representation in
Lemma A.4 we deduce that the vector

Top(m Tl T
>4, [(W’w YR f ), ve9), ot 0,
2 PERT sruT T grun
lies in span {VF(7,z) : 7 > 0}. So does v since ¢ + "0 # 0, and it follows that we
have span {VF(r,z) : 7 > 0} D span{(x" )Py : p=1,...,d} = R% This proves (iii).
It remains to prove that (iii) implies (i). To this end, we use the hypothesis
together with the representation in Lemma A.4 to find a,,...,a, such that

_ Ty\p _¢T’€p($_9)
w—p;ap{(’{ )P (b—i—iiﬂ—'—x Y.
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Re-arranging this expression and writing u = Zzzl ay (k)P yields

u' (z —0)
1+ =
v < ¢+ )
It follows that ¢ lies in span{(x")Py : p = 1,...,d}, which consequently is equal to
span {VF(r,z) : 7 > 0} = R, This proves that (i) holds. O

Proof of Theorem 3.2. By a standard argument involving the martingale represen-
tation theorem, bond market completeness holds if and only if for any given 7" > 0
there exist maturities 7; > T, ¢ = 1,...,m, such that df ® dP-almost surely the
volatilility vectors v(T; — ¢, X;) span R Since o(X;) is invertible dt ® dP-almost
surely this happens if and only if dt ® dP-almost surely the vectors VF(T; — t, X;)
span R%. This shows, in particular, the implication “(i) = (ii)”.

To prove “(ii) = (iii)”, suppose (iii) fails. Lemma A.4 then implies that for each
x € E, span{VF(r,z) : 7 > 0} is not all of R%. Thus (ii) fails.

It remains to prove “(iii) = (i)”, so we assume that x is invertible and & = {0}.
Choose maturities 17, ..., Ty greater than or equal to T so that the function

g(t,z) = det (VF(Tl —tx) - VF(T; — t,x))

is not identically zero. This is possible by Lemma A.4. A calculation yields

x),

e—O{T
CEE

where 7(7, x) is a vector of first degree polynomials in = whose coefficients are analytic
functions of 7. Defining

F(t, ) = det (n(T1 —ta) - Ty — t,:c)),

we have g(t,z) = 0if and only if f(¢,2) = 0. Hence f(¢, x) is not identically zero. Our
goal is to strengthen this to the statement that {f(¢, X;) = 0} is a dt ® dP-nullset.
Indeed, then {g(t, X;) = 0} is also a dt ® dP-nullset, implying that completeness
holds. To prove that {f(t, X;) = 0} is a dt ® dP-nullset, note that f(¢,x) is of the

form
f(t,l’) = Z Ck(t)xkv

k|<n

VF(r,z) =

where n = maxo<;<r deg f(¢, ) < co. Lemma A.3 implies

{f(t, %) =0} € [ {elt) =0},

[k|=n
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up to a nullset. Assume for contradiction that the left side is of positive dt ® dIP-
measure. Then so is the right side, whence all the ¢ (which are deterministic) vanish
on a t-set of positive Lebesgue measure. The zero set of each ¢, must thus contain an
accumulation point, so that, by analyticity, they are all identically zero, see Rudin
(1987, Theorem 10.18). Hence we have either maxo<;<rdeg f(t,-) <n—1 (if n > 1)
or f(t,x) =0 (if n = 0). In both cases we obtain a contradiction, which shows that
{f(t,X;) =0} is a dt ® dP-nullset, as required.

Finally, the equivalence of (iii) and (iv) follows easily from Proposition 2.5. The
theorem is proved. O

Proposition A.7 below gives a description of the variance-covariance kernel W.
Its proof requires the following lemma.

Lemma A.6. Assume ¢ + "0 # 0, and consider any v € E. The following
conditions are equivalent.

(i) Ut = span{VF(r,x) : 7 > 0},
(ii) ¥ € span { (kTP :p=1,...,d}.

Proof. The proof is a straightforward adaptation of the proof of the equivalence
“(i)<=(iii)” in Lemma A.5, and therefore omitted. O

Proposition A.7. The variance-covariance kernel satisfies

unw c uUn ﬂ kern ' a(-)n

neut
with equality if ¢ + 170 # 0 and 1) € span {(/@T)pw p=1,... ,d}.

Proof of Proposition A.7. Consider an arbitrary vector & € UNW. Since F(7, z+sE)
is constant in s, we have that VG(7y, 73, 2) "¢ = 0 if and only if VG (71, 7, 2)T¢ =0,
where we define

G(11,79,2) = VF(r, ) a(2)VF (19, 2).

Now, for any x € E and 7 > 0, the chain rule yields

= VF(r,z)'¢€=0.

s=0

d
—VF
dsv (1,2 + s§)

Hence, by the product rule,

d —
—G(Tl, T2, T + Sg)

P = iVF(Tl,LU)Ta(x + Sf)VF(T%x)

s=0 dS s=0
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The right side is zero for all z € E, 7,7 > 0 if and only if, for every z € F,

=0

d
Enfa(x + sE)my

holds for all ny,m2 € span {VF(r,z) : 7 > 0}. But we always have
span {VF(r,z) : 7 > 0} c U™+,
with equality if o+ 0 # 0 and ¢ € span {(HT)% p=1,... ,d}, due to Lemma A.6.

This proves that the inclusion

d
W C {5 ceU: Enfa(x—i-sg)ng

=0forall z € E,m,n eul} (36)

s=0

holds, with equality if ¢ + 76 # 0 and ¢ € span {(/{T)pgb p=1,..., d}. Finally,
the identity

1
i Ay = 3 [mT Ay 4y Ang — (m —n2) TA(m — 772)],

valid for any symmetric matrix A, implies that the right side of (36) is equal to

s=0

d
{§€U:£nTa(a¢+s§)n :Oforaller,nEUL}.

Since this set is equal to U N ﬂneul ker n"a(-)n, the proof is complete. a

Remark A.8. Note that the set on the right side in Proposition A.7 is equal to

(| kernla()m N U,

n1,m2 €U+
see Equation (36) in the proof of Proposition A.7.

Building on this remark we now discuss how the USV factors and residual factors
affect the volatility of the transformed factor process X; = (Z;,U;), where U, =
(Vi, W;). The dynamics of X, can be written

Z Rus0; — Z) R
d = TN o~ dt + o (4, Vi, W,)d By,
<Ut) ( kuz(0z — Zi) + Koo (Ou — Uy) 0 (Ze, Vi, Wi)d B
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where 7 and  are given by (9), and 5(2,v,w) = So(S7(z,v,w)). The corresponding
diffusion matrix is

a(z,v,w) =66 (2,v,w) = Sa(S7(z,v,w))S".

Consider now those components of a(z,v,w) that are related to the volatility and
covariation of the term structure factors Z;,

@z, 0,w0) = o]z v,w)e; = a(S7 By, ij € (L. m),

where we set n; = S'e; € Ut. In view of Proposition A.7 and Remark A.8, we see
that in the generic case, the functions @;;(z,v, w) are all constant in w, but not all
constant in v. In other words, the volatilities and covariations of the term structure
factors Z; are not directly affected by the residual factors W;, but are affected by the
USV factors V;. This fact provides a further justification for our terminology.

Example A.9. We now provide an example illustrating that residual factors may
affect the distribution of future bond prices, despite having no instantaneous impact
on the current term structure or bond return volatilities.

Consider a three-factor linear-rational model with state space £ = R, x R? and
factor process given by

Xmt = >\1(1 — Xlt)dt -+ XthO(XQt)dBlt
dXQt == —)\2X2tdt + X3tdBQt
dX3t - —)\3X3tdt + dB3t7

where \; > 0 (i = 1,2,3), and ¢ : R — [1,2] is a strictly increasing, differentiable
function with s¢’(s) bounded. Then = — x1p(x3) is Lipschitz continuous, and it
follows that there is a unique strong solution to the above equation, starting from
any point © € E. Note that X, necessarily stays nonnegative since its drift is positive
and the diffusion component vanishes at the origin. The state price density is taken
to be

G=e 1+ Xy)

for some . The short rate is then given by r; = a — A\ (1 — X3,) /(1 4+ X1,), see (6),
and therefore, see (7), we pick
1— T

a=a" =sup\ = A
meg 11_'_5(:1 !
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Since also o, = —\p, this gives a short rate contained in [0,2)\;]. What are the
unspanned factors in this model? The term structure kernel, given by (8), reduces
to

U={£ecR>: & =0} =span{es, e3} .

Furthermore, the transformation S can be taken to be the identity. Thus Xy, is a
USV factor by Corollary 3.4, since ay; (x+ses) = x2p(29+5)? is non-constant in s. On
the other hand, X3, is a residual factor, since aj1(z+se3) = z3¢(x2)? is constant in s.
At the same time, however, ag(x + se3) varies with s. The message is the following:
while a perturbation of the residual factor X3; has no immediate impact on the
bond prices or their volatilities and covariations, such a perturbation does affect the
volatility of the USV factor Xg;. Therefore it affects the future distribution of this
factor, and hence also the future distribution of the volatility of the term structure
factor Xy;. This in turn alters the future distribution of bond prices. In conclusion,
derivatives prices may, in general, be sensitive to residual factors, and thus contain
information about their current values. This may happen despite the fact that the
residual factors are neither term structure factors, nor USV factors.

A.3 Proofs for Section 4

We begin with the following general result regarding linear-rational term structure
models whose state space is the nonnegative orthant. It provides us with a canonical
form for the LRSQ model which renders it identifiable. We let 1, denote the vector
in R? whose first p (p < d) components are ones, and the remaining components are
zeros. As before, we write 1 = 14.

Lemma A.10. Consider any linear-rational term structure model with state space
E = Ri and short rate bounded from below. After coordinatewise scaling of the factor
process and permutation of its components, it still has the representation (2), and
the state price density can be written

G=ec 1+ 1;Xt)

for somep < d. The extremal values in (7) are given by a* = maxS and o, = min S,
where
S = {1;/~€6’, —1;/{1, cee —1;@} ,

and where r; denotes the i:th column of k. Moreover, the submatriz ki ppt1..q4 @5
Z€ero.
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The proof of Lemma A.10 uses the following auxiliary result. We always assume
that the state space E is minimal in the sense that P(X; € U for some t > 0) > 0
holds for any relatively open subset U C F.

Lemma A.11. Assume X is a semimartingale of the form (2) whose minimal state
space is RL. Then k;; < 0 for all i # j.

Proof. Let G(t,z) denote the solution to the linear differential equation
0,G(r,x) = k(0 — G(1, 2)), G(0,z) = =,

so that, by Lemma A.1, E[X,,, | F,] = G(7,X,) holds for any bounded stopping
time p and any (deterministic) 7 > 0. Pick 7,7 € {1,...,d} with i # j, and assume
for contradiction that x;; > 0. Then, for A > 0 large enough, we have

0.G3(0,Xej) = e, k(0 — Nej) = ] KO — Arjj < —2,

where e; (e;) denotes the :th (j:th) unit vector, and G; is the i:th component of G.
By continuity there is some € > 0 such that 0.G;(7, Ae;) < =2 for all 7 € [0, 2¢].
Hence Gy(7, Xe;) = 0+ [ 0-Gi(s, Aej)ds < =27 for all T € [0, 2¢]. By continuity of
(1,x) — G(1,x) there is some r > 0 such that

Gi(r,z) < —7 holds for all 7€ [0,¢], x € B(Xej, 1),
where B(x,r) is the ball of radius r centered at x. Now define
p=nninf{t>0: X, € Bejr)}, A={X, € B(Ae;,1)},

where n is chosen large enough that P(A) > 0. The assumption that R% is a minimal
state space implies that such an n exists. Then

E[1aXipee] = E[LE[Xop. | Bl = E[14Gile. X,)] < —eB(A) <0,

whence P(X; ,. < 0) > 0, which is the desired contradiction. The lemma is proved.
0

Proof of Lemma A.10. By assumption, the state price density is of the form (; =
e (¢4 X;). Since ¢+ "z is assumed positive on E, we must have ¢ € R% and
¢ > 0. Dividing (; by ¢ does not affect any model prices, so we may take ¢ = 1.
Moreover, after permuting and scaling the components, X is still of the form (2) and
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takes values in E, so we can assume ) = 1,,. The short rate is given by r, = a—p(X;),
where

(2) 1;,%9 — 1;mc
S R

To see that ki, ,41..4 vanishes, suppose p < d, pick j € {p +1,...,d}, and set
x = Aej, where A > 0 is arbitrary and e; is the j:th unit vector. Inserting this choice
into (37) yields

(37)

p(Ae;) = 1;%9 - )\1;/-@]-.

Since p is bounded above on E we have 1;/@- > 0. But by Lemma A.11, we also

have k;; <0 for all € {1,...,p}, and this implies that k., 1.4 Is zero.
The expression for o* can now be obtained from (7) by observing that for each
r € E, p(x) is a convex combination of the numbers 1;%;9, —1;,%1, o —1;@.

This immediately implies that the maximum of these numbers is an upper bound
on p(z), and by choosing = € E suitably, p(x) can be made arbitrarily close to this
upper bound, which thus equals a*. The expression for «, is derived in an analogous
manner. The lemma is proved. O

Proof of Theorem 4.1. Assume first that the short rate is bounded from below. Since
the factor process X; remains a square-root process after coordinatewise scaling and
permutation of its components, Lemma A.10 then implies that we may take (; =
e (14 1) X;) for some p < d without loss of generality. Moreover, the submatrix
K1 pp+1..a vanishes, so (X, ..., Xp) is an autonomous square-root process on the
smaller state space R%. Since (; only depends on the first p components of X;, the
pricing model is unaffected if we exclude the last d — p components, and this proves
that we may take p = d, as desired.

Conversely, if ¢, = e (1 + 17 X;), the right side of (37) is bounded, implying
that the short rate is bounded as well.

Finally, the expressions for o* and a, follow directly from Lemma A.10. O

Proof of Proposition 4.2. The assertion about dimi follows from Theorem 2.4 and
Lemma A.2. To prove that all unspanned factors are USV factors we apply Corol-
lary 3.4. To this end it suffices to consider the entries @;;(z,u) of the diffusion
matrix of the transformed factor process X; = (Z,U,). Using that a(z,u) =
Soo"(S71(2,u))ST, a calculation yields

Qii(z,u) = 022 + (Ufnﬂ- — o)uy, i=1,...,n,
which is non-constant in u; since o; # 0,,y;. Since this holds for all + = 1,... n,
Corollary 3.4 implies that all unspanned factors are USV factors. O
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Mean Median Std. Min Max

Swap rates

1 year 3.33 3.04 221 0.32 7.51
2 years 3.60 3.63 2.08 0.36 7.65
3 years 3.86 4.07 1.96  0.43 7.70
5 years 4.28 4.40 175 0.74 7.75
7 years 4.56 4.65 1.59  1.14 7.7
10 years 4.84 4.91 1.45 1.55 7.80
Swaption IV

1 year 81.0 76.5 29.2 173 2244
2 years 95.5 92.8 325 21.3 2125
3 years 100.3 97.6 31.8 243  208.2
5 years 106.9 102.9 30.8 41.3 2034
7 years 107.4 102.8 28.3  57.1 206.2
10 years 106.9 103.4 269  57.2  208.3

Table 1: Summary statistics.

The table reports the mean, median, standard deviation, minimum, and maximum of
each time series. Swap rates are reported in percentages. Swaption normal implied
volatilities are reported in basis points. Each time series consists of 827 weekly
observations from January 29, 1997 to November 28, 2012.
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<0.08 0-0.01 0.01-0.02 0.02-0.03 0.03-0.04 0.04-0.08

Data By 0177 1.03 "  0.59*** 0.21 0.04 —0.04
(277)  (10.10) (2.94) (1.55) (0.34) (—0.65)

R?  0.05 0.46 0.26 0.09 0.00 0.00
LRSQ(3,1) p  0.02 0.59 0.23 0.11 0.04 -0.04
R?>  0.00 0.50 0.37 0.13 0.01 0.01
LRSQ(3,2) p1  0.06 0.47 0.23 0.13 0.06 -0.01
R?  0.02 0.48 0.38 0.18 0.03 0.00

Table 2: Level-dependence in volatility of 1-year swap rate.

The table report results from regressing weekly changes in the swaption IV at the 1-
year swap maturity on weekly changes in the 1-year swap rate (including a constant).
The first column shows results using data where the 1-year swap rate is below 0.08.
The second to sixth column shows results conditional on the 1-year swap rate being
in the intervals 0-0.01, 0.01-0.02, 0.02-0.03, 0.03-0.04, and 0.04-0.08, respectively.
The upper part of the table shows results for the sample with ¢-statistics, corrected
for heteroscedasticity and serial correlation up to 4 lags using the method of Newey
and West (1987), in parentheses. The middle and lower part of the table shows the
population regression coefficients and R2s for two model specifications. These are
based on simulated time series consisting of 520,000 weekly observations.
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LRSQ(3,1) LRSO(%.2) LRSQ(3.3)

K1 0.0630 0.0836 0.0856
(0.0005) (0.0007) (0.0009)
Ko 0.4377 0.3598 0.3393
(0.0035) (0.0030) (0.0027)
K3 0.1652 0.2502 0.2645
(0.0016) (0.0024) (0.0026)

K21 —0.1266 —0.1372 —0.1406
(0.0006) (0.0009) (0.0010)

K32 —0.5012 —0.4138 —0.3944
(0.0037) (0.0031) (0.0027)
0, 0.6709 0.3022 0.4765
(0.0260) (0.0146) (0.0163)
0y 0.2903 0.1152 0.1982
(0.0044) (0.0116) (0.0044)
03 0.8810 0.4083 0.2955
(0.0156) (0.0074) (0.0063)
04 0.3275 0.3436 0.1629
(0.0229) (0.0179) (0.0096)
05 0.1310 0.0675
(0.0117) (0.0033)
O 0.1006
(0.0042)
o1 0.2269 0.1901 0.1441
(0.0039) (0.0039) (0.0056)
09 0.6882 0.4288 0.4116
(0.0038) (0.0036) (0.0037)
03 0.1229 0.1008 0.0966
(0.0015) (0.0010) (0.0010)
04 1.8097 1.4648 0.9054
(0.0157) (0.0118) (0.0100)
o 1.0167 0.9777
(0.0099) (0.0121)
O 0.4839
(0.0061)
O rates 7.3765 5.0105 4.8279
(0.0539) (0.0542) (0.0498)
O swaptions 8.4015 7.0472 6.6027
(0.0552) (0.0433) (0.0519)
« 0.0636 0.0540 0.0550
supr; 0.2288 0.3042 0.3195
logL x 10~ 5.4037 5.5930 5.6514

Table 3: Maximum likelihood estimates.

The table reports parameter estimates with asymptotic standard errors are in paren-
theses. 0,45 denotes the standard deviation of swap rate pricing errors and ogyaptions
denotes the standard deviation of swaption pricing errors in terms of normal implied
volatilities. Both 0,45 and ogptions are measured in basis points. « is chosen as the
smallest value that guarantees a nonnegative short rate. supr; is the upper bound
on possible short rates. loglL denotes the log-likelihood value. The sample period
consists of 827 weekly observations from January 29, 1997 to November 28, 2012.



Full sample Pre-ZIRP ZIRP

Specification Swaps Swaptions Swaps Swaptions Swaps Swaptions
LRSQ(3,1) 5.73 7.31 5.16 7.28 7.43 7.41
LRSQ(5,2) 3.87 5.89 3.13 5.80 6.08 6.19
LRSQ(3,3) 3.74 5.42 3.01 5.21 5.92 6.03
LRSQ(3,2)-LRSQ(3,1)  —1.86™" —1.42"*  —2.03"* —1.48™  —1.36"* —1.22""

(—6.13) (—7.19) (—5.62) (—7.10) (—2.86) (—2.73)
LRSQ(3,3)-LRSQ(3,2) —0.13"*  —0.47* —0.12"*  —0.58"* —0.16 —0.16

(—2.58) (—2.22) (—2.14) (—2.18) (—1.21) (—0.48)

Table 4: Comparison of model specifications.

The table reports means of time series of the root mean squared pricing errors (RMSE) of swap rates and
normal implied swaption volatilities. Units are basis points. t-statistics, corrected for heteroscedasticity and
serial correlation up to 50 lags using the method of Newey and West (1987), are in parentheses. *, *x, and
* % % denote significance at the 10%, 5%, and 1% level, respectively. The full sample period consists of 827
weekly observations from January 29, 1997 to November 28, 2012. The zero interest rate policy (ZIRP)
sample period consists of 207 weekly observations after December 16, 2008. The pre-ZIRP sample period

consists of 620 weekly observations before December 16, 2008.



Full sample Pre-ZIRP ZIRP

Specification Swaps Swaptions Swaps Swaptions Swaps Swaptions
LRSQ(3,1)

1 year 9.03 6.38 6.48 5.80 4.56 6.51
2 years 9.96 7.55 6.34 7.79 7.94 10.30
3 years 8.85 6.01 6.51 4.36 2.85 6.07
5 years 10.29 7.19 5.73 8.01 8.11 10.00
7 years 9.51 7.35 6.37 8.77 7.63 7.69
10 years 8.91 8.52 7.88 7.12 7.39 11.12
LRSQ(3,2)

1 year 5.19 4.72 4.10 4.85 3.57 4.75
2 years 9.27 6.65 5.24 6.09 4.38 7.52
3 years 4.25 4.39 3.16 3.57 2.61 4.04
5 years 9.56 6.74 4.85 5.78 4.05 6.87
7 years 7.30 5.57 6.08 7.45 5.50 6.41
10 years 8.33 6.39 6.27 6.92 5.24 9.18
LRSQ(3,3)

1 year 4.95 4.68 3.74 4.63 3.44 4.50
2 years 7.92 6.49 4.77 5.03 4.47 7.47
3 years 3.91 4.27 3.00 3.52 2.52 3.39
5 years 8.25 6.41 3.96 4.78 3.97 5.93
7 years 7.20 5.74 5.36 6.95 5.29 6.81
10 years 6.86 6.74 6.61 5.73 5.71 10.82

Table 5: Individual RMSEs.

The table reports root mean squared pricing errors (RMSE) of individual swap rates
and normal implied swaption volatilities. Units are basis points. The full sample
period consists of 827 weekly observations from January 29, 1997 to November 28,
2012. The zero interest rate policy (ZIRP) sample period consists of 207 weekly
observations after December 16, 2008. The pre-ZIRP sample period consists of 620
weekly observations before December 16, 2008.
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Panel Al: Swap data Panel B1: Swaption data
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Figure 1: Data and fit

Panel A1 shows time series of the 1-year, 5-year, and 10-year swap rate. Panel Bl
shows time series of the normal implied volatilities on 3-month options on the 1-year,
5-year, and 10-year swap rate. Panels A2 and B2 shows the fit to the swap rates
and swaption implied volatilities in case of the LRSQ(3,2) specification. Panels
A3 and B3 shows time series of the root mean squared pricing errors (RMSE) of
swap rates and swaption implied volatilities, respectively. The units in Panels B1,
B2, A3, and B3 are basis points. The grey areas mark the two NBER-designated
recessions from March 2001 to November 2001 and from December 2007 to June 2009,
respectively. Each time series consists of 827 weekly observations from January 29,
1997 to November 28, 2012.
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Figure 2: Level-dependence in volatility of 1-year swap rate
The figure shows the normal implied volatility of the 3-month option on the 1-year
swap rate (in basis points) plotted against the 1-year swap rate.
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Figure 3: Estimated factors

The figure displays time series of the estimated factors. The first, second, and third
column shows the factors of the LRSQ(3,1), LRSQ(3,2), and LRSQ(3,3) specifica-
tion, respectively. The first row displays Z;; and U; ;. The second row displays Zs
and possibly U,;. The third row displays Z3; and possibly Us;. The thin black
lines show the term structure factors, 214, Zs;, and Z3,. The thick grey lines show
the unspanned stochastic volatility factors, Ui, Usy, and Us,. The grey areas mark
the two NBER-designated recessions from March 2001 to November 2001 and from
December 2007 to June 2009, respectively. Each time series consists of 827 weekly

observations from January 29, 1997 to November 28, 2012.
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Figure 4: Level-dependence in volatility of the term structure factors

For each term structure factor, its instantaneous volatility is plotted against its level.
The first, second, and third column correspond to the LRSQ(3,1), LRSQ(3,2), and
LRSQ(3,3) specification, respectively. The first, second, and third row correspond
to Z14, Zay, and Zs,, respectively. Each plot contains 827 weekly observations from
January 29, 1997 to November 28, 2012. The grey areas mark the possible range of
factor volatilities for a given factor level.
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