Natural Expectations,
Macroeconomic Dynamics,
and Asset Pricing

Andreas Fuster
Federal Reserve Bank of New York

Benjamin Hebert
Harvard University

David Laibson
Harvard University
NBER

March 15, 2012

The views expressed are those of the authors and do not necessarily represent the views of the Federal Reserve Bank of New York or the Federal Reserve System.

Forthcoming: *NBER Macroeconomics Annual*
Two starting assumptions
(cf. Fuster, Mendel, and Laibson 2010)

1. Assume that fundamentals are hump-shaped.
 - Momentum in the short-run.
 - Partial mean reversion in the long run.
Second assumption

2. Agents do not know that fundamentals are hump-shaped and base their beliefs on parsimonious high-frequency models that they fit to the data.

Assume that this preference for parsimonious high-frequency models is at least partially a psychological bias.
Economic reasons for parsimonious models

• Tradeoff between model flexibility (more parameters) and overfitting
• To avoid overfitting limit number of parameters, k
• Formalizations:
 ▪ Akaike Information Criterion (AIC)
 ▪ Bayesian (Schwarz) Information Criterion (BIC)
Psychological reasons for parsimonious models:

- Myopia: short-term predictions \rightarrow low k
- Recency bias: small samples \rightarrow low k
- Complexity aversion \rightarrow low k
- Preference for tractibility \rightarrow low k
- Anchoring and Representativeness, also lead agents to underestimate mean reversion, which is similar to low k
Consequences of parsimonious models:

1. Agents recognize the short-term momentum but miss some of the long-run mean reversion
 - Endogenous extrapolation bias and pro-cyclical excess optimism

2. Asset returns are excessively volatile and exhibit overreaction
 - Returns negatively predicted by lagged returns, P/E, and $\Delta \ln C$

3. Real economic activity has amplified cycles
 - $\Delta \ln C$ negatively auto-correlated in medium run

4. Equity premium is large, although long-run equity returns covary weakly with long-run consumption growth
 - If agents had RE, equity premium nearly vanishes

5. Agents with rational expectations hold large equity shares
 - Follow counter-cyclical asset allocation policy
Related Literature

Adam and Marcet (2011): learning and asset pricing
Barberis, Shleifer, and Vishny (1998): extrapolative dividend forecasts
Barsky and De Long (1993): extrapolation and excess volatility
Benartzi (2001): extrapolation and company stock
Black (1986): noise traders
Campbell and Mankiw (1987): shocks are persistent in low-order ARIMA
Campbell and Shiller (1988a,b): P/E ratio and return predictability
Choi (2006): extrapolation and asset pricing
Choi, Laibson, and Madrian (2009): positive feedback in investment
De Bondt (1993): extrapolation bias in surveys and experiments
Gabaix (2010): sparse representations
Hommes (2005, 2008): bubbles in the lab
Hong and Stein (1999): forecasting biases
Some Related Literature

Kahneman and Tversky (1973): representativeness
Keynes (1936): animal spirits
Lansing (2010): extrapolation and asset pricing in a macro model
LaPorta (1996): Growth expectations have insufficient mean reversion
LeBaron, Arthur, and Palmer (1999): agent-based modeling
LeBaron and Tesfatsion (2008): agent-based modeling
Leroy and Porter (1981): excess volatility in stock prices
Lo and MacKinlay (1988): variance ratio tests
Loewenstein, O’Donoghue, and Rabin (2003): projection bias
Malmendier and Nagel (2011): Recency bias bias and role of personal experience
Parker (2001): Cov of returns and $\Delta \ln C$ rises from short- to medium-run
Piazessi and Schneider (2009): extrapolative beliefs in the housing market
Previtero (2010): extrapolative beliefs and annuity investment
Shiller (1981): excess volatility in stock prices
Summers (1986): power problems in financial econometrics
Tortorice (2010): extrapolative beliefs in unemployment forecasts
Model

• Equity tree: earnings growth is an AR(40)
• CARA habit preferences (Alessie and Lusardi)

\[\sum_{t=0}^{\infty} \delta^t \left\{-\frac{1}{\alpha} \exp\left(-\alpha \left[c_t - \gamma c_{t-1} \right]\right)\right\}\]

\(\alpha\) controls curvature of the utility function
\(\gamma\) represents strength of habit
• Dynamic budget constraint for wealth, w_t

$$w_t = \left(w_{t-1} - c_{t-1} - \theta_{t-1} P_{t-1} \right) R + \theta_{t-1} (d_t + P_t)$$

θ_t represents claims on the Lucas tree at date t

d_t represents Lucas tree dividend at date t

P_t represents price of Lucas tree at date t

• Elastic supply of foreign capital with gross return R

• Assume foreign agents don’t hold domestic capital
 – Home bias
 – Moral hazard
Natural expectations

\[\Delta d_t = AR(40) \]
\[\Delta d_t = AR(p) \quad p \leq 40 \]

Data generating process

Natural expectations

We will study cases \(1 \leq p \leq 40 \).
Model matches the data for \(p \leq 20 \).
Consumption is a weighted average of c_{t-1} and Y_t

$$c_t = \frac{\gamma}{R} c_{t-1} + \left(1 - \frac{\gamma}{R}\right) Y_t - Q$$

Permanent income

$$Y_t = \frac{R - 1}{R} \left[-R B_t + \sum_{s=0}^{\infty} \frac{E_t d_{t+s}}{R^s} \right]$$

Shift term

$$Q = \frac{1}{R - 1} \left[\frac{1}{\alpha} \ln (R \delta) + \frac{\alpha}{2} Var_t (c_{t+1}) \right]$$
Value function:

\[
V(c_{t-1}, B_t, d_t, d_{t-1}, \ldots) = \frac{-1}{\alpha (1 - \delta)} \exp\left(-\alpha [c_t - \gamma c_{t-1}] \right)
\]

Price of the equity tree:

\[
P_t = \sum_{s=1}^{\infty} \frac{E_t d_{t+s}}{R^s} - \frac{\alpha \times \text{Var}_t (c_{t+1})}{\left(1 - \frac{\gamma}{R}\right)(R - 1)^2}
\]
U.S. Log Real Capital Income
(1947q1-2010q3)

U.S. NIPA (BEA): net operating surplus of private enterprises.
IRF’s for real capital income

Quarters
Calibration

<table>
<thead>
<tr>
<th>True DGP</th>
<th>Perceived DGP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R = 1.0025$</td>
<td>$\Delta \ln d \sim \text{AR}(40)$ estimated from NIPA</td>
</tr>
<tr>
<td>$\delta R = 1$</td>
<td>$\Delta \ln d \sim \text{AR}(p)$ estimated from NIPA</td>
</tr>
<tr>
<td>$\gamma = 0.9$</td>
<td>gross risk-free rate (quarterly)</td>
</tr>
<tr>
<td></td>
<td>discount factor</td>
</tr>
<tr>
<td>$\alpha = \frac{4}{c \left(1 - \frac{\gamma}{R}\right)}$</td>
<td>habit weight</td>
</tr>
<tr>
<td></td>
<td>local relative risk aversion of 4</td>
</tr>
</tbody>
</table>
IRF’s for cumulative excess returns

Quarters after unit shock
IRF’s for consumption
Covariance of consumption growth and cumulative return at different horizons
Empirical evaluation

- Annual data (1929-2010)
- Real per-capita consumption: US NIPA
- Excess returns
- P/E ratios

- Simulations annualized for comparisons
- Simulations generated for 82 years of data
- Monte Carlo to generate confidence intervals
Correlation of Excess Returns in Year τ with Cumulative Excess Returns for Years $\tau + 2$ to $\tau + 5$, for Different AR(p) Models of Earnings
Correlation of P/E\textsubscript{40} in Year \(\tau\) with Cumulative Excess Returns for Years \(\tau + 2\) to \(\tau + 5\), for Different AR(\(p\)) Models of Earnings
Correlation $\Delta \ln C_\tau$ with Cumulative Excess Returns for Years $\tau+2$ to $\tau+5$, for Different AR(p) Models of Earnings
Correlation of P/E_{40} in Year τ with $(\ln C_{\tau+6} - \ln C_{\tau+2})$, for Different AR($p$) Models of Earnings.
Correlation of $\Delta \ln C_{\tau}$ with $(\ln C_{\tau+6} - \ln C_{\tau+2})$, for Different AR($p$) Models of Earnings
Application to equity premium puzzle

- Agents perceive equities to be very risky, since they don’t recognize the mean reversion

\[\text{COV} (\Delta_h c_{t+h}, R_{t,t+h}) = \frac{1}{3} \times \frac{1}{3} \times \text{COV} (\Delta_h c_{t+h}, R_{t,t+h}) \]

- In other words, equities are about 9 times less risky than they are perceived to be.
Equity Premium for Different AR(p) Models of Earnings
Standard deviation of equity returns for Different AR(p) Models of Earnings
Standard Deviation of Consumption Growth for Different AR(p) Models of Earnings
Covariance of consumption growth and cumulative return at different horizons

Simulated data

Empirical data
How would RE agents behave in this economy?

- Closed form solution for consumption function and asset allocation
- RE agents are relatively highly leveraged
- RE agents adjust their equity allocation counter-cyclically
Leverage of RE agents for Different AR(p) Models of Earnings
Summary

1. Fundamentals follow hump-shaped dynamics:
 • Short-run momentum
 • Long-run (partial) mean reversion

2. Agents estimate simple models
 – Parsimonious, tractable
 – Typical models chosen in economics literature
Summary

1. Low order forecasting equations miss some of the mean reversion in fundamentals, so resulting asset prices exhibit excess volatility and long-run mean reversion
2. Cycles in consumption (and investment)
3. The covariance of returns and consumption growth rises and then falls with h
4. New explanation for the ability of cay to predict returns.
5. Equity is perceived as many times riskier than it actually is
6. Rational Expectations investors hold far more equity than Natural Expectations investors