Learning the Macro-Dynamics of U.S. Treasury Yields

Discussion by Greg Duffee, Johns Hopkins

SF Fed Conference, March 2014

Learning (about the paper)

 Rigorous modeling of learning about price dynamics is hard

Past and future market participants also learn; need to account for learning dynamics in setting prices

- Reduced-form term structure model bypasses much of this difficulty
- Paper argues model-based forecasts are (mostly) similar to median professional survey forecast

... but model-based forecasts can do better if macro info is incorporated

 Models and professionals differ in implied dynamics of expected excess returns to long-term bonds

Learning (in the model)

Dynamics

(Simplified version)

Assume reduced-form yield dynamics through t, including learning about macro dynamics, prices that depend on expectations of future learning, are approximated by a first-order, low-dimension VAR estimated at t

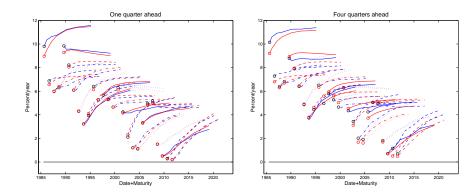
- Fit n yields to VAR through t to get params
- Yields on other bonds determined by restricted interpolation

Overview o	Methodology ○●	Forecast comp

No-arbitage restrictions

- Paper finds that no-arb curve-fitting function varies little over the sample
- Can think of learning as continually updating estimates of the VAR, don't worry about interaction between learning and no-arb restrictions – very nice empirical result

Blue Chip versus model-based forecasts


Paper's conclusions

- Similar forecasts when model uses recursive least-squares estimation
- Models are more accurate when
 - They downweight older observations
 - They incorporate macro data in the VAR

My interpretation of the same evidence

- Blue Chip, model-based forecasts differ substantially
- Model-based are more accurate because of known features of survey forecasts

Blue Chip, JSZ model forecasts

Root mean squared forecast differences and errors

Basis points, annualized yields

Diff/Error	Method	Horizon	6 mon	5 yr	10 yr
Diff	BC-JSZ	1Q	23	23	24
Diff	BC-JPS	1Q	37	26	26
Error	BC	1Q	52	49	45
Error	JSZ	1Q	40	43	38
Error	JPS	1Q	36	41	39
Diff	BC-JSZ	4Q	37	42	48
Diff	BC-JPS	4Q	85	81	73
Error	BC	4Q	148	120	106
Error	JSZ	4Q	142	112	93
Error	JPS	4Q	134	106	91

Decomposing forecast errors

survey forecast error_t = JSZ forecast error_t -
$$\left(\text{survey forecast}_t - \text{JSZ forecast}_t \right)$$

$$RMSE_{BC}^{2} = RMSE_{JSZ}^{2} + RMSD_{BC,JSZ}^{2} - 2\overline{\Pi}(JSZ \text{ error, forecast diff})$$

Five-year yield, one and four quarters ahead (normalize by LHS)

1 = 0.755 + 0.210 + 0.035; 1 = 0.872 + 0.125 + 0.002

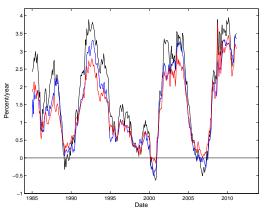
Replace JSZ with JPS

1 = 0.699 + 0.274 + 0.027; 1 = 0.725 + 0.335 - 0.060

Survey bias 1: Slow adjustment

- Coibion and Gorodnichenko: mean forecasts from surveys are sluggish (informational rigidities?)
- Serial correlations of monthly changes in forecasts of ten-year yield
 - Blue Chip: 0.32 (one-Q-ahead), 0.35 (four-Q-ahead)
 - JSZ model: 0.02 (one-Q-ahead), 0.00 (four-Q-ahead)
 - JPS model: 0.07 (one-Q-ahead), 0.08 (four-Q-ahead)

Survey bias 2: Excess persistence


 Piazzesi/Salomao/Schneider (Trend and cycle in bond premia): survey forecasts imply much higher persistence of slope than models imply

$$\hat{E}_t(\mathsf{slope}_{t+4 \text{ quarters}}) = a + b \operatorname{slope}_t + e_t$$

- Point estimates of b: Blue Chip, 0.82; JSZ model, 0.71; JPS model, 0.70
- Replace LHS with realized slope: *b* = 0.56

Forecast comparison

Forecasting the slope of the term structure

- Black line: actual slope
- Blue line: Blue Chip 4-Q-ahead forecast of slope
- Red line: JSZ model 4-Q-ahead forecast of slope

The slope and expected excess returns

- Models: Steep slope implies high, transitory expected excess returns to long-maturity bonds
- Blue Chip: Steep slow implies moderately high, long-lived expected excess returns to long-maturity bonds

Conclusions

- Result that no-arb pricing function varies little over the long sample is surprising and useful
- Comparison with Blue Chip survey forecasts is too sympathetic to the survey forecasts