Endogenous Technology Adoption and R&D

as

Sources of Business Cycle Persistence

by

Diego Anzoategui, Diego Comin*, Mark Gertler and Joseba Martinez

NYU and *Dartmouth

March 2016
Motivation

- Slow recovery following a financial crisis
- Coincides with a slowdown of productivity growth (Fernald, 2014)
 - Also true for recent Euro area data (e.g. UK)
 * True following emerging market financial crises (Queralto)
- Candidate hypotheses: Bad luck versus endogenous response

- Bad luck view (at least for U.S): Fernald 2014
 - Observes that slowdown in TFP began in 2004, prior to Great Recession
Figure 1: Detrended Capacity Adjusted TFP and Labor Productivity
Endogenous response to business cycle conditions

• Crisis induced large drop in investment in new technologies (both R&D and adoption)
 – Large R&D contraction during Great Recession
 – Large contraction also in 2001-2002 recession → TFP decline prior to GR

• Speed of technology diffusion is pro-cyclical.
 – Survey data: sample of 26 production technologies that diffused at various times over the period 1947-2003 in the US (5) and the UK (21).
 – Elasticity of speed of diffusion with respect to business cycle around 4.
Figure 2: R&D

R&D detrended

R&D and GDP (1999 = 100)
Figure 3: Speed of Diffusion and Cycle
Figure 4: Diffusion Speed for 3 Internet Technologies in the UK, 2004-2013
This Paper

• Develop and estimate monetary DSGE model with endogenous technology via R&D and adoption

• Use model to assess:
 – How much of the recent productivity growth decline was an endogenous response to the Great Recession.
 – Whether the mechanism can also account for the pre-GR productivity decline.
 – More generally, the extent to which endogenous productivity can help account for business cycle persistence
Related Literature

- Comin/Gertler, 2006: endogenous prod. as business cycle propagation mechanism
- Hall, 2014; Reifschneider/Wascher/Wilcox, 2014: Decline in demand during GR source of reduction in capacity growth
 - Differences with BK:
 * 1. Explicit model of R&D and adoption with realistic adoption lags
 * 2. Use data on business R&D (excludes public R&D, includes software dev.)
 * 3. Impose ZLB on monetary policy (turns out to be important).
Main Findings

- Endogenous TFP important source of productivity slowdown following Great Recession
 - Mainly via drop in adoption intensity stemming from crisis.
- Mechanism also accounts for much of pre-GR slowdown in TFP
 - Though shocks to R&D technology an important driver
- Drop in physical investment in GR also contributes to decline in labor productivity (as in Hall)
- Overall, strong effects of decline in aggregate demand during GR on aggregate supply
Model Features

• Non-standard features:
 – Endogenous productivity via R&D and technology adoption
 – Skilled labor is input for R&D and adoption processes

• Standard features
 – Habit formation in consumption
 – Flow investment adjustment costs
 – Variable Capital Utilization
 – "Calvo" price and wage rigidities
 – Taylor rule for monetary policy with ZLB constraint

• We do not model financial frictions explicitly
 – But include shock that transmits like financial shock
Production Sector and Endogenous TFP: Preliminaries

- Two types of firms: (i) final goods; (ii) intermediate goods

- Final goods firms
 - Continuum of measure unity, monopolistically competitive.
 - Firm i produces differentiated output Y_t^i
 - Final good composite Y_t:

$$Y_t = \left(\int_0^1 (Y_t^i)^{\frac{1}{\mu_t}} d\mu_t \right)^{\mu_t}$$

- Firm i uses Y_{mt}^i units of intermediate goods composite as input

$$Y_t^i = Y_{mt}^i$$

- Sets nominal price P_t^i on a staggered basis.
Production Sector and Endogenous TFP (con’t)

• Intermediate goods firms
 – Continuum of measure A_t, monopolistically competitive
 – $A_t =$ stock of "adopted" intermediate goods (i.e. technologies)
 – Firm j produces output Y_{mt}^j
 – Intermediate goods composite

\[Y_{mt} = \left(\int_0^{A_t} (Y_{mt}^j)^{\frac{1}{\varphi}} d\varphi \right)^{\varphi} \]

– Firm j uses capital services $U_t^j K_t^j$ and unskilled labor L_t^j as input

\[Y_{mt}^j = \theta_t \left(U_t^j K_t^j \right)^\alpha (L_t^j)^{1-\alpha} \]

$\theta_t \equiv$ exogenous component of TFP.
Production Sector and Endogenous TFP (con’t)

\[Y_t = \left(\int_0^1 (Y_t^i)^{\frac{1}{\mu_t}} di \right)^{\mu_t} = \Omega_t \cdot \overline{Y}_t \]

\[\Omega_t \equiv \left(\int_0^1 \frac{Y_t^i}{\overline{Y}_t^i} \frac{1}{\mu_t} di \right)^{\mu_t} = 1 \text{ to a 1st order} \]

- Final goods production function → \(\overline{Y}_t = Y_{mt} \)

- Given a symmetric equilibrium for intermediate goods:

\[Y_t = Y_{mt} \]
\[= X_t \cdot (U_tK_t)^{\alpha}(L_t)^{1-\alpha} \]
\[= [A_t^{\vartheta-1}\theta_t] \cdot (U_tK_t)^{\alpha}(L_t)^{1-\alpha} \]

- Endogenous TFP via \(A_t \).
R&D and Adoption

$Z_t \equiv$ stock of "unadopted" technologies (intermediate goods)

$J_t \equiv$ value of unadopted technology

$L_{srt} \equiv$ stock of skilled labor working on R&D

$L_{srt}^p \equiv$ skilled labor employed in R&D by innovator p

- R&D technology: $\varphi_t \equiv \#$ of new technologies at $t + 1$ unit of L_{srt}^p can create:

$$\varphi_t = \chi_t Z_t L_{srt}^{\rho-1}$$

- Innovator p's R&D decision problem:

$$\max_{L_{srt}^p} E_t \left\{ \Lambda_{t,t+1} J_{t+1} \varphi_t L_{srt}^p \right\} - w_{st} L_{srt}^p$$
R&D and Adoption (con’t)

- R&D decision problem: fonc

\[
E_t\{\Lambda_{t,t+1}J_{t+1}\varphi_t\} - w_{st} = 0
\]

\[
\rightarrow E_t\{\Lambda_{t,t+1}J_{t+1}\chi_tZ_tL_{srt}^{\rho - 1}\} - w_{st} = 0
\]

- \(J_{t+1}\) procyclical and \(w_{st}\) sticky \(\rightarrow L_{srt}\) procyclical

- Evolution of aggregate stock of unadopted technologies:

\[
Z_{t+1} = \varphi_tL_{srt} + \phi Z_t
\]

\[
= \chi_tZ_tL_{srt}^\rho + \phi Z_t
\]
R&D and Adoption (con’t)

- Adoption: conversion of Z_t to A_t.
 - Adopter buys new technology from innovator for price J_t
 - Hires skilled labor L_{sat} to adopt
 - $\lambda_t = \lambda(Z_tL_{sat}) \equiv$ probability technology is adopted with $\lambda' > 0; \lambda'' < 0$
 - $\rightarrow \frac{1}{\lambda_t} = \text{mean diffusion lag}$

- Value of adopted good

$$V_t = \Pi_{mt} + \phi E_t\{\Lambda_{t,t+1}V_{t+1}\}$$

$\Pi_{mt} \equiv$ profits from adopted intermediate good.
R&D and Adoption (con’t)

- Adopter’s decision problem:

\[
J_t = \max_{L_{sat}} E_t \left\{ -w_{st}L_{sat} + \phi \Lambda_{t,t+1} [\lambda_t V_{t+1} + (1 - \lambda_t) J_{t+1}] \right\}
\]

\[
s.t. \; \lambda_t = \lambda(Z_t L_{sat})
\]

\[
\rightarrow Z_t \lambda' \cdot \phi E_t \{\Lambda_{t,t+1} [V_{t+1} - J_{t+1}]\} = w_{st}
\]

- \(V_t - J_t \) procyclical and \(w_{st} \) sticky \(\rightarrow L_{sat} \) procyclical

- Evolution of adopted technologies

\[
A_{t+1} = \lambda_t \phi[Z_t - A_t] + \phi A_t
\]
Households

\(B_t \equiv \) riskless bond (zero net supply)

\(\varrho_t \equiv \) "liquidity demand" shock (Fisher 2014)

\(L_{ht}^h \) and \(L_{st}^h \equiv \) unskilled and skilled labor supply

- Household decision problem

\[
\max_{C_t,B_t,L_{ht}^h,L_{st}^h} \mathbb{E}_t \sum_{\tau=0}^{\infty} \beta^\tau \left\{ \log(C_{t+\tau} - bC_{t+\tau-1}) + \varrho_t B_t - \nu_t \left[\frac{(L_{ht}^h)^{1+\varphi} + (L_{st}^h)^{1+\varphi}}{1 + \varphi} \right] \right\}
\]

s.t.

\[
C_t = w_{ht}^h L_t + w_{st}^h S_t + \Pi_t + R_{kt} Q_{t-1} K_t - Q_t K_{t+1} + R_t B_t - B_{t+1}
\]

with

\[
R_{kt} = \frac{D_t + Q_t}{Q_{t-1}}
\]
Households (con’t)

• foncs for capital and bonds

\[1 = E_t\{\Lambda_{t,t+1}R_{kt+1}\} \]
\[1 = E_t\{\Lambda_{t,t+1}R_{t+1}\} + \zeta_t \]

\[\Lambda_{t,t+1} \equiv \beta u'(C_{t+1})/u'(C_t); \quad \zeta_t = \varrho_t/u'(C_t) \]

\[\rightarrow E_t\{\Lambda_{t,t+1}(R_{kt+1} - R_{t+1})\} = \zeta_t \]

• Rise in \(\varrho_t \) reduces both consumption and investment demand
 – Also reduces R&D and adoption since \(\Lambda_{t,t+1} \approx 1/R_{kt+1} \) declines
 – Transmits through economy like monetary shock (shift in \(R_{t+1} \))
 – Increases spread \(R_{kt+1} - R_{t+1} \) like financial shock
Rest of Model

- Final goods firms set prices on staggered basis: Calvo with indexing

- Households set nominal wages on staggered basis: Calvo with indexing

- Capital producers: "Q" equation for investment with flow adj. costs

- Monetary Policy: Taylor rule with partial smoothing and ZLB constraint
Model Summary

- Conventional DSGE model with endogenous TFP via R&D and adoption

- Key modifications:

\[Y_t = [A_t^\theta - 1 \theta_t] \cdot (U_t K_t)^\alpha (L_t)^{1-\alpha} \]

\[Z_{t+1}/Z_t = \chi_t L_{srt}^\rho + \phi \]

\[A_{t+1} = \lambda_t \phi [Z_t - A_t] + \phi A_t \]

with

\[\lambda_t = \lambda(Z_t L_{sat}) \]

- Skilled labor devoted to R&D \(L_{srt} \) and to adoption \(L_{sat} \):

 - Endogenous and procyclical

 - Depends inversely cost of capital \(R_{kt+1} \)

 \[* \to R_{kt+1} \text{ has both direct and indirect effects} \]
Estimation Strategy

- Seven standard quarterly series plus R&D
 - Standard series: $Y_t, C_t, I_t, W_t/P_t, N_t, r^n_t, \pi_t$
 - R&D: spending by private firms on R&D, including software development
 * Annual series \rightarrow mixed frequency estimation

- One shock for each series. Mostly standard except:
 - Liquidity premium replaces discount factor as main demand shock
 - Shock to productivity of R&D investment

- Sample period: 1984Q1-2013Q4
 - Structural parameters estimated over non-ZLB period 1984Q1-2008Q4
 - Historical decompositions over entire sample (imposing ZLB constraint)
Estimation Strategy (con’t)

- Estimate conventional DSGE parameters

- Use mix of estimation and calibration for new parameter associated with R&D sector
 - Estimate $\rho \equiv$ elasticity of new technologies w.r.t. R&D
 - Identify labor supply elasticity and wage setting frequency of skilled labor by assuming it is the same as for unskilled labor
 - Calibrate other parameters to hit various targets.

- Use Bayesian methods (see, e.g., An and Schorfheide, 2006)
 - Combine model likelihood function with priors for parameters to be estimated to obtain posterior distribution
 - Let the data speaks as much as possible.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Capital share</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>δ</td>
<td>Capital depreciation</td>
<td>0.02</td>
</tr>
<tr>
<td>β</td>
<td>Discount factor</td>
<td>0.995</td>
</tr>
<tr>
<td>$\frac{G}{Y}$</td>
<td>SS government consumption/output</td>
<td>0.2</td>
</tr>
<tr>
<td>γ_y</td>
<td>SS output growth</td>
<td>1.87%</td>
</tr>
<tr>
<td>μ</td>
<td>SS final goods mark up</td>
<td>1.1</td>
</tr>
<tr>
<td>μ_w</td>
<td>SS wage mark up</td>
<td>1</td>
</tr>
<tr>
<td>ϑ</td>
<td>Intermediate goods mark up</td>
<td>1.35</td>
</tr>
<tr>
<td>$1 - \phi$</td>
<td>Obsolescence rate</td>
<td>0.08/4</td>
</tr>
<tr>
<td>$\bar{\lambda}$</td>
<td>SS adoption lag</td>
<td>0.15/4</td>
</tr>
<tr>
<td>ρ_{λ}</td>
<td>Adoption elasticity</td>
<td>0.95</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Distr</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>ρ</td>
<td>Taylor rule smoothing</td>
<td>Beta</td>
</tr>
<tr>
<td>ϕ_{π}</td>
<td>Taylor rule inflation</td>
<td>Gamma</td>
</tr>
<tr>
<td>ϕ_{y}</td>
<td>Taylor rule labor</td>
<td>Gamma</td>
</tr>
<tr>
<td>ϕ</td>
<td>Inverse Frisch elast</td>
<td>Gamma</td>
</tr>
<tr>
<td>f''</td>
<td>Investment adj cost</td>
<td>Gamma</td>
</tr>
<tr>
<td>$\delta(U)/(\delta)_{U}$</td>
<td>Capital util elast</td>
<td>Gamma</td>
</tr>
<tr>
<td>ξ_{p}</td>
<td>Calvo prices</td>
<td>Beta</td>
</tr>
<tr>
<td>ξ_{w}</td>
<td>Calvo wages</td>
<td>Beta</td>
</tr>
<tr>
<td>ι_{p}</td>
<td>Price indexation</td>
<td>Beta</td>
</tr>
<tr>
<td>ι_{w}</td>
<td>Wage indexation</td>
<td>Beta</td>
</tr>
<tr>
<td>b</td>
<td>Consumption habit</td>
<td>Beta</td>
</tr>
<tr>
<td>ρ_{z}</td>
<td>R&D elasticity</td>
<td>Beta</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Prior</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>ρ_θ</td>
<td>TFP</td>
<td>Beta 0.50 0.20</td>
</tr>
<tr>
<td>ρ_{pk}</td>
<td>Investment</td>
<td>Beta 0.50 0.20</td>
</tr>
<tr>
<td>ρ_ϱ</td>
<td>Liq Demand</td>
<td>Beta 0.50 0.20</td>
</tr>
<tr>
<td>ρ_{mp}</td>
<td>Monetary</td>
<td>Beta 0.50 0.20</td>
</tr>
<tr>
<td>ρ_μ</td>
<td>Mark up</td>
<td>Beta 0.50 0.20</td>
</tr>
<tr>
<td>ρ_g</td>
<td>Govt Exp</td>
<td>Beta 0.50 0.20</td>
</tr>
<tr>
<td>ρ_{μ_w}</td>
<td>Wage mark up</td>
<td>Beta 0.50 0.20</td>
</tr>
<tr>
<td>ρ_χ</td>
<td>R&D</td>
<td>Beta 0.50 0.20</td>
</tr>
<tr>
<td>σ_θ</td>
<td>TFP</td>
<td>Inv. Gamma 0.10 2.00</td>
</tr>
<tr>
<td>σ_{pk}</td>
<td>Investment</td>
<td>Inv. Gamma 0.10 2.00</td>
</tr>
<tr>
<td>σ_ϱ</td>
<td>Liq Demand</td>
<td>Inv. Gamma 0.10 2.00</td>
</tr>
<tr>
<td>σ_{mp}</td>
<td>Monetary</td>
<td>Inv. Gamma 0.10 2.00</td>
</tr>
<tr>
<td>σ_μ</td>
<td>Mark up</td>
<td>Inv. Gamma 0.10 2.00</td>
</tr>
<tr>
<td>σ_g</td>
<td>Govt Exp</td>
<td>Inv. Gamma 0.10 2.00</td>
</tr>
<tr>
<td>σ_{μ_w}</td>
<td>Wage mark up</td>
<td>Inv. Gamma 0.10 2.00</td>
</tr>
<tr>
<td>σ_χ</td>
<td>R&D</td>
<td>Inv. Gamma 0.10 2.00</td>
</tr>
</tbody>
</table>
Table 4: Variance Decomposition (%)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Liquidity Demand</th>
<th>Money Exp</th>
<th>Govt Exp</th>
<th>Price of Capital</th>
<th>TFP</th>
<th>R&D</th>
<th>Mark up</th>
<th>Wage mark up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Growth</td>
<td>28.7</td>
<td>24.1</td>
<td>7.2</td>
<td>5.7</td>
<td>32.8</td>
<td>0.3</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Consumption Growth</td>
<td>19.2</td>
<td>14.7</td>
<td>37.3</td>
<td>2.2</td>
<td>26.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Investment Growth</td>
<td>17.8</td>
<td>17.1</td>
<td>2.6</td>
<td>39.4</td>
<td>16.1</td>
<td>1.1</td>
<td>2.6</td>
<td>3.3</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>2.5</td>
<td>0.0</td>
<td>87.3</td>
<td>9.8</td>
</tr>
<tr>
<td>Nominal R</td>
<td>66.0</td>
<td>5.3</td>
<td>1.7</td>
<td>4.9</td>
<td>9.7</td>
<td>0.1</td>
<td>7.9</td>
<td>4.3</td>
</tr>
<tr>
<td>Hours</td>
<td>40.2</td>
<td>30.3</td>
<td>6.1</td>
<td>6.8</td>
<td>15.9</td>
<td>0.1</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>R&D Growth</td>
<td>7.4</td>
<td>8.4</td>
<td>3.3</td>
<td>4.0</td>
<td>21.4</td>
<td>51.9</td>
<td>3.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Endogenous TFP</td>
<td>17.1</td>
<td>11.7</td>
<td>2.7</td>
<td>5.1</td>
<td>40.2</td>
<td>16.3</td>
<td>4.8</td>
<td>2.3</td>
</tr>
<tr>
<td>Int. Goods Varieties</td>
<td>0.4</td>
<td>0.7</td>
<td>0.3</td>
<td>0.9</td>
<td>1.9</td>
<td>94.3</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Speed of Diffusion</td>
<td>28.7</td>
<td>13.7</td>
<td>3.5</td>
<td>2.7</td>
<td>37.1</td>
<td>11.3</td>
<td>2.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Variance decomposition with ZLB (10,000 simulations, HP filtered series, \(\lambda = 1600 \)).
Figure 5: Output Growth Decomposition
Figure 6: Impulse Response to 1 std. dev. Shock

- **Liq Demand**
- **Output**
- **Money**
- **TFP**
- **Consumption**
- **Invest**
- **Endog TFP**
- **Inflation**
- **Nominal R**

Graphs showing the impulse response of various economic variables to a 1 standard deviation shock.
Figure 7: Liquidity Demand Shock and the ZLB
Figure 8: GZ Spread and Model Spread - correlation: 0.69
Endogenous Productivity, and TFP vs Labor Productivity

\[TFP = \frac{Y_t}{(U_tK_t)^\alpha(L_t)^{1-\alpha}} = A_t^{\phi-1}\theta_t \]

\[LP = \frac{Y_t}{L_t} = A_t^{\phi-1}\theta_t \left(\frac{U_tK_t}{L_t}\right)^\alpha \]

- Endogenous prod. \(A_t^{\phi-1} \) has similar impact on \(TFP \) and \(LP \)

- We focus on \(LP \) for two reasons:

 - Capital in model includes both housing and consumer durables \(\rightarrow \) some discrepency between model measure of \(TFP \) and conventional measures.

 - \(LP \) captures effect of decline in capital - another channel via which demand contraction from GR reduced capacity output.
Figure 9: Endogenous TFP, TFP and Labor Productivity
Figure 10: Endogenous TFP Decomposition
Figure 11: Sources of Endogenous Technology
Concluding Remarks

- Estimate DSGE model with endogenous productivity via R&D and adoption
 - Use model to identify source of productivity decline following Great Recession

- Key result: Much of the productivity decline an endogenous response to recession
 - Drop in adoption due to financial crisis/recession main channel
 - Overall, insufficient demand during GR contributed to productivity slowdown

- Mechanism also helps account for smoothness in inflation during GR

- Overall, results suggest that recent low productivity growth may reflect (medium term) cyclical factors as opposed to secular ones.
Figure 12: R&D Salaries and Other Expenses (logs, 2008 = 0)