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Abstract

The exposure of US Treasury bonds to the stock market has moved considerably over time.
While it was slightly positive on average in the period 1960-2011, it was unusually high
in the 1980s and negative in the 2000s, a period during which Treasury bonds enabled
investors to hedge macroeconomic risks. This paper explores the effects of monetary policy
parameters and macroeconomic shocks on nominal bond risks, using a New Keynesian
model with habit formation and discrete regime shifts in 1979 and 1997. The increase
in bond risks after 1979 is attributed primarily to a shift in monetary policy towards a
more anti-inflationary stance, while the more recent decrease in bond risks after 1997 is
attributed primarily to an increase in the persistence of monetary policy interacting with
continued shocks to the central bank’s inflation target. Endogenous responses of bond risk
premia amplify these effects of monetary policy on bond risks.



1 Introduction

In different periods of history, long-term Treasury bonds have played very different roles

in investors’ portfolios. During the Great Depression of the 1930s, and once again in the

first decade of the 21st Century, Treasury bonds served to hedge other risks that investors

were exposed to: the risk of a stock market decline, and more generally the risk of a weak

macroeconomy, with low output and high unemployment. Treasuries performed well both

in the Great Depression and in the two recessions of the early and late 2000s. During the

1970s and particularly the 1980s, however, Treasury bonds added to investors’ macroeco-

nomic risk exposure by moving in the same direction as the stock market and the macroe-

conomy. A number of recent papers including Baele, Bekaert, and Inghelbrecht (2010),

Campbell, Sunderam, and Viceira (2013), Christiansen and Ranaldo (2007), David and

Veronesi (2013), Guidolin and Timmermann (2006), and Viceira (2012) have documented

these developments.

Given the importance of Treasury bonds as an asset class, it is natural to ask what

economic factors determine their risk properties. One way to do this is to use identities

that link bond returns to movements in bond yields, and that link nominal bond yields

to expectations of future short-term real interest rates, expectations of future inflation

rates, and time-varying risk premia on longer-term bonds over short-term bonds. Barsky

(1989), Shiller and Beltratti (1992), and Campbell and Ammer (1993) were early examples

of this approach. A more recent literature has proceeded in a similar spirit, building on

the no-arbitrage restrictions of affine term structure models (Duffie and Kan 1996, Dai

and Singleton 2000, 2002, Duffee 2002) to estimate multifactor term structure models with

both macroeconomic and latent factors (Ang and Piazzesi 2003, Ang, Dong, and Piazzesi
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2007, Rudebusch and Wu 2007). Although these exercises can be informative, they are

based on a reduced-form econometric representation of the stochastic discount factor and

the process driving inflation. This limits the insights they can deliver about the economic

determinants of bond risks.

A more ambitious approach is to build a general equilibrium model of bond pricing.

Real business cycle models have an exogenous real economy, driven by shocks to either

goods endowments or production, and an inflation process that is either exogenous or

driven by monetary policy reactions to the real economy. Papers in the real business cycle

tradition often assume a representative agent with Epstein-Zin preferences, and generate

time-varying bond risk premia from stochastic volatility in the real economy and/or the

inflation process (Bansal and Shaliastovich 2013, Buraschi and Jiltsov 2005, Burkhardt and

Hasseltoft 2012, Gallmeyer et al 2007, Piazzesi and Schneider 2006). Some papers instead

derive time-varying risk premia from habit formation in preferences (Bekaert, Engstrom,

and Grenadier 2010, Bekaert, Engstrom, and Xing 2009, Buraschi and Jiltsov 2007, Dew-

Becker 2013, Wachter 2006). Under either set of assumptions, this work allows only

a limited role for monetary policy, which determines inflation (at least in the long run)

but has no influence on the real economy.2 Accordingly a recent literature has explored

the asset pricing implications of New Keynesian models, in which price stickiness allows

monetary policy to have real effects. Recent papers in this literature include Andreasen

(2012), Bekaert, Cho, and Moreno (2010), Van Binsbergen et al (2012), Dew-Becker (2014),

Kung (2013), Li and Palomino (2013), Palomino (2012), Rudebusch and Wu (2008), and

Rudebusch and Swanson (2012).

2A qualification to this statement is that in some models, such as Buraschi and Jiltsov (2005), a
nominal tax system allows monetary policy to affect fiscal policy and, through this indirect channel, the
real economy.
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We follow this second approach and quantitatively investigate two candidate explana-

tions for the empirical instability in bonds risk properties: changes in monetary policy or

changes in macroeconomic shocks. First, U.S. monetary policy differed substantially be-

tween the pre-Volcker period, the inflation fighting period of Volcker and Greenspan, and

the recent period of increased central bank transparency. If the central bank affects the

macroeconomy through nominal interest rates, it is natural to think that these changes

should affect the risks of bonds and stocks.

Second, the nature of economic shocks has changed dramatically over time. While oil

supply shocks were prominent during the 1970s and 1980s, more recent output fluctuations

have been associated with the information technology revolution and financial sector shocks.

It is intuitive that whenever supply shocks are dominant, bonds should be risky assets.

Macroeconomic supply shocks, such as the oil supply shocks of the 1970s and 1980s, might

generate high inflation recessions and therefore lead bonds to perform poorly at the same

time as stocks.

Figure 1 helps motivate our analysis, showing a timeline of changing US bond risks,

monetary policy regimes, and oil price shocks from Hamilton (2009). Figure 1 measures

bond risks with rolling window CAPM betas and return volatilities of nominal bonds.3

Before 1979, the beta of bonds was close to zero but slightly positive. The bond beta

became strongly positive during the 1980s and 1990s and it finally flipped sign and became

negative in the late 1990s. Figure 1 also shows two monetary policy dates, corresponding

to major shifts in monetary policy. The first monetary policy break date corresponds to

the appointment of Paul Volcker as chairman of the board of Governors, which arguably

3Figure 1 shows the CAPM beta and bond return volatility of ten-year nominal bond returns. We use
daily returns over the past quarter. For a detailed data description, see Section 3.
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marked a significant change from the previous more accommodative monetary policy regime

(Clarida, Gali, and Gertler 1999). The second monetary policy date marks the first quarter

of 1997, coinciding with Alan Greenspan’s well-noted “Central Banking in a Democratic

Society” speech (Greenspan 1996). At first glance, monetary policy changes in the late

1990s might not be as salient as Paul Volcker’s appointment. However, this was a period of

very significant monetary policy shifts towards transparency and gradualism, with the cen-

tral bank taking more cautious interest rate decisions and implementing them over longer

periods of time. Most tangibly, the Federal Reserve started publishing detailed transcripts

of Federal Open Market Committee (FOMC) meetings in the mid 1990s, with plausibly

significant implications for monetary policy decisions and bond risks. For example, a 2013

Bloomberg News article notes that the number of dissenting votes at FOMC meetings

started to fall exactly when the Fed started to publish FOMC meeting minutes and it has

been essentially zero since 1997 (our regime shift date).4

Figure 1 provides strong motivational evidence that changes in monetary policy are

important for understanding changing bond risks. Figure 1, Panel A shows that changes

in bond betas line up closely with monetary policy breaks. Bond return volatility also

lines up with monetary policy break dates, with the exception of a short-lived spike at the

beginning of the middle subperiod.

In contrast, Figure 1 shows that oil price shocks do not line up closely with nominal

bond betas. This observation suggests that empirical changes in supply shock uncertainty

may not be sufficient to explain changes in bond risks. Oil price shocks represent only a

subset of macroeconomic supply shocks and therefore the evidence in Figure 1 is merely

4Joshua Zumbrun, 2013, Greenspans Bequest to Yellen Is Board Harmony Shown in Records, Bloomberg
News, November 6.
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suggestive. However, the main empirical analysis in this paper systematically examines

the role of time-varying shock volatilities for nominal bond betas and corroborates the

suggestive evidence in Figure 1.

This paper builds on the New Keynesian asset pricing literature and makes two contri-

butions. First, we formulate a New Keynesian model in which bonds and stocks can both

be priced from assumptions about their payoffs, and in which time-varying risk premia,

driven by habit formation and stochastic volatility, generate realistic variances and covari-

ances for these asset classes. Most previous New Keynesian asset pricing papers have

concentrated on the term structure of interest rates, and have paid little attention to the

implied pricing of equities. This contrasts with the integrated treatment of the bond and

stock markets in several papers that use reduced-form affine or real business cycle models

(Ang and Ulrich, 2012, Bansal and Shaliastovich 2013, Bekaert, Engstrom, and Grenadier

2010, Koijen, Lustig, and Van Nieuwerburgh, 2010, Campbell 1986, Campbell, Sunderam,

and Viceira 2013, d’Addona and Kind 2006, Dew-Becker 2013, Eraker 2008, Hasseltoft

2008, Lettau and Wachter 2011, Wachter 2006).

Second, we use our model to relate changes in bond risks to periodic regime changes in

the parameters of the central bank’s monetary policy rule and the volatilities of macroeco-

nomic shocks. In this way we contribute to the literature on monetary policy regime shifts

(Andreasen 2012, Ang, Boivin, Dong, and Kung 2011, Bikbov and Chernov 2013, Boivin

and Giannoni 2006, Chib, Kang, and Ramamurthy 2010, Clarida, Gali, and Gertler 1999,

Palomino 2012, Rudebusch and Wu 2007, Smith and Taylor 2009). While this literature

has begun to focus on the implications of monetary regime shifts for the term structure

of interest rates, previous papers have not looked at the implications for the comovements
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of bonds and equities as we do here. Our structural analysis takes account of various

channels by which the monetary policy regime affects the sensitivities of bond and stock

returns to macroeconomic shocks, including endogenous responses of risk premia.

The organization of the paper is as follows. Section 2 lays out a basic New Keynesian

model that explains interest rates, inflation, and medium-term deviations of output from

trend (the “output gap”) using three structural equations: an investment-saving curve

(IS) that describes real equilibrium in the goods market based on the Euler equation of a

representative consumer, a Phillips curve (PC) that describes the effects of nominal frictions

on inflation, and a monetary policy reaction function (MP) embodying a Taylor rule as in

Clarida, Gali, and Gertler (1999), Taylor (1993), and Woodford (2001). This section also

solves for the stochastic discount factor (SDF) implied by the New Keynesian IS curve,

and uses it to price bonds and stocks.

Section 3 describes our data sources and presents summary statistics for our full sam-

ple period, 1960Q1 through 2011Q4, and for three subperiods, 1960Q1–1979Q2, 1979Q3–

1996Q4, and 1997Q1–2011Q4. These subperiods are chosen to match both shifts in mone-

tary policy and changes in measured bond risks. This section also estimates the parameters

of the monetary policy reaction function, over the full sample and the three subperiods,

using reduced-form regression methodology.

Section 4 calibrates our model to fit both macroeconomic and asset pricing data over our

three subperiods. Section 5 presents counterfactual analysis, asking how bond risks would

have evolved over time if the monetary policy rule, or the volatilities of macroeconomic

shocks, had been stable instead of time-varying. Section 6 explores the implications of our

model for inflation-indexed bonds. Section 7 concludes, and an online appendix (Campbell,

6



Pflueger, and Viceira 2013) presents additional details.

2 A New Keynesian Asset Pricing Model

We model the dynamics of macroeconomic time series with a standard New Keynesian

framework consisting of a log-linearized Euler equation, a Phillips curve, and a monetary

policy function. We integrate asset pricing into the framework by deriving the Euler

equation from a stochastic discount factor (SDF) that also prices stocks and bonds in

the model. The SDF links asset returns and macroeconomic and monetary variables in

equilibrium in a standard no-arbitrage setup.

The Euler equation is a standard New Keynesian building block and provides an equiv-

alent of the Investment and Savings (IS) curve. We provide a micro-founded log-linearized

Euler equation relating current output to the lagged output gap, the expected future output

gap, and the real interest rate. Euler equations with both backward-looking and forward-

looking components are common in the dynamic stochastic general equilibrium (DSGE)

literature (Christiano, Eichenbaum, and Evans 2005, Boivin and Giannoni 2006, Smets

and Wouters 2007, Canova and Sala 2009).5 Fuhrer (2000) argues that allowing for a

backward-looking component is important for capturing the empirical hump-shaped out-

put response to a monetary policy shock. The forward-looking component follows from

standard household dynamic optimization.

5Christiano, Eichenbaum, and Evans (2005) and Boivin and Giannoni (2006) derive a backward- and
forward-looking linearized Euler equation in a model where utility depends on the difference between
consumption and an internal habit stock. A backward-looking component in the Euler equation can also
be derived in a model with multiplicative external habit (Abel 1990, Fuhrer 2000).
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We derive an Euler equation with both backward-looking and forward-looking compo-

nents from a consumption-based SDF in which the marginal utility of consumption depends

on the current and lagged values of the output gap, and its conditional volatility varies in-

versely with the output gap. This assumption about the volatility of marginal utility implies

that real risk premia increase during recessions, consistent with the empirical evidence on

stock and bond return predictability (Chen 1991, Cochrane 2007, Cochrane and Piazzesi

2005, Fama 1990, Fama and French 1989, Lamont 1998, Lettau and Ludvigson 2001). A

parametric model that exhibits these properties and produces analytically tractable ex-

pressions for asset prices and expected returns after suitable log-linearization of the SDF

is the habit-formation model of Campbell and Cochrane (1999), in which utility is a power

function of the difference between consumption and habit–the consumption surplus. We

therefore adopt this specification of utility for analytical convenience. Finally, shocks to

marginal utility, or demand shocks, introduce shocks to the Euler equation.

The empirical evidence in Figure 2, Panel A justifies our assumption that the marginal

utility of consumption is a function of the current and lagged output gaps. This figure

plots the time series of stochastically detrended consumption—log real consumption of

nondurables and services less a 24-quarter moving average—and the log output gap. The

two series move very closely together, almost surprisingly so given the measurement issues

in both series, with a correlation of 90%. We model surplus consumption to be linear in the

current output gap and the lagged output gap, with a negative coefficient on the lag. We

can therefore think of surplus consumption as a transformation of stochastically detrended

consumption that accentuates higher-frequency movements.

The second building block of a New Keynesian model is the Phillips curve (PC) equation
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that links inflation and real output in equilibrium. We assume a PC with both forward-

and backward-looking components to capture the price setting behavior of firms. While

a Calvo (1983) model of monopolistically competitive firms and staggered price setting

implies a forward-looking Phillips curve, a backward-looking Phillips curve can arise when

price setters update their information infrequently (Mankiw and Reis 2002).

The third building block of the model is an equation describing the behavior of the

central bank. We assume that the central bank’s policy instrument is the short-term

nominal interest rate. The central bank sets this interest rate according to a Taylor (1993)

monetary policy (MP) rule, as a linear function of the “inflation gap” (the deviation of

inflation from the central bank’s target), the output gap, and the lagged nominal interest

rate. Empirically, the Fed appears to smooth interest rates over time, and we capture this

by modeling the nominal short rate as adjusting gradually to the target rate. This approach

is fairly standard in the New Keynesian literature, although there is some debate over the

relative importance of partial adjustment and serially correlated unobserved fundamentals

in the MP rule (Rudebusch 2002, Coibion and Gorodnichenko 2012).

We allow for a time-varying central bank inflation target. Historical US inflation appears

highly persistent (Ball and Cecchetti 1990, Stock and Watson 2007). We capture this

empirical regularity by modeling the inflation target as a unit root process. Movements in

our estimated inflation target may capture episodes where public expectations of central

bank behavior are not well anchored, because the central bank lacks credibility, even if the

central bank’s true target is relatively stable (Orphanides and Williams 2004).

To close the model we need to make identification assumptions. DSGE models are often

under-identified or only very weakly identified (Canova and Sala 2009, An and Schorfheide
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2007) because the mapping between underlying parameters and model moments can be

highly nonlinear. Restrictions on the form of the monetary policy shock may be necessary

to identify monetary policy parameters (Backus, Zin, and Chernov, 2013). We adopt

identification assumptions commonly used in the structural vector autoregression literature

to help identify the central bank’s monetary policy rule, using exclusion restrictions that

allow us to estimate the monetary policy rule by Ordinary Least Squares (OLS).

2.1 Euler equation with habit formation

Standard no-arbitrage conditions in asset pricing imply that the gross one-period real return

(1 +Rt+1) on any asset satisfies

1 = Et [Mt+1 (1 +Rt+1)] , (1)

where Mt+1 is the stochastic discount factor (SDF). Household optimization implies a SDF

of the form

Mt+1 =
βU ′t+1

U ′t
, (2)

where U ′t is the marginal utility of consumption at time t and β is a time discount factor.

Substitution of (2) into (1) produces the standard Euler equation.

The Euler equation for the return on a one-period real T-bill can be written in log form

as:

lnU ′t = rt + ln β + ln EtU
′
t+1, (3)

where we write rt for the log yield at time t—and return at time t + 1—on a one-period
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real Treasury bill. Similarly, we write it to denote the log yield on a one-period nominal

T-bill. We use the subscript t for short-term nominal and real interest rates to emphasize

that they are known at time t. For simplicity, we assume that short-term nominal interest

rates contain no risk premia or that it = rt + Etπt+1, where πt+1 is inflation from time t

to time t+ 1. This approximation is justified if uncertainty about inflation is small at the

quarterly horizon, as appears to be the case empirically.

Equation (3) also describes the nominal interest rate given a model for expected infla-

tion. Substituting rt = it−Etπt+1 into (3), and dropping constants to reduce the notational

burden, we have:

lnU ′t = (it − Etπt+1) + ln EtU
′
t+1. (4)

We assume that lnU ′t is a linear function of the current and lagged log output gap xt

and that its conditional volatility is also an exponential affine function of xt with a negative

slope so that the volatility of marginal utility is higher when the output gap is low. These

assumptions imply an Euler equation for the real riskfree rate that relates the real interest

rate to the current output gap, its first-order lag, and its expected value.

To see this, consider a habit formation model of the sort proposed by Campbell and

Cochrane (1999), where utility is a power function of the difference between consumption

C and habit H:

Ut =
(Ct −Ht)

1−α − 1

1− α
=

(StCt)
1−α − 1

1− α
. (5)

Here St = (Ct − Ht)/Ct is the surplus consumption ratio and α is a curvature parameter

that controls risk aversion. Relative risk aversion varies over time as an inverse function of

the surplus consumption ratio: −UCCC/UC = α/St.
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Marginal utility in this model is

U ′t = (Ct −Ht)
−α = (StCt)

−α , (6)

and log marginal utility is given by lnU ′t = −α(st + ct). Assuming lognormality, or taking

a second-order Taylor approximation, the Euler equation (4) becomes

−α(st + ct) = (it − Etπt+1)− αEt(st+1 + ct+1) +
α2

2
σ2
t , (7)

where σ2
t = Vart(st+1 + ct+1).

Now suppose that

st + ct = xt − θxt−1 − vt, (8)

where the error term vt is white noise uncorrelated with current or lagged xt, or any other

information variables known in advance. We have argued that the empirical output gap

is closely related to stochastically detrended consumption, so the expression (8) can be

interpreted as a simple transformation of stochastically detrended consumption

Furthermore, assume that the volatility of marginal utility is higher when the output

gap is low. For some 0 < b < 1:

σ2
t = σ2 exp(−bxt) ≈ σ2(1− bxt). (9)

Here σ is the conditional volatility of surplus consumption when the output gap is zero.
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Substituting (8) and (9) into (7) yields the Euler equation:

xt = ρx−xt−1 + ρx+Etxt+1 − ψ (it − Etπt+1) + uISt , (10)

where ρx− = θ/(1 + θ∗), ρx+ = 1/(1 + θ∗), ψ = 1/α(1 + θ∗), uISt = vt/(1 + θ∗), and

θ∗ = θ − αbσ2/2 < θ.

Several points are worth noting about the IS curve (10). First, because θ∗ < θ, the

coefficients on the lagged output gap and the expected future output gap sum to more

than one. Second, the slope of the IS curve ψ does not equal the elasticity of intertemporal

substitution (EIS) of the representative consumer. Third, shocks to the IS curve result

from marginal utility or demand shocks in equation (8). Alternatively, we can interpret

these shocks as incorporating any divergences between consumption surplus and the output

gap that are uncorrelated with the other shocks in the model.

2.2 Macroeconomic dynamics

We complement the consumers’ Euler equation with standard building blocks of New Key-

nesian macroeconomic models. We assume that consumers and firms do not incorporate

contemporaneous monetary policy shocks into their time t decisions, similarly to Chris-

tiano, Eichenbaum and Evans (2005). Consumers and price-setting firms form their time

t expectations based on monetary policy shocks up to time t− 1 and IS, PC and inflation

target shocks up to time t. We denote the expectation with respect to this information set

by:

Et−(·) = E(·|uISt , uISt−1, uISt−2, ..., uPCt , uPCt−1, u
PC
t−2, ..., u

MP
t−1 , u

MP
t−2 , u

∗
t , u
∗
t−1, ...). (11)
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The assumption that consumers and firms make decisions based on Et− expectations

implies that monetary policy shocks do not affect macroeconomic aggregates contempora-

neously, but only with a lag. This identification assumption is common in the structural

VAR literature (Christiano, Eichenbaum, and Evans, 1999) and it is helpful for our empir-

ical strategy in that we can estimate the monetary policy Taylor rule by OLS.

The dynamics of the output gap, inflation, and Fed Funds rate can then be summarized

by the linearized system of equations:

xt = ρx−xt−1 + ρx+Et−xt+1 − ψ(Et−it − Et−πt+1) + uISt , (12)

πt = ρππt−1 + (1− ρπ)Et−πt+1 + λxt + uPCt , (13)

it = ρi(it−1 − π∗t−1) + (1− ρi) [γxxt + γπ (πt − π∗t )] + π∗t + uMP
t , (14)

π∗t = π∗t−1 + u∗t . (15)

Equation (12) is the IS curve (10) with the expectational timing assumption (11). Equation

(13) is a standard New Keynesian equation that determines inflation from the price-setting

behavior of firms. It has parameters ρπ, determining the relative weight on past inflation

and expected future inflation, and λ, governing the sensitivity of inflation to the output

gap.

Equation (14) is a central bank reaction function along the lines of Clarida, Gali, and

Gertler (1999), Taylor (1993), and Woodford (2001). It determines the short-term nom-

inal interest rate with parameters ρi, controlling the influence of past interest rates on

current interest rates, γx, governing the reaction of the interest rate to the output gap, and

γπ, governing the response of the interest rate to inflation relative to its target level π∗t .
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Equation (15) specifies that the central bank’s inflation target follows a random walk.

Our monetary policy specification does not explicitly depend on nominal long-term

yields. However, a persistent inflation target shifts the term structure similarly to a level

factor. In that sense, our model is similar to models where the level factor of the nominal

term structure directly enters the central bank’s monetary policy function (Rudebusch and

Wu 2007, 2008).

Finally, we assume that the vector of shocks

ut = [uISt , u
PC
t , uMP

t , u∗t ]
′ (16)

is independently and conditionally normally distributed with mean zero and variance-

covariance matrix:

Et−1 [utu
′
t] = Σu × (1− bxt−1) =



(σIS)2 0 0 0

0 (σPC)2 0 0

0 0 (σMP )2 0

0 0 0 (σ∗)2


× (1− bxt−1) . (17)

Equation (17) has two important properties. First, the variances of all shocks in

the model, not just the shock to the Euler equation, are proportional to (1 − bxt−1) ,

and thus linear in the output gap. This proportionality assumption makes the model

relatively tractable and helps us fit the volatilities of bond and stock returns. Second, for

parsimony we assume that all the shocks in the model are uncorrelated with each other.

The assumption that monetary policy shocks uMP
t and u∗t are uncorrelated with the IS
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and PC shocks captures the notion that all systematic variation in the short-term nominal

interest rate is reflected in the monetary policy rule.

2.3 Modeling bonds and stocks

We use the exact loglinear framework of Campbell and Ammer (1993) to express excess log

returns on nominal and real bonds as a function of changes in expectations of future short-

term interest rates, inflation, and risk premia. In our model, risk premia vary over time

and the expectations hypothesis of the term structure of interest rates does not hold. We

maintain our previous simplifying approximation that risk premia on one period nominal

bonds equal zero, but risk premia on longer-term bonds are allowed to vary.

We write rn−1,t+1 for the real one-period log return on a real n-period bond from time

t to time t+1 and xrn−1,t+1 for the corresponding return in excess of rt. r
$
n−1,t+1 denotes

the nominal one-period return on a similar nominal bond and xr$n−1,t+1 the corresponding

excess return over it. We use the identities:

r$n−1,t+1 − Etr
$
n−1,t+1 = − (Et+1 − Et)

n−1∑
j=1

(
ı̂t+j + π∗t+j

)
− (Et+1 − Et)

n−1∑
j=1

xr$n−j−1,t+1+j (18)

rn−1,t+1 − Etrn−1,t+1 = − (Et+1 − Et)
n−1∑
j=1

rt+j

− (Et+1 − Et)
n−1∑
j=1

xrn−j−1,t+1+j, (19)
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Nominal bond excess returns reflect shocks to the long-term inflation target, news about

the nominal interest rate gap, and news about future nominal bond excess returns. Real

long-term excess bond returns reflect news about the real interest rate gap and news about

future real bond excess returns.

We model stocks as a levered claim on the log output gap xt. We assume that log

dividends are given by:

dt = δxt. (20)

We interpret δ as capturing a broad concept of leverage, including operational leverage.

The interpretation of dividends as a levered claim on the underlying fundamental process

is common in the asset pricing literature (Abel 1990, Campbell 1986, 2003).

We write ret+1 for the log stock return and xret+1 for the log stock return in excess of rt.

Following Campbell (1991) we use a loglinear approximation to decompose stock returns

into dividend news, news about real interest rates, and news about future excess stock

returns ignoring constants:

ret+1 − Etret+1 = δ (Et+1 − Et)
∞∑
j=0

ρj∆xt+1+j − (Et+1 − Et)
∞∑
j=1

ρjrt+j

− (Et+1 − Et)
∞∑
j=1

ρjxret+1+j. (21)

Here ρ is a loglinearization constant close to 1.
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2.4 Model solution and stability

We define the inflation and nominal interest rate gaps as:

π̂t = πt − π∗t , (22)

ı̂t = it − π∗t . (23)

We solve for the dynamics of the vector of state variables

Ŷt = [xt, π̂t, ı̂t]
′. (24)

The state variable dynamics have a solution of the form

Ŷt = PŶt−1 +Qut. (25)

We solve for P ∈ R3×3 and Q ∈ R3×4 using the method of generalized eigenvectors (see e.g.

Uhlig 1999).

In principle, the model can have more than one solution. We only consider dynamically

stable solutions with all eigenvalues of P less than one in absolute value, yielding non-

explosive solutions for the output gap, inflation gap, and interest rate gap. Cochrane

(2011) argues that there is no economic rationale for ruling out solutions on the basis of

an explosive inflation path. In general, in our model an explosive solution for inflation is

also explosive for the output gap and the real interest rate. We find it reasonable to rule

out such solutions with explosive real dynamics.

The inclusion of backward-looking terms in the IS curve and Phillips curve means that
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there exist at most a finite number of dynamically stable equilibria of the form (25). This

is true even when the monetary policy reaction to inflation (γπ) is smaller than one, which

usually leads to an indeterminate equilibrium in highly stylized Keynesian models with

only forward-looking components (Cochrane, 2011).

We apply multiple equilibrium selection criteria proposed in the literature to rule out

unreasonable solutions. Whenever there exist multiple dynamically stable solutions, these

additional criteria allow us to pick a unique solution. We require the solution to be ‘ex-

pectationally stable’ (Evans 1985, 1986, McCallum 2003). Expectational stability requires

that for small deviations from rational expectations, the system returns to the equilibrium.

We also impose the forward criterion of Cho and Moreno (2011), which requires that ex-

pectations about shocks arbitrarily far in the future do not affect the current equilibrium.

Finally, we also impose the solution selection criterion of Uhlig (1999), which is closely

related to the minimum state variable solution proposed by McCallum (2004). We only

consider solutions that are real-valued and have finite entries for Q. The Appendix provides

full details on the model solution and solution criteria.

2.4.1 Stochastic discount factor

We can express innovations to log consumption plus habit as:

st+1 + ct+1 − Et (st+1 + ct+1) = QMut+1, (26)

QM = e1Q− (1 + θ∗)e1. (27)
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In (9) we assumed that the conditional variance of the log SDF is linear in the output gap.

Using equation (17) for the changing variance of the shock vector ut+1, we can now verify

this assumption with:

σ2
t = QMΣuQ

M ′(1− bxt). (28)

The variance of the SDF conditional on a zero output gap is σ2 = QMΣuQ
M ′.

2.4.2 Solutions for bond and stock returns

We obtain solutions for unexpected nominal and real bond returns of the form:

r$n−1,t+1 − Etr$n−1,t+1 = A$,nut+1, (29)

rn−1,t+1 − Etrn−1,t+1 = Anut+1. (30)

Up to constant terms, log yields of nominal and real zero coupon bonds equal:

y$n,t = π∗t +B$,nŶt, (31)

yn,t = BnŶt. (32)

The loglinear decompositions (18) and (19) for nominal and real bonds are exact, so the

solutions for model bond returns and yields (29), (30), (31), and (32) are also exact,

conditional on our loglinearization of the stochastic discount factor. The vectors A$,n ∈

R1×4, An ∈ R1×4, B$,n ∈ R1×3, and Bn ∈ R1×3 are defined recursively.

We obtain that unexpected and expected log excess stock returns take the following
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loglinear approximate forms:

ret+1 − Etret+1 = Aeut+1, (33)

Etxr
e
t+1 = (1− bxt)be, (34)

for some Ae ∈ R1×4 and some be ∈ R. The online Appendix presents solution details,

including bond betas, log dividend price ratios, and multi-period expected log equity returns

in excess of short-term T-bills.

2.4.3 An estimable VAR

While standard empirical measures are available for the output gap, we do not observe the

interest rate and inflation gaps. We therefore cannot directly estimate the recursive law of

motion (25). However, for a long-term bond maturity n, we can estimate a VAR(1) in the

vector:

Yt =
[
xt, πt, it, y

$
n,t

]′
. (35)

The model implies that:

Yt+1 = P Y Yt +QY uYt+1. (36)

Here, uYt = ut and P Y and QY are determined by P , Q and the loadings for long-term

nominal bond yields B$,n.
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3 Preliminary Empirical Analysis

3.1 Monetary policy regimes

We break our sample into three subperiods corresponding to major shifts in monetary pol-

icy. The first subperiod, 1960.Q1–1979.Q2, covers the Fed chairmanships of William M.

Martin, Arthur Burns, and G. William Miller. The second subperiod, 1979.Q3–1996.Q4,

covers the Fed chairmanships of Paul Volcker and Alan Greenspan. The third subpe-

riod, 1997.Q1-2011.Q4, covers the period after Alan Greenspan’s “Central Banking in a

Democratic Society” speech at the end of 1996.Q4 (Greenspan 1996). The third period

contains the later part of Greenspan’s chairmanship and the earlier part of Ben Bernanke’s

chairmanship.

Our first two subperiods are identical to those considered by Clarida, Gali, and Gertler

(CGG, 1999), while our third covers data that has become available since. Following CGG,

we assume that transitions from one regime to another are structural breaks, completely

unanticipated by investors. This approach is motivated by the empirical observation that

regimes in the nominal bond beta and monetary policy regimes are typically long-lasting on

the order of one to two decades. While we recognize the importance of allowing agents to

anticipate potential future changes in policy and to optimize according to such expectations,

we think that a parsimonious model like ours still brings substantive insights which are likely

to survive in a more sophisticated but less analytically tractable model.

Our choice of a third regime for monetary policy draws on several observations. First, in

1994 the Federal Reserve started to publish the transcripts of FOMC meetings shortly after
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each meeting. Observers of the Federal Reserve have noted that this increased transparency

opened Fed deliberations to intense scrutiny by investors and the public. Consequently,

increased transparency may have led to changes in the conduct of monetary policy towards

more gradualism, with the central bank deciding on smaller interest rate changes, adopting

more cautious policies, and implementing them over longer time horizons.

Second, Federal Reserve governors and chairmen have repeatedly noted a sense of in-

creased uncertainty about the effects of monetary policy since the mid-1990s. Anecdotal

evidence suggests that this led the Federal Reserve to adopt a more persistent monetary

policy (Greenspan 1996, Bernanke 2004, Orphanides 2003).6

Third, observers of the Federal Reserve have interpreted Greenspan’s 1996 speech as a

signal of increased central bank concern with U.S. and international capital market con-

ditions. In fact, this speech is popularly known as the “Irrational Exuberance” speech.

These considerations might also have pushed towards transparency and gradualism to the

extent that the Federal Reserve aims to mitigate short-term bond return volatility.

It is tempting to conclude that asset market considerations support a framework with

both the output gap and stock returns—or some measure of asset valuations—in the mon-

etary policy rule. In contrast, Greenspan (1996) argues that “central bankers do not need

to be concerned if a collapsing asset bubble does not threaten to impair the real econ-

omy.”Both anecdotal evidence and the empirical evidence in Rigobon and Sack (2003) are

6Greenspan (1996): ”At different times in our history a varying set of simple indicators seemed success-
fully to summarize the state of monetary policy and its relationship to the economy. (...) Unfortunately,
money supply trends veered off path several years ago as a useful summary of the overall economy.”
Bernanke (2004): ”As a general rule, the Federal Reserve tends to adjust interest rates incrementally, in a
series of small or moderate steps in the same direction. (...) Many central bankers and researchers have
pointed to the pervasive uncertainty associated with analyzing and forecasting the economy as a reason
for central bank caution in adjusting policy.” See also the analysis in Stein (2013).
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therefore consistent with our monetary policy rule that incorporates asset prices only to

the extent that they reflect inflation and output fluctuations.

Finally, Figure 1 in the introduction shows that substantial changes in the sign and

magnitude of nominal bond betas and bond return volatilities line up reasonably well with

our proposed monetary policy regimes. Our estimates of the monetary policy rule shown

below also provide robust empirical support for the existence of a third monetary policy

regime.

3.2 Data and summary statistics

Our empirical analysis uses quarterly US data on output, inflation, interest rates, and

aggregate bond and stock returns from of 1960.Q1 to 2011.Q4. GDP in 2005 chained

dollars and the GDP deflator are from the Bureau of Economic Analysis via the Fred

database at the St. Louis Federal Reserve. The end-of-quarter Federal Funds rate is

from the Federal Reserve’s H.15 publication. We use quarterly potential GDP in 2005

chained dollars from the Congressional Budget Office.7 The end-of-quarter three-month

T-bill is from the CRSP monthly Treasury Fama risk free rates files. We use log yields

based on average of bid and ask quotes. The end-of-quarter five year bond yield is from

the CRSP monthly Treasury Fama-Bliss discount bond yields. We use the value-weighted

combined NYSE/AMEX/Nasdaq stock return including dividends from CRSP, and mea-

sure the dividend-price ratio using data for real dividends and the S&P 500 real price.8

Interest rates, and inflation are in annualized percent, while the log output gap is in natural

7Table 2-3 of the CBO’s August 2012 report “An Update to the Budget and Economic Outlook: Fiscal
Years 2012 to 2022” (http://www.cbo.gov/publication/43541)

8The source is Robert Shiller’s website at http://www.econ.yale.edu/ shiller/data.htm.
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percent units. All yields are continuously compounded. We consider log returns in excess

of the log T-bill rate.

Table 1 shows summary statistics for the log output gap, inflation, the Federal Funds

rate, and the 5 year nominal bond yield for the US over the full sample period 1960-2011

and over each subperiod. The log real output gap has a first-order quarterly autocorrelation

of 0.96 over the full sample period, implying a half life of 5 years. Realized inflation, the Fed

Funds rate and the 5-year nominal bond yield are also highly persistent in the full sample

and across subperiods. The average log output gap was positive in the earliest subperiod,

and negative afterwards. Inflation and interest rates have been significantly lower in the

latest subperiod compared to the early subperiods.

In our model, expected excess log stock returns vary negatively with the output gap.

It is therefore important to verify empirically if this relation exists, and to examine the

relation of the output gap with well known predictors of excess stock returns in the data

such as the price-dividend ratio.

Figure 2, Panel B shows the log output gap and the log price-dividend ratio for the

full sample period. The correlation between the two variables in Figure 3 is 0.18 for the

full sample period, but it is 0.39 for 1960.Q1–1979.Q3, 0.41 for 1979.Q3–1996.Q4, and 0.74

for 1997.Q1–2011.Q4. The procyclicality of the price-dividend ratio is evident in Figure

2. Occasional long-lasting shifts in the relative levels of the two variables, particularly the

secular increase in the price-dividend ratio during the bull market at the end of the 20th

Century, decrease the full sample correlation relative to the subsample correlations.

Time-varying volatilities of shocks imply that the equity premium in our model varies

inversely with the output gap. We wish to compare time-variation in empirical and model
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risk premia. Table 2 estimates the predictive relation between quarterly equity excess

returns and the output gap:

ret+1 − it = a0 + axxt + εt+1. (37)

Table 2 shows that the full sample estimate of ax is negative and significant, consistent

with our model specification. Subsample estimates vary around the full sample estimate of

ax = −0.49.

We also consider the log dividend-price ratio (the negative of the log price-dividend

ratio) as a predictor of equity excess returns. Table 3 reports regressions of one through

five year log equity excess returns onto the lagged log dividend-price ratio. We report

regressions over our full sample period 1960-2011 and an extended sample period 1947-2011.

Table 3 shows that the log dividend-price ratio predicts equity excess returns with positive

coefficients. The coefficients in Table 3 are comparable to those reported in Campbell and

Cochrane (1999), but smaller in magnitude due to our inclusion of more recent data.

3.3 Estimating monetary policy rules

The central bank’s Taylor rule parameters are key inputs for calibrating the model for each

subperiod. The model incorporates exclusion restrictions, such that if we knew the output

gap, the inflation gap, and the interest rate gap we could estimate the monetary policy

function by OLS. Unfortunately, the inflation gap and interest rate gap are not directly

observable. We therefore follow CGG in estimating the monetary policy rule in terms of
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the output gap, inflation, and the Fed Funds rate:

it = c0 + cxxt + cππt + ciit−1 + εt.

We use the estimated values ĉx, ĉπ, and ĉi to pin down the calibrated values of the

monetary policy parameters according to: ρ̂i = ĉi, γ̂x = ĉx/(1− ĉi), and γ̂π = ĉπ/(1− ĉi).

The estimated monetary policy functions in Table 4 yield consistent estimates of the

monetary policy parameters only if the inflation target is constant or contemporaneously

uncorrelated with the output gap and inflation gaps. We will therefore need to verify that

this bias is quantitatively small in the calibrated model.

The estimates in Table 4 suggest that monetary policy has varied substantially over

time. During the earliest subperiod, 1960.Q1–1979.Q2, the central bank raised nominal in-

terest rates less than one-for-one with inflation. In contrast, the central bank raised nominal

interest rates more than one-for-one with inflation during the Volcker-Greenspan-Bernanke

periods (1979.Q3–2011.Q4).9 This finding is consistent with the empirical evidence reported

by CGG and updates it to the most recent period.

The point estimates of γ̂x in Table 4 also suggest that the central bank has put somewhat

higher weight on output fluctuations in the earliest and latest subperiods than during the

middle subperiod, although the estimates of neither γ̂x nor ĉx are statistically significant

in the latest subperiod. This empirical finding is similar to Hamilton, Pruitt, and Borger

(2011) who use the reaction of Fed Funds futures to macroeconomic announcements to

9γ̂π appears to be less precisely estimated in the latest subperiod, while ĉπ is precisely estimated. This
results from the nonlinear relation between the parameters. The coefficient γ̂π is ĉπ divided by (1 − ĉi).
Because ĉi is very close to 1 in the latest subperiod, standard errors for γ̂π based on the delta method tend
to be very large.
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estimate monetary policy rules before and after 2000.

Consistent with our informal observations about increased gradualism in monetary pol-

icy, during the most recent period the monetary policy rule explains 91% of the variation

in the Federal Funds rate, implying that deviations from the monetary policy rule have

been extremely small. Moreover, the loading of the lagged Fed Funds rate into the mon-

etary policy function during this subperiod is very large at 0.89, almost twice as large as

in the earlier subperiods. We will see that this increase in estimated policy persistence is

important for understanding changing bond risks.

The increase in monetary policy persistence in the third subperiod is not driven by

the onset of the global financial crisis or the subsequently binding zero lower bound for

the nominal interest rate. The Appendix shows estimated monetary policy rules for two

parts of the third subperiod, before and after the start of the financial crisis, which we

take to be the third quarter of 2008. Not surprisingly, none of the estimated coefficients of

the monetary policy rule are statistically different from zero during the post-crisis period.

But more interestingly, the pre-crisis period still shows very strong persistence in monetary

policy.

4 Model Calibration

We now calibrate our model to key empirical moments for the US over the three subsam-

ples: 1960.Q1-1979.Q2, 1979.Q3-1996.Q4, and 1997.Q1-2011.Q4. Table 5 summarizes the

calibration parameters, while Tables 6 and 7 compare key empirical and model moments.
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We separate the parameters into two blocks. The first block of parameters corresponds

to our main candidate explanations for changes in bond betas. It comprises the monetary

policy rule parameters γx, γπ, and ρi and the shock volatilities σ̄IS, σ̄PC , σ̄MP , and σ̄∗. We

allow these parameters to change over time. We use Table 4 to pin down the monetary

policy parameters γx, γπ, and ρi for each subperiod. The second block of time-invariant

parameters comprises the preference parameters and the Phillips curve parameters (ρ, δ,

α, ρπ, ρx+, ρx−, and λ).

Previous evidence from Smets and Wouters (2007) supports our selection of parame-

ter blocks. They estimate a structural New Keynesian model separately for the periods

1966-1979 and 1984-2004 and find that preference parameters are largely stable across

subperiods. In their estimation, the most important parameter changes across those two

subperiods are in the shock volatilities and the monetary policy parameters, which are

exactly the parameters that we allow to vary across subperiods.10

We set the Phillips curve slope to λ = 0.30 following CGG. We set the backward-

looking component of the Phillips curve to ρπ = 0.80 following the empirical estimates of

Fuhrer (1997). Thus we model the Phillips curve as strongly backward looking, consistent

with estimates obtained using inflation and the output gap. Gali and Gertler (1999) find

some empirical evidence in favor of a forward-looking curve using the labor share of income

instead of the output gap. The Appendix shows that our results are not sensitive to

the precise value of the backward-looking parameter in the Phillips curve as long as this

parameter is not too close to zero, in which case there may not be a solution to our model.

10They also find some evidence that the Phillips curve flattens in their second subperiod. For simplicity
we keep the parameters of the Phillips curve stable across subperiods, but we verify in the Appendix that
in our model a flatter Phillips curve leads to a more positive bond beta in the second and third periods.
Allowing for a flattening of the curve over time would therefore deepen rather than resolve the puzzle why
the nominal bond beta has been negative since the late 1990s.
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Over the full sample period, the standard deviations of four-quarter real dividend growth

and four-quarter output gap growth are 5.35% and 2.20%, respectively. We use the ratio of

these empirical standard deviations to pin down the model leverage parameter at δ = 2.43,

corresponding to a leverage ratio of 59%. We interpret δ as capturing a broad concept

of leverage, including operational leverage. We choose the loglinearization parameter ρ

as in Campbell and Ammer (1993), scaled to quarterly frequency. We set the preference

parameter to α = 30 to generate plausible equity return volatility.

We choose the remaining parameters to fit a large number of moments. Let super-

script p denote subperiod parameters. The remaining parameters, ρx+, ρx−, σIS,p, σPC,p,

σMP,p, and σ∗,p for p = 1, 2, 3, are chosen to minimize the distance between model and

empirical moments. We fit the slope coefficients of a VAR(1) in the log output gap, log

inflation, log Fed Funds, and five year nominal log bond yield, the standard deviations

of the VAR(1) residuals in annualized percent, equity return volatility and bond return

volatility in annualized percent and the nominal bond beta, a total of 23 moments.11

The standard deviations of shocks, evaluated at a zero value of the output gap, change

considerably across time periods. We estimate substantially larger volatilities of MP shocks

and inflation target shocks for the period 1979–1996 than for the earliest and latest sub-

periods. The estimated volatility of PC shocks is largest in the earliest subperiod, and the

estimated volatility of IS shocks is smallest in the most recent subperiod.

Table 5, Panel B shows the values of calibration parameters that are implied by the

parameters shown in Panel A. The calibrated Euler equation has economically significant

11The objective function is the sum of squared differences between model and empirical moments summed
over all three sub-periods. The equity and bond volatilities are scaled by 0.1 and the nominal bond beta
is scaled by a factor of 10 to ensure that moments have roughly equal magnitudes. The online Appendix
describes details of the optimization procedure.
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forward-looking and backward-looking components with a backward-looking component of

0.45 and a forward-looking component of 0.62. The forward- and backward-looking Euler

equation components sum to more than one as a result of time-varying risk premia. The

parameters imply θ = ρx−/ρx+ = 0.73, so investors’ habit moves less than one for one with

the lagged output gap.

The slope of the IS curve ψ with respect to the real interest rate is linked to the

curvature parameter controlling risk aversion α and ρx+ by ψ = ρx+/α, as in Section

2.1. The implied slope of the IS curve is 0.02. This value is close to zero, but is in

line with the empirical findings in Yogo (2004) and earlier work by Hall (1988).12 Our

calibration procedure requires a small value for ψ to match empirical moments, especially

the substantial persistence in the empirical output gap. The parameters that control the

volatility of the SDF, b and σ, change little across subperiods.

Table 6 shows calibrated and empirical volatilities of VAR(1) residuals, volatilities of

stock and bond returns, nominal bond betas, and Taylor rule regressions of the same

form as in Table 4. Model moments are calculated from 2000 simulations of length 250,

corresponding closely to our empirical sample size of 61 years of quarterly observations.

The calibrated model provides a close fit for the standard deviations of VAR(1) residuals

and stock and bond return volatilities for each of the subperiods. Moreover, the calibrated

model fits well the time variation in the nominal bond beta. Both empirical and model

nominal bond betas were small but positive in the first subperiod, larger and positive in

the second subperiod, and negative during the third subperiod. These changes in bond

risks are the primary object of interest in our analysis.

12However the long-run risk literature, following Bansal and Yaron (2004), presents an opposing view.
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The model’s simulated Taylor rules also correspond closely to their empirical counter-

parts for each subperiod. This finding is reassuring in that it suggests that we can indeed

identify time-varying monetary policy parameters from the regressions reported in Table 4

even without estimating the unobservable inflation target.

Our calibration generates additional model moments not used in the fitting procedure

that can be used to evaluate the model’s out-of-sample performance. Table 7 shows that

many of these moments are comparable to their empirical counterparts. The calibration

generates a positive and plausible correlation between the output gap and the log price-

dividend ratio, especially given that empirical subperiod correlations between these two

variables tend to exceed full sample correlations. The log dividend-price ratio is persistent,

but less persistent and less volatile than in the data.

Table 7 shows that the model output gap and log dividend price ratio both predict stock

excess returns with the right signs, even if the model generates stronger return predictability

than one can estimate in the data. However, we would expect to find weaker evidence for

predictability in the data to the extent that the observed output gap and the dividend-yield

are noisy measures of the true variables. Finally, the model real short-term rate has a low

average standard deviation of 1.90%. The coefficient from regressing st+ct onto the output

gap xt is positive, consistent with the intuition that marginal utility should be low when

the output gap is high.
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5 Counterfactual Analysis of Changing Bond Risks

We are now in a position to investigate the role of changing monetary policy and macroeco-

nomic shocks for nominal bond betas. Our calibrated model replicates the shift in nominal

bond betas over time. Since we allow both monetary policy and the volatilities of shocks to

vary across subperiods, both may contribute to time-varying bond risks to varying degrees.

Figure 3 plots nominal bond betas against the monetary policy reaction coefficients

γx and γπ. γπ captures the long-run response of monetary policy to an increase in the

inflation gap, while γx captures the response to an increase in the output gap. Each panel

corresponds to one subperiod. The following parameters vary across panels and equal the

calibration values for the respective subperiod: the persistence of monetary policy ρi, and

the volatilities of shocks σ̄IS, σ̄PC , σ̄MP , and σ̄∗. Red and orange colors indicate positive

bond betas, while blue and green colors indicate negative bond betas. White areas indicate

that no stable solution exists. We show the estimated combinations of monetary policy

parameters for each subperiod.

The contour lines in Figure 3 show combinations of reaction coefficients γx and γπ that

keep bond betas fixed. These contours are upward-sloping in all three panels, showing that

γπ increases the bond beta while γx reduces it. However, the contour lines are relatively

flat, which shows that the effect of γπ on the bond beta is much larger than the effect of

γx. In addition, the contours shift across Panels A through C, indicating that changes in

parameters other than γx and γπ are important for matching changes in bond betas.

Turning to specific results for our three subsamples, Figure 3, Panel A shows that

nominal bond betas are positive for a wide range of monetary policy reaction coefficients
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γx and γπ in the presence of period 1 shock volatilities and period 1 monetary policy

persistence. A monetary policy rule with a higher weight on stabilizing inflation γπ, such

as those estimated for our second and third subsamples, would have produced even more

positive bond betas than were actually observed during 1960.Q1–1979.Q2.

Panel B shows that in the presence of period 2 shocks and monetary policy persistence,

the sign of the nominal bond beta is highly sensitive to the central bank’s weight on

inflation stabilization γπ. The central bank’s strong emphasis on inflation stabilization

during 1979.Q3–1996.Q4 is reflected in the strongly positive nominal bond beta during this

period. This emphasis continued in period 3, so in the presence of period 2 shock volatilities

and period 2 monetary policy persistence, period 3 monetary policy reaction coefficients

would have produced a positive nominal beta, and not the negative beta actually observed.

Panel C indicates that the negative nominal bond beta since the late 1990s cannot be

attributed to a change in the monetary policy reaction coefficients γπ or γx. In the presence

of period 3 shock volatilities and period 3 monetary policy persistence, the nominal bond

beta would have been negative even if the weights on output and inflation stabilization, γx

and γπ, had remained constant between periods 2 and 3. It would have been even more

negative than actually observed if monetary reaction coefficients in period 3 had been those

measured for period 1.

Given the secondary role for the output reaction coefficient γx in Figure 3, we replace

this parameter with the monetary persistence parameter in Figure 4, which plots nominal

bond betas against the monetary policy parameters γπ and ρi. The contour lines in this

figure are upward-sloping and convex, becoming extremely steep as monetary persistence

approaches its maximum value of one. This shows that γπ increases the bond beta while ρi
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reduces it, and ρi has a nonlinear effect that is stronger at high levels of persistence. This

is important given the increase in persistence we have estimated for our final subperiod.

Figure 4 indicates that strong monetary policy persistence during the most recent sub-

period has helped generate a negative nominal bond beta. Moreover, a move to third-period

monetary policy persistence would have acted to decrease the nominal bond beta for all

subperiod calibrations. However, a move to third-period monetary policy persistence and

weight on inflation stabilization would not have been sufficient to make the bond beta

negative given the other parameters estimated for the first subperiod.

We can also use Figures 3 and 4 to understand model implications for nominal bond

betas when the nominal interest rate approaches the zero lower bound. The figures indicate

that bond betas tend to be negative when the monetary policy coefficients approach zero,

consistent with the empirical behavior of bond betas since the financial crisis.

5.1 Impulse responses

To develop further insight into the mechanisms of the model that produce the patterns

illustrated in Figures 3 and 4, we now report impulse response functions implied by the

model in each subperiod. Figure 5 shows dynamic responses for macroeconomic variables

and asset prices following one-standard-deviation increases in each of the fundamental

model shocks in period 1 starting from zero. Each panel shows three lines, each line

corresponding to one subperiod calibration. We consider the responses of the output gap,

the inflation gap, the nominal and real interest rates, the dividend-price ratio, and the

nominal long-term yield to shocks.
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An IS shock has qualitatively similar effects across all three calibrations. Higher ex-

pected inflation raises the long-term nominal yield, while slow real growth following an

initial increase in the output gap pushes up the dividend-price ratio. Stock prices are in-

versely related to the dividend-price ratio and bond prices are inversely related to bond

yields, so IS shocks tend to generate positive comovement between bond and stock returns.

A PC shock acts as an inflationary supply shock, lowering the output gap and raising

inflation for all three subperiod calibrations. However, the responses of the short-term inter-

est rate, the dividend-price ratio, and the nominal long-term yield vary across calibrations.

The dividend-price ratio and the nominal long-term yield move in the same direction for

periods 1 and 2, contributing to positive nominal bond betas for those periods. In contrast,

for the period 3 calibration a PC shock moves the dividend-price ratio and the long-term

nominal yield in opposite directions and contributes to the negative nominal bond beta for

that period.

For subperiod 3, nominal bond yields fall in response to PC shocks for two reasons.

First, the greater persistence of period 3 monetary policy decreases the immediate response

in the Federal Funds rate, muting any immediate effect on longer-term nominal yields.

Second, nominal bonds have a negative beta in period 3, implying that their risk premia

are especially low in times of high aggregate risk. The recession following a PC shock

increases the safety appeal of bonds, further lowering nominal bond yields and amplifying

the negative bond beta. This is an example of an important amplification mechanism in

our model.

A monetary policy (MP) shock has very small effects on both the dividend price ratio

and the nominal yield. Intuitively, our calibration incorporates a small slope of the IS
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curve, so transitory monetary policy shocks have little effect

A shock to the central bank’s inflation target has much more pronounced effects on

inflation and nominal interest rates. An inflation target shock leads to permanent increases

in inflation and nominal short-term and long-term yields. In the transition period, inflation

is below the new target and this leads the Federal Reserve to lower real interest rates,

boosting output. A positive inflation target shock acts similarly to a supply shock inducing

firms to increase supply. Inflation target shocks therefore induce opposite movements in

the dividend-price ratio and the long-term nominal yield, implying that inflation target

shocks tend to generate a negative nominal bond beta.

Figure 5 illustrates why higher monetary policy persistence decreases the nominal bond

beta. Intuitively, inflation target shocks contribute to negative bond betas and larger ρi

amplifies the impact of inflation target shocks. When ρi is large, monetary policy operates

more through expectations of future policy rates and less through contemporaneous policy

rate adjustments. In the period 3 calibration, the central bank does not lower real interest

rates immediately but only with a long lag after an inflation target shock. Therefore, an

inflation target shock leads to an even stronger increase in nominal bond yields and a more

negative bond beta in the period 3 calibration.

The effect of monetary policy persistence ρi on the nominal bond beta is compounded

by the dynamic behavior of risk premia. If ρi is large, then bond returns are largely driven

by inflation target shocks and are therefore countercyclical. Since nominal bond returns

are then positively correlated with marginal utility, nominal bond yields incorporate low

or even negative risk premia during recessions when volatility is high. This procyclicality

of bond risk premia amplifies the countercyclicality of bond returns.
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5.2 Marginal analysis

Table 8 analyzes the marginal effect of each parameter on the nominal bond beta, the

volatility of nominal bond returns, and the volatility of equity returns across subperiods.

We provide derivatives with respect to the MP parameters γx, γπ and ρi, and also with

respect to the log standard deviations of shocks—thus we can interpret the derivatives with

respect to the standard deviations of shocks as semi-elasticities. All other parameters are

held constant at their 1960.Q1-1979.Q2, 1979.Q3-1996.Q4, or 1997.Q1-2011.Q4 values.

We also decompose the same three asset pricing moments using partial semi-elasticities

while holding constant the loadings of bond and stock returns onto the fundamental model

shocks Ae and A$,n. These partial effects take account of bond and stock responses to each

of the fundamental model shocks, similarly to the impulse responses shown in Figure 5,

without taking account of alterations in responses caused by changing second moments (for

example, the risk premium amplification mechanism discussed in the previous subsection).13

The top panel in Table 8 shows that the MP inflation coefficient γπ tends to increase

the nominal bond beta, while the MP output gap coefficient γx and MP persistence ρi tend

to decrease the nominal bond beta. Monetary policy persistence has a strongly nonlinear

effect on the nominal bond beta, and the magnitude of this effect is particularly large

for the 1997.Q1–2011.Q4 calibration. The nominal bond beta increases in the PC shock

volatility and decreases in the inflation target shock volatility. These signs are consistent

13The nominal bond beta partial semi-elasticity also holds constant the standard deviation of equity
returns. Equivalently, this partial semi-elasticity captures the effect of shock volatilities on the covariance
of bond and stock returns scaled by the inverse of a constant equity volatility. The nominal bond beta
partial semi-elasticities sum to two times the calibrated nominal bond beta for each subperiod. The partial
semi-elasticities for the standard deviations of asset returns sum to the calibrated standard deviation of
asset returns for each subperiod. The online Appendix presents detailed formulas for semi-elasticities and
partial semi-elasticities.
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with the partial-semi elasticities but are substantially amplified by endogenous responses

of risk premia. IS and MP shock volatilities have small and negative effects on the nominal

bond beta.

The middle panel of Table 8 shows that the effect of parameters on bond return volatility

is especially nonlinear, with total derivatives switching sign exactly when the nominal bond

beta switches sign. But partial semi-elasticities with respect to shock volatilities, which

ignore the endogenous responses of risk premia, are all positive. The partial semi-elasticity

with respect to PC shock volatility is especially important in the middle subperiod, while

the partial semi-elasticity with respect to inflation target shocks is especially important in

the most recent subperiod.

The third panel of Table 8 looks at equity volatility. The volatility of the PC shock is

clearly the single most important driver of equity volatility in the model, followed by the

inflation target shock volatility.

Table 9 uses the semi-elasticities of Table 8 to decompose the changes in bond and

equity risks. We report linear approximations of how much the change in each monetary

policy parameter and in each shock volatility has contributed to changes in the nominal

bond beta, nominal bond return volatility, and equity return volatility. Table 9 weights

total derivatives as reported in Table 8 by the corresponding parameter change from one

period to the next. Total derivatives can vary across subperiods and we therefore average

total derivatives across lagged and led periods.

Table 9 also reports the total linearized change in bond and equity risks due to the

combined change in monetary policy parameters γx, γπ, ρi, σ̄MP , and σ̄∗ and due to the

combined changes in the volatilities of supply and demand shocks σ̄IS, and σ̄MP . Comparing
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the sum of linearized changes in bond and equity risks and the model-implied changes in

bond and equity risks gives the change due to model nonlinearity. The linear effects of the

individual parameters and the nonlinearity effect sum to the total model change reported

at the top of Table 9.

Table 9 shows that the reduction in the central bank’s response to output, γx, and the

increase in the central bank’s response to inflation, γπ, were important contributors to the

increases in the nominal bond beta and the volatility of bond returns that occurred in

1979. On the other hand, changes in the volatility of supply (PC) shocks and inflation

target shocks acted to decrease the nominal bond beta and the volatility of bond returns

at the 1979 regime change. Thus monetary policy changes and shock volatility changes

offset each other to some degree in 1979.

In 1997, the increase in monetary policy persistence is most important for understanding

the decline in the nominal bond beta, but the increase in the central bank’s reaction to

output also plays a role. Once again changes in the volatilities of macroeconomic shocks

worked against these changes and offset them to some degree. The bottom of the table

shows that nonlinear interaction effects, for example between the persistence of monetary

policy and the volatility of inflation target shocks, are important at both regime changes

but particularly so in 1997.

6 Implications for inflation-indexed bonds

Inflation-indexed bonds, or Treasury Inflation Protected Securities (TIPS), have been issued

in the US since 1997. TIPS have since become a meaningful source of funding for the
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U.S. Treasury and an important investment vehicle for institutional and retail investors

(Campbell, Shiller, and Viceira 2009), which makes it interesting to understand monetary

policy implications for the second moments of real bond returns. Since TIPS were not

available during periods 1 and 2, we can only compare model and empirical real bond

return moments for period 3.

Table 10 shows that in the third subperiod, when inflation-indexed bonds are available,

the model-implied inflation-indexed bond beta is negative and quantitatively close to the

empirical TIPS beta. We do not use TIPS data in our calibration procedure and TIPS mo-

ments therefore provide additional verification of the model’s out-of-sample performance.

The partial derivatives in Table 10 show that PC shocks are the main driver of the negative

TIPS beta in this subperiod. Figure 5 shows that a PC shock increases inflation and de-

presses output, independently of the monetary policy regime. In the most recent monetary

policy regime, the nominal rate is extremely sticky. An increase in inflation therefore leads

to a drop in real interest rates and moves TIPS valuations and equity valuations in opposite

directions. This mechanism would likely be even stronger for monetary policy at the zero

lower bond, when nominal interest rates are constant.

Phillips curve shocks also explain why our model predicts that, had TIPS been issued

in the second subperiod, they would have exhibited a positive beta. The strongly anti-

inflationary monetary policy in the second subperiod implies that the central bank reacts

to a Phillips curve shock by raising the real interest rate. This, in turn, leads to a fall in

the price of TIPS at the same time that output and stock prices are low.

The 1960.Q1-1979.Q2 calibration of our model implies that if real bonds had existed

during that period, they would have been extremely safe. We obtain extremely large values
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for the volatility of inflation-indexed bond returns, which is a result of real bond risk premia

decreasing sharply and nonlinearly in the monetary policy parameter γπ. However, we show

in the Appendix that the real bond beta is negative for a wide region around the period 1

monetary policy parameters. The intuition why real bonds should have been safe during

that period again hinges on Phillips curve shocks. In a regime, where the central bank

raises the policy rate less than one-for-one with inflation, real bonds do well when the

economy experiences a PC shock.14

7 Conclusion

Given the importance of nominal bonds in investment portfolios, and in the design and

execution of fiscal and monetary policy, financial economists and macroeconomists need

to understand the determinants of nominal bond risks. This is particularly challenging

because the risk characteristics of nominal bonds are not stable over time.

This paper argues that understanding bond risks requires modeling the influence of

monetary policy on the macroeconomy, particularly the relation between output and infla-

tion, and understanding how macroeconomic supply and demand shocks and central bank

responses to those shocks affect asset prices. We propose a model that integrates the build-

ing blocks of a New Keynesian model into an asset pricing framework in which risk and

consequently risk premia can vary in response to macroeconomic conditions. We calibrate

14Given that the region around period 1 monetary policy parameters includes much more reasonable
values for the real bond beta, we believe we could recalibrate our model relatively easily with a restriction
that the implied volatility or beta of TIPS must fall within a certain range. Given that the model mechanism
generally seems robust to small changes in parameters, we don’t expect that this would change the model
implications.
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our model to US data between 1960 and 2011, a period in which macroeconomic conditions,

monetary policy, and bond risks have experienced significant changes. We allow discrete

regime changes just before the third quarter of 1979 and the first quarter of 1997.

Our model is sufficiently rich to allow for a detailed exploration of the monetary policy

drivers of bond and equity risks. We find that two elements of monetary policy have

been especially important drivers of bond risks during the last half century. First, a strong

reaction of monetary policy to inflation shocks increases both the beta of nominal bonds and

the volatility of nominal bond returns. Large increases in short-term nominal interest rates

in response to inflation shocks tend to lower real output and stock prices, while causing

bond prices to fall. Our model attributes the large positive beta and high volatility of

nominal bonds after 1979 to a change in monetary policy towards a more anti-inflationary

stance. Evidence of such a change has been reported by Clarida, Gali, and Gertler (1999)

and other papers studying monetary policy regimes, but our model clarifies how this alters

the behavior of the bond market.

Second, a monetary policy that smooths nominal interest rates over time implies that

positive shocks to long-term target inflation cause real interest rates to fall, driving up

output and equity prices, while increasing nominal long-term interest rates. This makes

nominal bond returns countercyclical, implying a negative risk premium because nominal

bonds hedge against deflationary recessions. Our model attributes the negative beta of

nominal bonds since 1997 to a significant increase in the persistence of monetary policy—or

a shift towards gradualism–together with continuing shocks to the central bank’s inflation

target. These inflation target shocks may be interpreted literally, as the result of shifting

central bank preferences, or more broadly as the result of imperfect credibility in monetary
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policy (Orphanides and Williams 2004).

Our model implies that changes in the volatility of supply shocks, or shocks to the

Phillips Curve, can also affect bond risks. Supply shocks move inflation and output in

opposite directions, making bond returns procyclical. They also have a strong effect on

the volatility of equity returns. However, we do not estimate large changes over time in

the volatility of supply shocks and so our model does not attribute the historical changes

in bond betas to this source.

We find that it is particularly important to take account of changing risk premia. Be-

cause macroeconomic volatility is countercyclical in our model, assets with positive betas

have risk premia that increase in recessions, driving down their prices and further increasing

their betas. Assets with negative betas, on the other hand, become even more desirable

hedges during recessions; this increases their prices and makes their betas even more neg-

ative. Thus the dynamic responses of risk premia amplify sign changes in betas that

originate in changes in monetary policy, and underline the importance of nonlinear effects

in understanding the impact of changes in monetary policy and macroeconomic shocks on

asset prices.

We show that the model generates empirically plausible inflation-indexed bond betas

and volatilites for the most recent monetary policy regime, which is the only one of our

regimes when the US Treasury issued inflation-indexed bonds. This is despite the fact that

we did not use inflation-indexed bonds to fit the model.

Our analysis has several limitations that can be addressed in future research. First,

since we use a New Keynesian model, the micro-foundations of our model are not as clear

and detailed as is standard in the dynamic stochastic general equilibrium literature. We
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have little to say about the production side of the economy or the labor market. Second,

our use of a habit-formation model shuts down the pricing of long-run risks that is the

focus of a large literature following Bansal and Yaron (2004). Third, the regime shifts

we consider are unanticipated, once-and-for-all events rather than stochastically recurring

events whose probabilities are understood by market participants. Finally, we calibrate our

model to US historical data but it will be valuable to extend this analysis to comparative

international data on monetary policy in relation to bond and stock returns. Countries

such as the UK, where inflation-indexed bonds have been issued for several decades, will

provide particularly useful evidence on the comparative risks of real and nominal bonds,

and their changes over time.
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Tables and Figures

Table 1: Summary Statistics

1960.Q1-2011.Q4 Output Gap Inflation Fed Funds Nom. Bond Yield
Mean -0.77 3.50 5.78 6.24
Std. 2.91 2.38 3.77 2.75
AR(1) Coefficient 0.96 0.88 0.89 0.98

(0.02) (0.03) (0.03) (0.02)
AR(4) Coefficient 0.73 0.79 0.81 0.91

(0.05) (0.04) (0.04) (0.03)

1960.Q1-1979.Q2 Output Gap Inflation Fed Funds Nom. Bond Yield
Mean 0.64 4.38 5.27 5.80
Std. 2.79 2.72 2.45 1.63
AR(1) Coefficient 0.93 0.88 0.86 0.96

(0.04) (0.06) (0.06) (0.35)
AR(4) Coefficient 0.61 0.78 0.60 0.92

(0.09) (0.07) (0.10) (0.06)

1979.Q3-1996.Q4 Output Gap Inflation Fed Funds Nom. Bond Yield
Mean -1.92 3.76 8.67 8.73
Std. 2.14 2.24 4.04 2.55
AR(1) Coefficient 0.93 0.87 0.78 0.94

(0.04) (0.05) (0.08) (0.04)
AR(4) Coefficient 0.50 0.78 0.74 0.77

(0.10) (0.06) (0.08) (0.08)

1997.Q1-2011.Q4 Output Gap Inflation Fed Funds Nom. Bond Yield
Mean -1.27 2.06 3.08 3.90
Std. 3.13 1.01 2.32 1.51
AR(1) Coefficient 1.00 0.51 0.95 0.94

(0.03) (0.12) (0.04) (0.05)
AR(4) Coefficient 0.89 0.28 0.78 0.80

(0.09) (0.13) (0.09) (0.08)

Full sample and sub period summary statistics. US quarterly log output gap (%), GDP
deflator inflation (%, Annualized), Fed Funds rate (%, Annualized), and 5 year nominal
yield (%, Annualized). Yields and inflation continuously compounded. Standard errors in
parentheses.



Table 2: Predicting Stock Returns with Output Gap

Log Exc. Stock Ret. xret+1 60.Q1-11.Q4 60.Q1-79.Q2 79.Q2-96.Q4 97.Q1-11.Q4
Output Gap xt -0.49* -0.61* -0.32 -0.47

(0.20) (0.30) (0.48) (0.40)
Constant 0.59 0.81 1.12 0.18

(0.61) (0.95) (1.14) (1.36)
R2 0.03 0.04 0.01 0.02

Quarterly realized log excess stock returns (%, Quarterly) from quarter t to quarter t + 1
onto the output gap (%) in quarter t. Newey-West standard errors with 2 lags in paren-
theses. * and ** denote significance at the 1% and 5% levels.

Table 3: Predicting Stock Returns with Dividend Price Ratio

Log Exc. Stock Ret. xret→t+k k=4 k=8 k=12 k=16 k=20
Log Dividend Price Ratio dt − pt 0.08 0.15 0.19* 0.21** 0.25**

(0.05) (0.09) (0.09) (0.08) (0.06)
Constant 0.34 0.62* 0.79* 0.91** 1.10**

(0.18) (0.29) (0.31) (0.27) (0.23)
R2 0.04 0.07 0.09 0.10 0.12
Sample 1960.Q1-2011.Q1

xret→t+k k=4 k=8 k=12 k=16 k=20
Log Dividend Price Ratio dt − pt 0.11* 0.21** 0.28** 0.34** 0.43**

(0.04) (0.07) (0.08) (0.09) (0.10)
Constant 0.44** 0.82** 1.13** 1.40** 1.76**

(0.15) (0.24) (0.27) (0.29) (0.33)
R2 0.08 0.15 0.22 0.27 0.33
Sample 1947.Q1-2011.Q4

k quarter log excess stock returns onto lagged log dividend price ratio, both in natural units.
Newey-West standard errors with k + 4 lags in parentheses. * and ** denote significance
at the 1% and 5% levels.



Table 4: Estimating the Monetary Policy Function

Fed Funds it 60.Q1-11.Q4 60.Q1-79.Q2 79.Q3-96.Q4 97.Q1-11.Q4
Output Gap xt 0.06 0.18** -0.04 0.05

(0.04) (0.06) (0.13) (0.04)
Inflation πt 0.21 0.30** 0.83** 0.21**

(0.11) (0.07) (0.21) (0.07)
Lagged Fed Funds it−1 0.81** 0.56** 0.43* 0.89**

(0.05) (0.10) (0.17) (0.06)
Constant 0.42 0.91* 1.75 -0.12

(0.26) (0.38) (0.92) (0.29)
R2 0.79 0.75 0.69 0.91
Implied γ̂x 0.32 0.42∗∗ -0.07 0.44

(0.21) (0.13) (0.22) (0.21)
Implied γ̂π 1.08∗∗ 0.69∗∗ 1.44∗∗ 1.92∗

(0.43) (0.16) (0.19) (1.26)
Implied ρ̂i 0.81∗∗ 0.56∗∗ 0.43∗∗ 0.89∗∗

(0.05) (0.10) (0.17) (0.06)

We estimate it = c0 + cxxt + cππt + ciit−1 + εt. All variables are described in Table 1.
Since the inflation target is not directly observable it is omitted. Implied parameters are
calculated according to ρ̂i = ĉi, γ̂x = ĉx/(1 − ĉi), and γ̂π = ĉπ/(1 − ĉi). Newey-West
standard errors with 6 lags in parentheses. Standard errors for γ̂x and γ̂π are calculated
by the delta method. * and ** denote significance at the 5% and 1% levels. Significance
levels for implied parameters are based on an ordinary least squares likelihood ratio test.



Table 5: Parameter Choices

Panel A: Calibration Parameters

Time-Invariant Parameters
Log-Linearization Constant ρ 0.99
Leverage δ 2.43
Preference Parameter α 30
Backward-Looking Comp. PC ρπ 0.80
Slope PC λ 0.30
Forward-Looking Comp. IS ρx+ 0.62
Backward-Looking Comp. IS ρx− 0.45

Monetary Policy Rule 60.Q1-79.Q2 79.Q3-96.Q4 97.Q1-11.Q4
MP Coefficient Output γx 0.42 -0.07 0.44
MP Coefficient Infl. γπ 0.69 1.44 1.92
Backward-Looking Comp. MP ρi 0.56 0.43 0.89

Std. Shocks
Std. IS σ̄IS 0.45 0.43 0.26
Std. PC shock σ̄PC 1.08 0.80 0.93
Std. MP shock σ̄MP 1.04 2.03 0.26
Std. infl. target shock σ̄∗ 0.37 0.70 0.53

Panel B: Implied Parameters

Time-Invariant Implied Parameters
SDF Lag Output Gap θ 0.72
SDF Lag with Varying Risk Premia θ∗ 0.61
Slope IS ψ 0.02

Time-Varying Implied Parameters
Heteroskedasticity Parameter b 7.18 8.27 7.89
Volatility SDF σ 0.32 0.30 0.31



Table 6: Model and Empirical Moments

60.Q1-79.Q2 79.Q3-96.Q4 97.Q1-11.Q4
Std. VAR(1) Residuals Empirical Model Empirical Model Empirical Model

Output Gap 0.92 0.81 0.75 0.77 0.65 0.51
Inflation 1.12 1.22 0.89 0.92 0.80 1.02
Fed Funds Rate 1.22 1.15 2.07 2.17 0.66 0.55
Log Nominal Yield 0.48 0.41 0.85 0.72 0.55 0.70

Std. Asset Returns
Std. Eq. Ret. 17.62 18.82 15.34 17.50 20.08 17.95
Std. Nom. Bond Ret. 4.85 3.91 9.11 7.09 5.55 5.83
Nominal Bond Beta 0.06* 0.07 0.20* 0.22 -0.17** -0.15

Taylor Rule: Fed Funds onto Output, Infl. and Lag. Fed Funds
Output 0.18** 0.21 -0.04 -0.12 0.05 0.01
Inflation 0.30** 0.33 0.83** 0.65 0.21** 0.19
Lagged Fed Funds 0.56** 0.61 0.43* 0.39 0.89** 0.80

This table reports model second moments, conditional on the output gap xt being at its unconditional mean of
zero. The law of total variance implies that unconditional second moments are equal to the conditional second
moments reported in this table. For details of the derivation, see the Appendix. * and ** denote significance at
the 5% and 1% levels. We use Newey-West standard erros with 2 lags for the nominal bond beta and Newey-West
standard errors with 6 lags for the empirical Taylor rule estimation in the bottom panel.



Table 7: Additional Empirical and Model Moments

Empirical Model
AR(1) Coefficient Output Gap 0.96 0.83
AR(4) Coefficient Output Gap 0.73 0.18
Correlation(x, p-d) 0.18 0.47
Std(d-p) 0.40 0.15
AR(4) Coefficient d-p 0.92 0.11
Slope 1 year exc. Stock ret. wrt d-p 0.08 0.84
Slope 5 year exc. Stock ret. wrt d-p 0.25 1.03
Slope quarterly stock ret. wrt x -0.49 -3.30
Std(real rate) (% Ann.) 1.90
Regression s+c onto x 0.23

Additional model and empirical moments are not explicitly fitted by the calibration pro-
cedure. Model moments show averages across three sub sample calibrations weighted by
sub sample length. Wold’s theorem for vector processes implies that the unconditional
second moments of the state variables are identical for conditionally homoskedastic and
heteroskedastic VAR(1) processes with identical unconditional variance-covariance matrix
of innovations. We therefore use a VAR(1) with matrix of slope coefficients P and condi-
tionally homoskedastic, iid vector of innovations εt ∼ N(0, QΣuQ

′) to simulate all model
moments. For details of the derivation, see the Appendix.



Table 8: Marginal Effects of Parameters

Total Derivative Partial Derivative
Nominal Bond Beta 60.Q1-79.Q2 79.Q3-96.Q4 97.Q1-11.Q4 60.Q1-79.Q2 79.Q3-96.Q4 97.Q1-11.Q4
MP Coefficient Output γx -3.92 -1.50 -1.37
MP Coefficient Inflation γπ 5.01 1.80 1.86
MP Persistence ρi -1.85 -1.91 -20.90
IS Shock Std. σ̄IS -0.56 -0.11 -0.09 -0.01 -0.01 -0.01
PC Shock Std. σ̄PC 3.43 3.87 5.25 0.22 0.58 -0.05
MP Shock Std. σ̄MP -0.28 -0.33 -0.06 0.01 0.02 0.00
Infl. Target Shock Std. σ̄∗ -2.59 -3.42 -5.09 -0.08 -0.15 -0.24

Std. Nominal Bond Returns 60.Q1-79.Q2 79.Q3-96.Q4 97.Q1-11.Q4 60.Q1-79.Q2 79.Q3-96.Q4 97.Q1-11.Q4
MP Coefficient Output γx -16.06 -11.72 14.20
MP Coefficient Inflation γπ 20.94 14.35 -19.04
MP Persistence ρi -6.98 -14.48 215.46
IS Shock Std. σ̄IS -1.99 -0.28 1.81 0.22 0.42 0.89
PC Shock Std. σ̄PC 14.49 32.35 -52.90 1.24 5.55 0.05
MP Shock Std. σ̄MP -0.83 -2.30 0.78 0.35 0.42 0.10
Infl. Target Shock Std. σ̄∗ -7.76 -22.68 56.14 2.11 0.71 4.80

Std. Equity Returns 60.Q1-79.Q2 79.Q3-96.Q4 97.Q1-11.Q4 60.Q1-79.Q2 79.Q3-96.Q4 97.Q1-11.Q4
MP Coefficient Output γx -1.59 -1.29 -1.12
MP Coefficient Inflation γπ 0.77 0.75 0.66
MP Persistence ρi -0.20 -0.32 -1.70
IS Shock Std. σ̄IS 0.23 0.05 0.00 0.24 0.07 0.01
PC Shock Std. σ̄PC 17.41 11.87 14.89 17.24 11.63 14.78
MP Shock Std. σ̄MP -0.08 -0.16 -0.06 0.08 0.18 0.06
Infl. Target Shock Std. σ̄∗ 1.27 5.74 3.11 1.26 5.63 3.09

Derivatives with respect to monetary policy rule parameters and log standard deviations of shocks (semi-
elasticities). Partial derivatives hold constant the loadings of bond and stock returns. Nominal bond beta partial
derivatives also hold equity volatility constant.



Table 9: Decomposing Changes in Bond and Equity Risks
Nominal Bond Beta Std. Nom. Bond Returns Std. Equity Returns

Change Date 79.Q3 97.Q1 79.Q3 97.Q1 79.Q3 97.Q1
Empirical Change 0.13 -0.36 4.26 -3.56 -2.28 4.74
Model Change 0.15 -0.37 3.18 -1.27 -1.32 0.45

Total Derivative x Parameter Change
MP Coefficient Output γx 1.35 -0.74 6.83 0.12 0.71 -0.62
MP Coefficient Inflation γπ 2.63 0.86 13.43 -0.50 0.57 0.34
MP Persistence ρi 0.26 -4.97 1.44 42.64 0.04 -0.44
MP Shock Std. σ̄MP -0.20 0.42 -1.01 1.80 -0.08 0.23
Infl. Target Shock Std. σ̄∗ -1.92 1.14 -9.55 -3.72 2.18 -1.23
IS Shock Std. σ̄IS 0.01 0.05 0.04 -0.36 0.00 -0.01
PC Shock Std. σ̄PC -1.10 0.67 -6.93 -1.04 -4.47 1.97

Combined Effects
MP Sub-Total 2.11 -3.28 11.14 40.34 3.42 -1.73
IS&PC Shocks Sub-Total -1.09 0.72 -6.90 -1.40 -4.47 1.95
Total Linear Changes 1.03 -2.56 4.24 38.94 -1.06 0.22
Nonlinearity Effect -0.87 2.19 -1.06 -40.21 -0.26 0.23

We average total derivatives across subsequent periods weighting sub periods according to their sample size. We
multiply average weighted total derivatives by the parameter change between subsequent periods. Total derivatives
for each sub period are reported in Table 8 and parameter values for each sub period are reported in Table 5. The
“MP Sub-Total” row sums the linear effects of γx, γπ, ρi, σ̄MP , and σ̄∗. The “IS&PC Shocks Sub-Total” row sums
the linear effects of σ̄IS and σ̄PC . The row “Total Linear Changes” reports the sum of all linear effects reported in
the panel above. The row “Nonlinearity Effect” shows the difference between the model change and the total of
linear changes.



Table 10: Risks of Inflation-Indexed Bonds

Panel A: Moments 60.Q1-79.Q2 79.Q3-96.Q4 97.Q1-11.Q4
Empirical Model Empirical Model Empirical Model

Std. Infl.-Indexed Bond Ret. N/A 7632.40 N/A 18.09 4.27 3.24
Infl.-Indexed Bond Beta N/A -215.55 N/A 1.03 -0.08 -0.16

Panel B: Marginal Effects of Parameters Total Derivative Partial Derivative
60.Q1- 79.Q3- 97.Q1- 60.Q1- 79.Q3- 97.Q1-

Infl.-Indexed Bond Beta 79.Q2 96.Q4 11.Q4 79.Q2 96.Q4 11.Q4
MP Coefficient Output γx -5584.50 -0.19 -2.62
MP Coefficient Inflation γπ 6372.20 0.17 2.86
MP Persistence ρi -2294.10 -0.17 -27.97
IS Shock Std. σIS -2396.60 -0.05 -0.04 -83.36 0.02 0.00
PC Shock Std. σPC 2506.40 0.06 0.11 -324.06 1.37 -0.26
MP Shock Std. σMP -292.40 -0.04 -0.09 -0.07 0.02 0.01
Infl. Target Shock Std. σ∗ 182.60 0.03 0.02 -23.61 0.66 -0.05

60.Q1- 79.Q3- 97.Q1- 60.Q1- 79.Q3- 97.Q1-
Std. Infl.-Indexed Bond Ret. 79.Q2 96.Q4 11.Q4 79.Q2 96.Q4 11.Q4
MP Coefficient Output γx 204920.00 -4.47 46.28
MP Coefficient Inflation γπ -233180.00 3.63 -50.25
MP Persistence ρi 84310.00 -3.15 495.45
IS Shock Std. σIS 91810.00 -0.71 1.10 6205.30 0.28 0.52
PC Shock Std. σPC -88470.00 13.24 0.09 1330.10 11.87 2.02
MP Shock Std. σMP 10740.00 -0.85 2.03 0.00 0.19 0.27
Infl. Target Shock Std. σ∗ -6450.00 6.41 0.02 96.90 5.75 0.42

This table shows the model-implied beta and standard deviation of returns on inflation-indexed bonds with five
years to maturity. We approximate inflation-indexed bond log excess returns according to x̂r5Y R,t+1 = −19yTIPS5Y R,t+1+
20yTIPS5Y R,t − it + πt+1, where yTIPS5Y R,t is the Treasury Inflation Protected (TIPS) end-of-quarter yield with five years
to maturity from Bloomberg (USGGT05Y Index). Quarterly TIPS returns are available starting 1997.Q4. We
use Newey-West standard errors with 2 lags to assess statistical significance of the empirical bond beta. * and **
denote significance at the 5% and 1% levels.



Figure 1: US Nominal Bond Beta, Bond Volatility, and Policy Dates

Nominal bond beta and standard deviation of nominal bond returns from daily
bond and stock returns over past three months as in Campbell, Sunderam,
and Viceira (2013). We model time-varying second moments as an unobserved
trend AR(1) component plus white measurement noise. We show trend second
moments estimated using the Kalman filter. 95% confidence intervals, which
do not take into account parameter uncertainty, are shown in dashed. Gray
vertical lines depict Hamilton (2009) oil price shocks.



Figure 2: US Output Gap

Panel A: Output Gap and Detrended Consumption
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Panel B: Output Gap and Price-Dividend Ratio
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Panel A plots the time series of the US log real output gap together with
log real consumption in excess of its 24 quarter moving average. We use real
consumption expenditures data for nondurables and services from the Bureau
of Economic Analysis National Income and Product Accounts Tables. The US
log output gap (%) is described in Table 1. The end-of-quarter price dividend
ratio is computed as the S&P 500 real price divided by real dividends averaged
over the past 10 years.



Figure 3: Nominal Bond Betas Against Monetary Policy Parameters
γπ and γx

Panel A: 1960.Q1-1979.Q2 Panel B: 1979.Q3-1996.Q4
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Panel C: 1997.Q1-2011.Q4
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The volatilities of shocks and the monetary policy persistence parameter ρi

are fixed at their calibrated values for 1960.Q1-1979.Q2 (Panel A), 1979.Q3-
1996.Q4 (Panel B) or 1997.Q1-2011.Q4 (Panel C). We indicate calibrated mon-
etary policy parameters as follows: 1960.Q1-1979.Q2 = diamond, 1979.Q3-
1996.Q4 = circle, 1997.Q1-2011.Q4 = square. Arrows connect the sub period
monetary policy rules in chronological order.



Figure 4: Nominal Bond Betas Against Monetary Policy Parameters
γπ and ρi

Panel A: 1960.Q1-1979.Q2 Panel B: 1979.Q3-1996.Q4
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Panel C: 1997.Q1-2011.Q4
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The volatilities of shocks and the monetary policy coefficient γx are fixed
at their calibrated values for 1960.Q1-1979.Q2 (Panel A), 1979.Q3-1996.Q4
(Panel B) or 1997.Q1-2011.Q4 (Panel C). We indicate calibrated monetary
policy parameters as follows: 1960.Q1-1979.Q2 = diamond, 1979.Q3-1996.Q4
= circle, 1997.Q1-2011.Q4 = square. Arrows connect the sub period monetary
policy rules in chronological order.



Figure 5: Impulse Response Functions
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We show impulses for the output gap, inflation, the nominal and real Federal
Funds rates, the 5 year nominal yield, and the log dividend price ratio following
one standard deviation shocks in period 1. We show impulse responses for the
sub periods 1960.Q1-1979.Q2 (blue solid line), 1979.Q3-1996.Q4 (green dashed
line), and 1997.Q1-2011.Q4 (red dash-dot line). Note that standard deviations
of shocks vary across sub periods. The output gap and the dividend price
ratios are in percent deviations from the steady state. All other variables are
in annualized percent units.
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A Model Solution

Let π∗t denote the central bank’s inflation target at time t. We solve the model in
terms of the output gap xt and inflation and nominal interest rate gaps:

π̂t = πt − π∗t , (1)

ît = it − π∗t . (2)

Denote the vector of state variables by:

Ŷt = [xt, π̂t, ît]
′. (3)

We can re-write the model dynamics in terms of the state variables as:

xt = ρx−xt−1 + ρx+Et−xt+1 − ψ
(
Et−ît − Et−π̂t+1

)
+ uISt , (4)

π̂t = ρππ̂t−1 + (1− ρπ)Et−π̂t+1 + λxt − ρπu∗t + uPCt , (5)

ît = ρiît−1 + (1− ρi) [γxxt + γππ̂t] + uMP
t , (6)

π∗t − π∗t−1 = u∗t . (7)

Using Et−ît = ît − uMP
t , we can write the model as:

0 = FEt−Ŷt+1 +GŶt +HŶt−1 +Mut. (8)

where

F =

 ρx+ ψ 0
0 (1− ρπ) 0
0 0 0

 , (9)

G =

 −1 0 −ψ
λ −1 0

(1− ρi)γx (1− ρi)γπ −1

 , (10)

H =

 ρx− 0 0
0 ρπ 0
0 0 ρi

 , (11)

M =

 1 0 ψ 0
0 1 0 −ρπ
0 0 1 0

 . (12)

We focus on solutions of the form:

Ŷt = PŶt−1 +Qut. (13)

Additional solutions, such as solutions depending on two lags of state variables, may
exist, see e.g. Evans and McGough (2005). P has to satisfy:

FP 2 +GP +H = 0. (14)
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Following Uhlig (1999), we first solve for the generalized eigenvectors and eigen-
values of Ξ with respect to ∆, where:

Ξ =

[
−G −H
I3 03

]
, (15)

∆ =

[
F 03

03 I3

]
. (16)

For three generalized eigenvalues λ1, λ2, λ3 with generalized eigenvectors [λ1z
′
1, z
′
1]′,

[λ2z
′
2, z
′
2]′, [λ3z

′
3, z
′
3]′, a solution is given by

P = ΩΛΩ−1, (17)

where Λ = diag(λ1, λ2, λ3) and Ω = [z1, z2, z3]. Generalized eigenvalues are stable if
their absolute value is < 1.

Let ek denotes the row vector with a 1 in position k and zeros otherwise. Q has
to satisfy

Qe′k = −[FP +G]−1Me′k k = 1, 2, 4 (18)

Qe′3 = −G−1Me′3 (19)

Provided that G is nonsingular, G × Q × e′3 = −Me′3 = −[ψ, 0, 1]′ implies that

Q× e′3 =

 0
0
1

, i.e. the monetary policy shock has no contemporaneous effect on xt

or π̂t.

As long as we focus on solutions of the form (13) and the matrix of lagged terms H
is non-singular, the solution cannot contain arbitrary random variables, or ‘sunspots’.
If we were to allow for more complicated solution forms, where Ŷt can depend on two
lags of itself as well as current and lagged shocks, sunspot solutions may be possible
(Evans and McGough, 2005).

To see that solutions of the form (13) do not allow for sunspots, suppose the
contrary. Assume that for some vector of random variables εt uncorrelated with Ŷt−1

and ut:
Ŷt = PŶt−1 +Qut + εt. (20)

The expression (20) corresponds to the definition of sunspot equilibria, see e.g. Cho
and Moreno (2011). Then substituting (20) into (8) gives the same conditions for P
and M as before and:

(FP +G)εt ≡ 0. (21)

But from (14), (FP+G)×P = −H is non-singular. Therefore, FP+G is non-singular
and εt ≡ 0. This completes the proof that there are no sunspot solutions.
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A.1 Equilibrium Selection and Properties

We are essentially solving a quadratic matrix equation, so picking a solution amounts
to picking three out of six generalized eigenvalues. We only consider dynamically sta-
ble solutions with all eigenvalues less than 1 in absolute value, yielding non-explosive
solutions for the output gap, inflation gap and interest rate gap. When there are
only three generalized eigenvalues with absolute values less than 1, there exists a
unique dynamically stable solution. For the period 1 calibration, we have γπ < 1 and
there exist multiple real-valued, dynamically stable solutions. The period 2 and 3
calibrations have unique dynamically stable solutions.

We only consider solutions that are real-valued, and have finite entries for Q. We
also require the diagonal entries of Q to be positive. This requirement means that
the immediate impact of a positive IS shock on the output gap is positive rather than
negative.

We apply multiple equilibrium selection criteria, which have been proposed in the
literature, to rule out “bubble” or unreasonable solutions. These different equilibrium
refinements are not identical, but coincide in many cases. Therefore, there exists a
unique solution satisfying all criteria for a large part of our parameter space.

McCallum (1983) proposes to pick the minimum state variable solution. This
solution has a minimum set of state variables and satisfies a continuity criterion. Un-
fortunately, Uhlig (1999) points out that implementing this criterion directly can be
computationally demanding. We therefore follow Uhlig (1999) in picking the solu-
tion with the minimum absolute eigenvalues, which under certain conditions coincides
with the minimum state variable solution (McCallum 2004).

We also require that our solution is locally E-stable (Evans 1985, 1986, Evans
and Honkapohja 1994) as a plausible necessary, but not sufficient, condition. Local
E-stability intuitively requires that the solution is learnable. If agents expectations
deviate slightly from equilibrium dynamics, the system will return to an E-stable
equilibrium under a simple revision rule.

Finally, we ensure uniqueness of our solution by requiring that it equals the forward
solution of Cho and Moreno (2011). The forward solution is obtained by imposing
a zero terminal condition. Expectations about shocks far in the future do not affect
the current equilibrium. Viewed differently, if we assume that all state variables are
constant from time t+T onwards, we can solve for the time t output gap, inflation
gap, and interest rate gap recursively. The forward solution obtains by letting T go
to infinity.

Let vec denote vectorization. Applying Proposition 1.3 of Fudenberg and Levine
(1998, p.25) the E-stability condition translates into the requirement that the eigen-
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values of the derivative
∂vec([FP +G]−1H)

∂vec(P )
(22)

have eigenvalues with absolute values less than 1.

We implement the Cho and Moreno (2011) criterion by requiring that the following
sequence Pn, n = 0, 1, ... converges to P

P0 = 03×3 (23)

Pn+1 = −[FPn +G]−1 ×H (24)

This sequence Pn has at most one limit and therefore this selection criterion yields a
unique solution.

A.2 Solving for SDF and Model Dynamics Simultaneously

We can solve for the matrices P and Q in terms of the model coefficients ρx−, ρx+,
ψ, ρπ, λ, ρi, γx, γπ.

We now want to solve the model for a given slope coefficient of volatility with
respect to the output gap b and the variance-covariance matrix Σu. We therefore
solve for the slope coefficients ρx− and ρx+ in terms of the preference parameters and
volatilities.

We have that

ρx− =
θ

1 + θ∗
(25)

ρx+ =
1

1 + θ∗
(26)

ψ =
1

α(1 + θ∗)
(27)

θ∗ = θ − αbσ̄2/2 (28)

σ̄2 = QMΣuQ
M ′ (29)

QM = e1Q− (1 + θ∗)e1 (30)

θ∗ is therefore a fixed point:

θ∗ = θ − 1

2
αb (e1Q− (1 + θ∗)e1) Σu (e1Q− (1 + θ∗)e1)′ (31)

This fixed point therefore depends on the matrix Q, which depends on the solution
for state variable dynamics. It would therefore substantially complicate the solution
if we wanted to hold b constant across sub periods.
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A.3 Bond Returns

We solve for nominal and real bond log return surprises in terms of the fundamental
vector of shocks ut. We use the loglinear framework of Campbell and Ammer (1993)
and do not impose the Expectations Hypothesis. We maintain our previous simpli-
fying approximation that risk premia on one period nominal bonds equal zero. Risk
premia on longer-term bonds are allowed to vary.

We write rn−1,t+1 for the real one-period return on a real n-period bond from time
t to time t+1 and xrn−1,t+1 for the corresponding return in excess of rt. r$

n−1,t+1

denotes the nominal one-period return on a similar nominal bond and xr$
n−1,t+1 the

corresponding excess return over it. We use the identities:

r$
n−1,t+1 − Etr$

n−1,t+1 = − (Et+1 − Et)
n−1∑
j=1

(
ît+j + π∗t+j

)
(32)

− (Et+1 − Et)
n−1∑
j=1

xr$
n−j−1,t+1+j (33)

rn−1,t+1 − Etrn−1,t+1 = − (Et+1 − Et)
n−1∑
j=1

rt+j (34)

− (Et+1 − Et)
n−1∑
j=1

xrn−j−1,t+1+j (35)

We now derive recursive expressions for unexpected nominal and real bond returns.
We guess the functional forms:

Etxr
$
n−1,t+1 = (1− bxt)b$,n (36)

Etxrn−1,t+1 = (1− bxt)bn (37)

The functional forms (36) and (37) hold for n = 1 with b$,1 = b1 = 0. Assuming (36)
and (37) for maturities less than n, we can express (33) and (35) as:

−(Et+1 − Et)
n−1∑
j=1

xr$
n−j−1,t+1+j = b

n−1∑
j=1

b$,n−je1P
j−1Qut+1 (38)

−(Et+1 − Et)
n−1∑
j=1

xrn−j−1,t+1+j = b

n−1∑
j=1

bn−je1P
j−1Qut+1 (39)
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We can express (32) and (34) as:

− (Et+1 − Et)
n−1∑
j=1

(̂it+j + π∗t+j) = −e3 [I − P ]−1 [I − P n−1
]
Qut+1

−(n− 1)u∗t+1 (40)

− (Et+1 − Et)
n−1∑
j=1

rt+j = −(e3 − e2P ) [I − P ]−1 [I − P n−1
]
Qut+1 (41)

Denoting

S$,n = −(n− 1)e4 − e3 [I − P ]−1 [I − P n−1
]
Q, (42)

Sn = −(e3 − e2P ) [I − P ]−1 [I − P n−1
]
Q, (43)

we obtain:

r$
n−1,t+1 − Etr$

n−1,t+1 =

[
S$,n + b

n−1∑
j=1

b$,n−je1P
j−1Q

]
︸ ︷︷ ︸

A$,n

ut+1, (44)

rn−1,t+1 − Etrn−1,t+1 =

[
Sn + b

n−1∑
j=1

bn−je1P
j−1Q

]
︸ ︷︷ ︸

An

ut+1. (45)

The conditional expected return adjusted for Jensen’s inequality equals the condi-
tional covariance between bond excess returns and marginal utility. It hence follows
that:

b$,n = α

[
S$,n + b

n−1∑
j=1

b$,n−je1P
j−1Q

]
ΣuQ

M ′ (46)

−1

2

[
S$,n + b

n−1∑
j=1

b$,n−je1P
j−1Q

]
Σu

[
S$,n + b

n−1∑
j=1

b$,n−je1P
j−1Q

]′
(47)

Similarly, we obtain the recursive expression:

bn = α

[
Sn + b

n−1∑
j=1

bn−je1P
j−1Q

]
ΣuQ

M ′ (48)

−1

2

[
Sn + b

n−1∑
j=1

bn−je1P
j−1Q

]
Σu

[
Sn + b

n−1∑
j=1

bn−je1P
j−1Q

]′
. (49)
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Up to a constant, log yields of nominal and real zero coupon bonds then equal:

y$
n,t =

1

n
Et

n−1∑
j=0

r$
n−j−1,t+1+j (50)

=
1

n
Et

n−1∑
j=0

it+j −
1

n
Et

n−1∑
j=0

bb$,n−jxt+j (51)

= π∗t +

[
1

n
e3[I − P ]−1[I − P n]− b

n

n−1∑
j=0

b$,n−je1P
j

]
︸ ︷︷ ︸

Γ$,n

Ŷt (52)

yn,t =

[
1

n
(e3 − e2P )[I − P ]−1[I − P n]− b

n

n−1∑
j=0

bn−je1P
j

]
︸ ︷︷ ︸

Γn

Ŷt (53)

We can then calculate the conditional slope of the term structure as follows:

y$
n,t − it =

1

n
Et

n−1∑
j=0

it+j − it +
1

n
Et

n−1∑
j=0

b$,n−j(1− bxt+j) (54)

=
1

n
Et

n−1∑
j=0

ît+j − ît +
1

n
Et

n−1∑
j=0

b$,n−j(1− bxt+j) (55)

=
(
Γ$,n − e3

)
Ŷt +

1

n

n−1∑
j=0

b$,n−j (56)

With Ŷt mean zero, the average slope of the term structure and the average conditional
expected bond excess return are:

E
(
y$
n,t − it

)
=

1

n

n−1∑
j=0

b$,n−j (57)

E

(
Etxr

$
n−1,t+1 +

1

2
V art(xr

$
n−1,t+1)

)
= αA$,nΣuQ

M ′ (58)

A.4 Stock Returns

Modeling stocks as a levered claim on the output gap xt, we assume that dividends
are given by:

dt = δxt. (59)

We interpret δ as capturing a broad concept of leverage, including operational lever-
age.
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We write ret+1 for the log stock return and xret+1 for the log stock return in excess
of rt. Following Campbell (1991) we decompose stock returns into dividend news,
news about real interest rates, and news about future excess stock returns ignoring
constants:

ret+1 − Etret+1 = δ (Et+1 − Et)
∞∑
j=0

ρj∆xt+1+j − (Et+1 − Et)
∞∑
j=1

ρjrt+j

− (Et+1 − Et)
∞∑
j=1

ρjxret+1+j (60)

ρ is a loglinearization constant close to 1. Now guess the functional form:

Etxr
e
t+1 = (1− bxt)be. (61)

Then:

ret+1 − Etret+1 = (κAx + Ar)ut+1, (62)

where

Ax = e1[I − ρP ]−1Q, (63)

Ar = −ρ(e3 − e2P )[I − ρP ]−1Q, (64)

κ = δ(1− ρ) + ρ× b× be. (65)

We also write:
Ae = (κAx + Ar) . (66)

κAx captures the stock returns’ exposure to long-term news about the output gap.
Ar captures the exposure of stock returns to real interest rate news.

The conditional equity premium adjusted for Jensen’s inequality equals the con-
ditional covariance of excess stock returns and marginal utility:

Etxr
e
t+1 +

1

2
V art

(
xret+1

)
= αCovt(r

e
t+1, st+1 + ct+1) (67)

= αAeΣuQ
M ′(1− bxt) (68)

The average conditional equity premium is then given by:

E

(
Etxr

e
t+1 +

1

2
V art

(
xret+1

))
= αAeΣuQ

M ′ (69)

It then follows that expected stock returns indeed take the hypothesized form,
where κ is the positive root of the quadratic equation:

0 = κ2 + κ× 2
(ρb)−1 − αAxΣuQ

M ′ + AxΣAr′

AxΣuAx′

+
−2δ(1− ρ)(ρb)−1 + ArΣuA

r′ − 2αArΣuQ
M ′

AxΣuAx′
(70)
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Applying the Campbell and Shiller (1988) approximate loglinear present value
model to equity prices (ignoring constants), we obtain log dividend price ratio:

dt − pt = −δEt
∞∑
j=0

ρj∆xt+1+j + Et

∞∑
j=0

ρj(ret+1+j − rt+j) + Et

∞∑
j=0

ρjrt+j (71)

= [δe1(I − P )− (b× be)e1 + e3 − e2P ] [I − ρP ]−1Ŷt. (72)

The model has implications for the relation between the log dividend price ratio
and expected long-term excess stock returns. Denoting the k-period log equity return
in excess of short-term real T-bills by xret→t+k:

Etxr
e
t→t+k = −(b× be)e1 [I − P ]−1 [I − P k]Ŷt. (73)

A.4.1 Bond-Stock Covariances

The conditional nominal and real bond-stock return covariances equal:

Covt(r
e
t+1, r

$
n−1,t+1) = A$,nΣuA

e′(1− bxt) (74)

Covt(r
e
t+1, rn−1,t+1) = AnΣuA

e′(1− bxt) (75)

The nominal bond return loadings A$,n, as defined in in (44), contain a term
−(n− 1)× [0, 0, 0, 1] increasing linearly in bond duration and for long-term nominal
bonds this is the dominant term. If a positive shock to the inflation target increases
stock returns, this term contributes negatively to the nominal bond-stock covariance.
If a positive shock to the inflation target decreases stock returns, this term contributes
positively.

The variances of equity excess returns, nominal and real bond excess returns are:

V art(r
e
t+1) = AeΣuA

e′(1− bxt), (76)

V art(r
$
n−1,t+1) = A$,nΣuA

$,n′(1− bxt), (77)

V art(rn−1,t+1) = AnΣuA
n′(1− bxt). (78)

The conditional stock market betas of nominal and real bonds are independent of
xt and given by:

βt(r
$
n−1,t+1) =

A$,nΣuA
e′

AeΣuAe′
, (79)

βt(rn−1,t+1) =
AnΣuA

e′

AeΣuAe′
. (80)
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A.5 Estimable VAR(1) in Output, Inflation, and Nominal
Yields

While standard empirical measures are available for the output gap, we do not ob-
serve the interest rate and inflation gaps. We therefore cannot directly estimate the
recursive law of motion (13). However, for a long-term bond maturity n, we can
estimate a VAR(1) in the vector:

Yt =


xt
πt
it
y$
n,t

 (81)

= A
[
Ŷt, π

∗
t

]′
. (82)

The model implies that:

Yt+1 = P Y Yt +QY uYt+1. (83)

(84)

Here:

A =


1 0 0 0
0 1 0 1
0 0 1 1

Γ$,n 1

 , (85)

P Y = A

[
P 0
0 1

]
A−1, (86)

QY = A

[
Q

0 0 0 1

]
, (87)

uYt = ut (88)

provided that the inverse of A exists.

A.6 Unconditional Second Moments

Expressions (74) through (80) allow us to calculate conditional covariances, variances,
and betas, conditional on the output gap being at zero. This section shows that
unconditional second moments of bond and stock returns are equal to the conditional
second moments, evaluated at xt = 0. The law of total variance says that for any
random variables X1 and X2:

V ar(X1) = E(V ar(X1|X2)) + V ar(E(X1|X2). (89)
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We now apply the law of total variance to the unexpected equity return ret+1−Etret+1

and the output gap xt. The unconditional variance of ret+1 − Etret+1 is given by:

V ar(ret+1 − Etret+1) = E
[
V ar

(
ret+1 − Etret+1

∣∣xt)] (90)

+V ar
(
E
(
ret+1 − Etret+1

∣∣xt)) (91)

But E
(
ret+1 − Etret+1

∣∣xt) = 0 for any value of xt and therefore

V ar(ret+1 − Etret+1) = E
[
V ar

(
ret+1 − Etret+1

∣∣xt)] (92)

= E [AeΣuA
e′(1− bxt)] (93)

= AeΣuA
e′. (94)

The expression (94) shows that the unconditional variance of equity returns equals
the conditional variance of equity returns, evaluated at xt = 0. It similarly follows
that:

V ar(r$
n−1,t+1) = A$,nΣuA

$,n (95)

V ar(rn−1,t+1) = AnΣuA
n (96)

Cov
(
ret+1, r

$
n−1,t+1

)
= A$,nΣuA

e′ (97)

Cov
(
ret+1, rn−1,t+1

)
= AnΣuA

e′ (98)

(99)

The unconditional betas of nominal and real bonds are therefore also equal to the
conditional betas (79) and (80).

It is useful to be able to simulate unconditional second moments of model real
interest rates, dividend-price ratios etc. We show that we can simulate those moments
by simulating a conditionally homoskedastic VAR(1) with matrix of slope coefficients
P and a conditionally homoskedastic, independently and identically distributed vector
of innovations.

First, we show that the unconditional second moments of the state variables Ŷt
are the same as those for a conditionally homoskedastic VAR(1) with matrix of slope
coefficients P and conditionally homoskedastic, independently and identically dis-
tributed vector of innovations εt ∼ N(0, QΣuQ

′). We denote such a conditionally
homoskedastic VAR(1) process by Ỹ . The fundamental errors of Ŷt are given by:

Ŷt − E(Ŷt|Ŷt−1, Ŷt−2, ...) = Qut. (100)

The vector of fundamental errors is uncorrelated across time and it therefore is vector
white noise (Chapter 10, Hamilton 1994). Applying again the law of total variance,
we obtain the unconditional variance-covariance matrix of the fundamental errors:

V ar(Qut) = E
(
V ar

(
Qut|Ŷt−1

))
+ V ar

(
E
(
Qut|Ŷt−1

))
(101)

= QΣuQ
′. (102)

11



We can then apply Wold’s theorem for vector processes (Chapter 10, Hamilton
1994) and write Ŷt as a vector MA(∞) representation:

Ŷt = [I − PL]−1Qut, (103)

where L denotes the lag operator. By Hamilton (1994) Proposition 10.2:

Cov(Ŷt, Ŷt−k) =
∞∑
j=0

P j+kQΣuQ
′P j′. (104)

The process Ỹt has the same variance-covariance matrix of fundamental errors as Ŷt.
The unconditional variances and covariances of Ỹt are hence also given by (104).

Second, we can simulate unconditional second moments of the log dividend price
ratio, expected stock returns, and the real short-term interest rate by first simulating
Ỹ and then computing the short-term real interest rate, the dividend-price ratio, and
expected equity excess returns according to (72), (73), and (53) with Ỹt replacing
Ŷt. This follows from the observation that if Ŷt and Ỹt have identical variances and
covariances at all leads and lags, then so do any linear combinations of Ŷt and Ỹt. The
second moments of other quantities that are linear combinations of the state variables
can be simulated similarly.

B A Note on Units

Our empirical yields and returns are in annualized percent units. Log real dividends
and the log output gap are in natural percent units. Our empirical units are analogous
to those used by CGG. Our empirical coefficients in Table 4 in the main paper can
therefore be compared directly to those in CGG.

However, the Campbell and Shiller (1988) loglinearizations, the expression for the
equity premium (67) and expected bond returns (47) are expressed in natural units.
We therefore solve the model in natural units and subsequently report scaled param-
eters and model moments reflecting our choice of empirical units. Let a superscript c

denote natural units used for solving the calibrated model. Values with no superscript
denote the parameters and variables corresponding to empirical units.

Our quantities in empirical units are related to quantities in calibration units
according to: xt = 100xct , it = 400ict , πt = 400πct , and y$,n

t = 400y$,n
t and π∗t = 400π∗t .

We can therefore write the model as:
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xt = ρx−,cxt−1 + ρx+,cEt−xt+1 −
ψc

4
(Et−it − Et−πt+1) + 100× uIS,ct (105)

πt = ρπ,cπt−1 + (1− ρπ,c)Et−πt+1 + 4λcxt + 400× uPC,ct (106)

it = ρi,c
(
it−1 − π∗t−1

)
+ (1− ρi,c) [4γx,cxt + γπ,c(πt − π∗t )] + π∗t + 400uMP,c

t (107)

π∗t = π∗t−1 + 400u∗t (108)

Equations (105) through (108) imply relations between the empirical and calibra-
tion parameters:

ρx− = ρx−,c, ρx+ = ρx+,c, ψ =
ψc

4
(109)

ρπ = ρπ,c, λ = 4λc (110)

ρi = ρi,c, γx = 4γx,c, γπ = γπ,c (111)

σ̄IS = 100σ̄IS,c, σ̄PC = 400σ̄PC,c, σ̄MP = 400σ̄MP,c, σ̄∗ = 400σ̄∗ (112)

Fuhrer (1997) estimates a Phillips curve with both backward-looking and forward-
looking components. Using inflation in annualized percent, and the log output gap
in natural units, he find a backward-looking component of 0.8, a forward-looking
component of 0.2, and a weight on the output gap of 0.12. We can therefore compare
the parameter λ in empirical units directly to the magnitudes in CGG, Fuhrer (1997),
and Roberts (1995).

Yogo (2004) scales interest rates and inflation to quarterly units. Our calibrated
values for ψc in natural units can therefore be compared directly to the estimated
values in Yogo (2004). We therefore report the value ψc corresponding to natural
units rather than ψ corresponding to empirical units throughout the paper.

We choose the leverage parameter δ to match the relative volatilities of log real
dividend growth and log output gap growth. We use four quarter growth rates to
smooth out some of the more seasonal fluctuations. We consider four quarter log
output growth ∆xt = xt − xt−4. The standard deviation of this growth rate over
the period 1960.Q1-2011.Q4 is 2.20%. Let dt denote the sum of log S&P 500 real
dividends. Monthly real S&P 500 dividends are from Robert Shiller’s web site. These
real dividends are deflated by the not seasonally adjusted CPI-U with a basis of 1982-
84=100. We obtain quarterly dividends by summing the level real dividends within
the quarter. The standard deviation 1960.Q1-2011.Q4 of the four quarter log dividend
growth rate ∆dt = dt−dt−4 equals 5.35%. Our model specifies dividends as a levered
claim on the output gap with dt = δxt. We therefore set the leverage parameter δ
to match the relative standard deviations of output and dividend growth. This gives
δ = 2.43.

Due to our choice of empirical units, we use a slightly different transformation
from the transition matrix P c of the state variables in natural unit to the transition
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matrix P Y of the estimable VAR(1). We have the relation:

Yt =


xt
πt
it
y$
n,t

 (113)

= Ac
[
x̂ct , π̂

c
t , î

c
t , π

c,∗
t

]′
, (114)

where:

Ac = diag(100, 400, 400, 400)×


1 0 0 0
0 1 0 1
0 0 1 1

Γ$,n 1

 , (115)

P Y = Ac
[
P 0
0 1

]
Ac−1, (116)

QY = Ac
[

Q
0 0 0 1

]
, (117)

uc,Yt =
[
uc,ISt , uc,PCt , uc,MP

t , uc,∗t

]′
, (118)

Yt = P Y Yt−1 +QY uc,Yt+1. (119)

We report annualized percent standard deviations of equity and bond returns at
the average output gap xt = 0. We calculate annualized standard deviations of equity
and bond returns in percent at xt = 0:

Stdt(r
e
t+1) = 200

√
AeΣuAe′, (120)

Stdt(r
$
n−1,t+1) = 200

√
A$,nΣuA$,n′, (121)

Stdt(rn−1,t+1) = 200
√
AnΣuAn′. (122)

We back out empirical shocks for each sub period separately. From the empirical

series Y emp
t =

[
xempt , πempt , iempt , yemp,$,nt

]
, we back out fundamental shocks in empirical

units:[
uISt , u

PC
t , uMP

t , u∗t
]′

=
[
100uc,ISt , 400uc,PCt , 400uc,MP

t , 400uc,∗t

]′
, (123)

= diag(100, 400, 400, 400)×QY−1
(
Y emp
t − P Y Y emp

t−1

)
.(124)

We transform the parameter b into empirical units according to b = bc/100. Then
(1 − bcxct) = (1 − bxt). We calculate the standard deviation of the volatility factor
(1− bxt) at xt = 0 according to b

√
e1QΣuQ′e′1.
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B.1 Partial Derivatives

We compute the partial derivative of the nominal bond beta with respect to ln(σ̄ku)
as follows:

∂β$

∂lnσ̄ku
| =

1

AeΣuAe′
2A$,ne′kekA

e′σ̄k2
u (125)

∂Stdt(r
e
t+1)

∂lnσ̄ku
=

200Aee′kekA
e′σ̄k2

u√
AeΣuAe′

(126)

∂Std(r$
n−1,t+1)

∂lnσ̄ku
=

200A$,ne′kekA
$,n′σ̄k2

u√
A$,nΣuA$,n′

(127)

The partial derivatives for the nominal bond beta sum to two times the calibrated
nominal bond beta for each sub period. The partial derivatives for the standard
deviations of asset returns sum to the calibrated standard deviation of asset returns
for each sub period.

C Details of Moment Fitting Procedure

We minimize the distance between model and empirical moments summed over all
three sub-periods. We use a superscript p to denote period p moments and a hat to
denote empirically estimated moments. Our objective function is:

Obj =
3∑
p=1

[∥∥∥P Y,p − P̂ Y,p
∥∥∥2

+
∥∥∥diag(QY,pΣuQ

Y,p)− diag( ̂QY,pΣuQY,p)
∥∥∥2

(128)

+(
1

10
(Stdp(r$

n−1,t+1)− ̂Stdp(r$
n−1,t+1)))2 (129)

+(
1

10
(Stdp(ret+1)− ̂Stdp(rent+1)))2 (130)

+(10× (βp(r$
n−1,t+1)− ̂βp(r$

n−1,t+1)))2
]

(131)

We optimize Obj over the following parameters: ρx−, ρx+, σ̄IS,p, σ̄PC,p, σ̄MP,p, and
σ̄∗,p, p = 1, 2, 3. We hold all other parameters constant at the values shown in Table
5 in the main paper.

In order to reduce the dimensionality of the minimization problem, we minimize
Obj iteratively. First, we minimize with respect to the standard deviations of shocks
while holding the Euler equation parameters ρx+ and ρx− constant at initial guesses.
Second, we minimize with respect to ρx+ and ρx− while holding constant the standard
deviations of shocks at their optimal values from the first step. Third, we minimize
again with respect to the standard deviations of shocks holding constant ρx+ and ρx−

at their optimal values from the second step.
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Step 1: Starting from an initial guess of ρx− = 0.4503 and ρx+ = 0.6161, we first
minimize with respect to σ̄IS,p, σ̄PC,p, σ̄MP,p, and σ̄∗,p holding ρx− and ρx+ constant.
Given ρx− and ρx+, we can minimize with respect to σ̄IS,p, σ̄PC,p, σ̄MP,p, and σ̄∗,p

independently for each period p.

We use a simple and robust minimization procedure. We randomly draw 50000
parameter vectors. We draw σ̄IS,p, σ̄PC,p, σ̄MP,p, σ̄∗,p from independent uniform distri-
butions. Our support intervals for 1960.Q1-1979.Q2 are such that[
(σ̄IS,1), (σ̄PC,1), (σ̄MP,1), (σ̄∗,1)

]
∈[0, 0, 0, 0]× [0.8256, 2.2069, 2.2768, 0.7715]. Our sup-

port intervals for 1979.Q3-1996.Q4 are such that[
(σ̄IS,2), (σ̄PC,2), (σ̄MP,2), (σ̄∗,2)

]
∈[0, 0, 0, 0]× [0.7800, 1.3338, 4.3310, 1.1228]. Our sup-

port intervals for 1997.Q1-2011.Q4 are such that[
(σ̄IS,3), (σ̄PC,3), (σ̄MP,3), (σ̄∗,3)

]
∈[0, 0, 0, 0]× [0.6153, 1.8542, 0.8119, 1.0595]. Minimiz-

ing with respect to the volatilities of shocks for each sub sample yields:
σ̄IS,1 σ̄IS,2 σ̄IS,3

σ̄PC,1 σ̄PC,2 σ̄PC,3

σ̄MP,1 σ̄MP,2 σ̄MP,3

σ̄∗,1 σ̄∗,2 σ̄∗,3

 =


0.38 0.54 0.34
1.09 0.83 0.90
1.23 1.93 0.38
0.37 0.72 0.51

 (132)

Step 2: In the second step, we minimize with respect to ρx+ and ρx− while holding
the volatilities of shocks constant at the values shown in (132). We randomly draw
10000 draws from two independent uniform distributions U1 ∈ [0, 1] and U2 ∈ [0, 1]
and set ρx− = 0.4253 + 0.05U1 and ρx+ = (1− ρx−) + 0.2× ρx−U2, thereby ensuring
that ρx+ and ρx− sum to more than 1. We obtain minimizing parameter values
ρx− = 0.4466 and ρx+ = 0.6224 agreeing with the initial guesses up to two significant
digits. Figure A.1 shows the objective function Obj against U1 and U2. Each dot
corresponds to one combination of parameter values. Figure A.1 shows that the
optimizing parameter values are in the middle of the ranges considered. We therefore
are not at a boundary solution. Moreover, the optimal parameter values occur at a
clear minimum, indicating that the parameters ρx+ and ρx− are well identified.

Step 3: The third step is exactly the same as the first step, except that we hold ρx−

and ρx+ constant at their new values. Figure A.2 shows the objective function against
the standard deviations of shocks for each sub sample period. If the volatilities of
shocks are well identified, the lower envelopes of the scatter plots in Figure A.2 should
have clear minima. It appears that the objective function exhibits clear minima with
respect to each of the shock volatilities. Figure A.2 shows that all volatilities are in
the interior of the intervals that we are optimizing over. This finding is reassuring in
that it suggests that we are considering sufficiently large ranges.

The optimal volatilities of shocks are shown in Table 5 in the main paper. These
optimal volatilities are close to the preliminary values (132). Moreover, the final
values for ρx+ and ρx− are very close to the initial guesses, indicating convergence of
our algorithm.
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D Additional Calibration Features and Robustness

Table A.1 shows the matrix of slope coefficients for the quarterly VAR(1) in the log
output gap, inflation, the Federal Funds rate, and the 5 year nominal yield both in
the model and in the data. Table A.1 shows that the calibrated model can generate
substantial persistence in the output gap, inflation, Fed Funds rate, and the long-term
nominal yield, even though the output gap is somewhat less persistent than in the
data. The off-diagonal elements are generally small and often close to zero.

Figure A.3 shows a time series of smoothed shocks backed out from our sub period
calibrations. For each sub period, we back out the fundamental model shocks by
inverting the relation Yt+1 = P Y Yt+QY uYt+1 and plugging in the empirical time series
for the vector Yt and the model implied matrices P Y and QY .

Tables A.2 and A.3 present an alternative calibration and are analogous to Tables
5 and 6 in the main paper. The alternative calibration fits the volatility of VAR(1)
residual volatilities, and the volatilities of bond and stock returns, but not the nomi-
nal bond beta. Table A.2 shows that in the alternative calibration we obtain a lower
volatility of PC shocks in the middle sub period. Consequently, the alternative cali-
bration obtains a negative nominal bond beta in the second sub period instead of a
positive nominal bond beta.

Table A.4 shows additional moments from the calibration. The equity premium
is close to 4% on an annualized basis.

The model assumes that shocks are uncorrelated for parsimony. We would there-
fore expect that model-implied shocks should be uncorrelated. Table A.5 reports
the univariate correlations between IS, PC, MP, and inflation target shocks for each
subperiod calibration. The average correlations are generally close to zero. However,
the correlation between the inflation target shock and monetary policy shock stands
out and is negative in all three subperiods. This implied negative correlation can
quite plausibly be a result of assuming a monetary policy rule, which smoothes the
interest rate gap, rather than the interest rate. We therefore consider robustness to
an alternative monetary policy rule in the next section.

D.1 Robustness to Alternative MP Rule

In our main formulation, the central bank smoothes the difference between the Fed
Funds rate and the inflation target, following an interest rate rule of the form:

it = ρi(it−1 − π∗t−1) + (1− ρi) [γxxt + γπ(πt − π∗t )] + π∗t + uMP
t . (133)

In this section, we consider a similar, alternative formulation, which instead
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smoothes the level of the Fed Funds rate:

it = ρiit−1 + (1− ρi) [γxxt + γπ(πt − π∗t ) + π∗t ] + ũMP
t (134)

= ρi(it−1 − π∗t−1) + (1− ρi) [γxxt + γπ(πt − π∗t )] + π∗t − ρiũ∗t + ũMP
t . (135)

Expression (135) shows that the two monetary policy rules are equivalent if uMP
t =

−ρiũ∗t +ũMP
t , so the monetary policy shock in (133) will be more negatively correlated

with the inflation target shock u∗t than the monetary policy shock in (134). Consid-
ering a model calibration with ũ∗t and ũMP

t independent, the alternative monetary
policy rule can therefore address the negative correlation between implied MP and
inflation target shocks in Table A.5.

The model solution takes exactly the same form as before, the only difference
being that now:

M =

 1 0 ψ 0
0 1 0 −ρπ
0 0 1 −ρi

 . (136)

We re-create Figures 3 and 4 with the monetary policy rule (135) using the pa-
rameter values shown in Table 5. Since we do not re-calibrate the model to match
macroeconomic and asset pricing moments, we do not expect the modified model to
match the empirical betas.

Figures A.4 and A.5 look very similar to Figures 3 and 4 in the main text, indi-
cating that the identified monetary policy drivers act similarly and similarly strongly
in the alternative model. Figures A.3 and A.4 differ from Figures 3 and 4 in that
the read and blue regions have shifted slightly relative to the dots indicating the
estimated monetary policy coefficients for each regime.

Importantly, the nominal bond beta is still strongly increasing in the inflation
weight γπ, weakly increasing in the output weight γx, and increasing and nonlinear in
the monetary policy persistence coefficient ρi. Panel B of Figure A.5 indicates that
even in this alternative, not fully calibrated model, the increase in monetary policy
persistence would have switched the nominal bond beta from positive to negative if
all other parameters had remained constant.

D.2 Robustness to Phillips Curve Parameter ρπ

In our calibration, we use a Phillips curve with a backward looking component of
ρπ = 0.8, which is consistent with the empirical estimates of Fuhrer (1997). However,
a wide range of empirical estimates are available for ρπ are available in the literature.
For instance, Gali and Gertler (1999) use the labor share of income instead of the
output gap and estimate a smaller backward-looking component in the Phillips curve.
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Choosing a high value of ρπ ensures that our model has a unique solution for a large
range of monetary policy functions.

We verify that the main mechanism identified in this paper is robust to choosing
a lower value of ρπ. Unfortunately, the range of parameter values with a stable and
unique model solution shrinks rapidly when we choose smaller values of ρπ. We
therefore consider an alternative value for ρπ of 0.7. Considering even smaller values
would leave us with no solution for a large range of monetary policy functions.

Figures A.6 and A.7 are analogous to Figures 3 and 4 in the main paper, but
they use a lower value for ρπ. All other parameters are as in Table 5 in the main
paper. We do not re-calibrate the model and we therefore do not expect the model to
match empirical asset pricing moments exactly. The main difference between Figures
A.6 and A.7 and Figures 3 and 4 in the main text is that in Figures A.6 and A.7
the regions where no solution exists (shown in white) are much larger. Whenever a
solution exists, it is very similar to the one in the main calibration. Importantly, the
dependence of the nominal bond beta on the monetary policy parameters γπ, γx, and
ρi looks very similar.

D.3 Effect of Phillips Curve Slope

There is some empirical evidence that in addition to the shock volatilities and the
monetary policy rule parameters (which are allowed to vary across our subperiod
calibrations), the slope of the Phillips curve. λ may also have changed over time.
Smets and Wouters (2007) report some evidence that the slope of the Phillips curve
may have decreased over time. We investigate whether this might explain the sign
switch in the empirical nominal bond beta in the late 1990s.

Figure A.8 plots the nominal bond beta as a function of λ for all three subperiod
calibrations. Figure A.8 shows that the nominal bond beta decreases in the slope
of the Phillips curve λ if all other parameters are held constant at their period 2 or
period 3 values. If the slope of the Phillips curve has decreased over time, our model
indicates that this should have led to an increase in the nominal bond beta and not
to the decrease observed in the late 1990s.

D.4 Robustness to Different Leverage Parameter

Our baseline model assumes that the output gap and dividends are perfectly corre-
lated, while in the data the correlation is much lower. We could follow a similar route
as in Campbell and Cochrane (1999) and address this issue by modeling dividends as
proportional to the output gap plus an idiosyncratic shock. In order to maintain a
realistic ratio of the dividend growth volatility and output gap growth volatility, we
would need to reduce the sensitivity of dividends to the output gap.
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Campbell and Cochrane (1999) remark that their habit formation model has very
similar implications no matter whether they model dividend growth as perfectly or
imperfectly correlated with consumption growth.

We study the sensitivity of our model implications with respect to the leverage
parameter δ in order to understand how important the assumption of perfectly corre-
lated dividends and output gap is for our findings. Adding an idiosyncratic, unpriced,
shock to dividends is unlikely to change substantially any asset pricing dynamics.
Modeling dividends as imperfectly correlated with the output gap should therefore
yield implications that are very similar to reducing the leverage parameter δ.

Figure A.9 is equivalent to Figure 4 in the main text, but it sets δ = 1, correspond-
ing to an extremely low firm leverage ratio of 0%. We can see that the implications
for nominal bond betas are qualitatively and quantitatively extremely similar to the
baseline calibration. In fact, Figure A.9 and Figure 4 in the main paper are visually
indistinguishable (except for the fact that Figure A.9 uses fewer pixels). We inter-
pret Figure A.9 as indicating that our results are not sensitive to assuming a strong
correlation between dividends and the output gap.

Figure A.10 explores the real bond beta as a function of monetary policy pa-
rameters. The figure is analogous to Figure 4, Panel A in the main paper, except
that this figure plots the beta of real bonds instead of nominal bonds. We can see
that the real bond beta is negative for a wide region around the period 1 monetary
policy parameters, which are indicated with a diamond. Moreover, the real bond
beta decreases sharply in the MP coefficient γπ. Table 10 in the main paper implies
that, had TIPS existed, they would have been extremely safe with a beta of -215.55.
Given that the region around period 1 monetary policy parameters includes much
more reasonable values for the real bond beta, we believe we could recalibrate our
model relatively easily with a restriction that the implied volatility or beta of TIPS
must fall within a certain range. Given that the model mechanism generally seems
robust to small changes in parameters, we don’t expect that this would change the
model implications.

E Additional Empirical Results

Table A.6 reports Taylor rule estimates for superiod 3 (1997.Q-2011.Q4) and splits
it into a pre-Lehman subsample (1997.Q1-2008.Q2) and a post-Lehman subsample
(2008.Q3-2011.Q4). Interestingly, the estimates for the pre-Lehman subsample are
virtually identical to the estimates for the full subperiod 3. The estimates reported
in Table 4 in the main paper therefore do not appear to be mainly driven by the
financial crisis, just as the negative nominal bond beta does not appear mainly driven
by the financial crisis. For the post-Lehman subsample, the estimates for all monetary
policy coefficients (γx, γπ, and ρi) are all close to zero with small standard errors.
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This is intuitive, since the most salient feature of monetary policy during the crisis
was perhaps that the Federal Funds rate has been stuck at the zero lower bound.
The empirical results in Table A.6 suggest that we can model post-Lehman monetary
policy by setting all monetary policy parameters to zero.

Table A.7 tests for statistical significance of the changes in monetary policy pa-
rameters. It shows that the major changes (increase in γπ from period 1 to period 2;
increase in ρi from period 2 to period 3) are indeed statistically significant.

If changes in bond risks are driven by macroeconomic factors, then changes in
bond risks should be reflected in changing macroeconomic correlations. Lower than
expected inflation raises nominal bond prices, all else equal, so the inflation-output
correlation should typically take the opposite sign from the bond-stock correlation.

Table A.8 compares sub-sample correlations of asset prices and macroeconomic
variables. The empirical output gap is highly persistent and it is therefore unsur-
prising that three year equity excess returns are more strongly correlated with the
output gap than highly volatile quarterly stock returns. We therefore use quarterly
overlapping three year bond and stock excess returns for our comparison of asset re-
turn correlations and macroeconomic correlations. Table A.8 confirms our intuition
that bond excess returns should at least partly reflect news about inflation and that
equity excess returns should reflect the business cycle. In each sub period, empirical
bond excess returns are negatively correlation with inflation and equity excess returns
are positively correlated with the output gap.

Table A.8 confirms that the changes in the bond-stock comovement documented
in Figure 1 and in Table 6 are robust to using three year returns instead of daily or
quarterly returns. The correlation between three year stock returns and three year
bond returns was positive and significant in the first sub-period, increased in the
second sub period, and became negative and significant in the last sub period.

The bond-output gap, inflation-stock, and inflation-output gap correlations con-
firm our intuition that changing bond risks are related to the prevalence of inflationary
recessions versus deflationary recessions during different regimes. The bond-output
gap correlation typically has the same sign as the bond-stock correlation, while the
inflation-stock return correlation and the inflation-output correlation has the oppo-
site sign. The only exception to this pattern is the first sub period bond-output gap
correlation, which takes a negative, but small and insignificant, value.
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Tables and Figures

Table A.1: Empirical and Model VAR(1) Matrices for Sub Periods

1960.Q1-1979.Q2 Model 1960.Q1-1979.Q2 Empirical
Coeff. on Lagged Variables Coeff. on Lagged Variables

Output Gap 0.74 -0.28 -0.05 0.33 0.97 -0.05 -0.20 0.19
Inflation 0.32 0.84 -0.03 0.19 -0.04 0.42 0.37 0.42
Fed Funds Rate 0.23 0.17 0.53 0.30 0.17 0.04 0.54 0.47
Log Nom. Yield 0.07 -0.02 -0.06 1.08 0.03 0.08 0.02 0.83

1979.Q3-1996.Q4 Model 1979.Q3-1996.Q4 Empirical
Coeff. on Lagged Variables Coeff. on Lagged Variables

Output Gap 0.73 -0.79 -0.08 0.87 0.90 -0.08 0.02 -0.07
Inflation 0.32 0.54 -0.05 0.51 0.03 0.78 0.10 -0.04
Fed Funds Rate 0.23 1.03 0.47 -0.50 0.07 0.76 0.11 0.65
Log Nom. Yield 0.22 -0.20 -0.07 1.27 -0.05 0.22 -0.02 0.83

1997.Q1-2011.Q4 Model 1997.Q1-2011.Q4 Empirical
Coeff. on Lagged Variables Coeff. on Lagged Variables

Output Gap 0.47 -0.22 -0.16 0.39 0.93 0.04 0.03 0.13
Inflation 0.17 0.87 -0.09 0.22 0.20 0.37 -0.17 -0.06
Fed Funds Rate 0.14 0.16 0.90 -0.06 0.00 0.14 0.68 0.47
Log Nom. Yield -0.32 -0.10 -0.13 1.23 0.07 -0.06 0.06 0.75

P Y is the matrix of slope coefficients of a quarterly VAR(1) in the log output gap,
inflation, Fed Funds rate, and 5 Year Nominal Yield.
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Table A.2: Alternative Calibration Parameter Choices

Time-Invariant Parameters
Log-Linearization Constant ρ 0.99
Leverage δ 2.43
Preference Parameter α 30
Backward-Looking Comp. PC ρπ 0.80
Slope PC λ 0.30
Forward-Looking Comp. IS ρx+ 0.62
Backward-Looking Comp. IS ρx− 0.45

Monetary Policy Rule 60.Q1-79.Q2 79.Q3-96.Q4 97.Q1-11.Q4
MP Coefficient Output γx 0.42 -0.07 0.44
MP Coefficient Infl. γπ 0.69 1.44 1.92
Backward-Looking Comp. MP ρi 0.56 0.43 0.89

Std. Shocks
Std. IS σ̄IS 0.38 0.39 0.32
Std. PC shock σ̄PC 1.02 0.73 0.98
Std. MP shock σ̄MP 1.21 1.93 0.47
Std. infl. target shock σ̄∗ 0.33 0.68 0.54

The alternative calibration puts no weight on the nominal bond beta in fitting the
standard deviations of fundamental shocks. The time-invariant parameters and mon-
etary policy rule parameters are identical to those in Table 5 in the main paper. The
standard deviations of shocks differ from the calibration in Table 5 in the main paper.
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Table A.3: Alternative Calibration Model and Empirical Moments

60.Q1-79.Q2 79.Q3-96.Q4 97.Q1-11.Q4
Std. VAR(1) Residuals Empirical Model Empirical Model Empirical Model

Output Gap 0.92 0.70 0.75 0.69 0.65 0.62
Inflation 1.12 1.14 0.89 0.84 0.80 1.08
Fed Funds Rate 1.22 1.28 2.07 2.05 0.66 0.68
Log Nominal Yield 0.48 0.42 0.85 0.77 0.55 0.60

Std. Asset Returns
Std. Eq. Ret. 17.62 17.89 15.34 16.49 20.08 19.01
Std. Nom. Bond Ret. 4.85 3.98 9.11 6.55 5.55 5.42
Nominal Bond Beta 0.06 0.12 0.20 -0.05 -0.17 -0.04

Taylor Rule: Fed Funds onto Output, Infl. and Lag. Fed Funds
Output 0.18 0.22 -0.04 -0.13 0.05 0.02
Inflation 0.30 0.34 0.83 0.65 0.21 0.19
Lagged Fed Funds 0.56 0.59 0.43 0.39 0.89 0.81

We compare model and empirical moments for the alternative calibration. Alternative calibration parameters are specified in
Table A.2. The alternative calibration puts no weight on the nominal bond beta in fitting the standard deviations of fundamental
shocks.
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Table A.4: Appendix Model Moments

Model Empirical
60.Q1-79.Q2 79.Q3-96.Q4 97.Q1-11.Q4 Avg. 60.Q1-79.Q2 79.Q3-96.Q4 97.Q1-11.Q4 60.Q1-11.Q4

Equity Premium. 3.61 3.12 3.29 3.35 3.23 8.12 4.94 5.36
Nom. Bond Exc. Ret. 0.25 0.68 -0.50 0.18 0.01 2.31 2.97 1.64
E
(
y$

5,t − it
)

0.14 0.39 -0.03 0.18 0.74 1.32 1.14 1.05

Corr(xt, y
$
5,t − it) 0.05 0.31 0.93 0.39 -0.62 -0.21 -0.53 -0.46

Corr(xt, y
$
5,t) 0.01 -0.02 0.31 0.09 -0.08 -0.34 0.82 -0.07

Corr(xt, it) -0.02 -0.16 -0.20 -0.12 0.22 -0.21 0.80 0.05
xr$

5,t+1 onto (y$
5,t − it) -0.08 -0.71 4.12 0.92 2.24 3.09 2.37 2.84*

xr$
5,t+1 onto xt -1.23 -3.56 5.27 -0.14 -0.72* -0.17 -0.16 -0.47

xr$
5,t+1 onto dpt 0.06 0.14 -0.30 -0.02 0.06 0.02 -0.03 -0.01

The equity premium and the average nominal bond excess return show average returns in excess of a short-term bond adjusted
for Jensen’s inequality. The last three rows show regression coefficients of log 5 year bond excess returns (Annualized, %) onto
the slope of the yield curve (Annualized, %), the output gap (%), and the log dividend price ratio (%), respectively. The last
three rows show ∗ when the coefficient is significant at the 5% level with Newey-West standard errors with two lags.
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Table A.5: Correlations of Implied Shocks

1960.Q1-1979.Q2
IS PC MP Infl. Target

IS 1.00 -0.24 0.11 -0.14
PC 1.00 0.04 -0.34
MP 1.00 -0.40
Infl. Target 1.00

1979.Q3-1996.Q4
IS PC MP Infl. Target

IS 1.00 0.05 -0.58 -0.07
PC 1.00 0.07 -0.49
MP 1.00 -0.31
Infl. Target 1.00

1997.Q1-2011.Q4
IS PC MP Infl. Target

IS 1.00 -0.68 0.00 -0.24
PC 1.00 0.07 0.11
MP 1.00 -0.75
Infl. Target 1.00

For each sub period, we back out the fundamental model shocks by inverting the
relation Yt+1 = P Y Yt + QY uYt+1 and plugging in the empirical time series for the
vector Yt and the model implied matrices P Y and QY .
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Table A.6: Empirical Monetary Policy Function Crisis Sample

Fed Funds it 97.Q1-11.Q4 97.Q1-08.Q2 08.Q3-11.Q4
Output Gap 0.05 0.17 -0.02

(0.04) (0.12) (0.04)
Inflation 0.21** 0.27** -0.01

(0.07) (0.09) (0.02)
Lagged Fed Funds 0.89** 0.88** 0.03

(0.06) (0.09) (0.04)
Constant -0.12 -0.27 -0.04

(0.29) (0.27) (0.33)
R2 0.91 0.86 0.22
Implied γ̂x 0.44 1.43 -0.02

(0.21) (0.40) (0.05)
Implied γ̂π 1.92* 2.29* -0.01

(1.26) (1.55) (0.02)
Implied ρ̂i 0.89** 0.88** 0.03

(0.06) (0.09) (0.04)

This table estimates the monetary policy rule before and after the Lehman brothers bankruptcy in 2008.Q3. All variables and
test specifications are described in Table 4 in the main text.
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Table A.7: Estimating Changes in the Monetary Policy Rule

Fed Funds it 60.Q1-96.Q4 79.Q3-11.Q4 97.Q1-11.Q4
Dummy Period T 79.Q3-96.Q4 97.Q1-11.Q4 08.Q3-11.Q4
Output Gap xt 0.18** -0.04 0.17

(0.06) (0.13) (0.13)
Inflation πt 0.30** 0.83** 0.27**

(0.07) (0.21) (0.09)
Lagged Fed Funds it−1 0.56** 0.43* 0.88**

(0.10) (0.17) (0.09)
Output Gap×Dummy xtIt∈T -0.22 0.09 -0.19

(0.14) (0.14) (0.13)
Inflation×Dummy πtIt∈T 0.53* -0.62** -0.28**

(0.22) (0.22) (0.09)
Lagged Fed Funds×Dummy it−1It∈T -0.14 0.47* -0.85**

(0.20) (0.18) (0.10)
Dummy It∈T 0.84 -1.87 0.23

(1.00) (0.96) (0.40)
Constant 0.91* 1.75 -0.27

(0.38) (0.92) (0.27)
R2 0.77 0.85 0.93
Implied ∆γ̂x -0.49 0.52 -1.45

(0.25) (0.30) (0.41)
Implied ∆γ̂π 0.75* 0.47 -2.30

(0.25) (1.28) (1.59)
Implied ∆ρ̂i -0.14 0.47* -0.85

(0.20) (0.18) (0.10)

Variables and tests are described in Table 4 in the main text. We estimate it = c0 + cxxt + cππt + ciit−1 + d0It∈T + dxxtIt∈T +
dππtIt∈T + d0it−1It∈T + εt. Changes in monetary policy parameters, such as ∆γ̂x, show estimated changes from the pre-T
sub-sample to the T sub-sample. Standard errors for ∆γ̂x and ∆γ̂π are calculated by the delta method. Significance levels for
changes in monetary policy parameters are based on a likelihood ratio test.
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Table A.8: Sub-Period Correlations of Bond Returns, Stock Returns, Output Gap, and Inflation

60.Q1-79.Q2 Bond Excess Returns Stock Excess Returns Output Gap Inflation
Bond Excess Returns 1
Stock Excess Returns 0.32* 1
Output Gap -0.17 0.36* 1
Inflation -0.25* -0.60* -0.14 1

79.Q3-96.Q4 Bond Excess Returns Stock Excess Returns Output Gap Inflation
Bond Excess Returns 1
Stock Excess Returns 0.46* 1
Output Gap 0.30* 0.23 1
Inflation -0.74* -0.27* -0.16 1

97.Q1-11.Q4 Bond Excess Returns Stock Excess Returns Output Gap Inflation
Bond Excess Returns 1
Stock Excess Returns -0.63* 1
Output Gap -0.55* 0.55* 1
Inflation -0.32* 0.12 0.34* 1

Quarterly overlapping 3 year log equity returns in excess of log three month T-bill, 3 year log excess return on 5 year nominal
bond in excess of three month log T-bill. Quarterly inflation and output as in Table 1. We report correlations of log excess
returns from time t− 12 to t and macroeconomic variables as of quarter t. * and ** denote significance at the 5% and 1% level.
Significance levels not adjusted for time series dependence.
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Figure A.1: Minimizing with Respect to ρx− and ρx+
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We minimize the objection function with respect to ρx− and ρx+ while holding con-
stant the volatilities of shocks at the values shown in (132). We randomly draw 10000
draws from two independent uniform distributions U1 ∈ [0, 1] and U2 ∈ [0, 1] and set
ρx− = 0.4253 + 0.05U1 and ρx+ = (1 − ρx−) + 0.2 × ρx−U2. The minimizing param-
eter values are indicated by circles. The objective function is the sum of squared
differences between model and empirical moments. The considered moments are the
slope coefficients of a VAR(1) in the log output gap, log inflation, log Fed Funds, and
five year nominal log bond yield, the standard deviations of the VAR(1) residuals in
annualized percent, equity return volatility and bond return volatility in annualized
percent and the nominal bond beta. The equity and bond volatilities are scaled by
0.1 and the nominal bond beta is scaled by a factor of 10 to ensure that moments
have roughly equal magnitudes.
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Figure A.2: (Panel A) Minimizing with Respect to Shock Volatilities:
1960.Q1-1979.Q2
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We minimize the objection function with respect to σ̄IS,1, σ̄PC,1, σ̄MP,1, and σ̄∗,1 while
holding constant all time-invariant parameters at the values shown in Table 5 in the
main paper. The minimizing parameter values are indicated by circles. The objective
function is the sum of squared differences between model and empirical moments for
that sub-period. The considered moments are the slope coefficients of a VAR(1) in
the log output gap, log inflation, log Fed Funds, and five year nominal log bond yield,
the standard deviations of the VAR(1) residuals in annualized percent, equity return
volatility and bond return volatility in annualized percent and the nominal bond beta.
The equity and bond volatilities are scaled by 0.1 and the nominal bond beta is scaled
by a factor of 10 to ensure that moments have roughly equal magnitudes.
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Figure A.2: (Panel B) Minimizing with Respect to Shock Volatilities:
1979.Q3-1996.Q4
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We minimize the objection function with respect to σ̄IS,2, σ̄PC,2, σ̄MP,2, and σ̄∗,2 while
holding constant all time-invariant parameters at the values shown in Table 5 in the
main paper. The minimizing parameter values are indicated by circles. The objective
function is the sum of squared differences between model and empirical moments for
that sub-period. The considered moments are the slope coefficients of a VAR(1) in
the log output gap, log inflation, log Fed Funds, and five year nominal log bond yield,
the standard deviations of the VAR(1) residuals in annualized percent, equity return
volatility and bond return volatility in annualized percent and the nominal bond beta.
The equity and bond volatilities are scaled by 0.1 and the nominal bond beta is scaled
by a factor of 10 to ensure that moments have roughly equal magnitudes.
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Figure A.2: (Panel C) Minimizing with Respect to Shock Volatilities:
1997.Q1-2011.Q4
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We minimize the objection function with respect to σ̄IS,3, σ̄PC,3, σ̄MP,3, and σ̄∗,3 while
holding constant all time-invariant parameters at the values shown in Table 5 in the
main paper.The minimizing parameter values are indicated by circles. The objective
function is the sum of squared differences between model and empirical moments for
that sub-period. The considered moments are the slope coefficients of a VAR(1) in
the log output gap, log inflation, log Fed Funds, and five year nominal log bond yield,
the standard deviations of the VAR(1) residuals in annualized percent, equity return
volatility and bond return volatility in annualized percent and the nominal bond beta.
The equity and bond volatilities are scaled by 0.1 and the nominal bond beta is scaled
by a factor of 10 to ensure that moments have roughly equal magnitudes.

35



Figure A.3: Time Series of Model Shocks
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This figure plots the time series of smoothed IS, PC, MP and inflation target (π∗)
shocks. IS shocks are in natural percent units, while PC, MP and inflation target
shocks are in annualized percent units. The shocks are smoothed with a trailing
exponentially-weighted moving average. The decay parameter equals 0.08 per quarter
corresponding to a half life of 24 quarters.

36



Figure A.4: Nominal Bond Betas Against Monetary Policy Parameters γπ

and γx - Alternative Monetary Policy Rule

Panel A: 1960.Q1-1979.Q2 Panel B: 1979.Q3-1996.Q4
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Panel C: 1997.Q1-2011.Q4
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This figure re-creates Figure 3 in the main text for a model with the alternative
monetary policy rule (135). All parameters are equal to the values in Table 5 and are
not re-calibrated to fit moments. The curves in the figure are less smooth than those
in Figure 3 in the main paper, because this figure was constructed with fewer pixels.
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Figure A.5: Nominal Bond Betas Against Monetary Policy Parameters γπ

and ρi - Alternative Monetary Policy Rule

Panel A: 1960.Q1-1979.Q2 Panel B: 1979.Q3-1996.Q4
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Panel C: 1997.Q1-2011.Q4
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This figure re-creates Figure 4 in the main text for a model with the alternative
monetary policy rule (135). All parameters are equal to the values in Table 5 and are
not re-calibrated to fit moments. The curves in the figure are less smooth than those
in Figure 4 in the main paper, because this figure was constructed with fewer pixels.
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Figure A.6: Nominal Bond Betas Against Monetary Policy Parameters γπ

and γx - Alternative Phillips Curve Parameterization

Panel A: 1960.Q1-1979.Q2 Panel B: 1979.Q3-1996.Q4
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Panel C: 1997.Q1-2011.Q4
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This figure re-creates Figure 3 in the main text for a model with the alternative
Phillips curve parameter ρπ = 0.7, which is smaller than the backward looking com-
ponent in our main calibration. All remaining parameters are equal to the values in
Table 5 and are not re-calibrated to fit moments. The curves in the figure are less
smooth than those in Figure 3 in the main paper, because this figure was constructed
with fewer pixels.
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Figure A.7: Nominal Bond Betas Against Monetary Policy Parameters γπ

and ρi - Alternative Phillips Curve Parameterization

Panel A: 1960.Q1-1979.Q2 Panel B: 1979.Q3-1996.Q4
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Panel C: 1997.Q1-2011.Q4
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This figure re-creates Figure 4 in the main text for a model with the alternative
Phillips curve parameter ρπ = 0.7, which is smaller than the backward looking com-
ponent in our main calibration. All remaining parameters are equal to the values in
Table 5 and are not re-calibrated to fit moments. The curves in the figure are less
smooth than those in Figure 4 in the main paper, because this figure was constructed
with fewer pixels.
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Figure A.8: Nominal Bond Betas and the Phillips Curve Slope λ
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This figure shows how the nominal bond beta varies with the Phillips curve slope
parameter λ while all other parameters are held constant at their period 1 values
(blue solid), period 2 values (green dash), or period 3 values (red dash-dot).

41



Figure A.9: Nominal Bond Betas Against Monetary Policy Parameters γπ

and ρi - Alternative Leverage Parameter

Panel A: 1960.Q1-1979.Q2 Panel B: 1979.Q3-1996.Q4
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Panel C: 1997.Q1-2011.Q4
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This figure re-creates Figure 4 in the main text for a model with the leverage param-
eter δ = 1, corresponding to a firm leverage ratio of 0%. The leverage parameter in
our main calibration is δ = 2.43 corresponding to a firm leverage ratio of 59%. All
remaining parameters are equal to the values in Table 5 and are not re-calibrated to
fit moments. The curves in the figure are less smooth than those in Figure 4 in the
main paper, because this figure was constructed with fewer pixels.
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Figure A.10: Real Bond Betas Against Monetary Policy Parameters γπ

and ρi - 1960.Q1-1979.Q2 Calibration
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This figure is analogous to Figure 4, Panel A in the main paper, except that this
figure plots the beta of real bonds instead of nominal bonds.
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