Learning the Macro-Dynamics of U.S. Treasury Yields with Arbitrage-free Term Structure Models

Discussion

Jessica A. Wachter

March 28, 2014

Wachter (Wharton)

Macro-Dynamics discussion

March 28, 2014 1 / 20

This paper

- This paper studies parameter uncertainty, learning, and forecasting with dynamic term structure models.
- The models in this paper are very rich. They provide an empirically plausible account of bond yields in a way that is consistent with no-arbitrage.
- This very richness makes studying parameter uncertainty, etc. a challenge.
- However, the benefits are that we learn more by looking at realistic models.

Model

• 3 factors Z_t :

$$Z_{t+1} = K_0^{\mathbb{P}} + K_Z^{\mathbb{P}} Z_t + \Sigma_Z^{1/2} e_{Z,t+1}^{\mathbb{P}},$$

where
$$e_{Z,t+1}^{\mathbb{P}} \stackrel{\text{iid}}{\sim} N(0, I)$$
.

Short-rate process

$$r_t = \rho_0 + \rho_Z Z_t.$$

• Prices of risk

$$\Lambda_{Zt} = \Lambda_0 + \Lambda_1 Z_t.$$

• Stochastic Discount Factor

$$\log \mathcal{M}_{t+1} = -r_{t+1} - \Lambda_{Zt}^{\top} e_{t+1}^{\mathbb{P}} - \frac{1}{2} \Lambda_{Zt}^{\top} \Lambda_{Zt}.$$

3

-

→ < 3 →

Bond pricing

- Let $\Theta = \{ K_0^{\mathbb{P}}, K_Z^{\mathbb{P}}, \Sigma_Z, \rho_0, \rho_Z, \Lambda_0, \Lambda_1 \}.$
- Bond prices: $D_t^m = E_t \left[\mathcal{M}_{t+1} D_{t+1}^{m-1} \right]$ with boundary condition $D_t^0 = 1$.
- 3 factors implies that 3 bonds will be priced without error, but what about the others?
- Possibilities
 - 3 bonds priced without error, assume others are priced with error. Conditional on Θ, Z_t is observed.
 - ► All bonds priced with error, *Z*^{*t*} unobserved.
- This paper First 3 PCs are priced without error, other linear combinations priced with error. Conditional on Θ , Z_t is observed. In fact, Z_t equals the 3 PCs.

- 4 個 ト 4 国 ト - 4 国 ト - 三日

P1: The naive econometrician forecasts bond yields

Let Z_1^t = history of Z_t , \mathcal{O}_1^t = history of yields. At t, the forecaster

- Maximizes the likelihood $f(Z_1^t, \mathcal{O}_1^t | \Theta, \Sigma_{\mathcal{O}})$, implying values $\hat{\Theta}_t, \hat{\Sigma}_{\mathcal{O},t}$.
- 2 Creates forecasts of Z_{t+h}

$$\hat{Z}_{t+h} = \hat{K}_{0t}^{\mathbb{P}} + \left(\hat{K}_{Zt}^{\mathbb{P}}\right)\hat{K}_{0t}^{\mathbb{P}} + \dots + \left(\hat{K}_{Zt}^{\mathbb{P}}\right)^{h-1}\hat{K}_{0t}^{\mathbb{P}} + \left(\hat{K}_{Zt}^{\mathbb{P}}\right)^{h}Z_{t}$$

Which imply forecasts of yields

$$\hat{y}_{t+h}^m = A_m(\hat{\Theta}) + B_m(\hat{\Theta})\hat{Z}_{t+h}$$

"This is naive for both forward- and backward-looking reasons."

Forecasts of future bond yields ... are based on the fitted vector-autoregression assuming that Θ is fixed at the current estimate $\hat{\Theta}_t$ even though $\hat{\Theta}_{t+1}$ will in fact change with the arrival of new information.

This learning rule is also naive looking backwards, because $\hat{\Theta}_t$ is updated by estimating a likelihood function over the sample up to date t presuming that Θ is fixed and has never changed in the past even though $\hat{\Theta}_t$ did change every month.

P2: A Bayesian econometrician forecasts bond yields

The Bayesian knows what he doesn't know.

- **9** Prior distribution over the parameters: $p(\Theta, \Sigma_{\mathcal{O}})$
- 2 Likelihood function as of time t: $f(Z_1^t, \mathcal{O}_1^t | \Theta, \Sigma_{\mathcal{O}})$
- Posterior distribution

$$p_t(\Theta, \Sigma_{\mathcal{O}} | Z_1^t, \mathcal{O}_1^t) \propto f(Z_1^t, \mathcal{O}_1^t | \Theta, \Sigma_{\mathcal{O}}) p(\Theta, \Sigma_{\mathcal{O}}).$$

- Predictive distribution:
 - Draw $\tilde{\Theta}$ from the posterior
 - **2** Draw \tilde{Z}_{t+h} from multivariate normal implied by VAR and $\tilde{\Theta}$
 - Solution of the $\tilde{\Theta}$ and \tilde{Z}_{t+h}

Comparing P1 (Naive) and P2 (Bayesian)

- P2 is harder, probably, and most likely implies forecasts similar to P1.
- Why? Uncertainty could enter through convexities in bond pricing. There's probably not enough convexity, and not enough parameter uncertainty, for this to make a big difference for first moments.
- Isn't the Bayesian econometrician also being a bit naive?

P3: A Bayesian rep. agent prices bonds

- The agent observes factors Z_t and infers parameters through Bayesian updating from the VAR.
- Are r_t and Λ_{Zt} also unknown? Don't these depend at least partially on the agent's utility function?
- r_t and Λ_{Zt} are themselves equilibrium objects that will be affected by learning. The arrival of new information represents a risk to the agent that may be priced.
- Equilibrium bond prices:

$$D_t^m = E_t^{\mathsf{RA}} \left[\mathcal{M}_{t+1} D_{t+1}^{m-1} | Z_t^1 \right]$$

where E^{RA} denotes expectations taken with respect to the posterior distribution of the representative agent.

イロト 不得下 イヨト イヨト 二日

An example of P3

• Assume a representative agent with power utility. Log endowment growth follows

$$\Delta c_{t+1} \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\mu, \sigma)$$

- Assume μ is unknown to the representative agent.
- In equilibrium

$$r_t = -\log\beta + \gamma\hat{\mu}_t - \frac{1}{2}\hat{\sigma}_t^2$$

• Negative shocks to consumption lower $\hat{\mu}_t$, lower r_t , and raise bond prices. Thus bonds are a hedge, and learning lowers risk premia.

< 回 ト < 三 ト < 三 ト

Comparing P2 and P3

- Both are Bayesian models in which agents learn about the parameters. They differ in what is being learned about and what information is being used.
- The learning model in this paper combines a bit of both.

What does this paper do?

The full Bayesian approach. The agent prices bonds using:

$$D_t^m = \int E^{\mathbb{Q}} \left[\prod_{s=1}^m e^{-r_{t+1}} \, | \, \Theta_t^{\mathbb{Q},t+m+1} \right] f^{\mathbb{Q}} \left(\Theta_t^{\mathbb{Q},t+m-1} \, | \, Z_1^t, \mathcal{O}_1^t \right),$$

and updates $\Theta^{\mathbb{P}} \subset \Theta$ using the VAR on Z_t .

- How does the agent form $f^{\mathbb{Q}}\left(\Theta_t^{\mathbb{Q},t+m-1} \mid Z_1^t, \mathcal{O}_1^t\right)$?
- Seems reasonable, but where does it come from?

What does this paper do? (cont.)

- O The naive approach.
- **③** In-between: the semi-consistent (SC) learner.
 - Derive posterior distribution for Θ^ℙ using a VAR, as in P3 except with yields.
 - Use the mean of this posterior distribution to calculate forecasts \hat{Z}_{t+h} .
 - Using these forecasts, and $\Theta^{\mathbb{Q}}$ from MLE (?), construct yield forecasts.

Comments:

- SC is a tractable way to bring in a degree of parameter uncertainty. However, I struggle with the economic interpretation of this learning framework.
- $\bullet\,$ In the end, \mathcal{SC} and Naive are similar for forecasting.

Root-mean-squared forecasting errors

	/	\			\ ^		
	Panel (a): RMS	SE's (in l	oasis poi	nts) for (Quarterly	v Horizon
Rule	$6\mathrm{m}$	1Y	2Y	3Y	5Y	7Y	10Y
$\ell(RW)$	38.0	41.1	43.3	43.7	42.4	41.1	37.5
$\ell(BCFF)$	51.4	51.6	52.4	54.3	49.5	47.9	44.8
	() [4.10]	() [3.28]	() [4.48]	$^{()}_{[5.03]}$	() [4.86]	$^{()}_{[3.40]}$	$^{()}_{[3.54]}$
$\ell(JSZ)$	39.7 (-4.03)	41.8 (-3.07)	45.2 (-3.92)	44.6 (-5.28)	43.0 (-4.39)	41.2 (-3.92)	37.7 (-3.33)
	[1.96]	[0.76]	[2.85]	[1.31]	[0.65]	[0.08]	[0.27]
$\ell(JSZ_{CG})$	38.5 (-4.36)	41.6 (-3.17)	45.2 (-3.80)	45.0 (-4.45)	43.4 (-4.10)	42.1	38.8 (-2.96)
	[0.50]	[0.48]	[3.05]	[1.55]	[1.20]	[1.21]	[2.01]
$\ell(JPS)$	36.2 (-3.96)	41.2 (-2.74)	44.2 (-2.99)	43.9 (-3.86)	41.4 (-4.71)	40.7 (-3.94)	39.3 (-2.64)
	[-0.78]	[0.04]	[0.57]	[0.13]	[-1.20]	[-0.41]	[1.26]

< 4 ∰ > <

Root-mean-squared forecasting errors

	Panel (b): RMSE's (in basis points) for Annual Horizon								
Rule	$6 \mathrm{m}$	1Y	2Y	3Y	5Y	7Y	10Y		
$\ell(RW)$	136.2	135.3	126.3	118.0	107.3	102.2	96.0		
$\ell(BCFF)$	148.2	144.6	140.1	136.2	119.6	113.9	106.0		
	() [1.18]	$() \\ [0.90]$	[1.59]	[2.28]	() [2.30]	[2.40]	[2.56]		
$\ell(JSZ)$	141.7 (-1.07)	140.6 (-0.51)	134.7 (-0.84)	125.9 (-1.61)	111.7 (-1.22)	102.3	92.9 (-1.63)		
	[0.75]	[0.77]	[1.26]	[1.28]	[0.81]	[0.02]	[-0.58]		
$\ell(JSZ_{CG})$	137.3 (-1.33)	136.6 (-0.92)	130.5 (-1.38)	122.5 (-1.93)	110.7 (-1.65)	104.1 (-1.85)	97.4 (-1.49)		
	[0.19]	[0.26]	[0.92]	[1.01]	[1.14]	[0.72]	[0.50]		
$\ell(JPS)$	130.4	130.7	123.3 (-1.80)	114.4 (-2.52)	101.8	96.5 (-2.23)	92.8		
	(-1.51) [-0.47]	(-1.31) [-0.42]	(-1.80) [-0.43]	(-2.52) [-0.72]	(-2.57) [-1.44]	(-2.23) [-1.12]	(-1.48) [-0.51]		

Panel (b): RMSE's (in basis points) for Annual Horizon

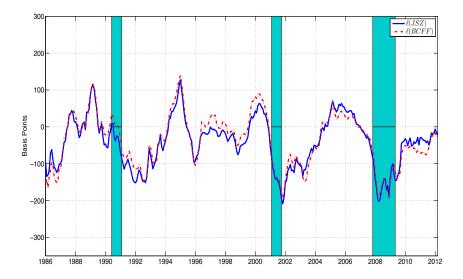
3

(日) (同) (三) (三)

Results

- Learning rules from *SC* offer improvements, often significant ones, over professional forecasters.
- They do not offer significant improvements over the random walk model.
- Out-of-sample forecasting is interesting but may not be a powerful model diagnostic.

Forecasts of the level factor



Wachter (Wharton)

March 28, 2014 17 / 20

< //2 → < 三

Forecasts of the slope factor



Wachter (Wharton)

Macro-Dynamics discussion

March 28, 2014 18 / 20

47 ▶

Forecasting "errors" combine two quantities:

- **1** Errors in capturing the correct conditional distribution of yields
- Ont knowing the future.

If its only 2, then errors should be uncorrelated (might be difficult to assess in a finite sample).

Errors vs. shocks

- Note that even 2 is not measurement error in a traditional sense: shocks are correlated with future yields,
- Taking this into account affects inference from the VAR: Inference is non-standard and posterior distributions of parameters are no longer normally distributed.
- Standard normalizations, effectively taking the mean as known, may not be harmless.