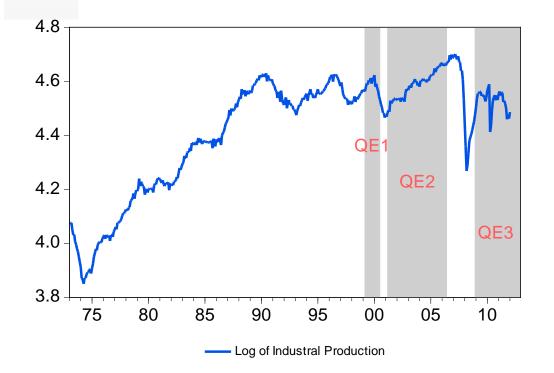
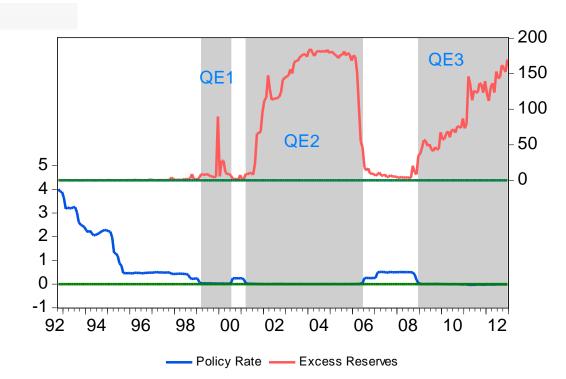
Exiting from QE by Fumio Hayshi and Junko Koeda


Federal Reserve Bank of San Francisco March 28th 2014

Roger E. A. Farmer, Distinguished Professor, UCLA

What this Paper Does

- Uses a structural VAR with endogenous regime switching to study QE in Japan.
- I will focus on three questions
 - Did the economy behave differently during periods of QE?
 - How did policy behave during QE and non QE periods?
 - Was QE effective?


Japan is Scary

No growth in Industrial Production since 1990

Is this the future of the US?

Japan and QE

Policy rate reached zero in March 1999

Three periods of QE since then

QE1 1999m03-2000m07 QE2 2001m03-2006m06 QE3 2008m12-present

$E\left[F\left(X,Y,X',Y',U'\right)\right]=0$

Theorists build models.

X is a vector of endogenous variables

Y is a vector of policy variables

Primes denote the future

U' is a vector of shocks

Linearized Models Lead to Vars

$$X' = AX + BY + V_1'$$

 $Y' = CX + DY + V_2'$

Private sector reduced form

Policy sector reduced form

- Identification question
 - ▶ How is *U*' related to *V*'?

Hayashi-Koeda answer

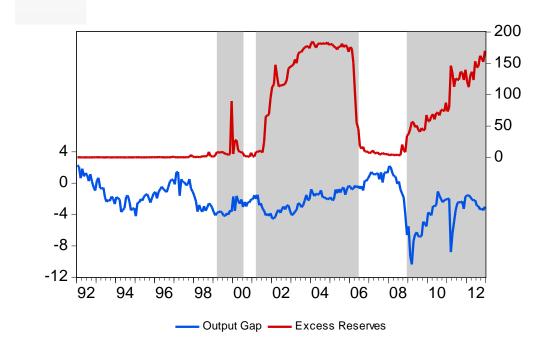
- Reduced form private sector
- Model Policy sector: Two Taylor Rules

Regime Switching Models

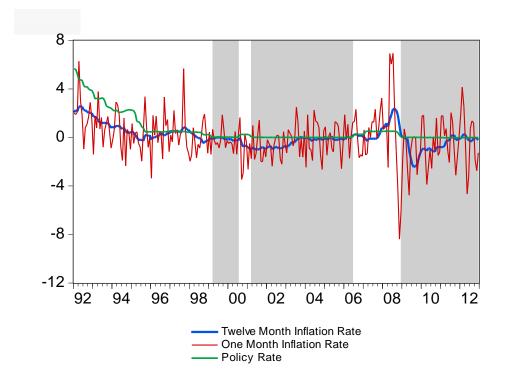
 $E\left[F_{\mathbf{S}}\left(X,Y,X',Y',U',\mathbf{S}\right)\right]=0$

Model depends on regime *S*

Regime Switching Models Lead to Markov Switching Vars


$$\begin{aligned} X_{S1}^{'} &= A_{S1}X + B_{S1}Y + V_{1}^{'} \\ Y_{S1}^{'} &= C_{S1}X + D_{S1}Y + V_{2}^{'} \\ X_{S2}^{'} &= A_{S2}X + B_{S2}Y + V_{1}^{'} \\ Y_{S2}^{'} &= C_{S2}X + D_{S2}Y + V_{2}^{'} \\ \Pr\left(S' = Si\right) = G\left(X,Y\right) \end{aligned} \qquad E\left[VV^{T}\right] = \Omega_{S2}$$

Estimation


- Estimate private sector by least squares separately in each regime
- Estimate policy rules and switching with maximum likelihood

$$X'_{S1} = A_{S1}X + B_{S1}Y + V'_{1} \qquad \qquad \text{Estimated by Least} \\ Y'_{S1} = C_{S1}X + D_{S1}Y + V'_{2} \qquad \qquad \qquad \text{Estimated by} \\ \text{Maximum likelihood}$$

Data: The output gap and excess reserves

Data: Inflation and the Policy Rate

Points I will Make

- There is a not a lot of evidence that the inflation process changes much across regimes
- There is strong evidence of a change in the persistence of the output process
- There is some evidence that QE affects output

The inflation process

Table 6: Inflation and Output Reduced Form, January 1992 - December 2012

lagged subsample P (set of <i>t</i> 's such that $s_{t-1} = P$)									
			coefficient of						
<i>t</i> −1 is in	dependent variable	const.	<i>p</i> _{<i>t</i>-1}	<i>x</i> _{<i>t</i>-1}	<i>r</i> _{t-1}	<i>m</i> _{<i>t</i>-1}	bank crisis dummy	R ²	
\mathbf{P}	inflation (p_t)	-0.23 [-0.9]	0.10 [1.1]	0.14 [1.7]	0.39 [3.6]		0.39 [1.2]	0.19	
(123 obs.)	output (x_t)	-0.20 [-1.4]	-0.00 [-0.1]	0.93 [21]	0.02 [0.3]		0.08 [0.5]	0.80	

lagged subsample Z (set of t's such that $s_{t-1} = QE1$, QE2 or QE3)

			co	72			
t-1 is in	dependent variable	const.	p_{t-1}	x_{t-1}	r_{t-1}	m_{t-1}	R^2
QE2 & QE3	inflation (p_t)	0.15 [0.3]	0.22 [2.4]		0.05 [0.0]	0.0002 [0.1]	0.11
(112 obs.)	output (x_t)	-1.21 [-3.3]	-0.02 [-0.3]	0.77 [14]	-0.98 $[-0.5]$	0.0052 [2.6]	0.75

Note: Estimation by OIS t values in breakets this the monthly inflation rate stated at annual rates. This the

Table 6: Inflation and Output Reduced Form, January 1992 - December 2012

		coefficient of						
<i>t</i> −1 is in	t-1 is in dependent variable	const.	<i>p</i> _{<i>t</i>-1}	<i>x</i> _{<i>t</i>-1}	<i>r</i> _{<i>t</i>-1}	<i>m</i> _{<i>t</i>-1}	bank crisis dummy	R ²
\mathbf{P}	inflation (p_t)	-0.23 [-0.9]	0.10 [1.1]	0.14 [1.7]	0.39 [3.6]		0.39 [1.2]	0.19
(123 obs.)	output (x_t)	-0.20 [-1.4]	-0.00 [-0.1]	0.93 [21]	0.02 [0.3]		0.08 [0.5]	0.80

	coefficient of						
t-1 is in	dependent variable	const.	p_{t-1}	x_{t-1}	r_{t-1}	m_{t-1}	R^2
QE2 & QE3	inflation (p_t)	0.15 [0.3]		0.16 [1.8]		0.0002 [0.1]	0.11
(112 obs.)	output (x_t)	-1.21 [-3.3]	-0.02 [-0.3]	0.77 [14]	-0.98 [-0.5]	0.0052 [2.6]	0.75

Note: Estimation by OIS t values in breakets this the monthly inflation rate stated at annual rates. Nie the

Table 6: Inflation and Output Reduced Form, January 1992 - December 2012

		coefficient of						
t-1 is in d	dependent variable	const.	<i>p</i> _{<i>t</i>-1}	<i>x</i> _{<i>t</i>-1}	<i>r</i> _{t-1}	<i>m</i> _{<i>t</i>-1}	bank crisis dummy	<i>R</i> ²
\mathbf{P}	inflation (p_t)	-0.23 [-0.9]	0.10 [1.1]	0.14 [1.7]	0.39 [3.6]		0.39 [1.2]	0.19
(123 obs.)	output (x_t)	-0.20 [-1.4]	-0.00 [-0.1]	0.93 [21]	0.02 [0.3]		0.08 [0.5]	0.80

			co	efficien	t of		
t-1 is in	dependent variable	const.	p_{t-1}	x_{t-1}	r_{t-1}	m_{t-1}	R^2
QE2 & QE3	inflation (p_t)	0.15 [0.3]	0.22 [2.4]	0.16 [1.8]	0.05 [0.0]	0.0002 [0.1]	0.11
(112 obs.)	output (x_t)	-1.21 [-3.3]	-0.02 [-0.3]	0.77 [14]	-0.98 [-0.5]	0.0052 [2.6]	0.75

Nates Estimation by OIS t values in breakets this the monthly inflation rate stated at annual rates. This the

The output process

Table 6: Inflation and Output Reduced Form, January 1992 - December 2012

lagged subsample P (set of t's such that $s_{t-1} = P$) coefficient of								
<i>t</i> −1 is in	dependent variable	const.	<i>p</i> _{<i>t</i>-1}	<i>x</i> _{<i>t</i>-1}	<i>r</i> _{t-1}	m_{t-1}	bank crisis dummy	R ²
\mathbf{P}	inflation (p_t)	-0.23 [-0.9]	0.10 [1.1]	0.14 [1.7]	0.39 [3.6]		0.39 [1.2]	0.19
(123 obs.)	output (x_t)	-0.20 $[-1.4]$	-0.00 [-0.1]	0.93 [21]	0.02 [0.3]		0.08 [0.5]	0.80

lagged subsample Z (set of t's such that $s_{t-1} = QE1, QE2$ or QE3)

	coefficient of						72
t-1 is in	dependent variable	const.	p_{t-1}	x_{t-1}	r_{t-1}	m_{t-1}	R^2
QE2 & QE3	inflation (p_t)	0.15 [0.3]	0.22 [2.4]	0.16 [1.8]	0.05 [0.0]	0.0002 [0.1]	0.11
(112 obs.)	output (x_t)	-1.21 [-3.3]	-0.02 [-0.3]	0.77	-0.98 [-0.5]	0.0052 [2.6]	0.75

Note: Estimation by OIS & traduce in breakate this the monthly inflation rate stated at annual rates. This the

output (x_t)

Table 6: Inflation and Output Reduced Form, January 1992 - December 2012

	lagged sub	sample P	(set of t)	s such th	hat $s_{t-1} =$	= P)		
				coeffi	cient of			D ²
t-1 is in	dependent variable	const.	<i>p</i> _{<i>t</i>-1}	<i>x</i> _{<i>t</i>-1}	<i>r</i> _{t-1}	<i>m</i> _{<i>t</i>-1}	bank crisis dummy	<i>R</i> ²
\mathbf{P}	inflation (p_t)	-0.23 [-0.9]	0.10 [1.1]	0.14 [1.7]	0.39 [3.6]		0.39 [1.2]	0.19
(123 obs.)	output (x_t)	-0.20 [-1.4]	-0.00 $[-0.1]$	0.93 [21]	0.02 [0.3]		0.08 [0.5]	0.80
120	ged subsample Z (set	of t 's suc	that se	1 = OE	1 OE2 o	r OE3)		
	,ged subsample 2 (see		-	efficient	-	(2 25)		
t-1 is in	dependent variable	const.	p_{t-1}	x_{t-1}	r_{t-1}	m_{t-1}		<i>R</i> ²
QE2 & QE3	inflation (p_t)	0.15 [0.3]	0.22 [2.4]	0.16 [1.8]	0.05 [0.0]	0.0002 [0.1]		0.11
(112 obs.)	output (r_i)	_1 21	_0.02	0.77	_0.98	0.0052		0.75

Note: Estimation by OIS & values in breakets this the monthly inflation rate stated at annual rates wis the

-0.02

-0.3

0.77

[14]

-1.21

-3.3]

0.0052

[2.6]

0.75

-0.98

0.5

Table 6: Inflation and Output Reduced Form, January 1992 - December 2012

	lagged sub	sample P	(set of t)	s such th	hat s_{t-1} =	= P)		
		coefficient of						
<i>t</i> −1 is in	dependent variable	const.	<i>p</i> _{<i>t</i>-1}	<i>x</i> _{<i>t</i>-1}	<i>r</i> _{t-1}	m_{t-1}	bank crisis dummy	<i>R</i> ²
\mathbf{P}	inflation (p_t)	-0.23 [-0.9]	0.10 [1.1]	0.14 [1.7]	0.39 [3.6]		0.39 [1.2]	0.19
(123 obs.)	output (x_t)	-0.20 $[-1.4]$	-0.00 [-0.1]	0.93 [21]	0.02 [0.3]		0.08 [0.5]	0.80
lag	gged subsample Z (set	of t's suc	ch that s_{t-}	1 = QE	1, QE2 o	r QE3)		
(1) - 1 -	1		co	efficient	of			2ת
t-1 is in	dependent variable	const.	p_{t-1}	x_{t-1}	r_{t-1}	m_{t-1}		R^2
OE2 & OE3	inflation (p_t)	0.15	0.22	0.16	0.05	0.0002		0.11

Note: Estimation by OIS & values in breakets this the monthly inflation rate stated at annual rates wis the

[2.4]

-0.02

[-0.3]

[1.8]

0.77

[14]

[0.0]

-0.98

-0.51

[0.3]

-1.21

-3.3]

output (x_t)

(c) Roger E A Farmer 28 March 2014

[0.1]

0.0052

[2.6]

0.75

QE2 & QE3

(112 obs.)

Table 6: Inflation and Output Reduced Form, January 1992 - December 2012

				coeffi	coefficient of			
<i>t</i> −1 is in	in dependent variable	const.	<i>p</i> _{<i>t</i>-1}	<i>x</i> _{<i>t</i>-1}	<i>r</i> _{t-1}	<i>m</i> _{<i>t</i>-1}	bank crisis dummy	<i>R</i> ²
\mathbf{P}	inflation (p_t)	-0.23 $[-0.9]$	0.10 [1.1]	0.14 [1.7]	0.39 [3.6]		0.39 [1.2]	0.19
(123 obs.)	output (x_t)	-0.20 [-1.4]	-0.00 [-0.1]	0.93 [21]	0.02 [0.3]		0.08 [0.5]	0.80

lagged subsample Z (set of t's such that $s_{t-1} = QE1$, QE2 or QE3)

	coefficient of						72
t-1 is in	dependent variable	const.	p_{t-1}	x_{t-1}	r_{t-1}	m_{t-1}	R^2
QE2 & QE3	inflation (p_t)	0.15 [0.3]	0.22 [2.4]	0.16 [1.8]	0.05 [0.0]	0.0002 [0.1]	0.11
(112 obs.)	output (x_t)	-1.21 [-3.3]	-0.02 [-0.3]	0.77 [14]	-0.98 [-0.5]	0.0052 [2.6]	0.75

Note: Estimation by OIS & values in breakets this the monthly inflation rate stated at annual rates this the

Twelve month or one month inflation?

Table 6: Inflation and Output Reduced Form, January 1992 - December 2012

lagged subsample P (set of <i>t</i> 's such that $s_{t-1} = P$)								
<i>t</i> −1 is in	dependent variable	coefficient of						-2
		const.	<i>p</i> _{<i>t</i>-1}	<i>x</i> _{<i>t</i>-1}	<i>r</i> _{t-1}	<i>m</i> _{<i>t</i>-1}	bank crisis dummy	<i>R</i> ²
P (123 obs.)	inflation (p_t)	-0.23 [-0.9]	0.10 [1.1]	0.14 [1.7]	0.39 [3.6]		0.39 [1.2]	0.19
	output (x_t)	-0.20 [-1.4]	-0.00 [-0.1]	0.93 [21]	0.02 [0.3]		0.08 [0.5]	0.80

lagged subsample Z (set of t's such that $s_{t-1} = QE1, QE2$ or QE3)

		coefficient of					72
t-1 is in	dependent variable	const.	p_{t-1}	x_{t-1}	r_{t-1}	m_{t-1}	R^2
QE2 & QE3 (112 obs.)	inflation (p_t)	0.15 [0.3]	0.22 [2.4]		0.05 [0.0]	0.0002 [0.1]	0.11
	output (x_t)	-1.21 [-3.3]	-0.02 [-0.3]	0.77 [14]	-0.98 $[-0.5]$	0.0052 [2.6]	0.75

Note: Estimation by OIS t values in breakets this the monthly inflation rate stated at annual rates this the

Normal Period

QE Period

	INFL	GAP		INFL	GAP
INFL(-1)	0.860569	-0.029928	INFL(-1)	0.909263	-0.327566
	(0.04334)	(0.21983)		(0.03163)	(0.14211)
	[19.8550]	[-0.13614]		[28.7459]	[-2.30505]
GAP(-1)	0.022055	0.792535	GAP(-1)	0.041884	0.990800
	(0.01155)	(0.05858)		(0.01043)	(0.04688)
	[1.90950]	[13.5287]		[4.01385]	[21.1345]
С	-0.077047	-1.230802	С	0.024853	-0.194790
	(0.08348)	(0.42342)		(0.03297)	(0.14812)
	[-0.92291]	[-2.90683]		[0.75381]	[-1.31506]
XRES(-1)	0.000654	0.005303	R_POL(-1)	0.026649	0.165771
	(0.00047)	(0.00241)		(0.01824)	(0.08195)
	[1.37923]	[2.20349]		[1.46097]	[2.02288]
R_POL(-1)	-1.183732	-3.430306	DUM	0.036263	0.162394
	(1.60536)	(8.14227)		(0.04117)	(0.18495)
	[-0.73736]	[-0.42130]		[0.88086]	[0.87803]
R-squared	0.889077	0.751892	R-squared	0.950827	0.805507

Normal Period

QE Period

	INFL	GAP		INFL	GAP
INFL(-1)	0.860569	-0.029928	INFL(-1)	0.909263	-0.327566
	(0.04334)	(0.21983)		(0.03163)	(0.14211)
	[19.8550]	[-0.13614]		[28.7459]	[-2.30505]
GAP(-1)	0.022055	0.792535	GAP(-1)	0.041884	0.990800
	(0.01155)	(0.05858)		(0.01043)	(0.04688)
	[1.90950]	[13.5287]		[4.01385]	[21.1345]
С	-0.077047	-1.230802	С	0.024853	-0.194790
	(0.08348)	(0.42342)		(0.03297)	(0.14812)
	[-0.92291]	[-2.90683]		[0.75381]	[-1.31506]
XRES(-1)	0.000654	0.005303	R_POL(-1)	0.026649	0.165771
	(0.00047)	(0.00241)	N	(0.01824)	(0.08195)
	[1.37923]	[2.20349]	No price puzzle	[1.46097]	[2.02288]
			here		
R_POL(-1)	-1.183732	-3.430306	DUM	0.036263	0.162394
	(1.60536)	(8.14227)		(0.04117)	(0.18495)
	[-0.73736]	[-0.42130]		[0.88086]	[0.87803]
R-squared	0.889077	0.751892	R-squared	0.950827	0.805507

Some Comments on Counterfactuals

- The authors conduct counterfactuals
- This is a minefield for ordinary Svars
- It is a minefield with nuclear landmines for regime switching Svars

Some words of praise

- The method of regime dependent Vars is an interesting extension to the Svar literature
- The finding of expansionary QE under regime switching is important
- There is a job for theorists to understand the mapping from structural models to Svars