Endogenous Technology Adoption and R&D

as

Sources of Business Cycle Persistence

by

Diego Anzoategui, Diego Comin*, Mark Gertler and Joseba Martinez

NYU and *Dartmouth

March 2016

Motivation

- Slow recovery following a financial crisis
- Coincides with a slowdown of productivity growth (Fernald, 2014)
 - * Also true for recent Euro area data (e.g. UK)
 - * True following emerging market financial crises (Queralto)
- Candidate hypotheses: Bad luck versus endogenous response
- Bad luck view (at least for U.S): Fernald 2014
 - Observes that slowdown in TFP began in 2004, prior to Great Recesion

Endogenous response to business cycle conditions

- Crisis induced large drop in investment in new technologies (both R&D and adoption)
 - Large R&D contraction during Great Recession
 - Large contraction also in 2001-2002 recession \rightarrow TFP decline prior to GR
- Speed of technology diffusion is pro-cyclical.
 - Survey data: sample of 26 production technologies that diffused at various times over the period 1947-2003 in the US (5) and the UK (21).
 - Elasticity of speed of diffusion with respect to business cycle around 4.

Figure 3: Speed of Diffusion and Cycle

This Paper

- Develop and estimate monetary DSGE model with endogenous technology via R&D and adoption
- Use model to assess:
 - How much of the recent productivity growth decline was an endogenous response to the Great Recession.
 - Whether the mechanism can also account for the pre-GR productivity decline.
 - More generally, the extent to which endogenous productivity can help account for business cycle persistence

Related Literature

- Comin/Gertler, 2006: endogenous prod. as business cycle propagation mechanism
- Queralto, 2013; Guerron-Quintana/Jinnai, 2013; Garcia, 2013: application to financial crises
- Hall, 2014; Reifschneider/Wascher/Wilcox, 2014: Decline in demand during GR source of reduction in capacity growth
- Bianchi and Kung (2014): estimation of DSGE model with endogenous growth
 - Differences with BK:
 - * 1. Explicit model of R&D and adoption with realistic adoption lags
 - * 2. Use data on business R&D (excludes public R&D, includes software dev.)
 - * 3. Impose ZLB on monetary policy (turns out to be important).

Main Findings

- Endogenous TFP important source of productivity slowdown following Great Recession
 - Mainly via drop in adoption intensity stemming from crisis.
- Mechanism also accounts for much of pre-GR slowdown in TFP
 - Though shocks to R&D technology an important driver
- Drop in physical investment in GR also contributes to decline in labor producitivty (as in Hall)
- Overall, strong effects of decline in aggregate demand during GR on aggregate supply

Model Features

- Non-standard features:
 - Endogenous productivity via R&D and technology adoption
 - Skilled labor is input for R&D and adoption processes
- Standard features
 - Habit formation in consumption
 - Flow investment adjustment costs
 - Variable Capital Utilization
 - "Calvo" price and wage rigidities
 - Taylor rule for monetary policy with ZLB constraint
- We do not model financial frictions explicitly
 - But include shock that transmits like financial shock

Production Sector and Endogenous TFP: Preliminaries

- Two types of firms: (i) final goods; (ii) intermediate goods
- Final goods firms
 - Continuum of measure unity, monopolistically competitive.
 - Firm *i* produces differentiated output Y_t^i
 - Final good composite Y_t :

$$Y_t = \left(\int_0^1 (Y_t^i)^{\frac{1}{\mu_t}} di\right)^{\mu_t}$$

- Firm i uses Y_{mt}^{i} units of intermediate goods composite as input

$$Y_t^i = Y_{mt}^i$$

- Sets nominal price P_t^i on a staggered basis.

Production Sector and Endogenous TFP (con't)

- Intermediate goods firms
 - Continuum of measure A_t , monopolistically competitive
 - A_t = stock of "adopted" intermediate goods (i.e. technologies)
 - Firm j produces output Y_{mt}^j
 - Intermediate goods composite

$$Y_{mt} = \left(\int_0^{A_t} (Y_{mt}^j)^{\frac{1}{\vartheta}} dj\right)^{\vartheta}$$

– Firm j uses capital services $U_t^j K_t^j$ and unskilled labor L_t^j as input

$$Y_{mt}^j = \theta_t \left(U_t^j K_t^j \right)^\alpha (L^j)^{1-\alpha}$$

 $\theta_t \equiv$ exogenous component of TFP.

Production Sector and Endogenous TFP (con't) $Y_t = \left(\int_0^1 (Y_t^i)^{\frac{1}{\mu_t}} di\right)^{\mu_t} = \Omega_t \cdot \overline{Y}_t^i$ $\Omega_t \equiv \left(\int_0^1 (Y_t^i/\overline{Y}_t^i)^{\frac{1}{\mu_t}} di\right)^{\mu_t} = 1 \text{ to a 1st order}$

- Final goods production function $\rightarrow \overline{Y}_t^i = Y_{mt}$
- \rightarrow Given a symmetric equilibrium for intermediate goods:

$$Y_t = Y_{mt}$$

= $X_t \cdot (U_t K_t)^{\alpha} (L_t)^{1-\alpha}$
= $[A_t^{\vartheta - 1} \theta_t] \cdot (U_t K_t)^{\alpha} (L_t)^{1-\alpha}$

- Endogenous TFP via A_t .

R&D and Adoption

 $Z_t \equiv$ stock of "unadopted" technologies (intermediate goods)

 $J_t \equiv$ value of unadopted technology

 $L_{srt} \equiv$ stock of skilled labor working on R&D

 $L_{srt}^p \equiv$ skilled labor employed in R&D by innovator p

• R&D technology: $\varphi_t \equiv \#$ of new technologies at t + 1 unit of L_{srt}^p can create:

$$\varphi_t = \chi_t Z_t L_{srt}^{\rho-1}$$

• Innovator p's R&D decision problem:

$$\max_{L_{srt}^p} E_t \{ \Lambda_{t,t+1} J_{t+1} \varphi_t L_{srt}^p \} - w_{st} L_{srt}^p$$

R&D and Adoption (con't)

• R&D decision problem: fonc

$$E_t\{\Lambda_{t,t+1}J_{t+1}\varphi_t\} - w_{st} = \mathbf{0}$$
$$\rightarrow E_t\{\Lambda_{t,t+1}J_{t+1}\chi_tZ_tL_{srt}^{\rho-1}\} - w_{st} = \mathbf{0}$$

-
$$J_{t+1}$$
 procylical and w_{st} sticky $\rightarrow L_{srt}$ procyclical

• Evolution of aggregate stock of unadopted technologies:

$$Z_{t+1} = \varphi_t L_{srt} + \phi Z_t$$
$$= \chi_t Z_t L_{srt}^{\rho} + \phi Z_t$$

R&D and Adoption (con't)

- Adoption: conversion of Z_t to A_t .
 - Adopter buys new technology from innovator for price J_t
 - Hires skilled labor L_{sat} to adopt

-
$$\lambda_t = \lambda(Z_t L_{sat}) \equiv$$
 probability technology is adopted with $\lambda' > 0$; $\lambda'' < 0$
- $\rightarrow \frac{1}{\lambda_t} =$ mean diffusion lag

- λ_t
- Value of adopted good

$$V_t = \Pi_{mt} + \phi E_t \{ \Lambda_{t,t+1} V_{t+1} \}$$

 $\Pi_{mt} \equiv$ profits from adopted intermediate good.

R&D and Adoption (con't)

• Adopter's decision problem:

$$J_t = \max_{L_{sat}} E_t \{ -w_{st} L_{sat} + \phi \Lambda_{t,t+1} [\lambda_t V_{t+1} + (1-\lambda_t) J_{t+1} \}$$

s.t.
$$\lambda_t = \lambda(Z_t L_{sat})$$

$$\rightarrow Z_t \lambda' \cdot \phi E_t \{ \Lambda_{t,t+1} [V_{t+1} - J_{t+1}] \} = w_{st}$$

- $\rightarrow V_t J_t$ procylical and w_{st} sticky $\rightarrow L_{sat}$ procyclical
- Evolution of adopted technologies

$$A_{t+1} = \lambda_t \phi[Z_t - A_t] + \phi A_t$$

Households

 $B_t \equiv \text{riskless bond}$ (zero net supply)

 $\varrho_t \equiv$ "liquidity demand" shock (Fisher 2014)

 L_t^h and $L_{st}^h \equiv$ unskilled and skilled labor supply

• Household decision problem

$$\max_{C_t, B_t, L_t^h, L_{st}^h} E_t \sum_{\tau=0}^{\infty} \beta^{\tau} \{ \log(C_{t+\tau} - bC_{t+\tau-1}) + \varrho_t B_t - \upsilon_t [\frac{(L_t^h)^{1+\varphi} + (L_{st}^h)^{1+\varphi}}{1+\varphi}] \}$$

s.t.

$$C_t = w_t^h L_t + w_{st}^h S_t + \Pi_t + R_{kt} Q_{t-1} K_t - Q_t K_{t+1} + R_t B_t - B_{t+1}$$

with

$$R_{kt} = \frac{D_t + Q_t}{Q_{t-1}}$$

14

Households (con't)

• foncs for capital and bonds

$$1 = E_t \{ \Lambda_{t,t+1} R_{kt+1} \}$$

$$1 = E_t \{ \Lambda_{t,t+1} R_{t+1} \} + \zeta_t$$

$$\Lambda_{t,t+1} \equiv \beta u'(C_{t+1})/u'(C_t); \quad \zeta_t = \varrho_t/u'(C_t)$$

$$\rightarrow E_t\{\Lambda_{t,t+1}(R_{kt+1}-R_{t+1})\} = \zeta_t$$

• Rise in ϱ_t reduces both consumption and investment demand

- Also reduces R&D and adoption since $\Lambda_{t,t+1} pprox 1/R_{kt+1}$ declines
- Transmits through economy like monetary shock (shift in R_{t+1})
- Increases spread $R_{kt+1} R_{t+1}$ like financial shock

Rest of Model

- Final goods firms set prices on staggered basis: Calvo with indexing
- Households set nominal wages on staggered basis: Calvo with indexing
- Capital producers: "Q" equation for investment with flow adj. costs
- Monetary Policy: Taylor rule with partial smoothing and ZLB constraint

Model Summary

- Conventional DSGE model with endogenous TFP via R&D and adoption
- Key modifications:

$$Y_t = [A_t^{\vartheta - 1} \theta_t] \cdot (U_t K_t)^{\alpha} (L_t)^{1 - \alpha}$$

$$Z_{t+1}/Z_t = \chi_t L_{srt}^{\rho} + \phi$$

$$A_{t+1} = \lambda_t \phi [Z_t - A_t] + \phi A_t$$

with

$$\lambda_t = \lambda(Z_t L_{sat})$$

- Skilled labor devoted to R&D L_{srt} and to adoption L_{sat} :
 - Endogenous and procyclical
 - Depends inversely cost of capital R_{kt+1}

 $* \rightarrow R_{kt+1}$ has both direct and indirect effects

Estimation Strategy

- Seven standard quarterly series plus R&D
 - Standard series: $Y_t, C_t, I_t, W_t/P_t, N_t, r_t^n, \pi_t$
 - R&D: spending by private firms on R&D, including software development
 - * Annual series \rightarrow mixed frequency estimation
- One shock for each series. Mostly standard except:
 - Liquidity premium replaces discount factor as main demand shock
 - Shock to productivity of R&D investment
- Sample period: 1984Q1-2013Q4
 - Structural parameters estimated over non-ZLB period 1984Q1-2008Q4
 - Historical decompositions over entire sample (imposing ZLB constraint)

Estimation Strategy (con't)

- Estimate conventional DSGE parameters
- Use mix of estimation and calibration for new parameter associated with R&D sector
 - Estimate $\rho \equiv$ elasticity of new technologies w.r.t. R&D
 - Identify labor supply elasticity and wage setting frequency of skilled labor by assuming it is the same as for unskilled labor
 - Calibrate other parameters to hit various targets.
- Use Bayesian methods (see, e.g., An and Schorfeide, 2006)
 - Combine model likelihood function with priors for parameters to be estimated to obtain posterior distribution
 - Let the data speaks as much as possible.

 Table 1: Calibrated Parameters

Parameter	Description	Value
α	Capital share	1/3
δ	Capital depreciation	0.02
eta	Discount factor	0.995
$\frac{G}{Y}$	SS government consumption/output	0.2
$\dot{\gamma_y}$	SS output growth	1.87%
μ	SS final goods mark up	1.1
μ_w	SS wage mark up	1
artheta	Intermediate goods mark up	1.35
$1-\phi$	Obsolescence rate	0.08/4
$ar{\lambda}$	SS adoption lag	0.15/4
$ ho_{\lambda}$	Adoption elasticity	0.95

Parameter	Description				Posterior			
		Distr	Mean	St. Dev.	Mode	Mean	St. Dev.	
ρ	Taylor rule smoothing	Beta	0.7	0.15	0.693	0.805	0.044	
ϕ_{π}	Taylor rule inflation	Gamma	1.5	0.25	0.921	1.571	0.459	
ϕ_y	Taylor rule labor	Gamma	0.3	0.1	0.646	0.470	0.169	
φ	Inverse Frisch elast	Gamma	2	0.75	2.609	3.381	0.976	
f''	Investment adj cost	Gamma	4	1	0.916	1.286	0.249	
$\frac{\delta'(U)}{\delta}$	Capital util elast	Gamma	4	1	3.946	3.868	0.939	
ξ_p	Calvo prices	Beta	0.5	0.1	0.943	0.927	0.017	
$\overline{\xi_w}$	Calvo wages	Beta	0.75	0.1	0.946	0.870	0.087	
ι_p	Price indexation	Beta	0.5	0.15	0.157	0.276	0.112	
ι_w	Wage indexation	Beta	0.5	0.15	0.242	0.338	0.130	
b	Consumption habit	Beta	0.7	0.1	0.340	0.389	0.044	
ρ_z	R&D elasticity	Beta	0.6	0.2	0.342	0.390	0.147	

 Table 2: Structural Parameters Prior and Posterior Distributions

Parameter	Description	I	Posterior				
		Distr	Mean	St. Dev.	Mode	Mean	St. Dev.
ρ_{θ}	TFP	Beta	0.50	0.20	0.90	0.91	0.03
$ ho_{pk}$	Investment	Beta	0.50	0.20	0.88	0.87	0.03
$ ho_{arrho}$	Liq Demand	Beta	0.50	0.20	0.90	0.91	0.03
$ ho_{mp}$	Monetary	Beta	0.50	0.20	0.90	0.57	0.20
$ ho_{\mu}$	Mark up	Beta	0.50	0.20	0.37	0.38	0.13
$ ho_g$	Govt Exp	Beta	0.50	0.20	0.99	0.99	0.01
$ ho_{\mu_w}$	Wage mark up	Beta	0.50	0.20	0.16	0.26	0.14
$ ho_{\chi}$	R&D	Beta	0.50	0.20	0.84	0.84	0.06
$\sigma_{ heta}$	TFP	Inv. Gamma	0.10	2.00	0.53	0.51	0.04
σ_{pk}	Investment	Inv. Gamma	0.10	2.00	0.58	0.74	0.09
σ_{ϱ}	Liq Demand	Inv. Gamma	0.10	2.00	0.25	0.23	0.04
σ_{mp}	Monetary	Inv. Gamma	0.10	2.00	0.13	0.10	0.01
σ_{μ}	Mark up	Inv. Gamma	0.10	2.00	0.11	0.10	0.01
σ_{g}	Govt Exp	Inv. Gamma	0.10	2.00	2.73	2.87	0.24
σ_{μ_w}	Wage mark up	Inv. Gamma	0.10	2.00	0.30	0.30	0.04
σ_{χ}	R&D	Inv. Gamma	0.10	2.00	1.90	2.13	0.56

Table 3: Demand and Supply Shocks Prior and Posterior Distributions

Variables	Liquidity	Money	Govt	Price of	TFP	R&D	Mark up	Wage
	Demand		Exp	Capital				mark up
Output Growth	28.7	24.1	7.2	5.7	32.8	0.3	0.7	0.6
Consumption Growth	19.2	14.7	37.3	2.2	26.0	0.0	0.3	0.3
Investment Growth	17.8	17.1	2.6	39.4	16.1	1.1	2.6	3.3
Inflation	0.0	0.0	0.2	0.0	2.5	0.0	87.3	9.8
Nominal R	66.0	5.3	1.7	4.9	9.7	0.1	7.9	4.3
Hours	40.2	30.3	6.1	6.8	15.9	0.1	0.6	0.0
R&D Growth	7.4	8.4	3.3	4.0	21.4	51.9	3.0	0.5
Endogenous TFP	17.1	11.7	2.7	5.1	40.2	16.3	4.8	2.3
Int. Goods Varieties	0.4	0.7	0.3	0.9	1.9	94.3	1.2	0.3
Speed of Diffusion	28.7	13.7	3.5	2.7	37.1	11.3	2.1	1.0

Table 4: Variance Decomposition (%)

Variance decomposition with ZLB (10,000 simulations, HP filtered series, $\lambda = 1600$).

Figure 5: Output Growth Decomposition

Figure 7: Liquidity Demand Shock and the ZLB

Figure 8: GZ Spread and Model Spread - correlation: 0.69

Endogenous Productivity, and TFP vs Labor Productivity

$$TFP = \frac{Y_t}{(U_t K_t)^{\alpha} (L_t)^{1-\alpha}} = A_t^{\vartheta - 1} \theta_t$$
$$LP = \frac{Y_t}{L_t} = A_t^{\vartheta - 1} \theta_t (\frac{U_t K_t}{L_t})^{\alpha}$$

- Endogenous prod. $A_t^{artheta-1}$ has similar impact on TFP and LP
- We focus on LP for two reasons:
 - Capital in model includes both housing and consumer durables \rightarrow some discrepency between model measure of TFP and conventional measures.
 - *LP* captures effect of decline in capital another channel via which demand contraction from GR reduced capacity output.

Figure 9: Endogenous TFP, TFP and Labor Productivity

Figure 10: Endogenous TFP Decomposition

Figure 11: Sources of Endogenous Technology

Concluding Remarks

- Estimate DSGE model with endogenous productivity via R&D and adoption
 - Use model to identify source of productivity decline following Great Recession
- Key result: Much of the productivity decline an endogenous response to recession

 Drop in adoption due to financial crisis/recession main channel
 Overall, insufficient demand during GR contributed to productivity slowdown
- Mechanism also helps account for smoothness in inflation during GR
- Overall, results suggest that recent low productivity growth may reflect (medium term) cyclical factors as opposed to secular ones.

Figure 12: R&D Salaries and Other Expenses (logs, 2008 = 0)

