Pipeline Pressures and Sectoral Inflation Dynamics∗

Smets, Frank1, Tielens, Joris2,3, and Van Hove, Jan3,4

1European Central Bank, Ghent University and CEPR
2National Bank of Belgium
3KU Leuven
4KBC

First version: October 2018 – This version: February 2019.

Abstract

In a production network, shocks originating in individual sectors do not remain confined to individual sectors but permeate through the pricing chain. The notion of “pipeline pressures” alludes to this cascade effect. In this paper we provide a structural definition of pipeline pressures to inflation and use Bayesian techniques to infer their presence from quarterly U.S. data. We document two insights. (i) Due to price stickiness along the supply chain, we show that pipeline pressures take time to materialize which renders them an important source of inflation persistence. (ii) As we trace their origins to 35 disaggregate heterogeneous sectors, pipeline pressures are documented to be a key source of headline/disaggregated inflation volatility. Finally, we contrast our results to the dynamic factor literature which has traditionally interpreted the comovement of price indices arising from pipeline pressures as aggregate shocks. Our results highlight the (hitherto underappreciated) role of sectoral shocks – joint with the production architecture – to understand the micro origins of disaggregate/headline inflation persistence/volatility.

Keywords: Pipeline pressures · Input–output linkages · Propagation · Spillovers
JEL classification: E31 · E32 · D85 · O51

∗The authors wish to thank Andrew Foerster, Raf Wouters, Mark Watson, and seminar/conference participants at KU Leuven, National Bank of Belgium, European Central Bank, EES. Part of this research was performed while Joris Tielens was visiting the European Central Bank. Joris Tielens gratefully acknowledges the financial support from the Research Foundation Flanders (FWO). The views expressed in this paper are those of the authors and do not necessarily reflect the views of the European Central Bank, the National Bank of Belgium, the Eurosystem, KBC Group or any other institutions to which the authors are affiliated. All remaining errors are our own. E-mail: frank.smets@ecb.europa.eu, joris.tielens@nbb.be and jan.vanhove@kuleuven.be.
1 Introduction

Any modern economy is characterized by an interlinked production architecture in which sectors rely on each other for goods and services as inputs for production. Motivated by the seminal contributions of Long and Plosser (1983, 1987), an emerging body of research has documented the implications of these interactions for macroeconomic dynamics. Input–output production networks are now well–known to e.g., (i) amplify monetary policy shocks (Ozdagli and Weber (2016); Pasten et al. (2016); Ghassibe (2018)), (ii) affect the incidence of large economic downturns (Acemoglu et al. (2016)), (iii) generate macroeconomic volatility from microeconomic shocks (Carvalho and Gabaix (2013); Di Giovanni et al. (2014); Atalay (2017)), (iv) have important implications for macroeconomic non–linearities (Baqee and Farhi (2017)), etc. In this paper we study the implications of production networks for sectoral inflation dynamics.

The increasing availability of disaggregated price data has stimulated a vast literature that investigates the properties of sectoral price dynamics (e.g., Boivin et al. (2009); Maćkowiak et al. (2009); Altissimo et al. (2006); Kaufmann and Lein (2013); Andrade and Zachariadis (2016); De Graeve and Walentin (2015); Dixon et al. (2014), etc.). This body of research invariantly relies on factor analytic methods to decompose sectoral and headline inflation indices into a “common” and a “sector–specific” part (as per Forni and Reichlin (1998)). A set of stylized facts has emerged from this literature; (i) Disaggregated ppi/pce inflation volatility is mostly due to sector–specific shocks. Aggregate, economywide, shocks explain only a small fraction of movements in sectoral inflation. The reverse is true for headline ppi/pce inflation, which is mostly driven by aggregate shocks (since sectoral shocks are said to balance out in the aggregate). (ii) Persistence, of both disaggregate and headline inflation, is generated by aggregate shocks. The response to sector–specific shocks, by contrast, is close to instantaneous.

In view of an interlinked production network, recent work has voiced concerns that a dynamic factor model (dfm) is an unsuitable tool to properly sort between the role of aggregate and sectoral shocks in generating volatility and persistence.1 Foerster et al. (2011) argue that sector–specific shocks propagate across the production architecture in a way which generates comovement across sectors.2 A dfm then wrongfully interprets the origins of this comovement of prices as an aggregate shock (common component). As such, it mechanically underestimates the role of sectoral shocks in generating persistence and volatility.

Since they often represent sequential inputs, the construction of disaggregate ppi and pce indices is consistent with this concern. For example, the “crude materials ppi” includes

1Measurement error in micro price data is known to affect these stylized facts as well, see e.g., De Graeve and Walentin (2015).
2See also Stella (2015); Atalay (2017); Atalay et al. (2018).
the price of crude petroleum, while the “intermediate goods ppi” includes the prices of synthetic rubber, which is synthesized from crude petroleum. The “finished goods ppi” includes the prices of tires, which are produced from rubber. Finally, the pce includes the prices paid by consumers for vehicle transportation services, for which car tires serve as an intermediate input. Figure 1 depicts the autocorrelation functions of these four inflation indices. The level and asymmetries of the lead–lag relationships are consistent which such a (slow) spillover process from upstream prices into downstream product categories.

Following the terminology in recent policy work (e.g., European Central Bank (2017); Federal Reserve System (2018)) and the popular press (e.g., Wall Street Journal (2018); Financial Times (2018); New York Times (2015)), we label this cascade effect of sectoral shocks as “pipeline pressures” and assess their impact on sectoral price dynamics. In doing so, we face three challenges; (i) infer pipeline pressures from the data, (ii) investigate whether they are empirically relevant and (iii) verify whether a dfm effectively has difficulties correctly disentangling pipeline pressures from aggregate shocks. We then assess the impact of pipeline pressures on aforementioned stylized facts.

We resolve the first challenge by developing a multi–sector dynamic stochastic general equilibrium model which allows us to formally define and quantify the concept of pipeline pressures.3 Briefly, the model features multiple interactions among the various sectors (e.g., through the structural inclusion of an IO matrix) and accommodates the coexistence of producer and consumer prices. We include two sets of shocks; (i) Aggregate shocks (e.g., an economywide productivity shock) and (ii) sectoral shocks (e.g., a wage markup shock specific to the “Agriculture” sector).

We subsequently estimate the model using Bayesian techniques based on a mix of aggregate and sectoral U.S. data covering the period 1970Q1 – 2007Q4. In order to verify whether pipeline pressures are empirically relevant, we use the Bayes factor to bilaterally

3The model nests, or shares features with, other multi–sectors models, e.g., Bouakez et al. (2009, 2014); Long and Plosser (1983); Horvath (1998); Carvalho and Lee (2011); Dixon et al. (2014); Bergholt (2015); Foerster et al. (2011); Pasten et al. (2016); Atalay (2017); Nakamura and Steinsson (2010).
compare the full model with a vintage of the model where an individual sector is isolated from price developments in other sectors. We document that most price indices are, to varying degrees, subject to cost pressures from upstream sectors. More precisely, all consumer prices are influenced by producer prices. In addition, producer prices of downstream sectors (e.g., “Services”, “Manufacturing”) are strongly subject to price developments in upstream sectors (e.g., “Mining” and “Agriculture”).

To address the third challenge, we use the Kalman filter to decompose historical U.S. ppi/pce inflation rates through the lens of our structural model. In contrast to a dfm, we consider a three–way decomposition; a part due to (i) structural aggregate shocks, (ii) direct sectoral shocks (i.e. the sectoral shocks in sector \(j \) on inflation in sector \(j \)) and (iii) pipeline pressures (i.e. the sectoral shocks in sector \(j' \) on inflation in sector \(j \)). We show that the smoothed time series obtained from the aggregate structural shocks comoves intimately with the common component from a dfm. Importantly, we show this comovement to increase further once pipeline pressures are taken into account, which reveals that the common component in a dfm framework captures both aggregate shocks and pipeline pressures.

We next structurally decompose the origins of sectoral volatility/persistence into (i) − (iii). In contrast to the dfm literature, we show that sectoral shocks, by ways of pipeline pressures, are an important contributor to sectoral and headline inflation persistence. Following Basu (1995) and Blanchard (1982), sectoral shocks generate persistence in other sectors since price staggering along the production chain implies that shocks only slowly feed into other sectors’ marginal costs and output prices. Pipeline pressures also contribute significantly to headline volatility: 21.47% (ppi) and 28.16% (pce), respectively. Across disaggregated indices, the role of pipeline pressures is heterogeneous, ranging from 0.86% for the ppi index “Agriculture and Forestry” to 43.25% for the “Healthcare” pce index.

An historical perspective on U.S. inflation shows that the role of pipeline pressures has varied over 1970Q1 – 2007Q4. E.g., pipeline pressures during the ’79 and ’90 energy crises originate with direct shocks to the “Oil extraction ppi” which subsequently permeate to the “Utilities ppi”, “Manufacturing ppi” and “Service ppi” and various pce indices. The aftermath of the double dip recession in the eighties is shown to have triggered pipeline easing, where sectoral disinflationary shocks eased inflation in other sectors. The nineties are characterized as a period of moderate and less volatile inflation where pipeline pressures are mostly subdued.

Literature & Contribution. Although our work primarily adds to an empirical literature on price dynamics, we contribute to other strands of literature as well.

First, Bouakez et al. (2014) and Pasten et al. (2017) study the role of sectoral produc-
tivity shocks in generating aggregate ppi volatility. The former does not study the role of pipeline pressures, whereas the latter only does so theoretically. Here, we bring part of the intuition of Pasten et al. (2017) to the data and allow for a richer set of shocks in a less stylized set-up.\footnote{The literature on the “micro origins of aggregate fluctuations”, originating with Gabaix (2011) and Acemoglu et al. (2012) has almost invariably focused on micro level productivity shocks (see e.g., Carvalho and Grassi (2016); Grassi (2017); Gabaix (2011); Acemoglu et al. (2012); Pasten et al. (2017); Carvalho and Gabaix (2013); Foerster et al. (2011); Di Giovanni et al. (2014); Stella (2015); Atalay (2017); Shea (2002)). Workhorse dsge models qualify productivity as only a marginal driver of inflation (e.g., Smets and Wouters (2007, 2003); Christiano et al. (2011); Adolfson et al. (2007)). Consequently, in this paper, we focus on other types of shocks as well.} Close to our work is Auer et al. (2017), who show in a partial equilibrium framework that international trade flows contribute substantially to synchronizing headline ppi’s across countries. The analysis compares the comovement of ppi’s on the one hand and the (inferred) underlying costs shocks on the other and attributes the incremental comovement of price indices vis-à-vis costs to the impact of propagation across trade linkages. Our project identifies propagation directly as opposed to implicit inference from comparing measures of comovement.

Second, a set of empirical contributions has provided (reduced form) evidence that exogenous shocks propagate throughout the production structure of the economy; e.g., natural disasters (Carvalho et al. (2016); Barrot and Sauvagnat (2016); Boehm et al. (2015)), productivity shocks (Caliendo et al. (2017); Carvalho and Gabaix (2013); Acemoglu et al. (2012)), trade shocks (Acemoglu et al. (2015)), monetary policy shocks (Pasten et al. (2016); Ghassibe (2018)), financial shocks (Bigio (2015); Dewachter et al. (2016)), etc. In the stylized models underlying these empirical results, the central propagation process takes place via a price setting mechanism. We are the first paper to formally test whether such pressures effectively take place.

Third, following the evidence of i.a. Weinlagen (2002); Vavra and Goodwin (2005); Clark et al. (1995); Lee and Scott (1998), our model predicts that movements in particular price indices can lag behind movements in prices at early stages of production. The model performs well in this dimension in the sense that it captures the lead–lag relationships that are present in disaggregated price data. Our work thus provides justification for the practice of policymakers and forecasters looking for signs of an impending rise in the general price level by concentrating on events in particular sectors, e.g., (i) shifts in healthcare sector regulation (e.g. Affordable Care Act, Gruber (2011)), (ii) pro-competitive measures taken in the telecommunications sector (European Central Bank (1999)), (iii) productivity shocks in the computer and electronics industry (Oliner and Sichel (2000)), (iv) the shale gas boom in the mining sector (Wang et al. (2014)), (v) disruptions in the real estate sector (Iacoviello (2015); Guerrieri and Iacoviello (2017)), etc.

The rest of the paper is structured as follows. Section 2 takes stock of a set of stylized...
facts from the literature. In section 3 we develop a model that endogenously reproduces these stylized facts, whilst controlling for pipeline pressures. Section 4 maps the structure of the model to the U.S. economy and provides details on the estimation. In section 5 we discuss how pipeline pressures affect the previously documented stylized facts. Section 6 complements the main analysis with a set of additional results and robustness checks. Finally, section 7 concludes and provides policy implications.

2 Stylized facts

Consider the following decomposition of disaggregated inflation indices into a common and a sector–specific component

$$\pi_{it} = \lambda'_i f_t + \epsilon_{it}$$

where π_{it} denotes inflation of producer/consumer prices of sector i. The factor loadings λ_i measure the heterogeneous response of sector i to a vector of aggregate shocks f_t that affects all prices. The remainder, ϵ_{it}, is a purely sector–specific scalar process. It reflects the response of price i inflation to a shock specific to sector i. Following the decomposition at the micro level, headline inflation can be decomposed as

$$\pi_t = w'\Lambda f_t + w'\epsilon_t$$

where w' is a vector of sectoral weights in the composite inflation index. With this two–way decomposition at hand, Boivin et al. (2009); Maćkowiak et al. (2009); Kaufmann and Lein (2013); Altissimo et al. (2006), decompose the variance, $\{\sigma^2(\pi_{it}), \sigma^2(\pi_t)\}$, and persistence, $\{\rho(\pi_{it}), \rho(\pi_t)\}$, of sectoral and headline inflation into a common part and a sector–specific part.

We reproduce this analysis in table 1–2, using disaggregated quarterly U.S. ppi and pce inflation indices introduced later in the paper. In keeping with the literature, we distill four stylized facts.5

1. STYLISTED FACT 1A: $\frac{\sigma^2(\lambda'_i f_t)}{\sigma^2(\pi_{it})} < \frac{\sigma^2(\epsilon_{it})}{\sigma^2(\pi_{it})}$: Sectoral shocks originating in sector i generate the majority of volatility in sector i inflation.

2. STYLISTED FACT 1B: $\frac{\sigma^2(w'\Lambda f_t)}{\sigma^2(\pi_t)} > \frac{\sigma^2(w'\epsilon_t)}{\sigma^2(\pi_t)}$: Aggregate shocks generate the majority of volatility in headline inflation.

5The stylized facts regarding persistence are less outspoken compared to the literature because we use quarterly data, whereas the literature mostly relies on monthly data.
3. **Stylized Fact 2A**: \(\rho(\lambda' f_i) > \rho(\epsilon_i) \): Aggregate shocks generate the majority of persistence in sector \(i \) inflation.

4. **Stylized Fact 2B**: \(\rho(w' \Lambda f_i) > \rho(w' \epsilon_i) \): Aggregate shocks generate the majority of persistence in headline inflation.

[Insert table 1–2]

Persistence is measured following Boivin et al. (2009); an \(AR(L) \) model is estimated separately for both components of the dfm and \(\rho(\cdot) \) equals the sum of the coefficients on all lags.

Following Foerster et al. (2011), in the presence of production networks, \(\lambda' f_t \) reflects comovement of price indices resulting from (i) aggregate shocks and (ii) sectoral shocks that have propagated through input–output linkages. Hence, stylized facts 1a – b are potentially biased in favour of aggregate shocks. Moreover, since the work of Basu (1995), it is well-known that such propagation is sluggish.\(^6\) The persistence patterns documented by stylized facts 2a – b might then in part reflect the slow propagation of sectoral shocks.

The objective of this paper is to investigate whether aforementioned stylized facts in the dfm framework change once we correctly disentangle pipeline pressures from aggregate shocks. For that purpose, we provide a three-way (instead of a two-way) decomposition of sectoral and headline inflation:

\[
\pi_{it} = \alpha_t(\pi_{i}) + \beta_t(\pi_{i}) + \gamma_t(\pi_{i})
\]

\[
\pi_t = \sum_{i=1}^{N} w_i (\alpha_t(\pi_i) + \beta_t(\pi_i) + \gamma_t(\pi_i))
\]

where \(\alpha_t(\pi_{it}) \) reflects aggregate, economywide shocks, \(\beta_t(\pi_{it}) \) captures shocks specific to price index \(i \) and \(\gamma_t(\pi_{it}) \) captures pipeline pressures; sectoral shocks that originate in other sectors but affect prices in sector \(i \) through production network interactions. In order to obtain aforementioned decomposition, we develop a multi-sector dynamic stochastic general equilibrium model in the next section.

3 The model

Production is shaped by a two-layered structure: a discrete set of sectors and a continuum of firms active within each sector. We discern three types of firms: (i) intermediate goods producers, (ii) final goods producers and (iii) capital goods producers. Each firm is active in one of \(J \) sectors, but intersectoral trade flows create a role for spillovers. The

\(^6\)See also relevant work by Huang (2006); Huang et al. (2004); Huang and Liu (2004).
model features two sets of shocks; (i) economywide shocks, that affect all prices and (ii) sector-specific shocks (that are specific to individual price indices). The rest of the model is relatively standard and features a (i) household, (ii) government and (iii) monetary authority. Figure 2 contains a schematic overview of (a particular instance of) the model.

3.1 Households

Assume the existence of a representative household which consists of a continuum of members, with a fixed share \(\mu_j \) working in production sector \(j \in \{1, \ldots, J\} \). Household member \(h \) working in sector \(j \) maximizes lifetime utility at time \(t \)

\[
U_{jt}(h) = \sum_{s=t}^{\infty} \beta^{s-t} \left(U_{js[t-\bar{i}]}(h) - V_{js[t-\bar{i}]}(h) \right)
\]

where \(U_{jt[t-\bar{i}]}(h) \) is period \(t \) utility of consumption, and \(V_{jt[t-\bar{i}]}(h) \) is period \(t \) disutility of labour, for a member that was last able to re-optimize the wage \(i \) periods ago. \(\beta \in (0,1) \) is the time discount factor. The components of period \(t \) utility are specified as follows;

\[
U_{jt[t-\bar{i}]}(h) = \frac{(C_{jt[t-\bar{i}]}(h) - \chi C_{t[t-\bar{i}]}(h))^{1-\sigma}}{1 - \sigma}
\]
\[
V_{jt[t-\bar{i}]}(h) = \frac{L_{jt[t-\bar{i}]}(h)^{1+\varphi}}{1 + \varphi}
\]

Given wage re-optimization \(i \) periods ago, \(C_{jt[t-\bar{i}]}(h) \) denotes period \(t \) consumption and \(L_{jt[t-\bar{i}]}(h) \) is hours worked by household member \(h \). We assume the existence of a complete set of tradeable Arrow–Debreu securities. This, joint with the separability between consumption and hours, makes consumption independent of the wage history, i.e. \(C_{jt[t-\bar{i}]}(h) = C_{jt}(h) = C_t(h) \).\(^7\) In addition, because the representative household is of measure one, household member \(h \) consumption is also aggregate consumption: \(C_t(h) = C_t \). Henceforth, whenever possible, we drop the \(h \) index.

Households buy consumption goods, sell labor services to firms and save. Maximization of lifetime utility is subject to a sequence of budget constraints. In period \(t \), the budget constraint takes the following form (abstracting from Arrow–Debreu securities):

\[
P_tC_t + \frac{B_t}{R_t} = \sum_{j=1}^{J} \int_{\mu_{j-1}}^{\mu_j} L_j(h)W_{jt}(h)dh + B_{t-1} + D_t - P_tT_t
\]

where \(P_t \) denotes the personal consumption expenditures (pce) price index faced by the

\(^7\)See the discussion by Jensen (2011) and Bergholt (2015).
household, D_t are dividends (firm profit channelled to the household), B_t denotes total savings in the form of government bonds, $Z_{b,t}$ is an aggregate risk shock and T_t are lump sum taxes, levied by the government. $\bar{\mu}_j = \sum_{l=1}^J \mu_l$ denotes the cumulative mass of workers employed in sectors 1, ..., j. The term involving the integral then denotes total wage income.

The aggregate consumption bundle is defined as

$$C_t = \left(\sum_{z=1}^Z \xi_z \frac{1}{\nu_c} C_{zt}^{1-\frac{1}{\nu_c}} \right)^{\frac{1}{1-\nu_c}} ; \quad \sum_{z=1}^Z \xi_z = 1; \xi_z \in [0,1]$$

where C_{zt} denotes a consumption bundle of goods from product category z. $\{\xi_z\}_{z=1}^Z$ are heterogeneous consumption weights. Optimal demand schedules are given by

$$C_{zt} = \xi_z \left(\frac{P_{zt}}{P_t} \right)^{-\nu_c} C_t \quad ; \quad P_t = \left(\sum_{z=1}^Z \xi_z P_{zt}^{1-\nu_c} \right)^{1-\nu_c}$$

Where P_{zt} denotes the pce price index of product category z. In turn, the consumption bundle of products from category z is defined as

$$C_{zt} = \left[\int_0^1 C_{zt}(q)^{\frac{1}{1+\epsilon_{c,z,t}}} dq \right]^{1+\epsilon_{c,z,t}}$$

where $C_{zt}(q)$ denotes consumption of the goods/services variant of product category z which is produced by final goods producer q. It is appropriate to think of product category z as an item from the pce categories in the national accounts (e.g., $z =$ “Motorized vehicles”), with final goods producer q producing a particular brand (e.g., $q =$ “General Motors”). $\epsilon_{c,z,t} = \epsilon_c Z_{c,z,t} Z_{c,t}$ are stochastic markups. Here, $Z_{c,z,t}$ reflects a shock specific to product category z prices, whereas $Z_{c,t}$ affects all prices simultaneously.

To map our model to the available data structure, we assume that a share $\kappa_{zj} \in [0,1]$ of the total mass of firms that produce good/service z are located in sector j. This assumption makes our model consistent with the way U.S. annual accounts are organised (in which final consumption goods follow a pce classification but firms are classified following the North American Input Classification System).

Next, we move to the labor market in sector j. We construct sectoral labor markets as in Erceg et al. (2000), but add the friction that workers cannot move freely between sectors (cf. Carvalho and Nechio (2016)). Denote the mass of household members working in sector j by $\mu_j \in (0,1)$ with $\sum_{j=1}^J \mu_j = 1$. A competitive labor bundler buys hours from all the household members employed in the sector, and combines these hours into an
aggregate labor service N_{jt}. This aggregator takes the form

$$N_{jt} = \left(\frac{1}{\mu_j} \right)^{\frac{1}{1+\epsilon_{w,j,t}}} \int_{\bar{\mu}_{j-1}}^{\bar{\mu}_j} L_{jt}(h) \left(\frac{1}{1+\epsilon_{w,j,t}} \right) dh \right)^{1+\epsilon_{w,j,t}}$$

$\epsilon_{w,j,t} = \epsilon_w Z_{w,j,t} Z_{w,t}$ is a stochastic wage markup in sector j (featuring an economywide ($Z_{w,t}$) and sector–specific ($Z_{w,j,t}$) component). The cost of this bundle is given by

$$W_{jt} = \left(\frac{1}{\mu_j} \right)^{\frac{1}{1+\epsilon_{w,j,t}}} \int_{\bar{\mu}_{j-1}}^{\bar{\mu}_j} W_{jt}(h) \left(\frac{1}{1+\epsilon_{w,j,t}} \right) dh \right)^{1+\epsilon_{w,j,t}}$$

Expenditure minimization yields the familiar downward-sloping demand curve for household member h’s labor

$$L_{jt}(h) = \left(\frac{W_{jt}(h)}{W_{jt}} \right)^{1+\epsilon_{w,j,t}} N_{jt} = \left(\frac{W_{jt}(h)}{W_{jt}} \right)^{1+\epsilon_{w,j,t}} L_{jt}$$

where $L_{jt} = N_{jt}/\mu_j$ is defined as the average effective labor hours per worker in sector j.

Each period, only a fraction $1 - \alpha_{j}^{w}$ of the household members in sector j can reoptimize wages. The remaining α_{j}^{w} index wages according to an indexation rule $W_{jt}(h) = W_{jt-1}(h)\Pi_{w}^{\alpha_{j}^{w}}\Pi_{1-\alpha_{j}^{w}}$. When the household member gets the opportunity to re–optimize its wage, it chooses a new wage $W_{jt}^{*}(h)$ which maximizes expected future utility in the case that the new wage will remain effective forever, i.e.,

$$\max_{W_{jt}^{*}(h)} \sum_{s=t}^{\infty} (\beta \alpha_{j}^{w})^{s-t} W_{jt}^{*}(h)$$

subject to the budget constraint and sticky wages with partial indexation.

3.2 Government

The government has preferences over the Z product categories given by

$$G_{t} = \left(\sum_{z=1}^{Z} \zeta_{z}^{\frac{1}{\nu_{z}}} G_{zt}^{\frac{1-\nu_{z}}{\nu_{z}}-1} \right) \frac{\nu_{z}}{\nu_{z} - 1} ; \sum_{z=1}^{Z} \zeta_{z} = 1 ; \zeta_{z} \in [0, 1]$$

where G_{zt} denotes a consumption bundle of goods from category z. As before, $\{\zeta_{z}\}_{z=1}^{Z}$ are heterogeneous consumption weights. In turn, government consumption bundles are defined as

$$G_{zt} = \left[\int_{0}^{1} G_{zt}(q) \frac{1}{1+\epsilon_{c,z,t}} dq \right]^{1+\epsilon_{c,z,t}}$$
where $G_{zt}(q)$ denotes consumption of goods/services produced by final good producer $q \in z$. The government faces a period–by–period budget constraint of the form

$$P_t^g G_t + B_{t-1} = \frac{B_t}{R_t} + P_t T_t$$

Where aggregate government spending follows the process $G_t = Z_{g,t}$, where $Z_{g,t}$ is an exogenous process defined below.

3.3 Production

Production is governed by three types of firms: intermediate goods producers, final goods producers and capital producers.

Intermediate goods producers. Intermediate good producer f in sector j (denoted $f \in j$) produces output $Y_{jt}(f)$ according to a Cobb–Douglas production function augmented with fixed costs:

$$Y_{jt}(f) = \max \left\{ Z_{p,t} Z_{p,j,t} \left(\sum_{j'} \omega_{jj'} M_{jj'} M_{jt}(f) \phi_n^{e(j)} K_{jt}(f) \phi_k^{e(j)} - \Phi_{j}(f) \right), 0 \right\} \quad (2)$$

where $N_{jt}(f)$, $M_{jt}(f)$ and $K_{jt}(f)$ represent labour, intermediate inputs and capital used by intermediate good producer $f \in j$, respectively. $Z_{p,t}$ and $Z_{p,j,t}$ denote Hicks neutral productivity shocks. The former is economywide, the latter is sector–specific to good j. $\Phi_{j}(f)$ is a fixed production cost that will be calibrated to ensure zero profit in steady state. We impose $\phi_n^{e(j)}$, $\phi_m^{e(j)}$, $\phi_k^{e(j)} \in [0,1]$. Constant returns to scale in variable inputs implies the linear restriction $\phi_n^{e(j)} + \phi_m^{e(j)} + \phi_k^{e(j)} = 1$.

The intermediate input bundle $M_{jt}(f)$ is defined as

$$M_{jt}(f) = \left(\sum_{j'=1}^J \omega_{jj'}^\frac{1}{\nu_m} M_{j'j'} M_{jt}(f) \nu_m \nu_{m-1} \nu_{m-2} \right) \nu_{m-1} \nu_{m-2} \quad (3)$$

where $M_{j'j'}(f)$ denotes the bundle of intermediate goods that intermediate goods producer $f \in j$ buys from sector j'. $\omega_{jj'} \in [0,1]$ is the weight of goods from sector j' in aggregate intermediate inputs used by intermediate goods producers in sector j. The input–output matrix, $\Omega \in \mathbb{R}^{J \times J}$, introduces intersectoral trade flows in the model, and allows for shocks to cascade through the supply chain.

$M_{j'j'}(f)$ is in turn an aggregator

$$M_{j'j'}(f) = \left(\int_0^1 M_{j'j'}(f, f') \nu_{m,j',t}^\frac{1}{1+\nu_m,j',t} df' \right)^{1+\nu_m,j',t}$$

11
where $M_{jj'}(f, f')$ denotes the amount of goods produced by intermediate goods producer $f' \in j'$ sold to intermediate goods producer $f \in j$. $\epsilon_{m,j,t} = \epsilon_{m}Z_{m,j,t}Z_{m,t}$ where $Z_{m,j,t}$ reflects a markup shock specific to intermediate good j, whereas $Z_{m,t}$ affects all sectors.

Optimal sectoral and firm–specific demand follow as

$$M_{jj'}(f) = \omega_{jj'}(\frac{P_{j't}}{P_{jt}})^{-\nu}M_j(f)$$
$$M_{jj'}(f, f') = (\frac{P_{j't}(f')}{P_{jt}})^{1+\epsilon_{m,j,t}}M_{jj'}(f)$$

Where $P_{j't}(f')$ and P_{jt} is the output price of intermediate good producer $f' \in j'$ and the producer price index of sector j', respectively. From the point of view of $f \in j$, the price (i.e. cost) index of the intermediate input bundle is

$$P_{jt} = \left(\sum_{j'=1}^{J} \omega_{jj'} P_{j't}^{1-\nu} \right)^{\frac{1}{1-\nu}}$$

We assume that intermediate goods producers face staggered price setting. Let $1 - \alpha_{p}^{ppi}$ denote the probability that a given intermediate goods producer in sector j is able to reset its prices. The fraction unable to re–optimize their prices, update them according to an indexation rule $P_{jt}(f) = P_{jt-1}(f)(\Pi_{jt-1}^{ppi}P_{jt}^{ppi})^{1-\alpha_{p}^{ppi}}$, where $\Pi_{jt}^{ppi} \equiv \frac{P_{jt}}{P_{jt-1}}$ is the gross ppi inflation rate of sector j.

Total output, $Y_{jt}(f)$, is either (i) used as an intermediate input for production by other intermediate good producers, (ii) sold to final goods producers (introduced below) or (iii) used as an intermediate input for production of capital by capital producers (introduced below).

$$Y_{jt}(f) = \sum_{j'=1}^{J} \int_{0}^{1} M_{jj'}(f', f)df' + \sum_{j'=1}^{J} \int_{0}^{1} I_{jj'}(g, f)dg + \sum_{z=1}^{Z} \int_{0}^{1} M_{jzt}(q, f)dq \quad (4)$$

Real firm dividends in period s are given by

$$D_{js,r}(f) = P_{js,r}(f)Y_{js}(f) - W_{js,r}N_{js}(f) - P_{js,r}^{m}M_{js}(f) - R_{js,r}K_{js,r}(f)$$

where the subscript r denotes real terms, i.e. $P_{js,r}(f) \equiv \frac{P_{js}(f)}{P_{s}}, \quad P_{js,r}^{m} \equiv \frac{P_{js}^{m}}{P_{s}}, \quad R_{js,r} \equiv \frac{R_{js}}{P_{s}}$ and $W_{js,r} \equiv \frac{W_{js}}{P_{s}}$. R_{js} denotes the rental rate of capital in sector j that is charged by capital producers (introduced below).

The firm optimally chooses $\{Y_{js}(f), P_{js}(f), M_{js}(f), N_{js}(f), K_{js}(f)\}_{s=1}^{\infty}$ in order to max-
imize the expected discounted stream of dividends

\[E_t \sum_{s=t}^{\infty} Z_{t,s} P_s D_{js,r}(f) \]

where the kernel \(Z_{t,s} = \beta^{s-t} \left(\frac{\Lambda_s P_s}{\Lambda_t P_t} \right) \) is used to value profits because firms are owned directly by households. Profit maximization is subject to technology (2), Walras’s law (4), demand schedules and price staggering with partial indexation. See appendix A for details.

Final goods producers. Final goods producer \(q \) produces its variant of product category \(z \), \(Y_{zt}(q) \), by assembling intermediate goods using the linear technology

\[Y_{zt}(q) = \varsigma M_{zt}(q) - \Phi_z(q) \]

(5)

where \(\Phi_z(q) \) denotes fixed costs, \(\varsigma \) is an innocuous productivity constant\(^8\) and \(M_{zt}(q) \) is a bundle of intermediates bought from intermediate goods producers

\[M_{zt}(q) = \left(\sum_{j=1}^{J} \kappa_{zj} M_{zjt}(q) \right)^{\frac{\nu_j - 1}{\nu_j}} \]

where \(\kappa_{zj} \in [0, 1] \) and \(\sum_{j=1}^{J} \kappa_{zj} = 1 \). Furthermore, \(M_{zjt}(q) \) denotes the amount of intermediate inputs final goods producer \(q \in z \) buys from sector \(j \). In turn,

\[M_{zjt}(q) = \left(\int_{0}^{1} M_{zjt}(q,f) \frac{1}{\Gamma_{m,j,t}} df \right)^{1+\epsilon_{m,j,t}} \]

where \(M_{zjt}(q,f) \) denotes the amount of goods final goods producer \(q \in z \) purchases from intermediate goods producer \(f \in j \).

Final goods producers’ real dividends in period \(s \) are given by

\[D_{zs,r}(q) = P_{zs,r}(q) Y_{zs}(q) - P_{zs,r}^{m}(q) M_{zs}(q) \]

Firm \(q \in z \) optimally chooses \(\{Y_{zs}(q), P_{zs}^{*}(q), M_{zs}(q)\}_{s=t}^{\infty} \) in order to maximize the expected discounted stream of dividends

\[E_t \sum_{s=t}^{\infty} Z_{t,s} P_s D_{zs,r}(q) \]

We assume the final goods producers face staggered price setting following the Calvo

\(^8\)\(\varsigma \) is a normalization constant introduced for convenience when loglinearizing the model. Its value does not affect volatility or persistence of inflation, the main quantities of interest in this paper.
(1983)–Yun (1996) framework. Let $1 - \alpha^\text{pce}_z$ denote the probability that a given final goods producer of product z is able to reset its prices. The fraction of final good producers that are unable to re-optimize their prices, update them according to an indexation rule $P_{zt}(q) = P_{zt-1}(q)(\Pi^\text{pce}_{zt-1}^z)^{\text{pce}_z}1^{-\text{pce}_z}$, where $\Pi^\text{pce}_{zt} = \frac{P_{zt}}{P_{zt-1}}$ is the gross inflation rate.

Profit maximization is then subject to technology (5), Walras’s law ($Y_{zt}(q) = C_{zt}(q) + G_{zt}(q)$), demand schedules and the sticky price scheme with partial indexation. See appendix A for details.

Final goods producers enter the model between the household and intermediate goods producers. Via $K \in \mathbb{R}^{Z \times J}$, they map J producer prices to Z consumer prices. The presence of staggered price setting and markup shocks allows for a wedge between consumer prices $\{P_{zt}\}_{z=1}^Z$ and producer prices $\{P_{jt}\}_{j=1}^J$ we also observe in the data.

Capital producers. The physical stock of capital in sector j is maintained by a continuum of capital producers, each indexed by g. Capital producer $g \in j$ sets the utilization rate $U_{jt}(g)$, rents out the (utilized share of the) capital stock at time t to intermediate goods producers in sector j at the competitive rate R_{jt} and invests $I_{jt}(g)$.

The investment good is produced using the following technology

$$I_{jt}(g) = \left(\sum_{j' = 1}^{J} \psi_{j,j'} I_{jj't}(g) \frac{\nu_{j'} - 1}{\nu_{j'}}\right) \frac{\nu_{j} - 1}{\nu_{j}}; I_{jj't}(g) = \left(\int_0^1 I_{jj't}(g, f) \frac{1}{1 + \epsilon_{m,j',t}} df\right)^{1 + \epsilon_{m,j',t}}. \quad (6)$$

Where $I_{jj't}(g)$ denotes the amount of intermediate goods capital producer $g \in j$ procures from sector j'. Moreover, $I_{jj't}(g, f')$ denotes the amount of goods capital producer $g \in j$ purchases from intermediate goods producer $f' \in j'$. The cost of the composite investment good $I_{jt}(g)$ is then given by

$$P_{jt}^i(g) = \left(\sum_{j' = 1}^{J} \psi_{j,j'} P_{j't}^{1 - \nu_{j'}}\right)^{-\frac{1}{1 - \nu_{j}}}$$

The inclusion of the investment flow matrix, $\Psi \in \mathbb{R}^{J \times J}$, allows for sectoral shocks originating in other sectors to cascade through this matrix and affect the cost of investment in sector j. The law of motion of capital ($\bar{K}_{jt+1}(g)$) takes the form

$$\bar{K}_{jt+1}(g) = \left(1 - \Delta(U_{jt}(g))\right)\bar{K}_{jt}(g) + Z_{i,t} Z_{i,j,t} \left(1 - S\left(\frac{I_{jt}(g)}{I_{jt-1}(g)}\right)\right) I_{jt}(g)$$

where, as in Christiano et al. (2005), the investment adjustment cost function $S(\cdot)$ has the properties $S'(\cdot) \geq 0$, $S''(\cdot) \geq 0$ and $S(1) = 0$, $S'(1) = 0$, $S''(1) = \epsilon_U$. As in Greenwood et al. (1988), the rate of depreciation depends on the utilization rate of capital, $U_{jt}(g)$, with $\Delta'(\cdot) \geq 0$, $\Delta''(\cdot) \geq 0$ and $\Delta(1) = \delta$, $\frac{\Delta''(1)}{\Delta'(1)} = \epsilon_U$. $Z_{i,t}$ and $Z_{i,j,t}$ represent an economywide
and sector-specific exogenous disturbance to the process by which investment goods are transformed into installed capital.

The capital producer optimally chooses \(\{ I_{js}(g), U_{js}(g), K_{js}(g) \} \) in order to maximize the expected discounted stream of dividends

\[
E_t \sum_{s=t}^{\infty} Z_{t,s} P_s D_{js,r}(g)
\]

The Lagrangean is given by

\[
E_t \sum_{s=t}^{\infty} Z_{t,s} \left[R_{js} K_{js}(g) - P_{js} I_{js}(g) - Q_{js} \left(\delta_{js+1}(g) - \left(1 - \Delta(U_{js}(g)) \right) \delta_{js}(g) - \right)
\]

\[
Z_{i,s} Z_{i,j,s} \left(1 - S \left(\frac{I_{js}(g)}{I_{js-1}(g)} \right) I_{js}(g) \right) \]

Where \(Q_{js} \) is the Lagrange multiplier on the law of motion of capital and \(K_{js}(g) \equiv \delta_{js}(g)U_{js}(g) \) denotes the amount of capital effectively rented out to intermediate goods producers.

3.4 Monetary policy

The monetary authority is assumed to follow a Taylor rule

\[
\frac{R_t}{R} = \left(\frac{R_{t-1}}{R} \right)^{\rho_s} \left[\left(\frac{\Pi_t}{\Pi} \right)^{\rho_{\pi}} \left(\frac{GDP_t}{GDP} \right)^{\rho_{gdp}} \right]^{1-\rho_s} Z_{r,t}
\]

where \(\rho_s \in [0, 1) \), \(\rho_{\pi}, \rho_{gdp} \) are monetary policy coefficients. \(\Pi_t = \frac{P_t}{P_{t-1}} \) is headline pce inflation. \(Z_{r,t} \) is a monetary policy shock. \(R \) and \(GDP \) denote the steady state policy rate and gross domestic product, respectively.

3.5 Market clearing and gross value added

We impose market clearing conditions in the bond, labour and goods market. These are included in appendix A. From the expenditure approach\(^9\), real gross domestic product is equal to the sum of private/government consumption and investment at time \(t \)

\[
GDP_t = \sum_{z=1}^{Z} P_{zt,r}(C_{zt} + G_{zt}) + \sum_{j=1}^{J} P_{jt,r} I_{jt}
\]

\(^9\)Or, alternatively, from the production and income approach in appendix A.
3.6 Exogenous processes

The model includes structural shocks at two levels of the economy: aggregate shocks (which are not specific to a particular price index) and micro shocks (specific to a particular producer/consumer price index).

Aggregate shocks. The set of aggregate shocks, A, includes (i) a monetary policy shock ($Z_{r,t}$), (ii) an aggregate risk shock ($Z_{b,t}$), (iii) a government demand shock ($Z_{g,t}$), (iv) an aggregate wage and price markup shock to producer and consumer prices ($Z_{w,t}, Z_{m,t}, Z_{c,t}$), (v) an aggregate productivity shock ($Z_{p,t}$) and (vi) an economywide investment shock ($Z_{i,t}$). Aggregate shocks follow an AR(1) process

$$\log(Z_{a,t}) = \rho_a \log(Z_{a,t-1}) + \sigma_a \varepsilon_{a,t}$$

with $a \in A = \{r, b, g, m, c, w, p, i\}$.

Micro shocks. The set of micro level shocks, $E = E^{pce} \cup E^{ppi}$, are shocks specific to an individual producer price j or consumer price z, respectively. They include price and wage markup shocks \(\{Z_{m,j,t}\}_{j=1}^J, \{Z_{c,z,t}\}_{z=1}^Z, \{Z_{w,j,t}\}_{j=1}^J \), productivity shocks \(\{Z_{p,j,t}\}_{j=1}^J \) and investment shocks \(\{Z_{i,j,t}\}_{j=1}^J \). The micro stochastic processes faced by producer prices follow AR(1) processes

$$\log(Z_{e,j,t}) = \rho_e \log(Z_{e,j,t-1}) + \sigma_{e,j} \varepsilon_{e,j,t}$$

with $e \in E^{ppi} = \{m, w, p, i\}$. The micro shocks faced by consumer prices z are

$$\log(Z_{e,z,t}) = \rho_e \log(Z_{e,z,t-1}) + \sigma_{e,z} \varepsilon_{e,z,t}$$

with $e \in E^{pce} = \{c\}$. All shocks are orthogonal.

3.7 Model mechanics and pipeline pressures

3.7.1 Model mechanics

Appendices $A - C$ solve the model, provide algebraic expressions for the steady state and log-linearize the model around this steady state, respectively. The following subset of equations are key to understand inflation dynamics (where lowercase symbols denote log-linearized versions of their uppercase counterpart)

$$\{\pi_{jt}^{ppi} = \gamma_{1,j}^{ppi} \pi_{jt}^{ppi} + \gamma_{2,j}^{ppi} \pi_{jt-1}^{ppi} - \gamma_{3,j}^{ppi} (p_{jt,r} - mc_{jt,r}) + \gamma_{3,j}^{ppi} (z_{m,t} + z_{m,j,t})\}_{j=1}^J \quad (7a)$$

10 Except for the monetary policy shock, for which we take $\rho_r = 0$.

16
\[
mc_{jt,r} = -(z_{p,j,t} + z_{p,t}) + \phi_j^n w_{jt,r} + \phi_j^m p_{jt,r}^m + \phi_j^k y_{jt,r} \]
\]

Eq. (7a) is a standard New Keynesian Phillips curve. Here it is defined for sectoral producer prices (instead of the aggregate economy).\(^{11}\) Due to the interlinked production architecture, producer prices set by other sectors, \{\(p_{j'}^{t,r}\)\}\(_{j'=1}^J\), affect marginal costs (eq. (7b)) of firms in sector \(j\), \(mc_{jt,r}\), in two ways. (i) First, through the cost of intermediates \(p_{jt,r}^m\), which captures the feature that price setting cascades through the IO matrix \(\Omega\) (cf. eq. (7c)). (ii) Second, through the rental cost of capital \(r_{jt,r}\); prices set in other sectors ripple through the investment flow matrix \(\Psi\) and affect the cost of investment, \(p_{jt,r}^i\) and subsequently the cost of capital (cf. eq. (7d)–(7f)).\(^{12}\) Consumer prices are modelled downstream to producer prices. Sectoral ppi inflation then not only permeates through \(\Omega\) and \(\Psi\) to affect other ppis, but also downward through the matrix \(K\), thereby affecting consumer price inflation \(\pi_{zt}^{pce}\) (cf. eq. (7g)–(7h)).

General equilibrium effects introduce higher order interactions; E.g. although “Synthetic Rubber” is not a direct input to the production of “Transportation services”, it is an important input to production of “Rubber Tires”, which is an intermediate input to “Transportation services”. Price dynamics of the “Synthetic Rubber” ppi is thus relevant for “Transportation services” inflation dynamics.

Note that the richness of sectoral shocks implies that price indices – even those that are tightly interlinked – can diverge for extended periods. E.g., a positive markup shock in the ppi of “Pulpwood” does not necessarily induce an increase of the ppi of “Industrial paper” if this increase in the cost of intermediate inputs is offset by a negative shock to

\(^{11}\)Current ppi inflation in sector \(j\) depends positively on past and expected future inflation, negatively on the current price mark–up, \(p_{jt,r} - mc_{jt,r}\), and positively on (economywide and sectoral) price mark–up disturbances.

\(^{12}\)Note that, even in the absence of sectoral interlinkages, price developments in other sectors still affect marginal costs through wages in sector \(j\). Since price developments in other sectors affect the general price level, they indirectly affect the household labour supply decision to other sectors. We found this channel to be empirically irrelevant, and ignore it in the remainder of the paper.
wages in the “Industrial paper” sector. Moreover, as discussed below, such comovement is also tempered by the presence of price stickiness along the supply chain.

3.7.2 Defining pipeline pressures

We now formalize pipeline pressures. We focus on ppi’s. The definition for consumer prices is completely similar (included in appendix D for completeness). Let

\[\frac{\partial \pi_{jt+s}^{ppi}}{\partial e_{a,t}} = \delta_j^{(s)}(a) \quad (a \in \mathcal{A}) , \quad \frac{\partial \pi_{jt+s}^{ppi}}{\partial e_{e,j',t}} = \delta_j^{(e)}(e, j') \quad (e \in \mathcal{E}^{ppi}) , \quad \frac{\partial \pi_{jt+s}^{ppi}}{\partial e_{e,z,t}} = \delta_j^{(e)}(e, z) \quad (e \in \mathcal{E}^{pce}) \]

summarize the impulse response of ppi inflation in sector \(j \) at time \(t + s \) to an aggregate shock \(e_{a,t} \) and micro shock \(e_{e,j',t}, e_{e,z,t} \) at time \(t \), respectively.

For the first expression, the impulse response coefficients and adjoining shocks can be stacked in vectors \(\delta_j^{(s)}(A) \) and \(\varepsilon(A)_t \), i.e.

\[\delta_j^{(s)}(A) = [\delta_j^{(s)}(r), \delta_j^{(s)}(b), \delta_j^{(s)}(g), \delta_j^{(s)}(m), \delta_j^{(s)}(c), \delta_j^{(s)}(w), \delta_j^{(s)}(p), \delta_j^{(s)}(i)]' \]

\[\varepsilon(A)_t = [\varepsilon_{rt}, \varepsilon_{bt}, \varepsilon_{mt}, \varepsilon_{ct}, \varepsilon_{wt}, \varepsilon_{pt}, \varepsilon_{it}]' \]

Similarly, for the micro shocks; \(\delta_j^{(s)}(E) \) and \(\varepsilon_j(E)_t \).

\[\delta_j^{(s)}(E) = \begin{bmatrix} \delta_j^{(s)}(E) \\ \delta_{j,j}(E) \end{bmatrix} , \quad \varepsilon_j(E)_t = \begin{bmatrix} \varepsilon_{j,j}(E)_t \\ \varepsilon_{j,j}(E)_t \end{bmatrix} \]

Where \(\delta_{j,j}(E) = [\delta_j^{(s)}(m, j), \delta_j^{(s)}(w, j), \delta_j^{(s)}(p, j), \delta_j^{(s)}(i, j)]' \) contains the impulse response coefficients of ppi \(j \) to shocks directly related to ppi \(j \). The second vector, indexed by ‘\(-j\)’, captures the impulse response coefficients of ppi \(j \) to micro shocks related to all price indices other than \(j \). Combining these impulse response functions and shocks, producer price inflation in sector \(j \) at time \(t \) can recursively be rewritten as

\[\pi_{jt}^{ppi} = \alpha_t(\pi_{jt}^{ppi})_{h=\infty} + \beta_t(\pi_{jt}^{ppi})_{h=\infty} + \gamma_t(\pi_{jt}^{ppi})_{h=\infty} \tag{8} \]

with

\[\alpha_t(\pi_{jt}^{ppi})_h = \sum_{s=0}^{h-1} (\delta_j^{(s)}(A))' \varepsilon(A)_{t-s} \]

\[\beta_t(\pi_{jt}^{ppi})_h = \sum_{s=0}^{h-1} (\delta_j^{(s)}(E))' \varepsilon_{j,j}(E)_{t-s} \]

\[\gamma_t(\pi_{jt}^{ppi})_h = \sum_{s=0}^{h-1} (\delta_{j,j}(E))' \varepsilon_{j,j}(E)_{t-s} \]
The equation disentangles inflation of price index j into a part that originates with aggregate shocks ($\alpha_t(\pi_{ppi}^j)_{h=\infty}$), a direct effect of the micro shocks specific to sector j ($\beta_t(\pi_{ppi}^j)_{h=\infty}$) and propagation of micro shocks from elsewhere in the economy ($\gamma_t(\pi_{ppi}^j)_{h=\infty}$). $\gamma_t(\pi_{ppi}^j)_{h=\infty}$ is what we label pipeline pressures; the cascade effect of micro–level shocks through the pipeline.

Note that $\alpha_t(\pi_{ppi}^j)_{h} + \beta_t(\pi_{ppi}^j)_{h} + \gamma_t(\pi_{ppi}^j)_{h}$ is the forecast error of the time t inflation forecast made h periods ago. It is then well–known that the variance of π_{ppi}^j can be decomposed as

$$\sigma^2[(\pi_{ppi}^j)_{h=\infty}] = \sigma^2[\alpha_t(\pi_{ppi}^j)_{h=\infty}] + \sigma^2[\beta_t(\pi_{ppi}^j)_{h=\infty}] + \sigma^2[\gamma_t(\pi_{ppi}^j)_{h=\infty}]$$

with

$$\sigma^2[\alpha_t(\pi_{ppi}^j)_{h=\infty}] = \sum_{s=0}^{h-1} (\delta^{(s)}(A))' \delta^{(s)}(A)$$

$$\sigma^2[\beta_t(\pi_{ppi}^j)_{h=\infty}] = \sum_{s=0}^{h-1} (\delta^{(s)}(E))' \delta^{(s)}(E)$$

$$\sigma^2[\gamma_t(\pi_{ppi}^j)_{h=\infty}] = \sum_{s=0}^{h-1} (\delta^{(s)}(E))' \delta^{(s)}(E)$$

Headline ppi inflation can then be written as

$$\pi_{ppi}^t = \sum_{j=1}^{J} \eta_j (\alpha_t(\pi_{ppi}^j)_{h=\infty} + \beta_t(\pi_{ppi}^j)_{h=\infty} + \gamma_t(\pi_{ppi}^j)_{h=\infty})$$

$$= \alpha_t(\pi_{ppi}^j)_{h=\infty} + \beta_t(\pi_{ppi}^j)_{h=\infty} + \gamma_t(\pi_{ppi}^j)_{h=\infty}$$

(9)

where η_j is the model–implied weight of sector j in headline ppi (see appendix B). For the variance

$$\sigma^2[(\pi_{ppi})_{h=\infty}] = \sigma^2[\alpha_t(\pi_{ppi})_{h=\infty}] + \sigma^2[\beta_t(\pi_{ppi})_{h=\infty}] + \sigma^2[\gamma_t(\pi_{ppi})_{h=\infty}]$$

with

$$\sigma^2[\alpha_t(\pi_{ppi})_{h=\infty}] = \sum_{s=0}^{h-1} \eta'(\Delta^{(s)}(A))'(\Delta^{(s)}(A))\eta$$

$$\sigma^2[\beta_t(\pi_{ppi})_{h=\infty}] = \sum_{s=0}^{h-1} \sum_{j=1}^{J} \eta_j (\delta^{(s)}(E))'(\delta^{(s)}(E))\eta_j$$

$$\sigma^2[\gamma_t(\pi_{ppi})_{h=\infty}] = \sum_{s=0}^{h-1} \sum_{j=1}^{J} \eta_j (\delta^{(s)}(E))'(\delta^{(s)}(E))\eta_j$$

19
\[
\sum_{s=0}^{h-1} \left(\sum_{j=1}^{J} \sum_{j' \neq j} \eta_j (\delta_{j,j'}^{(s)}(\mathcal{E}))' \mathbb{E}_s [\varepsilon_s,j,-j(\mathcal{E})] \delta_{j',j'}^{(s)}(\mathcal{E}) \eta_{j'} \right) + 2 \sum_{s=0}^{h-1} \left(\sum_{j=1}^{J} \sum_{j' \neq j} \eta_j (\delta_{j,j'}^{(s)}(\mathcal{E}))' \mathbb{E}_s [\varepsilon_s,j,j'(\mathcal{E})] \delta_{j',j'}^{(s)}(\mathcal{E}) \eta_{j'} \right)
\]

The three terms disentangle headline volatility due to aggregate shocks, a direct effect of sectoral shocks and pipeline pressures, respectively. \(\sigma^2 [\gamma_t(\pi^{ppi})_{h=\infty}] \) has three origins. It reflects (i) variances of disaggregate ppi’s due to pipeline pressures (first expression r.h.s.), (ii) covariances because prices in sector \(j \) and \(j' \) face common pipeline pressures from a third sector (second expression r.h.s.) and (iii) covariances between prices in sector \(j \) and \(j' \) since the former are subject to pipeline pressures originating from the latter (second expression r.h.s.). The expectation matrix is a binary matrix due to the orthogonality of shocks and unit variances.

4 Estimation

The model is estimated using Bayesian inference. In this section we discuss the calibration and the formation of priors. We provide details on the estimation procedure and elaborate on the estimation results.

4.1 Calibration and priors

4.1.1 Calibration

Scalar parameters. Parameters not related to the multi-sector setup are calibrated to common values in the literature (table 3, panel A). As such, we take the discount factor, \(\beta \), to be 0.99, set the depreciation rate to \(\delta = 0.025 \) and impose \(\varphi = 2 \), implying a Frisch elasticity of labor supply of 0.5. The coefficient of relative risk aversion is \(\sigma = 1.5 \). Following Carvalho and Lee (2011), we set the across-sector elasticities of substitution \(\nu_c, \nu_g, \nu_m, \nu_f, \nu_i \) to 2 and the within sector elasticity to \(\epsilon_m, \epsilon_c, \epsilon_w = 0.2 \) (i.e. a 20% steady state mark-up for firms). The size of government final consumption relative to private final consumption is set equal to its post-WWII average, \(g_c = 0.25 \).

Matrix parameters. The steady state interactions between the various agents in the model all have a natural counterpart in the data.

As shown in appendix B, \(\omega_{jj'} \) in eq. (3) corresponds to the steady state share of sector \(j' \) in total intermediate goods expenditures of firms in sector \(j \). \(\Omega \) then directly
corresponds to the IO matrix published by the Bureau of Economic Analysis (BEA). In the U.S., sectors are categorized according to the North American Input Classification System (NAICS). At the most aggregated level, \(\Omega \) consists of 7 broad sectors: “Agriculture & Forestry”, “Mining”, “Utilities”, “Construction”, “Manufacturing”, “Services” and the “Public sector”. Table 4 documents the IO table for \(J = 7 \).

Similarly, \(\psi_{jj'} \) in eq. (6) corresponds to the steady state share of sector \(j' \) goods in sector \(j \) investment. Investment share, \(\psi_{jj'} \), is then calibrated as dollar payments from industry \(j \) to industry \(j' \) expressed as a fraction of the total investment expenditures of sector \(j \). These flows are documented by the BEA Investment Flow tables. Table 5 reports \(\Psi \) for \(J = 7 \).

\(\phi_j^m, \phi_j^n, \phi_j^k \) correspond to the steady state share of expenditures of sector \(j \) on (i) intermediate material/service inputs, (ii) labour (wages) and (iii) capital expenditures in total expenditures of sector \(j \). BEA tables report total expenditures of sectors on these three factors of production. The shares of each individual tranche of expenditures in total sector expenditures delivers \(\phi_j^m, \phi_j^n, \phi_j^k \) for \(j = 1, ..., J \), respectively. These are documented in table 6.

The BEA publishes Personal Consumption Expenditures (PCE) tables which contain detailed household consumption patterns across final consumption goods. The latter follow a PCE classification system. The empirical PCE weights directly map to the \(Z \) consumption weights (\(\xi \)) in our model (which are steady state expenditures patterns of the household). Table 7 reports \(\xi \) for an aggregate level, \(Z = 4 \), over “Durables”, “Non-durables”, “Services” and “Public sector goods”.

In steady state, \(K \) details the mix of intermediate goods required from sector \(j \) to produce final consumption good \(z \). The BEA Bridge table decomposes final consumption goods into their sectoral origins. This bridge table (table 8) allows us (i) to trace the origins of private consumption goods (which follow the PCE classification system) into their underlying sectors (which follow the NAICS) and (ii) to structurally relate pce inflation of individual consumer products to ppi inflation of individual sectors.

Finally, sectoral wage stickiness \(\{\alpha_j^w\}_{j=1}^J \) is obtained from Bils et al. (2014), who derive these measures directly from micro wage data. The Calvo parameters of product category pce prices \(\{\alpha_j^{pce}\}_{j=1}^Z \) and sectoral producer prices \(\{\alpha_j^{ppp}\}_{j=1}^J \) are obtained from micro studies, Nakamura and Steinsson (2010) and Peneva (2011), respectively.

[Insert tables 4 – 8]

Level of analysis. For the estimation part of this project (remainder of this section), we concentrate on \(J = 7 \) broad sectors and \(Z = 4 \) product categories of the U.S. economy.

13Relevant details on the construction of the IO table are included in appendix E.
These J sectors approximately correspond to the “Business Sector” level of the NAICS. Focusing on these seven sectors has four advantages. First, these sectors are natural partitions of the U.S. economy. Second, there are sufficient sectoral data available to estimate the model. Third, they are computationally manageable.14 Lastly, at a more disaggregated level, the input–output tables of the U.S. economy have evolved significantly over time (see e.g. Foerster and Choi (2017)). At our level of aggregation, changes in the structure of the economy are negligible.15

The $Z = 4$ product categories are associated with the four broad consumption categories of the U.S. headline pce index. This is opposed to the generic distinction between “sticky–price” and “flexible–price” goods or “durable” vs. “non–durable” often found in two–sector models.

Quality of calibration. Lastly, as a quality check, we examine the implications of aforementioned calibration for other steady state ratios not explicitly targeted. The results are documented in appendix E.5 and indicate that the model–implied steady states of economywide variables (e.g., gross output–to–gdp, personal consumption expenditures–to–gdp) relate very well to their empirical counterparts. Similarly for sectoral shares of (i) gross output, (ii) gross value added, (iii) employment and the (iv) capital stock. A good level of mutual consistency between the sectoral and aggregate level is essential given that we will include variables at both levels as observables in the estimation (infra).

4.1.2 Priors

All priors, documented in table 9, are taken in keeping with Smets and Wouters (2007), with some exceptions to accommodate the specificities of our model.

For the standard errors of aggregate shocks, σ_a, we specify inverse gamma priors with a mean 0.1 and a standard deviation of 2. This prior matches that found in workhorse dsge models which typically focus exclusively on aggregate shocks. Similarly, the autoregressive parameters of aggregate processes are given a beta distribution with mean 0.85 and standard deviation 0.1.

The standard errors of micro–level shocks, $\{\varsigma_{e,j} | e \in \mathcal{E}^{pmp}\}_{j=1}^J$ and $\{\varsigma_{e,z} | e \in \mathcal{E}^{pce}\}_{z=1}^Z$, are typically more volatile than aggregate shocks.16 We thus specify priors with a mean 0.2 and a standard deviation of 2. We are agnostic as to whether sectoral shocks are more/less persistent than aggregate shocks; we thus use a non–informative beta prior centered at 0.5 for the autoregressive parameters of sectoral $AR(1)$ processes.

14We have experimented with more disaggregated versions of our model. Lack of sufficient disaggregated data hampered proper identification.

15In unreported results, available upon request, we show that our analysis is both qualitatively and quantitatively robust to using different vintages of U.S. IO tables over time.

16See e.g., evidence by Carvalho and Lee (2011); Bonakez et al. (2014).
Following Khan and Tsoukalas (2011), the capital utilization elasticity, \(\epsilon_U \), is given an inverse gamma prior with mean 0.15. We impose an inverse gamma prior with mean 4 for the parameter controlling investment adjustment costs \(\epsilon_I \). Regarding the parameters for indexation of prices and wages, we use a beta prior centered at 0.5. The habit parameter \(\chi \) is assumed to be beta distributed with a prior mean of 0.5, which is standard in the literature. For the parameters governing the Taylor–rule, \(\rho_{\pi} \) and \(\rho_{gdp} \), we impose normal distributions with a prior mean of 1.7 and 0.125 respectively, while the interest rate smoothing parameter \(\rho_s \) has a beta prior with mean 0.8.

We make one simplifying assumption; Earlier (unreported) estimation results did not suggest any relevant heterogeneity in the volatility of sectoral wage markups and sectoral investment shocks across sectors. In order to compress the parameter space, we equalize these parameters across sectors. Formally: \(\{\varsigma_{w,1} = ... = \varsigma_{w,7}\} \) and \(\{\varsigma_{i,1} = ... = \varsigma_{i,7}\} \).

4.2 Data

We estimate the model using quarterly data on the U.S. economy from 1970Q1 – 2007Q4. Our set of observables are empirical counterparts to the model disaggregate (\(\{\pi_{jt}^{\text{ppi}}, \pi_{jt}^{\text{pce}}, l_{jt}, w_{jt}, y_{jt}, i_{jt}\} \)) and aggregate (\(\{r_t, gdp_t, \pi_t^{\text{pce}}, \pi_t^{\text{ppi}}\} \)) variables. Details on harmonization, detrending, seasonal adjustment, etc. of the data are included in appendix E. The observation equation that relates the empirical time series to the corresponding model variables is reported in appendix E as well.

In total, we use 29 observable time series. For some sectors, sectoral data is unavailable. This is inconsequential since parameters specific to those sectors will be identified through general equilibrium interactions with sectors for which we do include observables. The inclusion of aggregate observables on top of sectoral observables serves to support identification as well.

Given the potential role of measurement error in U.S. sectoral data (e.g., Shoemaker (2007)), we allow for measurement error in our observation equation. For sectoral (aggregate) variables, we calibrate the variance of the measurement errors such that they correspond to 10% (5%) of the variance of each data series (cf. Christiano et al. (2011)). In addition, the inclusion of measurement error prevents stochastic singularity due to the joint inclusion of aggregate variables and the underlying sectoral variables as observables.
4.3 Posterior parameter results

We comment briefly on some of the parameter estimates which are reported in the prior–posterior table 9. We focus our discussion on the posterior mode, which is also used for all computations below.

The parameter estimates not specific to our model set–up align well with those documented in the literature. E.g., The capital utilization cost ($\epsilon_U = 0.120$) and investment adjustment cost ($\epsilon_I = 2.939$) are very close to those reported by Khan and Tsoukalas (2011), with whom we share the Greenwood et al. (1988) set–up. As per Smets and Wouters (2007), the degree of producer and consumer price indexation ($\iota_{ppi} = 0.080$, $\iota_{pce} = 0.192$) is small whereas that of wage indexation ($\iota_w = 0.426$) is moderately large. The monetary policy reaction function parameters $\rho_s = 0.771$ and $\rho_\pi = 1.820$ are standard whereas $\rho_{gdp} = 0.390$ is slightly larger than traditional estimates. Similar to Carvalho and Lee (2011), micro shocks are confirmed to be more volatile than their aggregate counterpart. Aggregate shocks are not unambiguously more/less persistent than their micro level counterpart.

5 Model analysis

This section documents our main results. First, we formally test whether pipeline pressures are a relevant feature of the model. We then disentangle historical inflation rates using both our model (a three–way decomposition) and a dfm (a two–way decomposition), and contrast our results. Finally, we decompose the sources of inflation (i) volatility and (ii) persistence and investigate the contribution of pipeline pressures to both statistics.

5.1 Testing for pipeline pressures

We use the Bayes factor to verify whether the data favour the model with pipeline pressures over models in which such propagation is mechanically shut down. We separately test for pipeline pressures (i) from producer prices to other producer prices and (ii) from producer prices to consumer prices.

To test for (i), we bilaterally compare 42 alternative models to the baseline model (labelled M). In each of the alternative models, we force sector j and j' to operate

\footnote{Prior–posterior plots are included in appendix F.}

\footnote{For the purpose of estimation, sectoral shocks are scaled vis–à–vis their aggregate counterpart. E.g. for wage markup shocks, we estimate $\pi^w_j = \beta \mathbb{E}_t(\pi^w_{j,t+1}) + \iota_w(\pi^pce_{t-1} - \beta \pi^pce_t) + \gamma^w_j(mrs_{jt} - w_{jt,x} + z_{w,t}) + \tilde{z}_{w,j,t}$. Hence, comparing the relative size of aggregate vs. sectoral shock volatility requires one to first undo the rescaling. After doing so (see appendix), we find that structural sectoral shocks are more volatile than their aggregate counterpart.}

\footnote{In view of stylized fact $2a - b$: note that here we talk about persistence of structural shocks, not persistence of inflation.}
in isolation from each other. That is, we impose \(\omega_{jj'} = \psi_{jj'} = 0 \) such that producer price setting in sector \(j \) is unresponsive to producer prices in sector \(j' \). We denote this alternative model as \(\mathcal{M}(\omega_{jj'}=0,\psi_{jj'}=0) \).

The Bayes factors are reported in Table 10, panel A. As per the interpretation in Kass and Raftery (1995), the magnitude of the Bayes factors reveals that in 35 out of 42 cases, the data strongly prefer the presence of pipeline pressures. Producer price developments in the “Manufacturing” and “Service” sector are strongly subject to price developments in other segments of the economy. On the other hand, price developments in the rest of the economy are moderately informative for price setting in the “Agriculture” sector. In 4 cases, the Bayes factor equals 1.00 given that \(\mathcal{M}(\omega_{jj'}=0,\psi_{jj'}=0) = \mathcal{M} \). In 3 cases, the data favour the model without pipeline pressures.

We next investigate whether pipeline pressures manifest themselves via the cost of capital or the cost of intermediates. For that purpose, we estimate models in which sectors do not rely on intermediates and capital, respectively (denoted by \(\mathcal{M}(\phi^m_j=0) \) and \(\mathcal{M}(\phi^k_j=0) \), respectively). Table 11 reveals that pipeline pressures via both channels are operative, except via the cost of capital in the “Mining” and “Utilities” sector.

Pipeline pressures from producer prices to consumer prices are tested in a similar vein, where \(\mathcal{M}(\kappa_{zj}=0) \) denotes the model in which the producer price of sector \(j \) is forced to be irrelevant for price setting of final consumption good \(z \). Table 10, panel B reveals that in 20 out of 28 cases, the data prefer the baseline model with pipeline pressures. This is especially true for pressures faced by consumer products “Durables” and “Non–Durables” that originate with producer prices in the “Manufacturing” and “Service” sectors. This is unsurprising, given that these sectors are closer to the household than e.g., the upstream sectors “Agriculture” or “Mining”. In 7 cases we have that \(\mathcal{M}(\kappa_{zj}=0) = \mathcal{M} \).

5.2 DFM decomposition and pipeline pressures

In this section we provide evidence that the common component in the dfm decomposition reflects both aggregate shocks and pipeline pressures.

For that purpose, we first decompose historical U.S. ppi/pce inflation rates through the lens of our structural model. We use the Kalman smoother to derive the smoothed shocks for 1970Q1 – 2007Q4 and the smoothed state of the economy in 1970Q1. We next iteratively apply eqs. (8), (9) (for producer prices) and D.1., D.2. (for consumer prices) to decompose deviations of inflation rates from their steady states into three origins. We then contrast this decomposition with a two-way decomposition obtained from a dfm. We focus here on headline inflation (the results for disaggregate prices are similar).

Figure 3, panel A, jointly plots three times series; (i) the part of headline ppi inflation due to aggregate shocks \(\alpha_t(\pi^{p_{it}})_{h=\infty} \), in blue), (ii) the part of headline ppi inflation due
to aggregate shocks and pipeline pressures \(\alpha_t(\pi_{ppi})_{h=\infty} + \gamma_t(\pi_{ppi})_{h=\infty} \), in red), (iii) the common factors, extracted by a dfm \(\eta' \Lambda f_t \), in black). We make two observations.

First, inflation due to aggregate structural shocks in our model closely tracks the common component extracted by a dfm. Hence, the bulk of the common component of the dfm truly reflects aggregate shocks. This finding also echoes the results in Forni and Gambetti (2010) that the common component in a dfm is to a large extent driven by only a limited number of macroeconomic shocks.

Second, once we control for pipeline pressures \(\alpha_t(\pi_{ppi})_{h=\infty} + \gamma_t(\pi_{ppi})_{h=\infty} \), our structural decomposition moves closer to the common component of the dfm decomposition. The shaded areas highlight the periods in which this is true. This result implies that the factors in the dfm reflect both aggregate shocks and comovement of price indices emanating from pipeline pressures.

We next investigate the implications of this result on the stylized facts inferred from the dfm framework.

5.3 Pipeline pressures and inflation variance

This subsection investigates the origins of inflation volatility (Stylized fact 1a – 1b). In order to present more disaggregated results, we use the estimates of the baseline model with \(\{J = 7, Z = 4\} \) to calibrate a disaggregated version of the economy with \(\{J = 35, Z = 17\} \). The relevant structural tables and other details are included in appendix E.4. Table 12 and 13 report the forecast error variance decomposition \((FEVD) \) of producer and consumer prices, respectively. Columns (1) – (3) document the one quarter horizon \((FEVD(1)) \), columns (4) – (6) the infinite horizon \((FEVD(\infty)) \). We summarize five observations.

First, for disaggregate ppi/pce indices, at infinite horizon (columns (4) – (6)), our model reproduces stylized fact 1a; disaggregated inflation volatility originates mainly with micro–level shocks specific to that price index (column (5), panel A). The reason is that the structural micro–level shocks are estimated to be more volatile than the structural aggregate shocks. Aggregate shocks are the second most important source of disaggregate ppi/pce volatility (column (4)), followed closely by pipeline pressures (column (6)).

Second, our model is also consistent with stylized fact 1b: for headline inflation, the direct effect of sectoral shocks is small, e.g. only 9.43% for the ppi (column (5), panel
The reason is that the direct effects of sectoral shocks average each other out in the headline index. Reversely, pipeline pressures and aggregate shocks generate comovement across multiple indices and therefore do not easily cancel out. Combined, they thus remain as the most important drivers of headline inflation. Aggregate shocks explain 69.09% and 45.54% of headline ppi and pce, respectively. Pipeline pressures are moderately less important, but still explain 21.47% and 28.16% of headline ppi and pce inflation. This is a key point in our analysis: sectoral shocks gain more relevance (at the cost of aggregate shocks) once their indirect effect via pipeline pressures is correctly identified from the data.

Third, a comparison across producer and consumer price indices in column (6) across table 12 and table 13 reveals that pipeline pressures are more important for consumer prices than for producer prices. Within producer prices, we also observe that pipeline pressures are larger for downstream sectors (such as “Food and Beverages”, “Professional services”, “Wholesale trade” etc.) than for sectors upstream in the U.S. economy (such as “Agriculture & Forestry”, “Oil and gas extraction”, “Mining, except oil and gas”, etc.). Note that our qualification of “upstream” and “downstream” is not readily apparent from the model, which features a roundabout production structure. E.g., in our model, the “Transportation services” sector relies on the “Motorized vehicles” sector, which, in turn, relies on the “Primary metals” sector. But of course, the latter, in turn, requires some “Transportation services” in its production process as well. Since all sectors rely on intermediates, no single sector is unambiguously upstream/downstream. Our qualification of upstream/downstream relies purely on ad hoc knowledge that some sectors’ output is more “raw” than others. The fact that our model qualifies these sectors as less subject to pipeline pressures, is therefore appealing, but not obvious.

Fourth, in terms of timing, we see that it takes time for pipeline pressures to manifest themselves; Column (3), which documents \(FEVD(1) \), is always an order of magnitude smaller than column (6), which documents \(FEVD(\infty) \). Again some heterogeneity is apparent. Pipeline pressures faced by the more upstream sectors “Petroleum and coal products” and “Agriculture and Forestry” are close to instantaneous. Reversely, pipeline pressures to the more downstream sectors “Wholesale trade” and “Transportation and Warehousing” take time to fully materialize. In subsection 6.1, we will analyse the sources of this heterogeneity further.

Lastly, we directly contrast our variance decomposition with that obtained from a dfm (column (7) and (8)). Simple correlation measures, in table 14, indicate that the dfm and our structural model decompose sectoral inflation volatility in very comparable way: Price indices that are relatively more subject to aggregate shocks in the structural model

\footnote{In fact, it follows from a complex combination of price stickiness, Cobb-Douglas parameters and sectoral interactions.}

20
are also relatively more driven by the common component of the dfm. Moreover, since the factors in the dfm also capture pipeline pressures on top of macroeconomic shocks, accounting for the former improves the correlation between our model decomposition and the dfm.

[Insert table 14]

5.4 Pipeline pressures and inflation persistence

This section investigates the origins of inflation persistence (Stylized fact $2a - b$). Persistence in the structural model is measured in the same way as in the dfm by fitting an $AR(L)$ model separately to the three components of eqs. (8), (9) (for producer prices) and D.1., D.2. (for consumer prices). Our measure of persistence then equals the sum of the coefficients on all lags. E.g. persistence caused by aggregate shocks in sector j

$$\alpha_t(\pi_{ppi}^{j})_{h=\infty} = \sum_{l=1}^{L} \rho_{j,l} \alpha_{t-l}(\pi_{ppi}^{j})_{h=\infty} + \epsilon_{j,t}$$

$$\rho(\alpha_t(\pi_{ppi}^{j})_{h=\infty}) = \sum_{l=1}^{L} \rho_{j,l}$$

Where lag length L is selected based on the BIC information criterion.

[Insert table 15]

Table 15 documents that our model disentangles the origins of persistence in a similar way as the dfm; On average, disaggregate prices react close to instantaneously to micro shocks specific to that price index (column (2)) whereas aggregate shocks generate persistence (column (1)). Interpreted as an aggregate shock in a dfm, however, we find that pipeline pressures from sectoral shocks generate persistence as well. This contrasts sharply with the dfm literature which allocates any persistence of inflation indices fully to aggregate shocks.

To understand why our model reproduces these stylized facts, we discuss a general property of the impulse response functions $-\delta_j^{(s)}(a)$, $\delta_j^{(e,j)}$, $\delta_j^{(e,j')}$ – that underlay our definitions of $\alpha_t(\pi_{ppi}^{j})_{h=\infty}$, $\beta_t(\pi_{ppi}^{j})_{h=\infty}$ and $\gamma_t(\pi_{ppi}^{j})_{h=\infty}$. We focus on producer prices, the discussion applies to consumer prices as well.

Aggregate shocks ($\delta_j^{(s)}(a)$). Let us consider what happens in the face of an aggregate shock, $\varepsilon_{a,t}$, that affects all sectors. To the extent that firms in sector j have sticky prices, they will only respond gradually to this aggregate shock. In addition, if firms in sector
j' rely on inputs from sector j, \(\omega_{jj'} > 0 \) or \(\psi_{jj'} > 0 \), the sluggish price change in sector
\(j \) will feed only slowly into the marginal costs of the firms in sector \(j' \) via \(p_{jt,r}^{m} \) and \(r_{jt,r} \)
(via \(p_{jt,r}' \)). Consequently, irrespective of the stickiness of prices in sector \(j' \), the impact
of an aggregate shock is persistent given that marginal costs are “held back” by prices that
have not yet adjusted, i.e. a contagion of price stickiness (cf. Carvalho and Lee (2011);
Basu (1995)).

To illustrate this, figure 4 plots the impulse response functions of sectoral ppi inflation
rates to an economywide wage markup shock, \(\delta_{j}'(w) \). All sectors, including the flexible
price sector “Agriculture”, only slowly respond to the aggregate shock given that part of
their inputs (e.g. from the “Manufacturing” sector) take time to adjust.

[Insert figure 4]

Sectoral shocks – Direct effect \((\delta_{j}'(e,j)) \). The diagonal in figure 5 plots the change
in sector \(j \) ppi inflation due to a wage markup shock in sector \(j \), \(\delta_{j}'(w,j) \), and shows that
the response of sector \(j \) prices is close to instantaneous. This causes the low persistence
in table 15, column (2). The reason is that, in contrast to the aggregate shock scenario,
there are no unadjusted intermediate input prices that hold back marginal costs in sector
\(j \). The speed of response is then solely driven by the level of price stickiness in sector \(j \).\(^{21}\)

[Insert figure 5, diagonal plots]

Sectoral shocks – Pipeline pressures \((\delta_{j}'(e,j)) \). In the presence of production link-
ages, the sectoral shock in sector \(j \) spills over to the marginal cost of sector \(j' \) through \(\Omega \)
and \(\Psi \). If sector \(j' \) is a sticky price sector, it will only slowly adjust its prices to these
pipeline pressure. Subsequently, all sectors that in turn rely on sector \(j' \) will face sluggish
changes in their input costs and thus respond slowly to the shock originating in sector \(j \).
The presence of sticky price sectors along the supply chain thus cause pipeline pressures
to be persistent. The off–diagonal graphs in figure 5 reflect this.\(^{22}\)

[Insert figure 5, off–diagonal plots]

\(^{21}\)Note that the differential persistence is not due to different persistence of the structural shocks: \(\rho_{w} \)
and \(\varrho_{w} \) are estimated to be very similar.

\(^{22}\)Importantly, looking vertically across figure 5, we note that pipeline pressures generate comovement
of sectoral inflation indices much similar to the effect of an aggregate shock. This affects the ability
of a dfm to correctly discriminate between aggregate shocks and pipeline pressures: both are picked up by
the dfm in the common component.
6 Additional results and robustness

This section documents a set of additional results. In the first subsection, we take a more granular look on the sectoral origins of pipeline pressures. We next gauge the magnitude (and origins) of pipeline pressures between 1970Q1 – 2007Q4 by ways of an historical decomposition. Finally, we relate the model–implied lead–lag relationships of price indices with that present in disaggregate price data.

6.1 Trace inflation through the pipeline

We investigate from which sectors the pipeline pressures to individual price indices originate. For that purpose, we decompose \(\gamma_t(\pi_{ppi}^j)_{hh} \) and \(\gamma_t(\pi_{pce}^z)_{hh} \) into their sectoral origins.

To economize notation, we ignore the role of shocks to consumer prices here. For producer and consumer prices we then have that

\[
\gamma_t(\pi_{ppi}^j)_{hh} \approx J \sum_{j' \neq j} \left(\sum_{s=0}^{h-1} (\delta_{s,j',j}^{(s)}(E))' \epsilon_{j,j'}(E)_{t-s} \right) = \sum_{j' \neq j} \gamma_t(\pi_{ppi}^{j,j'})_{hh}
\]

\[
\gamma_t(\pi_{pce}^z)_{hh} \approx J \sum_{j=1}^{h-1} \left(\sum_{s=0}^{h-1} (\delta_{s,j,z}^{(s)}(E))' \epsilon_{z,j'}(E)_{t-s} \right) = \sum_{j=1}^{h-1} \gamma_t(\pi_{pce}^{z,j'})_{hh}
\]

where vector \(\delta_{s,j',j}^{(s)}(E) \) contains the period \(s \) irf coefficients of ppi \(j \) (pce \(z \)) to shocks in sector \(j' \), \(\epsilon_{j,j'}(E)_{t-s} \). \(\gamma_t(\pi_{ppi}^{j,j'})_{hh} \) then quantifies the amount of pipeline pressures faced by ppi \(j \) at time \(t \) that originates from sector \(j' \). Table 16a documents how important the pipeline pressures originating from sector \(j' \) are in total pipeline pressures faced by the ppi of sector \(j \).

For ppi inflation, the role of the production structure of the U.S. economy is apparent in this decomposition. E.g. given its role as an important intermediate input supplier to the “Food and Beverages” sector, the “Agriculture” sector is an important source of pipeline pressures to the former (92.77%). Similarly, the “Primary metals” sector is an important determinant of price setting in “Motor vehicles, bodies and trailers” (28.05%).

On the other hand, the “Construction”, “Machinery” and “Computers and electronic products” sectors are only marginally involved in the U.S. input–output matrix \(\Omega \) (see appendix E.4.). Nonetheless, these sectors exert important pipeline pressures through the capital flow matrix \(\Psi \).

For pce inflation, table 17a documents how important pipeline pressures from ppi \(j \) are in total pipeline pressures faced by pce inflation \(z \). We observe e.g. that the financial sector (FIRE) is an important origin of pipeline pressures to many (non)durable consumer

23This is inconsequential, given that we find them to be a very small source of pipeline pressures.
goods, (such as “Recreational goods and vehicles” (10.55%)) and services (such as “Housing” (59.77%) and “Transportation Services” (17.48%)), given that it is both directly and indirectly involved in supporting the production of these goods/services.

[Insert table 16a, 17a]

The timing of pipeline pressures faced by ppi’s is heterogeneous; e.g. from table 12 we know that pipeline pressures faced by the sector “Food and Beverages” are close to instantaneous (i.e. column (3) is close to (6)), whereas pressures faced by the “Construction” sector take time to build (i.e. column (3) is much smaller than (6)). In order to investigate this, table 16b documents $\frac{\sigma^2[\gamma_t(\pi_{ppi j}^{h=1})]}{\sigma^2[\gamma_t(\pi_{ppi j}^{h=1})]}$ (i.e. FEVD(1)). Contrasting with table 16a, we see for example that the main source of pipeline pressures to the “Food and Beverages” ppi is the “Agriculture” sector. Given the price flexibility of the latter sector, these pressures already manifest themselves in full after one quarter. Reversely, pressures faced by the “Construction” ppi mainly originate from the “Professional and Business services (PROF)” and “FIRE” sector. Due to the sticky nature of these sectors, pressures emanating from both sectors take time to build.

The timing of pipeline pressures to consumer prices is also heterogeneous; e.g.; from table 17a – b the pipeline pressures originating from the “Oil and gas extraction” sector and “Petroleum and coal” sector on the consumer prices of “Gasoline and other energy goods” are close to instantaneous. The reverse is true for e.g. the “Machinery” sector. Its impact on consumer prices (e.g. “Recreational goods and services”) takes time to materialize.

W.r.t. timing, higher order effects are also important; e.g. although the “Computer and Electronic products” sector has relatively flexible prices, the pressure it exerts on downstream product categories, such as “Transportation services” and “Recreation services”, often take time to fully materialize because its shocks first passes through sticky price sectors before they effectively reach more downstream prices.

[Insert table 16b, 17b]

6.2 Historical pipeline decomposition

We now decompose historical pipeline pressures through the lens of our structural model (for brevity, we focus on producer prices only). For that purpose, we use the Kalman smoother to derive the smoothed shocks for 1970Q1 – 2007Q4 and the smoothed state of the economy in 1970Q1. This allows us to derive $\sum_{j \neq j'} \gamma_t(\pi_{ppi j}^{h=\infty})$ (and $\sum_{j=1}^{J} \eta_j \sum_{j' \neq j}^{J} \gamma_t(\pi_{ppi j}^{h=\infty})$), which decomposes pipelines pressures to ppi j (and headline ppi) at time
Pipeline pressures stemming from the '79 oil price shock (mining sector) echo through the first half of the eighties and disappear after some time. The aftermath of the double dip recession in the early eighties is shown to have triggered pipeline easing, where disinflationary shocks eased inflation across the production chain. The nineties are characterized as a period of moderate and less volatile inflation where pipeline pressures were mostly subdued.

The panels in figure 7 provide a similar decomposition for disaggregate indices.25 Again, pipeline pressures are an important source of inflation persistence, except for the “Utilities” sectors (where pipeline pressures mainly originate from the more volatile “Mining” sector). Looking vertically across the graphs, one clearly observes that pipeline pressures are correlated across sectors; This again illustrates why it is difficult for a dfm to correctly disentangle $\alpha_t(\pi_{j,ppi})_{h=\infty}$ from $\gamma_t(\pi_{j,ppi})_{h=\infty}$. Importantly, however, pipeline pressures are not fully synchronized across price indices. In some sectors, pipeline pressures build up quicker (and die out quicker) than in others because some sectors are closer to the sector from which the pipeline pressure originates. E.g. given its proximity to the “Mining” sector, pipeline pressures faced by the “Utilities” ppi that originate in the “Mining” sector are close to instantaneous. The pipeline pressure faced by the “Services” ppi that originate in the “Mining” sector are more lagged and persistent given that it takes time for this shock to fully permeate through the production structure of the U.S. economy before it reaches the service sector.

The panels in figure 7 show that in the “Agriculture” and “Mining” sectors, pipeline pressures mainly originate from the “Manufacturing” and “Service” sector – especially in the first half of the sample. The reverse is true for “Utilities” and “Manufacturing”,

24 For tractability, the results in this section are based on the aggregated version of our model.

25 For “Construction”, “Services” and “Public sector”, no ppi series are observed so that we decompose their smoothed values obtained from the Kalman smoother.
where “Mining” is an important source of pipeline pressures. The “Mining” sector has been an important driver of “Services” inflation during the first half of the sample, but is mostly subdued thereafter. The “Manufacturing” sector is always a key source of pipeline pressures to the “Services” ppi. This is unsurprising, given that an important segment of the “Service” sector is “Wholesale trade”, which sources its products mainly from the “Manufacturing” sector.

[Insert figure 7]

6.3 Lead–Lag relationships

In view of the presence of pipeline pressures, one interesting dimension of the model are the autocorrelations between the various price indices. In this subsection, we validate the model by comparing the autocorrelations of the various inflation indices in the actual data to those of simulated data (see e.g. Fuhrer and Moore (1995); Smets and Wouters (2007); Gertler et al. (2008)).

The empirical cross–correlations are estimated on the same data sample as that used in the estimation of the dsge model and cover the period from 1970Q2 – 2007Q4. The model–based cross–correlations are based on 100,000 random samples of length 152.26

The empirical and model–based cross–correlations between headline ppi and pce are reported in figure 8. The black line represents the autocorrelation function (ACF) of the data, the solid red line reports the ACF of the model and the dashed red lines delimit the ninety percent posterior interval of the model correlations.

[Insert figure 8]

The moderately skewed autocorrelation between ppi and pce inflation indicates a lead–lag relation from producer prices to consumer prices which our model is able to replicate. In figure 9–10 we report similar autocorrelation plots for disaggregate price indices. These figures show that, overall, the model does well in capturing this dimension of the data.

[Insert figure 9 and 10]

26That is, we sample 1,000 parameter points from the posterior, and for each we generate a random sample of length 152 (i.e. the length of the estimation period), 100 times.
7 Conclusion

Policymakers and forecasters often look for signs of an impending rise in the general price level by concentrating on price movements in particular sectors. The underlying presumption is the existence of a cascade effect where sectoral shocks propagate through input–output interactions and induce inflation in other sectors. Recent policy work (e.g., European Central Bank (2017); Federal Reserve System (2018)) and the popular press (e.g., Wall Street Journal (2018); Financial Times (2018)), have labelled this cascade effect metaphorically as “pipeline pressures”.

In this paper, we develop a dynamic stochastic general equilibrium model in order to provide a structural definition of pipeline pressures and subsequently use Bayesian estimation techniques to infer their presence from the data. Pipeline pressures are shown to be an important contributor to sectoral and headline inflation volatility and a material source of persistence. This contrasts with evidence from dynamic factor models, which have de-emphasized the role of sectoral shocks for volatility and persistence in favour of aggregate shocks.

A recent contribution of Ghironi (2018) advocates for more micro in macro. In this paper, we have taken this advice to heart by introducing disaggregate sectors in an otherwise standard New Keynesian model. As such our paper bridges three bodies of research, (i) an empirical literature on disaggregate price data, (ii) structural dynamic stochastic general equilibrium models and (iii) the IO literature on the granular origins of aggregate fluctuations.

Our analysis delivers a set of important policy implications. First, our results underscore the aggregate inflationary implications of sectoral events, e.g. (i) productivity shocks in the computer and electronics industry, (ii) the shale gas boom in the mining sector, (iii) disruptions in the real estate sector, (iv) emission scandals (such as Diesel-gate), etc. Second, in line with the former, our analysis suggests that a production view of the economy entails a useful area of research for improving forecasting performance. Finally, although not addressed in this paper, we underscore that our model is suitable to investigate an array of research questions related to monetary policy. (i) E.g. (How) should monetary policy react to sectoral shocks? (ii) Can part of the current low–inflation environment be traced back to missing inflation in the pipeline? (iii) What are the implications of far-reaching decentralization/outsourcing of production processes for monetary policy?
8 Tables

Table 1: Stylized facts; disaggregate inflation

<table>
<thead>
<tr>
<th></th>
<th>Consumer prices</th>
<th>Producer prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\rho(\epsilon_{it})$</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>$\rho(\lambda_{it}^f)$</td>
<td>0.57</td>
<td>0.44</td>
</tr>
<tr>
<td>Volatility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$100 \times \frac{\sigma^2(\epsilon_{it})}{\sigma^2(\pi_{it})}$</td>
<td>63.00</td>
<td>63.54</td>
</tr>
<tr>
<td>$100 \times \frac{\sigma^2(\lambda_{it}^f)}{\sigma^2(\pi_{it})}$</td>
<td>37.00</td>
<td>36.45</td>
</tr>
</tbody>
</table>

Number of factors are determined by the Bai and Ng (2002) information criterion. Persistence is measured following Boivin et al. (2009); an AR(L) model is estimated for both components of the dfm and persistence equals the sum of the coefficients on all lags. Lag length is selected based on the BIC information criterion. There is no natural lower bound on this persistence measure.

Table 2: Stylized facts; headline inflation

<table>
<thead>
<tr>
<th></th>
<th>Consumer prices</th>
<th>Producer prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\rho(w'\epsilon_{it})$</td>
<td>-0.04</td>
<td>-0.08</td>
</tr>
<tr>
<td>$\rho(w'\Lambda f_{it})$</td>
<td>0.70</td>
<td>0.37</td>
</tr>
<tr>
<td>Volatility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$100 \times \frac{\sigma^2(w'\epsilon_{it})}{\sigma^2(\pi_{it})}$</td>
<td>35.54</td>
<td>26.35</td>
</tr>
<tr>
<td>$100 \times \frac{\sigma^2(w'\Lambda f_{it})}{\sigma^2(\pi_{it})}$</td>
<td>64.46</td>
<td>73.65</td>
</tr>
</tbody>
</table>

Number of factors are determined by the Bai and Ng (2002) information criterion. Persistence is measured following Boivin et al. (2009); an AR(L) model is estimated for both components of the dfm and persistence equals the sum of the coefficients on all lags. Lag length is selected based on the BIC information criterion. There is no natural lower bound on this persistence measure.
Table 3: Calibration of parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Aggregate parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elasticity of inter temporal substitution</td>
<td>σ</td>
<td>1.50</td>
</tr>
<tr>
<td>Discount factor</td>
<td>β</td>
<td>0.99</td>
</tr>
<tr>
<td>Inverse Frisch labour supply elasticity</td>
<td>φ</td>
<td>2.00</td>
</tr>
<tr>
<td>Markup, intermediate goods market</td>
<td>ϵ_m</td>
<td>0.20</td>
</tr>
<tr>
<td>Markup, final goods market</td>
<td>ϵ_c</td>
<td>0.20</td>
</tr>
<tr>
<td>Markup, labour market</td>
<td>ϵ_w</td>
<td>0.20</td>
</tr>
<tr>
<td>Elasticity of substitution intermediates</td>
<td>ν_f, ν_m, ν_i</td>
<td>2.00</td>
</tr>
<tr>
<td>Elasticity of substitution final consumption goods</td>
<td>ν_c, ν_g</td>
<td>2.00</td>
</tr>
<tr>
<td>Capital depreciation</td>
<td>δ</td>
<td>0.025</td>
</tr>
<tr>
<td>Size government</td>
<td>ζ</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Panel B: Sectoral parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediates Input–Output matrix</td>
<td>Ω</td>
<td>See table 4</td>
</tr>
<tr>
<td>Investment flow matrix</td>
<td>Ψ</td>
<td>See table 5</td>
</tr>
<tr>
<td>Labour share</td>
<td>ϕ^n</td>
<td>See table 6</td>
</tr>
<tr>
<td>Capital share</td>
<td>ϕ^k</td>
<td>See table 6</td>
</tr>
<tr>
<td>Intermediate goods/services share</td>
<td>ϕ^m</td>
<td>See table 6</td>
</tr>
<tr>
<td>Wage stickiness</td>
<td>α^w</td>
<td>See table 6</td>
</tr>
<tr>
<td>Producer price stickiness</td>
<td>α^{mp}</td>
<td>See table 6</td>
</tr>
<tr>
<td>Consumer price stickiness</td>
<td>α^{pce}</td>
<td>See table 7</td>
</tr>
<tr>
<td>Private consumption weights</td>
<td>ξ</td>
<td>See table 7</td>
</tr>
<tr>
<td>Government consumption weights</td>
<td>ζ</td>
<td>See table 7</td>
</tr>
<tr>
<td>Intermediate goods producers to final goods producers</td>
<td>K</td>
<td>See table 8</td>
</tr>
</tbody>
</table>

This table documents the parameters calibrated throughout the estimation of the model. ζ is set equal to the average fraction of annual Government Consumption Expenditures to Personal Consumption Expenditures in the post WWII period. Elasticities and markups are taken similar or close to Pasten et al. (2016, 2017); Carvalho and Lee (2011).
Table 4: **INPUT–OUTPUT MATRIX INTERMEDIATES (Ω): AGGREGATE LEVEL**

<table>
<thead>
<tr>
<th>Agriculture & Forestry</th>
<th>Mining</th>
<th>Utilities</th>
<th>Construction</th>
<th>Manufacturing</th>
<th>Services</th>
<th>Public sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture & Forestry</td>
<td>0.35</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.32</td>
<td>0.28</td>
</tr>
<tr>
<td>Mining</td>
<td>0.00</td>
<td>0.24</td>
<td>0.05</td>
<td>0.02</td>
<td>0.22</td>
<td>0.45</td>
</tr>
<tr>
<td>Utilities</td>
<td>0.00</td>
<td>0.32</td>
<td>0.02</td>
<td>0.02</td>
<td>0.08</td>
<td>0.54</td>
</tr>
<tr>
<td>Construction</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.57</td>
<td>0.40</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0.06</td>
<td>0.05</td>
<td>0.02</td>
<td>0.00</td>
<td>0.60</td>
<td>0.25</td>
</tr>
<tr>
<td>Services</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>0.18</td>
<td>0.74</td>
</tr>
<tr>
<td>Public sector</td>
<td>0.00</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.32</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Parameters ω_{jj}' are constructed using the 1997 “Use” and “Make” tables provided by the BEA. Row sums do not add to one due to rounding.

Table 5: **INVESTMENT FLOW MATRIX (Ψ): AGGREGATE LEVEL**

<table>
<thead>
<tr>
<th>Agriculture & Forestry</th>
<th>Mining</th>
<th>Utilities</th>
<th>Construction</th>
<th>Manufacturing</th>
<th>Services</th>
<th>Public sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture & Forestry</td>
<td>0.00</td>
<td>0.00</td>
<td>0.11</td>
<td>0.70</td>
<td>0.18</td>
<td>0.00</td>
</tr>
<tr>
<td>Mining</td>
<td>0.00</td>
<td>0.50</td>
<td>0.00</td>
<td>0.07</td>
<td>0.31</td>
<td>0.12</td>
</tr>
<tr>
<td>Utilities</td>
<td>0.00</td>
<td>0.00</td>
<td>0.44</td>
<td>0.40</td>
<td>0.15</td>
<td>0.00</td>
</tr>
<tr>
<td>Construction</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.76</td>
<td>0.21</td>
<td>0.00</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0.00</td>
<td>0.00</td>
<td>0.13</td>
<td>0.60</td>
<td>0.25</td>
<td>0.00</td>
</tr>
<tr>
<td>Services</td>
<td>0.00</td>
<td>0.00</td>
<td>0.42</td>
<td>0.39</td>
<td>0.18</td>
<td>0.00</td>
</tr>
<tr>
<td>Public sector</td>
<td>0.00</td>
<td>0.00</td>
<td>0.44</td>
<td>0.22</td>
<td>0.32</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Parameters ψ_{jj}' are constructed using the 1997 “Use” and “Make” tables provided by the BEA. Row sums do not add to one due to rounding.
Table 6: Input shares labour, intermediates and capital (J=7)

<table>
<thead>
<tr>
<th>j</th>
<th>Sector</th>
<th>NAICS</th>
<th>Labour</th>
<th>Intermediates</th>
<th>Capital</th>
<th>Price stickiness</th>
<th>Wage stickiness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(φ^n_j)</td>
<td>(φ^m_j)</td>
<td>(φ^k_j)</td>
<td>α^ppi_j</td>
<td>α^w_j</td>
</tr>
<tr>
<td>1</td>
<td>Agriculture & Forestry</td>
<td>11</td>
<td>0.10</td>
<td>0.58</td>
<td>0.32</td>
<td>0.00</td>
<td>0.78</td>
</tr>
<tr>
<td>2</td>
<td>Mining</td>
<td>21</td>
<td>0.20</td>
<td>0.45</td>
<td>0.34</td>
<td>0.22</td>
<td>0.84</td>
</tr>
<tr>
<td>3</td>
<td>Utilities</td>
<td>22</td>
<td>0.17</td>
<td>0.32</td>
<td>0.53</td>
<td>0.00</td>
<td>0.77</td>
</tr>
<tr>
<td>4</td>
<td>Construction</td>
<td>23</td>
<td>0.32</td>
<td>0.52</td>
<td>0.16</td>
<td>0.22</td>
<td>0.79</td>
</tr>
<tr>
<td>5</td>
<td>Manufacturing</td>
<td>31</td>
<td>0.21</td>
<td>0.64</td>
<td>0.16</td>
<td>0.24</td>
<td>0.74</td>
</tr>
<tr>
<td>6</td>
<td>Services</td>
<td>42</td>
<td>0.32</td>
<td>0.37</td>
<td>0.31</td>
<td>0.55</td>
<td>0.77</td>
</tr>
<tr>
<td>7</td>
<td>Public sector</td>
<td>9</td>
<td>0.54</td>
<td>0.31</td>
<td>0.15</td>
<td>0.89</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Parameters φ^n_j, φ^m_j and φ^k_j are constructed using the 1997 “Use” tables provided by the BEA. Shares do not add to one due to rounding. α^ppi_j and α^w_j are obtained from Peneva (2011) and Bils et al. (2014), respectively.

Table 7: Price stickiness and consumption weights across product categories (Z=4)

<table>
<thead>
<tr>
<th>z</th>
<th>Product Category</th>
<th>Private consumption</th>
<th>Government consumption</th>
<th>Price stickiness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(ξ_z)</td>
<td>(ζ_z)</td>
<td>(α^pce_z)</td>
</tr>
<tr>
<td>1</td>
<td>Durables</td>
<td>0.13</td>
<td>0.00</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>Non-Durables</td>
<td>0.29</td>
<td>0.00</td>
<td>0.16</td>
</tr>
<tr>
<td>3</td>
<td>Services</td>
<td>0.58</td>
<td>0.00</td>
<td>0.44</td>
</tr>
<tr>
<td>4</td>
<td>Public sector goods</td>
<td>0.00</td>
<td>1.00</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Data are constructed using the 1997 PCE tables provided by the BEA. Shares do not add to one due to rounding. Price stickiness (α^pce_z) are obtained by suitably aggregating consumption categories from the Nakamura and Steinsson (2008) price–setting statistics. The household does not consume public sector goods ξ_4 = 0. The government only consumes public sector goods ζ_4 = 1.

Table 8: Intermediates to final consumption flow table (K): Aggregate level

<table>
<thead>
<tr>
<th>Durables</th>
<th>Non-durables</th>
<th>Services</th>
<th>Public sector goods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture & Forestry</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mining</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Utilities</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Construction</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Services</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Public sector goods</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Parameters κ_zj are constructed using the 1997 bridge tables provided by the BEA. Row sums do not add to one due to rounding.
Table 9: Priors and posteriors of the estimated parameters

<table>
<thead>
<tr>
<th>Parameter and description</th>
<th>Prior</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
<td>Mean</td>
</tr>
<tr>
<td>A. Behavioural parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ Habit parameter</td>
<td>β</td>
<td>0.50</td>
</tr>
<tr>
<td>ϵ_I Investment adjustment cost</td>
<td>inv-Γ</td>
<td>4.00</td>
</tr>
<tr>
<td>ϵ_U Capital utilization cost</td>
<td>inv-Γ</td>
<td>0.15</td>
</tr>
<tr>
<td>ϵ_w Indexation wages</td>
<td>β</td>
<td>0.50</td>
</tr>
<tr>
<td>ϵ_{ppi} Indexation producer prices</td>
<td>β</td>
<td>0.50</td>
</tr>
<tr>
<td>ϵ_{pce} Indexation consumer prices</td>
<td>β</td>
<td>0.50</td>
</tr>
<tr>
<td>B. Monetary Policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_s Taylor rule, Smoothing</td>
<td>β</td>
<td>0.80</td>
</tr>
<tr>
<td>ρ_{π} Taylor rule, Inflation</td>
<td>\mathcal{N}</td>
<td>1.70</td>
</tr>
<tr>
<td>ρ_{gdp} Taylor rule, Gross domestic product</td>
<td>\mathcal{N}</td>
<td>0.125</td>
</tr>
<tr>
<td>C. Autoregressive coefficients of aggregate shocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_b Risk</td>
<td>β</td>
<td>0.85</td>
</tr>
<tr>
<td>ρ_g Government demand</td>
<td>β</td>
<td>0.85</td>
</tr>
<tr>
<td>ρ_w Markup: wages</td>
<td>β</td>
<td>0.85</td>
</tr>
<tr>
<td>ρ_m Markup: producer prices</td>
<td>β</td>
<td>0.85</td>
</tr>
<tr>
<td>ρ_c Markup: consumer prices</td>
<td>β</td>
<td>0.85</td>
</tr>
<tr>
<td>ρ_p Productivity</td>
<td>β</td>
<td>0.85</td>
</tr>
<tr>
<td>ρ_i Investment</td>
<td>β</td>
<td>0.85</td>
</tr>
<tr>
<td>D. Standard deviations of disaggregate shocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_b Risk</td>
<td>inv-Γ</td>
<td>0.10</td>
</tr>
<tr>
<td>σ_g Government demand</td>
<td>inv-Γ</td>
<td>0.10</td>
</tr>
<tr>
<td>σ_w Markup: wages</td>
<td>inv-Γ</td>
<td>0.10</td>
</tr>
<tr>
<td>σ_m Markup: producer prices</td>
<td>inv-Γ</td>
<td>0.10</td>
</tr>
<tr>
<td>σ_c Markup: consumer prices</td>
<td>inv-Γ</td>
<td>0.10</td>
</tr>
<tr>
<td>σ_p Productivity</td>
<td>inv-Γ</td>
<td>0.10</td>
</tr>
<tr>
<td>σ_i Investment</td>
<td>inv-Γ</td>
<td>0.10</td>
</tr>
<tr>
<td>σ_r Monetary policy</td>
<td>inv-Γ</td>
<td>0.10</td>
</tr>
</tbody>
</table>

\mathcal{N}, β, inv-Γ denote the normal, beta and inverse gamma distribution, respectively. Posterior moments are computed from 750,000 draws generated by the Random Walk Metropolis-Hastings algorithm, where the first 200,000 are used as burn–in.
<table>
<thead>
<tr>
<th>Parameter and description</th>
<th>Prior</th>
<th>Posterior</th>
<th>Mode</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Standard deviation of sectoral productivity shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varsigma_{p,1}$ Agriculture & Forestry</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.091</td>
<td>[0.050; 0.240]</td>
</tr>
<tr>
<td>$\varsigma_{p,2}$ Mining</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.855</td>
<td>[0.765; 0.950]</td>
</tr>
<tr>
<td>$\varsigma_{p,3}$ Utilities</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.610</td>
<td>[0.564; 0.662]</td>
</tr>
<tr>
<td>$\varsigma_{p,4}$ Construction</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.078</td>
<td>[0.049; 0.137]</td>
</tr>
<tr>
<td>$\varsigma_{p,5}$ Manufacturing</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.221</td>
<td>[0.198; 0.241]</td>
</tr>
<tr>
<td>$\varsigma_{p,6}$ Services</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.075</td>
<td>[0.053; 0.090]</td>
</tr>
<tr>
<td>$\varsigma_{p,7}$ Public sector</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.090</td>
<td>[0.052; 0.192]</td>
</tr>
<tr>
<td>F. Standard deviation of producer price markup shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varsigma_{m,1}$ Agriculture & Forestry</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>1.519</td>
<td>[1.379; 1.667]</td>
</tr>
<tr>
<td>$\varsigma_{m,2}$ Mining</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>1.030</td>
<td>[0.933; 1.145]</td>
</tr>
<tr>
<td>$\varsigma_{m,3}$ Utilities</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.238</td>
<td>[0.215; 0.266]</td>
</tr>
<tr>
<td>$\varsigma_{m,4}$ Construction</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.717</td>
<td>[0.651; 0.799]</td>
</tr>
<tr>
<td>$\varsigma_{m,5}$ Manufacturing</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.792</td>
<td>[0.735; 0.866]</td>
</tr>
<tr>
<td>$\varsigma_{m,6}$ Services</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.116</td>
<td>[0.102; 0.132]</td>
</tr>
<tr>
<td>$\varsigma_{m,7}$ Public sector</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.041</td>
<td>[0.033; 0.049]</td>
</tr>
<tr>
<td>G. Standard deviation of consumer price markup shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varsigma_{c,1}$ Durables</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.686</td>
<td>[0.602; 0.772]</td>
</tr>
<tr>
<td>$\varsigma_{c,2}$ Non-Durables</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>1.580</td>
<td>[1.370; 1.790]</td>
</tr>
<tr>
<td>$\varsigma_{c,3}$ Services</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.150</td>
<td>[0.131; 0.169]</td>
</tr>
<tr>
<td>$\varsigma_{c,4}$ Public sector goods</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.092</td>
<td>[0.049; 0.264]</td>
</tr>
<tr>
<td>H. Standard deviation of sectoral wage markup shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varsigma_{w,1}$, $\varsigma_{w,2}$, ..., $\varsigma_{w,7}$ All sectors</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>0.111</td>
<td>[0.087; 0.147]</td>
</tr>
<tr>
<td>I. Standard deviation of sectoral investment efficiency shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varsigma_{i,1}$, $\varsigma_{i,2}$, ..., $\varsigma_{i,7}$ All sectors</td>
<td>inv-Γ 0.2</td>
<td>2</td>
<td>2.185</td>
<td>[1.722; 2.581]</td>
</tr>
<tr>
<td>J. Autoregressive coefficients of sectoral shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_{p} Productivity</td>
<td>β 0.5</td>
<td>0.2</td>
<td>0.737</td>
<td>[0.702; 0.771]</td>
</tr>
<tr>
<td>ϕ_{m} Markup: producer prices</td>
<td>β 0.5</td>
<td>0.2</td>
<td>0.800</td>
<td>[0.776; 0.815]</td>
</tr>
<tr>
<td>ϕ_{c} Markup: consumer prices</td>
<td>β 0.5</td>
<td>0.2</td>
<td>0.889</td>
<td>[0.851; 0.916]</td>
</tr>
<tr>
<td>ϕ_{w} Markup: wages</td>
<td>β 0.5</td>
<td>0.2</td>
<td>0.300</td>
<td>[0.179; 0.385]</td>
</tr>
<tr>
<td>ϕ_{i} Investment</td>
<td>β 0.5</td>
<td>0.2</td>
<td>0.093</td>
<td>[0.027; 0.193]</td>
</tr>
</tbody>
</table>

\mathcal{N} denotes the normal distribution, β the beta distribution, inv-Γ the inverse gamma distribution. Posterior moments are computed from 750,000 draws generated by the Random Walk Metropolis-Hastings algorithm, where the first 200,000 are used as burn-in.
Table 10: Bayes factor: Pipeline pressures

| Sector | $\mathcal{L}(Y_T|M_{\omega_{j'j}=0})$ | Panel A | $\mathcal{L}(Y_T|M_{\psi_{j'j}=0})$ | Panel A |
|------------------|--------------------------------------|---------|-------------------------------------|---------|
| Agriculture & Forestry | 0.56 | 5.53 | 1.00 | 346.31 |
| Mining | 3.44 | 4.32 | 7.56 | 2 \times 103 |
| Utilities | 3.75 | 3.55 | 9.18 | 7.57 |
| Construction | 1.00 | 1.00 | 5.80 | 1.00 |
| Manufacturing | 175.22 | 727.79 | 1 \times 1012 | 3 \times 106 |
| Services | 6 \times 1013 | 21.88 | 6 \times 1013 | 21.88 |
| Public sector | 4.56 | 45.1 | 4.56 | 45.1 |

The table documents the Bayes factors. The marginal likelihood is derived from the Laplace Approximation. Results are unaffected when using the Modified Harmonic Mean estimator. Y_T denotes the observed data. M refers to the model. In panel A, the restriction $\omega_{j'j}=0$ is introduced directly into the log-linearised Philips curve. The restriction $\psi_{j'j}=0$ is introduced directly into Tobins Q equation. An alternative procedure would be to introduce these restrictions before log linearising, in which case the restriction would affect (i) the steady state of the model and (ii) other model equations. We refrain from this procedure as we found this procedure to deteriorate the excellent mapping between the micro level and macro level, documented in appendix E.5. In the latter case, the inclusion of sectoral data and aggregate data (in the face of a poor structural mapping between the two levels) artificially blows up the Bayes factor in favour of the baseline model.

Table 11: Bayes Factor: Intermediates vs. Capital

| Sector | $\mathcal{L}(Y_T|M_{\phi_{m,j}=0})$ | Panel A | $\mathcal{L}(Y_T|M_{\phi_{k,j}=0})$ | Panel A |
|-----------------------|--------------------------------------|---------|-------------------------------------|---------|
| Agriculture & Forestry | 19.75 | 78.65 | 19.75 | 78.65 |
| Mining | 3415.8 | 0.00 | 3415.8 | 0.00 |
| Utilities | 793.43 | 0.01 | 793.43 | 0.01 |
| Construction | 175.22 | 727.79 | 1 \times 1012 | 3 \times 106 |
| Manufacturing | 6 \times 1013 | 21.88 | 6 \times 1013 | 21.88 |
| Services | 4.56 | 45.1 | 4.56 | 45.1 |

The table documents the Bayes factors. The marginal likelihood is derived from the Laplace Approximation. Results are unaffected when using the Modified Harmonic Mean estimator. Y_T denotes the observed data. M refers to the baseline model.
Table 12: Forecast Error Variance Decomposition: Producer Prices

<table>
<thead>
<tr>
<th></th>
<th>Herdson: 1 quarter (FEVD[1])</th>
<th>Herdson: 24 quarters (FEVD[24])</th>
<th>dlm: $\sigma_i^2 = \lambda_i f_i + \psi_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Macro</td>
<td>Micro</td>
<td>Macro</td>
</tr>
<tr>
<td></td>
<td>Direct</td>
<td>Pipeline</td>
<td>Presence</td>
</tr>
<tr>
<td></td>
<td>$\phi(\pi t\mid\pi t-1, 1)$</td>
<td>$\phi(\sigma_t^{pi}\mid\sigma_{t-1}^{pi}, 1)$</td>
<td>$\phi(\gamma_t^{pi}\mid\gamma_{t-1}^{pi}, 1)$</td>
</tr>
<tr>
<td></td>
<td>$\phi(\pi t\mid\pi t-1, 1)$</td>
<td>$\phi(\pi t\mid\pi t-1, 1)$</td>
<td>$\phi(\pi t\mid\pi t-1, 1)$</td>
</tr>
<tr>
<td></td>
<td>[1]</td>
<td>[2]</td>
<td>[3]</td>
</tr>
<tr>
<td>Agriculture & forestry</td>
<td>1.11</td>
<td>0.97</td>
<td>0.75</td>
</tr>
<tr>
<td>Oil and gas extraction</td>
<td>3.80</td>
<td>3.80</td>
<td>3.80</td>
</tr>
<tr>
<td>Mining, except oil and gas</td>
<td>7.19</td>
<td>7.19</td>
<td>7.19</td>
</tr>
<tr>
<td>Support activities for mining</td>
<td>7.55</td>
<td>7.55</td>
<td>7.55</td>
</tr>
<tr>
<td>Utilities</td>
<td>11.96</td>
<td>11.96</td>
<td>11.96</td>
</tr>
<tr>
<td>Construction*</td>
<td>53.29</td>
<td>53.29</td>
<td>53.29</td>
</tr>
<tr>
<td>Wood products</td>
<td>23.19</td>
<td>23.19</td>
<td>23.19</td>
</tr>
<tr>
<td>Nonmetallic mineral products</td>
<td>24.77</td>
<td>24.77</td>
<td>24.77</td>
</tr>
<tr>
<td>Primary metals</td>
<td>23.21</td>
<td>23.21</td>
<td>23.21</td>
</tr>
<tr>
<td>Fabricated metal products</td>
<td>24.67</td>
<td>24.67</td>
<td>24.67</td>
</tr>
<tr>
<td>Machinery</td>
<td>28.84</td>
<td>28.84</td>
<td>28.84</td>
</tr>
<tr>
<td>Computer and electronic products*</td>
<td>24.84</td>
<td>24.84</td>
<td>24.84</td>
</tr>
<tr>
<td>Electrical equipment, and appliances</td>
<td>25.21</td>
<td>25.21</td>
<td>25.21</td>
</tr>
<tr>
<td>Motor vehicles, bodies and trailers*</td>
<td>25.71</td>
<td>25.71</td>
<td>25.71</td>
</tr>
<tr>
<td>Other transportation equipment*</td>
<td>24.26</td>
<td>24.26</td>
<td>24.26</td>
</tr>
<tr>
<td>Furniture and related products</td>
<td>25.44</td>
<td>25.44</td>
<td>25.44</td>
</tr>
<tr>
<td>Food and beverage and tobacco products</td>
<td>24.31</td>
<td>24.31</td>
<td>24.31</td>
</tr>
<tr>
<td>Apparel and leather and allied products</td>
<td>22.77</td>
<td>22.77</td>
<td>22.77</td>
</tr>
<tr>
<td>Printing and related support activities</td>
<td>23.89</td>
<td>23.89</td>
<td>23.89</td>
</tr>
<tr>
<td>Petroleum and coal products</td>
<td>25.00</td>
<td>25.00</td>
<td>25.00</td>
</tr>
<tr>
<td>Chemical products</td>
<td>27.72</td>
<td>27.72</td>
<td>27.72</td>
</tr>
<tr>
<td>Plastic and rubber products</td>
<td>27.18</td>
<td>27.18</td>
<td>27.18</td>
</tr>
<tr>
<td>Wholesale trade*</td>
<td>41.36</td>
<td>41.36</td>
<td>41.36</td>
</tr>
<tr>
<td>Transportation and warehousing*</td>
<td>40.96</td>
<td>40.96</td>
<td>40.96</td>
</tr>
<tr>
<td>Information*</td>
<td>41.64</td>
<td>41.64</td>
<td>41.64</td>
</tr>
<tr>
<td>FIRE*</td>
<td>45.58</td>
<td>45.58</td>
<td>45.58</td>
</tr>
<tr>
<td>PRO*</td>
<td>33.19</td>
<td>33.19</td>
<td>33.19</td>
</tr>
<tr>
<td>EHS</td>
<td>31.49</td>
<td>31.49</td>
<td>31.49</td>
</tr>
<tr>
<td>AREAP*</td>
<td>38.89</td>
<td>38.89</td>
<td>38.89</td>
</tr>
<tr>
<td>Other services (except Govt.)*</td>
<td>39.70</td>
<td>39.70</td>
<td>39.70</td>
</tr>
<tr>
<td>Public Sector*</td>
<td>1.89</td>
<td>1.89</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Macro</td>
<td>Micro</td>
<td>Macro</td>
</tr>
<tr>
<td></td>
<td>Direct</td>
<td>Pipeline</td>
<td>Presence</td>
</tr>
<tr>
<td></td>
<td>$\phi(\pi t\mid\pi t-1, 1)$</td>
<td>$\phi(\pi t\mid\pi t-1, 1)$</td>
<td>$\phi(\pi t\mid\pi t-1, 1)$</td>
</tr>
<tr>
<td></td>
<td>[1]</td>
<td>[2]</td>
<td>[3]</td>
</tr>
<tr>
<td>Headline ppi Inflation</td>
<td>21.08</td>
<td>19.76</td>
<td>12.16</td>
</tr>
</tbody>
</table>

Columns (1) – (6) document various forecast error variance decompositions at the mode. Data underlying column (7) – (8) are sectoral ppi indices obtained from the Bureau of Labour Statistics. Not all sectoral ppi indices are available. For the unobserved series (indicated with an asterisk), we use the smoothed series.
Table 13: Forecast Error Variance Decomposition: Consumer Prices

<table>
<thead>
<tr>
<th></th>
<th>Horizon 1 quarter (FEVD(1))</th>
<th>Horizon ∞ quarters (FEVD(∞))</th>
<th>dim $\nu_f = \Lambda \xi_f + \omega_f$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Macro</td>
<td>Micro</td>
<td>Direct Pipeline Pressures</td>
</tr>
<tr>
<td>Motor vehicles and parts</td>
<td>17.45</td>
<td>43.59</td>
<td>36.96</td>
</tr>
<tr>
<td>Furnishings and durable hh equipment</td>
<td>10.25</td>
<td>84.52</td>
<td>5.23</td>
</tr>
<tr>
<td>Recreational goods and vehicles</td>
<td>11.18</td>
<td>80.63</td>
<td>8.20</td>
</tr>
<tr>
<td>Other durable goods</td>
<td>8.80</td>
<td>85.67</td>
<td>5.53</td>
</tr>
<tr>
<td>Food and beverages PIPC</td>
<td>10.94</td>
<td>60.12</td>
<td>28.94</td>
</tr>
<tr>
<td>Clothing and footwear</td>
<td>10.75</td>
<td>63.60</td>
<td>25.65</td>
</tr>
<tr>
<td>Gasoline and other energy goods</td>
<td>8.85</td>
<td>70.88</td>
<td>20.27</td>
</tr>
<tr>
<td>Other nonurable goods</td>
<td>7.08</td>
<td>86.87</td>
<td>6.06</td>
</tr>
<tr>
<td>Housing and utilities</td>
<td>18.69</td>
<td>62.77</td>
<td>18.54</td>
</tr>
<tr>
<td>Health care</td>
<td>26.55</td>
<td>38.38</td>
<td>35.67</td>
</tr>
<tr>
<td>Transportation services</td>
<td>18.19</td>
<td>70.82</td>
<td>10.99</td>
</tr>
<tr>
<td>Recreation services</td>
<td>19.81</td>
<td>62.32</td>
<td>17.87</td>
</tr>
<tr>
<td>Food services and accommodations</td>
<td>17.21</td>
<td>59.10</td>
<td>23.68</td>
</tr>
<tr>
<td>Financial services and insurance</td>
<td>23.27</td>
<td>45.80</td>
<td>30.93</td>
</tr>
<tr>
<td>Other services</td>
<td>18.36</td>
<td>69.12</td>
<td>12.52</td>
</tr>
<tr>
<td>NPIHS</td>
<td>14.08</td>
<td>75.58</td>
<td>10.34</td>
</tr>
<tr>
<td>Public sector goods</td>
<td>5.98</td>
<td>9.97</td>
<td>84.05</td>
</tr>
</tbody>
</table>

Panel B

<table>
<thead>
<tr>
<th></th>
<th>Horizon 1 quarter</th>
<th>Horizon ∞ quarters</th>
<th>dim $\nu_f = \Lambda \xi_f + \omega_f$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Macro</td>
<td>Micro</td>
<td>Direct Pipeline Pressures</td>
</tr>
<tr>
<td>Headline pce inflation</td>
<td>43.14</td>
<td>32.45</td>
<td>24.40</td>
</tr>
</tbody>
</table>

Columns (1) – (6) document various forecast error variance decompositions at the mode. Data underlying column (7) – (8) are pce indices obtained from the Bureau of Economic Analysis. Not all disaggregated pce indices are available. For the unobserved series (indicated with an asterisk), we use the smoothed series.
Table 14: Correlation model vs. dfm

<table>
<thead>
<tr>
<th></th>
<th>(\sigma^2(\pi_{t}^p))</th>
<th>(\sigma^2(\pi_{t}^{pp}))</th>
<th>(\sigma^2(\pi_{t}^{pp}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>pce inflation</td>
<td>(\sigma^2(\pi_{t}^{pce})_{h=\infty})</td>
<td>(0.36^*)</td>
<td>(0.49^{**})</td>
</tr>
<tr>
<td></td>
<td>(\sigma^2(\pi_{t}^{pce})_{h=\infty})</td>
<td>(\sigma^2(\pi_{t}^{pce})_{h=\infty})</td>
<td>(\sigma^2(\pi_{t}^{pce})_{h=\infty})</td>
</tr>
<tr>
<td>ppi inflation</td>
<td>(\sigma^2(\pi_{t}^{pp})_{h=\infty})</td>
<td>(0.43^{**})</td>
<td>(0.55^{***})</td>
</tr>
<tr>
<td></td>
<td>(\sigma^2(\pi_{t}^{pp})_{h=\infty})</td>
<td>(\sigma^2(\pi_{t}^{pp})_{h=\infty})</td>
<td>(\sigma^2(\pi_{t}^{pp})_{h=\infty})</td>
</tr>
</tbody>
</table>

***p < 0.01, **p < 0.05, *p < 0.1. Correlation between shares obtained from the structural model and dfm, respectively.

Table 15: Persistence decomposition inflation

<table>
<thead>
<tr>
<th>Macro</th>
<th>Micro</th>
<th>dfm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct</td>
<td>Pipeline Pressures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi_{t}^{pp}^{pce})</td>
<td>(\rho(\alpha_i(\pi_{t}^{pp}^{pce})))</td>
<td>(\rho(\beta_i(\pi_{t}^{pp}^{pce})))</td>
</tr>
<tr>
<td></td>
<td>(\rho(\alpha_i(\pi_{t}^{pp}^{pce})))</td>
<td>(\rho(\beta_i(\pi_{t}^{pp}^{pce})))</td>
</tr>
<tr>
<td>Average</td>
<td>0.335</td>
<td>0.080</td>
</tr>
<tr>
<td>Median</td>
<td>0.379</td>
<td>0.115</td>
</tr>
<tr>
<td>Minimum</td>
<td>-0.423</td>
<td>-0.396</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.918</td>
<td>0.655</td>
</tr>
<tr>
<td>(\pi_{t}^{pce})</td>
<td>(\rho(\alpha_i(\pi_{t}^{pce})))</td>
<td>(\rho(\beta_i(\pi_{t}^{pce})))</td>
</tr>
<tr>
<td></td>
<td>(\rho(\alpha_i(\pi_{t}^{pce})))</td>
<td>(\rho(\beta_i(\pi_{t}^{pce})))</td>
</tr>
<tr>
<td>Average</td>
<td>0.570</td>
<td>0.275</td>
</tr>
<tr>
<td>Median</td>
<td>0.780</td>
<td>0.151</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.233</td>
<td>-0.064</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.930</td>
<td>0.386</td>
</tr>
</tbody>
</table>

Point estimates in (1) – (3) are based on a simulated time series of length 500. Persistence is computed as the sum of the coefficients of the fitted AR(L) process where lag length L is determined by the BIC information criterion.
Table 16a: Producer prices: Pipeline pressure decomposition (infinite quarter horizon)

<table>
<thead>
<tr>
<th>Sector</th>
<th>ppi′[ψ(µ+’j)h=x=∞]</th>
<th>ppi′[ψ(µ+’j)h=x=∞]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural & forestry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture & forestry</td>
<td>0.19</td>
<td>0.13</td>
</tr>
<tr>
<td>Support activities for mining</td>
<td>0.18</td>
<td>0.12</td>
</tr>
<tr>
<td>Mining, except oil & gas</td>
<td>0.15</td>
<td>0.11</td>
</tr>
<tr>
<td>Support activities for mining</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>Utilities</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Construction</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>Nonmetallic mineral products</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Primary metals</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Fabricated metal products</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Machinery</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Computer and electronic products</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Rotorcraft, and equipment</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Motor vehicles, bodies and trailers</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Other transportation equipment</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Paint and related products</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Miscellaneous manufacturing</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Food and beverage and tobacco products</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Tissue and textile and product mills</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Apparel and leather and allied products</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Paper products</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Printing and related support activities</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Petroleum and coal products</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Chemical products</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Plastics and rubber products</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Wholesale trade</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Retail</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Transportation and warehousing</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Information</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>FIRE</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>PROOF</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>EHS</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>ARSAF</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Other services (except Govt.)</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Government</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

This table documents \(\frac{\sigma^2[\gamma_1(\sigma_2^{pp+} \cdot \psi')h=x=\infty]}{\sigma^2[\gamma_1(\sigma_2^{pp+} \cdot \psi')h=x=\infty]} \), where this value is approximated by \(\sum_{j'=1}^{\infty} \frac{\sigma^2[\gamma_1(\sigma_2^{pp+} \cdot \psi')h=x=\infty]}{\sigma^2[\gamma_1(\sigma_2^{pp+} \cdot \psi')h=x=\infty]} \). Values smaller than 1 are suppressed. Row sums do not add to 100.
<table>
<thead>
<tr>
<th>Industry</th>
<th>Producer prices</th>
<th>Pipeline pressure decomposition (one quarter horizon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture and forestry</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Oil and gas extraction</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Mining, except oil and gas</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Support activities for mining</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Wood products</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Nonmetallic mineral products</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Primary metals</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Machinery</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Computer and electronic products</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Electrical, gas, and appliances</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Motor vehicles, buses and trucks</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Transport and related products</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Miscellaneous manufacturing</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Road and highway products</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Wood and paper products</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Apparel and leather products</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Printing and related support activities</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Petroleum and coal products</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Chemical products</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Plastics and rubber products</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Wholesale trade</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Retail</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Transportation and warehousing</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Information</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>FIRE</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>PROOF</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>RHS</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>AIRAF</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Other services (except Govt.)</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td>(one quarter horizon)</td>
</tr>
</tbody>
</table>

This table documents $\frac{\sigma^2[y_h(\pi^{pp})_{j=1}]}{\sigma^2[y_h(\pi^{pp})_{j=1}]}$, where this value is approximated by $\frac{\sigma^2[y_h(\pi^{pp})_{j=1}]}{\sum_{j=1}^J \sigma^2[y_h(\pi^{pp})_{j=1}]}$. Values smaller than 1 are suppressed. Row sums do not add to 100.
Table 17a: Consumer prices: Pipeline pressure decomposition (infinite quarter horizon)

<table>
<thead>
<tr>
<th>Category</th>
<th>Variable 1</th>
<th>Variable 2</th>
<th>Variable 3</th>
<th>Variable 4</th>
<th>Variable 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture & Forestry</td>
<td>0.53</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Oil and gas extraction</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Mining, except oil and gas</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Support activities for mining</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Utilities</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Construction</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Food products</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Primary metals</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Tertiary metals</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Textile products</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Apparel, leather, and related products</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Paper products</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Petroleum and coal products</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Chemical products</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Wholesale trade</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Retail</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Transportation and warehousing</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Other services</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Other service, except government</td>
<td>0.56</td>
<td>0.22</td>
<td>0.11</td>
<td>0.85</td>
<td>0.33</td>
</tr>
</tbody>
</table>

This table documents $\frac{\sigma^2[\gamma_i(\pi^{pce,j})_{h=\infty}]}{\sigma^2[\gamma_i(\pi^{pce,j})_{h=\infty}]}$, where this value is approximated by $\frac{\sigma^2[\gamma_i(\pi^{pce,j})_{h=\infty}]}{\sum_{j=1}^{2} \sigma^2[\gamma_i(\pi^{pce,j})_{h=\infty}]}$. Values smaller than 1 are suppressed. Row sums do not add to 100.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture & forestry</td>
<td>0.11</td>
</tr>
<tr>
<td>Mining, except oil and gas</td>
<td>0.11</td>
</tr>
<tr>
<td>Utilities</td>
<td>0.11</td>
</tr>
<tr>
<td>Construction</td>
<td>0.11</td>
</tr>
<tr>
<td>Food products</td>
<td>0.11</td>
</tr>
<tr>
<td>Nonresidential services</td>
<td>0.11</td>
</tr>
<tr>
<td>Electric power and services</td>
<td>0.11</td>
</tr>
<tr>
<td>Mining, except oil and gas</td>
<td>0.11</td>
</tr>
<tr>
<td>Utilities</td>
<td>0.11</td>
</tr>
<tr>
<td>Construction</td>
<td>0.11</td>
</tr>
<tr>
<td>Food products</td>
<td>0.11</td>
</tr>
<tr>
<td>Nonresidential services</td>
<td>0.11</td>
</tr>
<tr>
<td>Electric power and services</td>
<td>0.11</td>
</tr>
</tbody>
</table>

This table documents \(\frac{\sigma^2 [\gamma_1 (\frac{\sigma}{\sigma})]_{h=1}}{\sigma^2 [\gamma_1 (\frac{\sigma}{\sigma})]_{h=1}} \), where this value is approximated by \(\frac{\sigma^2 [\gamma_1 (\frac{\sigma}{\sigma})]_{h=1}}{\sum_{j=1}^{\sigma} [\gamma_j (\frac{\sigma}{\sigma})]_{h=1}} \). Values smaller than 1 are suppressed. Row sums do not add to 100.
Figure 2: A schematic overview of the model with two sectors j, j' and two product categories z, z'. The aggregate, economywide shocks are depicted in blue. The micro-level shocks are depicted in red. A fraction κ_{zj} of final goods producers z are classified as part of sector j.

Monetary Policy

- Government demand shock
- Taxes
- Bonds, Interest rates on bonds

Government

Household

- Risk premium shock

Final Goods Producers

- Markup Shock z
- Aggregate Markup Shock

Intermediates Good Producers

- Productivity Shock j
- Markup shock j
- Aggregate Productivity Shock

Capital Producers

- Investment efficiency shock j
- Aggregate investment efficiency shock

Capital Producers

- Investment efficiency shock j'
- Aggregate investment efficiency shock

Final Goods Producers

- Markup Shocks z'
- Aggregate Markup Shock

Intermediate Good Producers

- Payments
- Intermediates

Final Goods Producers

- Payments
- Intermediates
Figure 3: The figure compares the model decomposition with a dynamic factor model decomposition. The shaded areas indicate when pipeline pressures increase comovement with the factors obtained from the dfm.

Figure 4: Impulse response functions w.r.t. an aggregate shock.
Figure 5: Impulse response functions w.r.t. a sectoral shock.
Figure 6: Historical decomposition of pipeline pressures to headline inflation.
Figure 7: Historical decomposition of pipeline pressures to disaggregate inflation.
Figure 8: This figure plots the ACF of headline consumer price inflation and headline producer price inflation. The black line is the empirical ACF from the data underlying the model estimation. The red line is the ACF from the model. The dashed lines represent the 5% and 95% percentiles. Percentiles are based on 100,000 random samples of length 152.

Figure 9: This figure plots the autocorrelation coefficients of disaggregated consumer prices and disaggregated producer prices. The black line is the empirical ACF from the data underlying the model estimation. The red line is the ACF from the model. The dashed lines represent the 5% and 95% percentiles. Percentiles are based on 100,000 random samples of length 152.
Figure 10: This figure plots the autocorrelation coefficients of headline consumer prices and headline producer prices. The black line is the empirical ACF from the data underlying the model estimation. The red line is the ACF from the model. The dashed lines represent the 5% and 95% percentiles. Percentiles are based on 100,000 random samples of length 152.
References

Financial Times. Economists see signs of eurozone price pressure despite soft december inflation, 2018.

P. Vavra and B. K. Goodwin. Analysis of price transmission along the food chain, 2005.

Wall Street Journal. Real time economics: Inflation is perking up. will tariffs push consumer prices even higher?, 2018.

Appendix to Pipeline Pressures and Sectoral Inflation Dynamics

Smets, Frank1, Tielens, Joris2,3, and Van Hove, Jan3

1European Central Bank, Ghent University and CEPR
2National Bank of Belgium
3KU Leuven
4KBC

Contents

A First–order conditions A-2
A.1 Household intertemporal problem A-2
A.2 Wage setting A-2
A.3 Firms: Intermediate goods producers – intertemporal problem A-3
A.4 Firms: Final goods producers – intertemporal problem A-4
A.5 Firms: Capital producers – intertemporal problem A-4
A.6 Market clearing A-4
A.7 Concept op GDP A-5

B The steady state A-5

C Log Linearisation A-8
C.1 Some definitions A-8
C.2 Log linearised first–order conditions A-8
C.3 Structural composite parameters A-10

D Definition: Pipeline pressures in consumer prices A-12

E Data A-12
E.1 Calibration baseline model A-12
E.2 Concordance data and model A-12
E.3 Measurement Equation A-15
E.4 Calibration disaggregated model A-15
E.5 Model implied steady state vs. historical averages in data A-20

F Estimation A-22
F.1 Estimation details A-22
F.2 Prior posteriors A-22
F.3 Trace plots A-22

A-1
A First–order conditions

A.1 Household intertemporal problem

The household problem is given by the Lagrangean (abstracting from Arrow–Debreu securities and government taxes)

\[
L_t(\cdot) = \mathbb{E}_t \left\{ \sum_{s=t}^{\infty} \beta^{s-t} \left[\frac{(C_s(h) - \chi C_{s-1}(h))^{1-\sigma}}{1 - \sigma} - \frac{L_{js}[t-i(h)](1+\varphi)}{1+\varphi} \right] - \sum_{s=t}^{\infty} \left[\Lambda_s(h) \beta^{s-t} L_s(h) + \frac{B_{s}[t-i(h)]}{P_s \bar{R}_{s} \bar{Z}_{b,s}} \right] \right\}
\]

with first–order conditions (dropping reference to household \(h \), as per the discussion in Jensen (2011))

\[
\Lambda_t = (C_t - \chi C_{t-1})^{-\sigma} \quad \mathbb{E}_t \left[\frac{1}{Z_{b,t} R_t} \right] = \beta \mathbb{E}_t \left(\frac{\Lambda_{t+1} P_t}{\Lambda_t P_{t+1}} \right) \quad (1)
\]

A.2 Wage setting

The Lagrangean for the Erceg et al. (2000) staggered wage set–up is

\[
L_t(\cdot) = \mathbb{E}_t \left\{ \sum_{s=t}^{\infty} \left(\alpha^w_j \beta^{s-t} [-V_{js}[t-i(h)]] + \sum_{s=t}^{\infty} \Lambda_s(h) \left[\frac{W_{js}[t-i(h)] L_{js}[t-i(h)]}{P_s} - \frac{B_{s-1}[t-i(h)]}{P_s} - D_s \right] \right\}
\]

From the body of the text

\[
V_{js}[t](h) = \frac{L_{js}[t](h)^{1+\varphi}}{1+\varphi}
\]

\[
L_{js}[t](h) = \left(\frac{W_{js}[t](h)}{W_{js}} \right)^{-\frac{1}{1+\epsilon^w_{j,t}}} L_{js}
\]

in which the wage indexation rule allows us to rewrite \(W_{js}[t](h) \) as

\[
W_{js}[t](h) = W_{js-1}[t](h) \prod_{s-i}^{t} \Pi_{s-1}^{1-tw}
\]

The first order condition w.r.t. \(W^*_j[h] \) is then given by

\[
0 = \mathbb{E}_t \sum_{s=t}^{\infty} (\beta \alpha^w_j)^{s-t} \Lambda_s(h) \frac{L_{js}[t](h)}{P_s} \left[W^*_j[h] \prod_{s-i}^{t} \Pi_{s-1}^{1-tw} - (1 + \epsilon^w_{j,t}) MRS_{js}[t](h) P_s \right]
\]

where \(MRS_{js}[t](h) = \frac{\partial U_{js}[t](h) / \partial C_{js}[t](h)}{\partial U_{js}[t](h) / \partial L_{js}[t](h)} \) See Born and Pfeifer (2016) for a detailed derivation.
A.3 Firms: Intermediate goods producers – intertemporal problem

Intermediate good producer \(f \) in sector \(j \) maximizes the present value of the discounted dividend stream

\[
\max_{\theta} \mathbb{E}_{\theta} \sum_{s=1}^{\infty} Z_{t,s} P_{s} D_{js,r}(f)
\]

s.t.

\[
\begin{align*}
Y_{jt}(f) &= \sum_{z=1}^{Z} \int_{0}^{1} M_{zjt}(g, f)dg + \sum_{j' = 1}^{J} \int_{0}^{1} M_{j'jt}(f', f)df' + \int_{0}^{1} I_{j'jt}(g, f)dg \\
Y_{jt}(f) &= Z_{p,t} Z_{p,j,t} N_{jt}(f) \phi_{n}^m M_{jt}(f) \phi_{p}^m K_{jt}(f) \phi_{j}^m - \Phi_{j}(f) \\
Y_{jt}(f) &= \left(P_{j}(f) \right)^{-1} \sum_{e,m,j,t} \left(\int_{0}^{1} Y_{jt}(f') df' \right) \\
P_{j}(f) &= \left\{ \begin{array}{l}
P_{j}(f) \\
P_{j-1}(f)(\Pi_{p}^{ppi})^{1-ppi} \end{array} \right. \text{ with probability } 1 - \alpha_{ppi}^{ppi} \\
P_{j-1}(f)(\Pi_{p}^{ppi})^{1-ppi} \end{align*}
\]

The first order conditions w.r.t. \(N_{js}(f), M_{js}(f) \) and \(K_{js}(f) \) deliver

\[
\begin{align*}
N_{js}(f) : & \quad P_{s} W_{js,r}(f) = \mu_{js}(f) (\partial Y_{js}(f)/\partial N_{js}(f)) \\
M_{js}(f) : & \quad P_{s} P_{j}^{m,ppi}(f) = \mu_{js}(f) (\partial Y_{js}(f)/\partial M_{js}(f)) \\
K_{js}(f) : & \quad P_{s} R_{js,r}(f) = \mu_{js}(f) (\partial Y_{js}(f)/\partial K_{js}(f))
\end{align*}
\]

Where \(\mu_{js}(f) \) denotes nominal marginal costs. For \(s = t \), we have that

\[
\begin{align*}
\frac{M_{js}(f)}{N_{js}(f)} &= \phi_{j}^m W_{jt,r} \\
\frac{N_{jt}(f)}{K_{jt}(f)} &= \phi_{j}^m R_{jt,r} \\
\frac{K_{jt}(f)}{W_{jt,r}} &= \phi_{j}^m
\end{align*}
\]

Optimality conditions w.r.t. \(P_{jt}^{*}(f) \) are standard and not elaborated here.

Real marginal costs are obtained using

\[
\begin{align*}
Y_{jt}(f) &= Z_{p,t} Z_{p,j,t} \left[\left(\frac{\phi_{j}^m}{\phi_{j}^n} \right) \left(\frac{W_{jt,r}}{P_{jt,r}} \right) \phi_{j}^m \left[\left(\frac{\phi_{k}^m}{\phi_{j}^n} \right) \left(\frac{W_{jt,r}}{R_{jt,r}} \right) \phi_{j}^k \right] \right] N_{jt}(f) - \Phi_{j}(f) \\
Y_{jt}(f) &= Z_{p,t} Z_{p,j,t} \left[\left(\frac{\phi_{j}^n}{\phi_{j}^m} \right) \left(\frac{P_{jt,r}}{W_{jt,r}} \right) \phi_{j}^m \left[\left(\frac{\phi_{k}^m}{\phi_{j}^n} \right) \left(\frac{P_{jt,r}}{R_{jt,r}} \right) \phi_{j}^k \right] \right] M_{jt}(f) - \Phi_{j}(f) \\
Y_{jt}(f) &= Z_{p,t} Z_{p,j,t} \left[\left(\frac{\phi_{j}^n}{\phi_{j}^m} \right) \left(\frac{R_{jt,r}}{W_{jt,r}} \right) \phi_{j}^m \left[\left(\frac{\phi_{k}^m}{\phi_{j}^n} \right) \left(\frac{R_{jt,r}}{P_{jt,r}} \right) \phi_{j}^k \right] \right] K_{jt}(f) - \Phi_{j}(f)
\end{align*}
\]

such that

\[
MC_{jt,r}(f) = \frac{MC_{jt}(f)}{P_{s}} = \frac{1}{Z_{p,t} Z_{p,j,t}} \left(\frac{P_{jt,r}}{\phi_{j}^m} \right) \left(\frac{W_{jt,r}}{\phi_{j}^n} \right) \left(\frac{R_{jt,r}}{\phi_{j}^k} \phi_{j}^m \right)
\]

A-3
A.4 Firms: Final goods producers – intertemporal problem

Optimality conditions are standard are not elaborated here.

A.5 Firms: Capital producers – intertemporal problem

The capital producer optimally chooses \(\{ I_{js}(g), U_{js}(g), \tilde{K}_{js}(g) \}_{s=t}^{\infty} \) in order to maximize the expected discounted stream of real dividends

\[
\mathbb{E}_t \sum_{s=t}^{\infty} Z_{t,s} \left[R_{js} \tilde{K}_{js}(g) U_{js}(g) - P_{js} I_{js}(g) - Q_{js} (\tilde{K}_{js+1}(g) - (1 - \Delta(U_{js}(g))) \tilde{K}_{js}(g) - Z_{t,s} \right]
\]

where

\[
Q_{js,r} = Q_{js} P_{s,r}.
\]

A.6 Market clearing

Labour market. Total hours supplied to sector \(j \) is

\[
\int_{\tilde{\mu}_j}^{\bar{\mu}_j} L_{jt}(h) dh = \frac{\Delta_{wj,t}}{\mu_j} N_{jt} = N_{jt}
\]

since wage dispersion \(\Delta_{wjt} = \int_{\tilde{\mu}_j}^{\bar{\mu}_j} \left(\frac{W_{jt}(h)}{W_{jt}} \right)^{1+\omega_{w,j,t}} dh = \mu_j \) up to a first order. Using this in the previous equation, we have that

\[
\int_{\tilde{\mu}_j}^{\bar{\mu}_j} L_{jt}(h) dh = \mu_j L_{jt}
\]

such that \(L_{jt} = \frac{N_{jt}}{\mu_j} \) is the average effective labour hours per worker in sector \(j \). Total hours worked in the economy is then

\[
L_t = \sum_{j=1}^{J} \int_{\tilde{\mu}_j}^{\bar{\mu}_j} L_{jt}(h) dh = \sum_{j=1}^{J} \mu_j L_{jt} = N_t
\]
Goods market. Integrating over all intermediate goods producers in sector \(j \) delivers
\[
Y_{jt} = \sum_{z=1}^{Z} M_{zjt} + \sum_{j'=1}^{J} M_{j'jt} + \sum_{j'=1}^{J} I_{j'jt}
\]
since price dispersion \(\int_{0}^{1} \left(\frac{P_{jt}(f)}{P_{jt}} \right)^{1 + \psi_{m,j,t}} df \) is equal to one up to a first order.

For final goods producers it holds that
\[
\int_{0}^{1} Y_{zt}(q) dq = \int_{0}^{1} (C_{zt}(q) + G_{zt}(q)) dq
\]
\[
Y_{zt} = C_{zt} + G_{zt}
\]

A.7 Concept of GDP

We document equality between GDP as measured from the expenditure approach and the output approach.

\[
GDP_t = \sum_{z=1}^{Z} \left(P_{zt,r} (C_{zt} + G_{zt}) - P_{zt,r}^m M_{zt} \right) + \sum_{j=1}^{J} \left(\sum_{z=1}^{Z} P_{jt,r} M_{zjt} + \sum_{j'=1}^{J} (P_{jt,r} (M_{j'jt}
+ I_{j'jt}) - P_{j't,r} M_{jj't}) + \left(\sum_{j=1}^{J} P_{jt,r} I_{jt} - \sum_{j'=1}^{J} P_{j't,r} I_{jj't} \right) \right)
\]
\[
= \sum_{z=1}^{Z} P_{zt,r} (C_{zt} + G_{zt}) + \sum_{j=1}^{J} P_{jt} I_{jt}
\]

B The steady state

We restrict the analysis to an equilibrium with relative prices equal to unity (i.e. with all nominal prices growing at the same rate \(\Pi \)) and full capacity utilization \(U_{js} = U = 1 \).

From (1):

\[
\frac{\Pi}{R} = \beta
\]

Next, \(P_{rt} = (\sum_{z=1}^{Z} \xi_z (\frac{P_{tr}}{P_{tr}})^{1-\nu_c})^{\frac{1}{1-\nu_c}} \), so \(P_{r} = 1 \). Consequently,

\[
P_{z,tr}^m = \left(\sum_{j=1}^{J} \kappa_{zj} P_{j,r}^{1-\psi_{zj}} \right)^{\frac{1}{1-\psi_{zj}}} = 1
\]
\[
P_{j,tr}^m = \left(\sum_{j'=1}^{J} \omega_{jj'} P_{j,r}^{1-\psi_{jj'}} \right)^{\frac{1}{1-\psi_{jj'}}} = 1
\]
$$P_{j,r}^i = \left(\sum_{j'=1}^{J} \psi_{jj'} P_{j',r}^{1-\nu_i} \right)^{1-\nu_i} = 1$$

and $P_{z,r} = P_{j,r} = 1$.

From the capital producers’ intertemporal problem

$$Q_{j,r} = P_{r}^\nu = 1$$

and

$$R_{j,r} = \frac{Q_{j,r}}{\beta} - (1-\delta)Q_{j,r} = \frac{1}{\beta} - (1-\delta)$$

In the full capacity utilization state, $\tilde{K}_j(f) = K_j(f)$, and so $\Delta'(1) = \frac{1}{\beta} - (1-\delta)$.

From optimal price setting

$$MC_{j,r} = \frac{1}{1 + \epsilon_m}$$

$$MC_{z,r} = \frac{1}{1 + \epsilon_c}$$

So $\varsigma = 1 + \epsilon_c$.

From the first–order conditions of the intermediate goods producers, we have that

$$N_j(f)W_{j,r} = \mu_{j,r} \phi^n_j (Y_j(f) + \Phi_j(f))$$

$$M_j(f)P_{j,r}^m = \mu_{j,r} \phi^m_j (Y_j(f) + \Phi_j(f))$$

$$K_j(f)R_{j,r} = \mu_{j,r} \phi^k_j (Y_j(f) + \Phi_j(f))$$

Intermediate goods producer profit is then defined as

$$\Pi_{j,r}(f) = P_{j,r}(f)Y_j(f) - (N_j(f)W_{j,r} + M_j(f)P_{j,r}^m + K_j(f)R_{j,r})$$

$$= P_{j,r}(f)Y_j(f) - \mu_{j,r}(Y_j(f) + \Phi_j(f))$$

In order to rule out entry, $\Pi_{j,r}(f) = 0$, we pin down the fixed costs

$$\Phi_j(f) = \frac{1 - \mu_{j,r}}{\mu_{j,r}} Y_j(f)$$

and since $\mu_{j,r} = MC_{j,r}(f) = \frac{1}{1+\epsilon_m}$, we have that $\Phi_j(f) = \epsilon_m Y_j(f)$.

Consequently, from the first–order conditions of intermediate goods producers, we have that

$$N_j W_{j,r} = \frac{1}{1+\epsilon_m} \phi^n_j (Y_j + \Phi_j(f)) = \phi^n_j Y_j$$

$$M_j P_{j,r}^m = \frac{1}{1+\epsilon_m} \phi^m_j (Y_j + \Phi_j(f)) = \phi^m_j Y_j$$

$$K_j R_{j,r} = \frac{1}{1+\epsilon_m} \phi^k_j (Y_j + \Phi_j(f)) = \phi^k_j Y_j$$

A-6
From the final goods producers we have that
\[\Pi_{z,r}(q) = P_{z,r}Y_z(q) - P^{m}_{z,r}(q)M_z(q) = P_{z,r}Y_z(q) - \frac{P^{m}_{z,r}(q)}{1 + \epsilon_c}(Y_z(q) + \Phi_z(q)) \]

In order to rule out entry, \(\Pi_{z,r} = 0 \), we pin down the fixed costs to \(\Phi_z(q) = \epsilon_c Y_z(q) \).

In order to pin down the size of the economy, we normalize, w.l.o.g., \(C = 1 \) such that from the consumption bundles
\[C_z = \xi_z C = \xi_z, \quad G_z = \zeta_z G = \zeta_z \frac{q}{C} \]

From the optimal demand schedules for investment and intermediates
\[I_{jj'} = \psi_{jj'}I_j; I_j = \delta K_j; M_{jj'} = \omega_{jj'}M_j \]

Market clearing, for sector \(j \):
\[
Y_j = \sum_{z=1}^{Z} M_{zj} + \sum_{j' = 1}^{J} M_{j'j} + \sum_{j' = 1}^{J} I_{j'j} \\
= \sum_{z=1}^{Z} \kappa_{zj}Y_z + \sum_{j' = 1}^{J} M_{j'j} + \sum_{j' = 1}^{J} I_{j'j} \\
= \sum_{z=1}^{Z} \kappa_{zj} \left(C_z + G_z\right) + \sum_{j' = 1}^{J} M_{j'j} + \sum_{j' = 1}^{J} I_{j'j} \\
= \sum_{z=1}^{Z} \kappa_{zj} \left(\xi_z C + \zeta_z G\right) + \sum_{j' = 1}^{J} \phi_{j'}^m \omega_{j'j} Y_{j'} + \delta \left(\frac{1}{\beta} - (1 - \delta)\right)^{-1} \sum_{j' = 1}^{J} \phi_k^j \psi_{j'j} Y_{j'}
\]

Or in matrix form \(y = [Y_1, ..., Y_J]' \)
\[
y = \tau + ((\phi^m 1') \circ \Omega)'y + \delta \left(\frac{1}{\beta} - (1 - \delta)\right)^{-1} ((\phi^k 1') \circ \Psi)'y
\]

\[
= (I - \tilde{\Omega}' - \tilde{\Psi}')^{-1} \tau
\]

where \(\circ \) denotes the Hadamard product.

We impose symmetric steady state real wages across sectors (no arbitrage conditions), \(W_{j,r} = W_r \) such that the \(MC_{j,r} \) is equal to
\[
MC_{j,r} = \frac{1}{Z_p Z_{p,j}} \left(\frac{1}{\phi_j^m}\right)^{\phi_j^m} \left(\frac{W_r}{\phi_j^n}\right)^{\phi_k} \left(\frac{R_r}{\phi_j^k}\right)^{\phi_k}
\]

A-7
For GDP

\[
GDP = \sum_{z=1}^{Z} P_{z,r}(G_z + C_z) + \sum_{j=1}^{J} P_{ij,r}I_j
\]

\[
= \sum_{z=1}^{Z} (G_z + C_z) + \sum_{j=1}^{J} I_j
\]

\[
= 1'(\xi + \frac{g}{c}\zeta) + \delta(\frac{1}{\beta} - (1 - \delta))^{-1}(\phi^k)'(I - \tilde{\Omega} - \tilde{\Psi})^{-1}\zeta
\]

C Log Linearisation

C.1 Some definitions

Define small case variables as log–deviations from steady state, e.g. \(x_t = \ln(\frac{X_t}{X_{t-1}})\). 100\(x_t\) is interpreted as the percentage deviation in a neighbourhood around the steady state. We introduce the following price identities

\[
\pi_{pce}^t = \ln \left(\frac{P_t}{P_{t-1}} \right) = \ln \left(\frac{\Pi_{t}^{pce}}{\Pi} \right)
\]

\[
\pi_{ppi}^jt = \ln \left(\frac{P_{jt}}{P_{jt-1}} \right) = \ln \left(\frac{\Pi_{jt}^{ppi}}{\Pi} \right)
\]

\[
\pi_{pce}^zt = \ln \left(\frac{P_{zt}}{P_{zt-1}} \right) = \ln \left(\frac{\Pi_{zt}^{pce}}{\Pi} \right)
\]

\[
p_{jt,r} = \ln \left(\frac{P_{jt}}{P_t} \right)
\]

\[
p_{zt,r} = \ln \left(\frac{P_{zt}}{P_t} \right)
\]

\[
\pi_{w}^jt = \ln \left(\frac{W_{jt}}{W_{jt-1}} \right)
\]

\[
w_{jt,r} = \ln \left(\frac{W_{jt}}{P_t} \right) - \ln \left(\frac{W_{j}}{P} \right)
\]

C.2 Log linearised first–order conditions

Household

\[
c_{zt} = -\nu_p p_{zt,r} + c_t
\]

\[
\lambda_t = -\frac{\sigma}{1 - \chi} (c_t - \chi c_{t-1})
\]

\[
\lambda_t = \mathbb{E}_t(\lambda_{t+1}) + r_t + z_{h,t} - \mathbb{E}_t(\pi_{pce}^{t+1})
\]

\[
\pi_{pce}^t = \sum_{z=1}^{Z} \xi_z \pi_{zt}^{pce}
\]
Monetary policy
\[r_t = \rho_s r_{t-1} + (1-\rho_s) \left(\rho_p \pi_{t}^{pce} + \rho_{gdp} gp_{t} \right) + z_{r,t} \]

Wage dynamics and labour markets
\[\{ \pi_{j,t}^{w} = w_{j,t,r} - w_{j,t-1,r} + \pi_{t}^{pce} \}_{j=1}^{J} \]
\[\{ \pi_{j,t}^{p} = \beta \pi_{j,t+1}^{p} + \tau_{w}(\pi_{t-1}^{pce} - \beta \pi_{t}^{pce}) + \gamma_{j}^{w}(mr_{j,t} - w_{j,t,r} + (z_{w,j,t} + z_{w,t})) \}_{j=1}^{J} \]
\[\{ mr_{j,t} = \varphi n_{j,t} - \lambda_{t} \}_{j=1}^{J} \]

Government
\[p_{t, z}^{g} = \sum_{z=1}^{Z} \zeta_{z} p_{zt,r} \]
\[\{ g_{zt} = g_t - \nu_g (p_{zt,r} - p_{t,r}^{g}) \}_{z=1}^{Z} \]
\[g_t = z_{g,t} \]

Intermediate goods producers
\[\{ \pi_{j,t}^{ppi} = p_{j,t,r} - p_{j,t-1,r} + \pi_{t}^{pce} \}_{j=1}^{J} \]
\[\{ \pi_{j,t}^{p} = \gamma_{1,j}^{ppi} \pi_{j,t+1}^{ppi} + \gamma_{2,j}^{ppi} \pi_{j,t-1}^{ppi} + \gamma_{3,j}^{ppi} (mc_{j,t,r} - p_{j,t,r} + (z_{m,t} + z_{m,t,j})) \}_{j=1}^{J} \]
\[\{ y_{jt} = (1 + \epsilon_{m})(z_{p,j,t} + z_{p,t} + \phi_{j}^{n} n_{j,t} + \phi_{j}^{m} m_{j,t} + \phi_{j}^{k} k_{j,t}) \}_{j=1}^{J} \]
\[\{ mc_{j,t,r} = -(z_{p,j,t} + z_{p,t}) + \phi_{j}^{n} w_{j,t,r} + \phi_{j}^{m} p_{j,t,r} + \phi_{j}^{k} r_{j,t,r} \}_{j=1}^{J} \]
\[\{ p_{j,t,r} = \sum_{j=1}^{J} \omega_{j,j'} p_{j',t,r} \}_{j=1}^{J} \]
\[\{ m_{j,t} - n_{j,t} = w_{j,t,r} - p_{j,t,r}^{m} \}_{j=1}^{J} \]
\[\{ n_{j,t} - k_{j,t} = r_{j,t,r} - w_{j,t,r} \}_{j=1}^{J} \]
\[\{ m_{j,t}^{f} = -\nu_m (p_{j,t,r} - p_{j,t,r}^{m}) + m_{j,t}^{f} \}_{j=1}^{J} \]
\[\{ y_{jt} = \sum_{z=1}^{Z} \gamma_{y_{j,t}}^{m} m_{z,j,t} + \sum_{j'=1}^{J} \gamma_{y_{j,j'}}^{m} m_{j',t} + \sum_{j'=1}^{J} \gamma_{y_{j,j'}}^{m} y_{j',t} \}_{j=1}^{J} \]

Capital producers
\[\{ p_{j,t,r} = \sum_{j=1}^{J} \psi_{j,j'} p_{j',t,r} \}_{j=1}^{J} \]
\[\{ i_{j,t}^{f} = -\nu_i (p_{j,t,r} - p_{j,t,r}^{i}) + i_{j,t}^{f} \}_{j=1}^{J} \]
\[\{ q_{j,t,r} = p_{j,t,r}^{i} + \epsilon_i [(i_{j,t}^{f} - i_{j,t-1}^{f}) + \beta \pi_{t}(i_{j,t}^{f} - i_{j,t+1}^{f})] - (z_{i,j,t} + z_{i,t}) \}_{j=1}^{J} \]
\[\{ q_{j,t,r} = -(r_t + z_{k,t} - \pi_{k,t}^{pce}) + (1 - \beta(1-\delta)) \pi_{j,t+1,r} + \beta(1-\delta) \pi_{j,t+1,r} \}_{j=1}^{J} \]
\[\{ \tilde{k}_{j,t+1} = (1-\delta) \tilde{k}_{j,t} - \Delta'(1) u_{j,t} + \delta i_{j,t} + \delta (z_{i,j,t} + z_{i,t}) \}_{j=1}^{J} \]
\[\{ k_{j,t} = \tilde{k}_{j,t} + u_{j,t} \}_{j=1}^{J} \]
\[\{ r_{j,t,r} = q_{j,t,r} + \epsilon u_{j,t} \}_{j=1}^{J} \]

Final goods producers
\[\{ \pi_{zt}^{pce} = p_{zt,r} - p_{zt-1,r} + \pi_{t}^{pce} \}_{z=1}^{Z} \]
\[\{ \pi_{zt}^{p} = \gamma_{1,z}^{pce} \pi_{zt+1}^{pce} + \gamma_{2,z}^{pce} \pi_{zt-1}^{pce} + \gamma_{3,z}^{pce} (mc_{zt,r} - p_{zt,r} + (z_{c,z,t} + z_{c,t})) \}_{z=1}^{Z} \]
\[\{ mc_{zt,r} = p_{zt,r}^{m} \}_{z=1}^{Z} \]
\[
\{p_{zt,r}^m = \sum_{j=1}^J \kappa_{jt}p_{zt,r}\}^Z_{z=1}
\]
\[
\{y_{zt} = (1 + c_t)m_{zt}\}^Z_{z=1}
\]
\[
\{y_{zt} = \gamma_c c_{zt} + \gamma_g g_{zt}\}^Z_{z=1}
\]
\[
\{m_{zt} = -\nu_f(p_{jt,r} - p_{zt,r}^m) + m_{zt}\}^Z_{z=1}
\]

Gross domestic product

\[
gdp_t = \sum_{z=1}^Z \gamma_{z}^{gdp,c}(c_{zt} + p_{zt,r}) + \sum_{j=1}^J \gamma_{j}^{gdp,i}(i_{jt} + p_{jt,r}^i)
\]

Exogenous processes

\[
z_{r,t} = \sigma_r \varepsilon_{r,t}
\]
\[
z_{b,t} = \rho_b z_{b,t-1} + \sigma_b \varepsilon_{b,t}
\]
\[
z_{g,t} = \rho_g z_{g,t-1} + \sigma_g \varepsilon_{g,t}
\]
\[
z_{m,t} = \rho_m z_{m,t-1} + \sigma_m \varepsilon_{m,t}
\]
\[
z_{c,t} = \rho_c z_{c,t-1} + \sigma_c \varepsilon_{c,t}
\]
\[
z_{w,t} = \rho_w z_{w,t-1} + \sigma_w \varepsilon_{w,t}
\]
\[
z_{p,t} = \rho_p z_{p,t-1} + \sigma_p \varepsilon_{p,t}
\]
\[
z_{i,t} = \rho_i z_{i,t-1} + \sigma_i \varepsilon_{i,t}
\]

\[
\{z_{m,zt} = \theta_m z_{m,zt-1} + \phi_m \varepsilon_{m,zt}\}^J_{j=1}
\]
\[
\{z_{c,zt} = \theta_c z_{c,zt-1} + \phi_c \varepsilon_{c,zt}\}^Z_{z=1}
\]
\[
\{z_{w,zt} = \theta_w z_{w,zt-1} + \phi_w \varepsilon_{w,zt}\}^J_{j=1}
\]
\[
\{z_{p,zt} = \theta_p z_{p,zt-1} + \phi_p \varepsilon_{p,zt}\}^J_{j=1}
\]
\[
\{z_{i,zt} = \theta_i z_{i,zt-1} + \phi_i \varepsilon_{i,zt}\}^J_{j=1}
\]

C.3 Structural composite parameters

First, for \(\gamma_{jz}^f\), \(\gamma_{jm}^m\) and \(\gamma_{jy}^i\):

\[
Y_{j} = \sum_{z=1}^{Z} M_{jz}t + \sum_{j'=1}^{J} M_{j'jt} + \sum_{j'=1}^{J} I_{j'jt}
\]
\[
Y_{j}t - Y_{j} = \sum_{z=1}^{Z} \kappa_{jz} Y_{jz}(M_{jzt} - M_{jz}) + \sum_{j'=1}^{J} \omega_{j'j} \phi_{j'}^{m} Y_{j'}(M_{j'jt} - M_{j'j}) + \sum_{j'=1}^{J} \psi_{j'j} \delta R_{r}^{-1} \phi_{j'}^{k} Y_{j'}(I_{j'jt} - I_{j'j})
\]
\[
y_{j} = \sum_{z=1}^{Z} \frac{(\xi + \xi_c jz) \kappa_{jz}}{\xi_j} m_{jzt} + \sum_{j'=1}^{J} \omega_{j'j} \phi_{j'}^{m} Y_{j'} m_{j'jt} + \sum_{j'=1}^{J} \psi_{j'j} \delta R_{r}^{-1} \phi_{j'}^{k} Y_{j'} i_{j'jt}
\]

Note that \(\mu_j\) quantifies the mass of labour employed by intermediate goods
producers in sector \(j \). Hence, \(\frac{\mu_j}{\phi_j^m} \propto Y_j \). Therefore \(\frac{Y_j'}{Y_j} = \frac{\mu_j'\phi_n^m}{\mu_j\phi_n^m} \).

\[
y_{jt} = \sum_{z=1}^{Z} \left(\frac{\xi_z + \frac{g}{c} \zeta_z}{Y_j} \right) \gamma_{z}^{jm} m_{zjt} + \sum_{j'=1}^{J} \kappa^{j'} \phi_{j'}^m \frac{\mu_{j'}\phi_n^m}{\mu_j\phi_n^m} m'_{j'jt} + \sum_{j'=1}^{J} \psi_{j'} \delta \left(\frac{1}{\beta} - (1 - \delta) \right)^{-1} \phi_{j'}^k \frac{\mu_{j'}\phi_n^m}{\mu_j\phi_n^m} i'_{j'jt} \gamma_{j'}^{jm}
\]

Where \(Y_j \) was derived above.

Furthermore;

\[
\begin{align*}
\gamma_{1.z}^c &= 1 - \gamma_{z}^g \\
\gamma_{z}^g &= \frac{\frac{g}{c} \zeta_z}{\xi_z + \frac{g}{c} \zeta_z} \\
\gamma_{j}^w &= \frac{(1 - \alpha_j^w)(1 - \beta \alpha_j^w)}{\alpha_j^w(1 + \frac{1}{w+\epsilon} \varphi)} \\
\gamma_{1,j}^{ppi} &= \frac{\beta}{1 + \beta t_{ppi}} \\
\gamma_{2,j}^{ppi} &= \frac{t_{ppi}}{1 + \beta t_{ppi}} \\
\gamma_{3,j}^{ppi} &= \frac{(1 - \alpha_j^{ppi})(1 - \beta \alpha_j^{ppi})}{\alpha_j^{ppi}(1 + \beta t_{ppi})} \\
\gamma_{1,j}^{pce} &= \frac{\beta}{1 + \beta t_{pce}} \\
\gamma_{2,j}^{pce} &= \frac{t_{pce}}{1 + \beta t_{pce}} \\
\gamma_{3,j}^{pce} &= \frac{(1 - \alpha_j^{pce})(1 - \beta \alpha_j^{pce})}{\alpha_j^{pce}(1 + \beta t_{pce})} \\
\gamma_{z}^{gdp,c} &= \frac{\xi_z}{1' \left(\xi + \frac{g}{c} \zeta \right) + \delta \left(\frac{1}{\beta} - (1 - \delta) \right)^{-1} \left(\phi^k \right)' \left(I - \tilde{\Omega}' - \tilde{\Psi}' \right)^{-1} \tau} \\
\gamma_{z}^{gdp,g} &= \frac{(g/c) \xi_z}{1' \left(\xi + \frac{g}{c} \zeta \right) + \delta \left(\frac{1}{\beta} - (1 - \delta) \right)^{-1} \left(\phi^k \right)' \left(I - \tilde{\Omega}' - \tilde{\Psi}' \right)^{-1} \tau} \\
\gamma_{j}^{gdp,i} &= \frac{1'}{(\beta - (1 - \delta)) \mu_j \phi_n^m Y_j} \\
1 &= \sum_{z=1}^{Z} \left(\gamma_{z}^{gdp,c} + \gamma_{z}^{gdp,g} \right) + \sum_{j=1}^{J} \gamma_{j}^{gdp,i} \\
\eta &= \left(I - \tilde{\Omega}' - \tilde{\Psi}' \right)^{-1} \tau \left(1' \left(I - \tilde{\Omega}' - \tilde{\Psi}' \right)^{-1} \tau \right)^{-1} \tau \\
\epsilon_U &= \frac{\Delta(1)''}{\Delta(1)'}
\end{align*}
\]
\[\epsilon_I = S''(1)\]

D Definition: Pipeline pressures in consumer prices

Similar to producer prices, let

\[\frac{\partial \pi_{\text{pce}}^{zt+s}}{\partial \varepsilon_{a,t}} = \delta^{(s)}(a) \quad (a \in A), \quad \frac{\partial \pi_{\text{pce}}^{zt+s}}{\partial \varepsilon_{e,j,t}} = \delta^{(s)}(e, j) \quad (e \in E), \quad \frac{\partial \pi_{\text{pce}}^{zt+s}}{\partial \varepsilon_{e,z',t}} = \delta^{(s)}(e, z') \quad (e \in E)\]

\[\pi_{zt}^{\text{pce}} = \alpha_t(\pi_{zt}^{\text{pce}})_{h=\infty} + \beta_t(\pi_{zt}^{\text{pce}})_{h=\infty} + \gamma_t(\pi_{zt}^{\text{pce}})_{h=\infty} \quad (D.1.)\]

with

\[\alpha_t(\pi_{zt}^{\text{pce}})_{h} = \sum_{s=0}^{h-1} (\delta^{(s)}(A))' \varepsilon(A)_{t-s}\]
\[\beta_t(\pi_{zt}^{\text{pce}})_{h} = \sum_{s=0}^{h-1} (\delta^{(s)}(E))' \varepsilon_{z,z}(E)_{t-s}\]
\[\gamma_t(\pi_{zt}^{\text{pce}})_{h} = \sum_{s=0}^{h-1} (\delta^{(s)}(E))' \varepsilon_{z,-z}(E)_{t-s}\]

\[\pi_t^{\text{pce}} = \sum_{z=1}^{Z} \xi_z (\alpha_t(\pi_{zt}^{\text{pce}})_{h=\infty} + \beta_t(\pi_{zt}^{\text{pce}})_{h=\infty} + \gamma_t(\pi_{zt}^{\text{pce}})_{h=\infty}) \quad (D.2.)\]

E Data

E.1 Calibration baseline model

The input–output matrix \((\Omega)\) is constructed from the Make and Use tables, similarly to Pasten et al. (2016, 2017). The procedure is akin to that described in Bureau of Economic Analysis (2017). The investment flow table \((\Psi)\) is constructed as in Atalay (2017); Atalay et al. (2018). The final goods to intermediate matrix \((K)\) is directly available from the BEA.

E.2 Concordance data and model

Hereafter, the private sector refers to \(j = 1, \ldots, 6\); i.e. Agriculture, Mining, Utilities, Construction, Manufacturing and Services. Sector \(j = 7\) is the Public sector. The total economy comprises both. Raw data are taken from the data sources listed below. Unless stated otherwise, series are detrended using a one–sided HP filter. All data are quarterly.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_{obs}</td>
<td>Average weekly private sector earnings of production and nonsupervisory employees · US Dollars · Seasonally adjusted at source.</td>
</tr>
<tr>
<td>W_{obs}^{jt}</td>
<td>Average weekly earnings of production and nonsupervisory employees, sector j · US Dollars · Seasonally adjusted at source.</td>
</tr>
<tr>
<td>P_{obs}^{t}</td>
<td>Personal Consumption Expenditures deflator · US Dollars · Seasonally adjusted at source.</td>
</tr>
<tr>
<td>L_{obs}^{t}</td>
<td>Average weekly hours of production and nonsupervisory employees, total private sector · Seasonally adjusted at source.</td>
</tr>
<tr>
<td>L_{obs}^{jt}</td>
<td>Average weekly hours of production and nonsupervisory employees, sector j · Seasonally adjusted at source.</td>
</tr>
<tr>
<td>N_{obs}^{t}</td>
<td>Total number of of production and nonsupervisory employees, total private sector · Seasonally adjusted at source.</td>
</tr>
<tr>
<td>N_{obs}^{jt}</td>
<td>Total number of of production and nonsupervisory employees, sector j · Seasonally adjusted at source.</td>
</tr>
<tr>
<td>R_{obs}^{t}</td>
<td>Federal funds rate (quarterly average).</td>
</tr>
<tr>
<td>C_{obs}^{t}</td>
<td>Aggregate nominal personal consumption expenditures · US Dollars · Seasonally adjusted at source</td>
</tr>
<tr>
<td>GDP_{obs}^{t}</td>
<td>Gross domestic product · U.S. Dollars · Seasonally adjusted at source.</td>
</tr>
<tr>
<td>Y_{obs}^{jt}</td>
<td>Industrial production index of sector j (gross output index) · Seasonally adjusted at source.</td>
</tr>
<tr>
<td>P_{obs}^{jt}</td>
<td>Producer price index, sector j · Not seasonally adjusted at source.</td>
</tr>
<tr>
<td>P_{obs}^{zt}</td>
<td>Personal consumption expenditures price index of product category z · Seasonally adjusted at source.</td>
</tr>
<tr>
<td>$RPINV_{obs}^{t}$</td>
<td>Relative price of investment goods (investment deflator divided by consumption deflator) · Seasonally adjusted at source.</td>
</tr>
<tr>
<td>G_{obs}^{jt}</td>
<td>Government consumption, excluding investment · US Dollars · Seasonally adjusted at source.</td>
</tr>
<tr>
<td>I_{obs}^{t}</td>
<td>Gross private domestic investment · US Dollars · Seasonally adjusted at source.</td>
</tr>
<tr>
<td>$I_{obs}^{t, t}$</td>
<td>Gross Investment public sector · US Dollars · Seasonally adjusted at source.</td>
</tr>
<tr>
<td>E_{obs}^{t}</td>
<td>Civilian population: Sixteen Years & Over · Thousands · Seasonally adjusted at source.</td>
</tr>
</tbody>
</table>

Discussion

1. Variable $\tilde{w}_{t, r}$ is the detrended version of $\log \left(\frac{W_{obs}^{t}}{P_{obs}^{t}} \right)$.

2. Variable \tilde{i}_{t} is the detrended version of $\log \left(\frac{I_{obs}^{t}}{P_{obs}^{t, E_{obs}^{t}}} \right)$.
3. Variable \(\tilde{i}_t \) is the detrended version of \(\log \left(\frac{I_{obs}^t}{P_{obs}^t E_{obs}^t} \right) \).

4. Variable \(\tilde{l}_t \) is the detrended version of \(\log \left(\frac{L_{obs}^t}{N_{obs}^t E_{obs}^t} \right) \).

5. Variable \(\tilde{l}_{jt} \) is the detrended version of \(\log \left(\frac{L_{obs}^{jt}}{N_{obs}^{jt} E_{obs}^t} \right) \).

6. Variable \(\tilde{r}_t \) equals \(\tilde{r}_t = \log(1 + \frac{R_{obs}^t}{4\times 100}) - \log(1 + \frac{R_{obs}^t}{4\times 100}) \).

7. Variable \(\tilde{c}_t \) is the detrended version of \(\log \left(\frac{C_{obs}^t}{E_{obs}^t P_{obs}^t} \right) \).

8. Variable \(\tilde{g}_t \) is the detrended version of \(\log \left(\frac{G_{obs}^t}{E_{obs}^t P_{obs}^t} \right) \).

9. Variable \(\tilde{y}_{jt} \) is the detrended version of \(\log \left(\frac{Y_{obs}^{jt}}{E_{obs}^{jt}} \right) \).

10. Variable \(\tilde{w}_{jt, r} \) is the detrended version of \(\log \left(\frac{W_{obs}^{jt}}{P_{obs}^{jt}} \right) \).

11. We control for seasonal effects in \(\log \left(\frac{P_{obs}^t}{P_{obs}^{jt}} \right) \) by regressing each series on seasonal dummies in order to obtain \(\tilde{\pi}_{ppi}^{jt} \).

12. Variable \(\tilde{\pi}_{pce}^t \) is the detrended version of \(\log \left(\frac{P_{obs}^t}{P_{obs}^{jt-1}} \right) \).

13. Variable \(\tilde{p}_{jt} \) is the detrended version of \(\log \left(\frac{RPINV_{obs}^{jt}}{J_{obs}^{jt}} \right) \).

14. Variable \(\tilde{g}_t \) is the detrended version of \(\log \left(\frac{G_{obs}^t}{E_{obs}^t P_{obs}^t} \right) \).
E.3 Measurement Equation

The observation equation describes how the empirical times series are matched to the corresponding model variables.

\[
\begin{bmatrix}
\left\{ \tilde{\pi}_{j,t} \right\}_{j=1}^J \\
\left\{ \tilde{\pi}_{zt} \right\}_{z=1}^Z \\
\left\{ \tilde{l}_{j,t} \right\}_{j=1}^J \\
\left\{ \tilde{w}_{j,t,r} \right\}_{j=1}^J \\
\left\{ \tilde{y}_{j,t} \right\}_{j=1}^J \\
\tilde{gdp}_t \\
\tilde{c}_t \\
\tilde{r}_t \\
\tilde{l}_t \\
\tilde{i}_t \\
\tilde{p}_t \\
\tilde{w}_{t,r} \\
\tilde{y}_t
\end{bmatrix}
\times 100 =
\begin{bmatrix}
\left\{ \pi_{j,t} \right\}_{j=1}^J \\
\left\{ \pi_{zt} \right\}_{z=1}^Z \\
\left\{ l_{j,t} \right\}_{j=1}^J \\
\left\{ w_{j,t,r} \right\}_{j=1}^J \\
\left\{ y_{j,t} \right\}_{j=1}^J \\
gdp_t \\
c_t \\
r_t \\
l_t \\
i_t \\
p_t \\
w_{t,r} \\
y_t
\end{bmatrix}
\sum_{j=1}^6 \left(\frac{\phi^n_j}{\sum_{j'=1}^6 (\phi^n_{j'})} \right) l_{jt}
\sum_{j=1}^6 \left(\frac{\phi^k_j}{\sum_{j'=1}^6 (\phi^k_{j'})} \right) (i_{jt} + p_{jt})
\sum_{j=1}^J \left(\frac{\phi^k_j}{\sum_{j'=1}^J (\phi^k_{j'})} \right) p_{jt,r}
\sum_{j=1}^Z \left(\frac{\phi^p_j}{\sum_{j'=1}^Z (\phi^p_{j'})} \right) w_{jt,r}
g_t + \sum_{z=1}^Z \zeta_z p_{zt,r}
\end{bmatrix}
+ \eta^{ME} (2)
\]

E.4 Calibration disaggregated model

This subsection provides details on the calibration of the disaggregated model analysed in subsection 5.4, 5.5 and 6.1.

The calibration of the aggregate parameters in table 3, panel A remain unchanged. The disaggregated counterparts to the parameters in table 3 panel B are included below (\(\Omega, K, \Phi, \phi^n, \phi^m, \phi^k, \xi, \zeta, \alpha^{ppi}, \alpha^{pce}, \alpha^w \)).

The estimated parameters from table 10, panel A – D remain unchanged. For the sectoral shock processes (table 10, panel E – J), we assume the same processes of the “parent sector” are the same for the underlying sectors. E.g., we assume that the estimated shock processes to the manufacturing sector are the same for all sub-sectors of the manufacturing sector.
Table 3: **INPUT–OUTPUT MATRIX INTERMEDIATE FLOWS (Ω): DISAGGREGATE LEVEL**

| Parameters ω_{ij} are constructed using the 1997 “Use” and “Make” tables provided by the BEA. For visual presentation, values smaller than 0.01 are truncated to zero (not in the analysis). Row sums do not add to one due to rounding and truncation. The acronyms stand for; FIRE (Finance, Insurance and Real Estate), PROF (professional and business services (e.g. legal services, computer systems design, etc.)), EHS (Educational services, health care, and social assistance) and AERAF (Arts, entertainment, recreation, accommodation, and food services). |
Table 4: Investment Flow Matrix Intermediate Flows (Ψ): Disaggregate Level

<table>
<thead>
<tr>
<th>Sector</th>
<th>Agriculture & Forestry</th>
<th>Oil and gas extraction</th>
<th>Mining, except oil and gas</th>
<th>Support activities for mining</th>
<th>Utilities</th>
<th>Construction</th>
<th>Wood products</th>
<th>Nonmetallic mineral products</th>
<th>Primary metals</th>
<th>Machinery</th>
<th>Computer and electronic products</th>
<th>Electrical equipment and appliances</th>
<th>Motor vehicles, bodies and trailers</th>
<th>Other transportation equipment</th>
<th>Petroleum and coal products</th>
<th>Chemical products</th>
<th>Transportation and warehousing</th>
<th>Finance and insurance</th>
<th>EHS</th>
<th>AERAF</th>
<th>FIRE</th>
<th>PROF</th>
<th>EBS</th>
<th>AERAF, except government</th>
<th>Public sector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0.11</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>0.05</td>
<td>0.05</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters $\psi_{jj'}$ are constructed using the 1997 “Use” and “Make” tables provided by the BEA. For visual presentation, values smaller than 0.01 are truncated to zero (not in the estimation procedure). Row sums do not add to one due to rounding and truncation. The acronyms stand for: FIRE (Finance, Insurance and Real Estate), PROF (professional and business services (e.g. legal services, computer systems design, etc.)), EHS (Educational services, health care, and social assistance) and AERAF (Arts, entertainment, recreation, accommodation, and food services).
Table 5: Input shares labour, intermediates and capital (J=35)

<table>
<thead>
<tr>
<th>j</th>
<th>Sector NAICS</th>
<th>Labour ϕ_j^{ln}</th>
<th>Intermediates ϕ_j^{lm}</th>
<th>Capital ϕ_j^{lk}</th>
<th>Price stickiness α_j^{pp}</th>
<th>Wage stickiness α_j^{pw}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agriculture & Forestry</td>
<td>0.10</td>
<td>0.58</td>
<td>0.32</td>
<td>0.00</td>
<td>0.78</td>
</tr>
<tr>
<td>2</td>
<td>Oil and gas extraction</td>
<td>0.13</td>
<td>0.44</td>
<td>0.41</td>
<td>0.02</td>
<td>0.78</td>
</tr>
<tr>
<td>3</td>
<td>Mining, except oil and gas</td>
<td>0.25</td>
<td>0.52</td>
<td>0.23</td>
<td>0.22</td>
<td>0.87</td>
</tr>
<tr>
<td>4</td>
<td>Support activities for mining</td>
<td>0.43</td>
<td>0.35</td>
<td>0.22</td>
<td>0.22</td>
<td>0.87</td>
</tr>
<tr>
<td>5</td>
<td>Utilities</td>
<td>0.17</td>
<td>0.32</td>
<td>0.51</td>
<td>0.00</td>
<td>0.77</td>
</tr>
<tr>
<td>6</td>
<td>Construction</td>
<td>0.32</td>
<td>0.52</td>
<td>0.16</td>
<td>0.22</td>
<td>0.79</td>
</tr>
<tr>
<td>7</td>
<td>Wood products</td>
<td>0.39</td>
<td>0.69</td>
<td>0.99</td>
<td>0.35</td>
<td>0.70</td>
</tr>
<tr>
<td>8</td>
<td>Nonmetallic mineral products</td>
<td>0.29</td>
<td>0.53</td>
<td>0.21</td>
<td>0.52</td>
<td>0.75</td>
</tr>
<tr>
<td>9</td>
<td>Primary metals</td>
<td>0.19</td>
<td>0.71</td>
<td>0.09</td>
<td>0.22</td>
<td>0.79</td>
</tr>
<tr>
<td>10</td>
<td>Fabricated metal products</td>
<td>0.29</td>
<td>0.54</td>
<td>0.16</td>
<td>0.63</td>
<td>0.73</td>
</tr>
<tr>
<td>11</td>
<td>Machinery</td>
<td>0.27</td>
<td>0.62</td>
<td>0.11</td>
<td>0.16</td>
<td>0.78</td>
</tr>
<tr>
<td>12</td>
<td>Computer and electronic products</td>
<td>0.34</td>
<td>0.56</td>
<td>0.19</td>
<td>0.21</td>
<td>0.73</td>
</tr>
<tr>
<td>13</td>
<td>Electrical equipment, and appliances</td>
<td>0.24</td>
<td>0.58</td>
<td>0.18</td>
<td>0.21</td>
<td>0.74</td>
</tr>
<tr>
<td>14</td>
<td>Motor vehicles, bodies and trailers</td>
<td>0.15</td>
<td>0.74</td>
<td>0.11</td>
<td>0.00</td>
<td>0.75</td>
</tr>
<tr>
<td>15</td>
<td>Other transportation equipment</td>
<td>0.30</td>
<td>0.60</td>
<td>0.10</td>
<td>0.43</td>
<td>0.75</td>
</tr>
<tr>
<td>16</td>
<td>Furniture and related products</td>
<td>0.31</td>
<td>0.56</td>
<td>0.13</td>
<td>0.31</td>
<td>0.72</td>
</tr>
<tr>
<td>17</td>
<td>Miscellaneous manufacturing</td>
<td>0.32</td>
<td>0.47</td>
<td>0.21</td>
<td>0.48</td>
<td>0.73</td>
</tr>
<tr>
<td>18</td>
<td>Food and beverage and tobacco products</td>
<td>0.12</td>
<td>0.74</td>
<td>0.14</td>
<td>0.21</td>
<td>0.72</td>
</tr>
<tr>
<td>19</td>
<td>Textile mills and textile product mills</td>
<td>0.23</td>
<td>0.69</td>
<td>0.08</td>
<td>0.55</td>
<td>0.80</td>
</tr>
<tr>
<td>20</td>
<td>Apparel and leather and allied products</td>
<td>0.22</td>
<td>0.69</td>
<td>0.09</td>
<td>0.00</td>
<td>0.80</td>
</tr>
<tr>
<td>21</td>
<td>Paper products</td>
<td>0.21</td>
<td>0.63</td>
<td>0.16</td>
<td>0.47</td>
<td>0.71</td>
</tr>
<tr>
<td>22</td>
<td>Printing and related support activities</td>
<td>0.33</td>
<td>0.62</td>
<td>0.06</td>
<td>0.75</td>
<td>0.78</td>
</tr>
<tr>
<td>23</td>
<td>Petroleum and coal products</td>
<td>0.06</td>
<td>0.73</td>
<td>0.21</td>
<td>0.00</td>
<td>0.70</td>
</tr>
<tr>
<td>24</td>
<td>Chemical products</td>
<td>0.16</td>
<td>0.58</td>
<td>0.27</td>
<td>0.55</td>
<td>0.74</td>
</tr>
<tr>
<td>25</td>
<td>Plastics and rubber products</td>
<td>0.22</td>
<td>0.63</td>
<td>0.15</td>
<td>0.10</td>
<td>0.75</td>
</tr>
<tr>
<td>26</td>
<td>Wholesale trade</td>
<td>0.36</td>
<td>0.29</td>
<td>0.35</td>
<td>0.74</td>
<td>0.77</td>
</tr>
<tr>
<td>27</td>
<td>Retail</td>
<td>0.40</td>
<td>0.31</td>
<td>0.29</td>
<td>0.74</td>
<td>0.76</td>
</tr>
<tr>
<td>28</td>
<td>Transportation and warehousing</td>
<td>0.33</td>
<td>0.49</td>
<td>0.18</td>
<td>0.16</td>
<td>0.78</td>
</tr>
<tr>
<td>29</td>
<td>Information</td>
<td>0.23</td>
<td>0.46</td>
<td>0.31</td>
<td>0.60</td>
<td>0.78</td>
</tr>
<tr>
<td>30</td>
<td>FIRE</td>
<td>0.15</td>
<td>0.33</td>
<td>0.51</td>
<td>0.48</td>
<td>0.79</td>
</tr>
<tr>
<td>31</td>
<td>PROF</td>
<td>0.44</td>
<td>0.38</td>
<td>0.19</td>
<td>0.56</td>
<td>0.77</td>
</tr>
<tr>
<td>32</td>
<td>EHS</td>
<td>0.51</td>
<td>0.38</td>
<td>0.11</td>
<td>0.56</td>
<td>0.73</td>
</tr>
<tr>
<td>33</td>
<td>AERAF</td>
<td>0.32</td>
<td>0.52</td>
<td>0.23</td>
<td>0.56</td>
<td>0.76</td>
</tr>
<tr>
<td>34</td>
<td>Other services, except government</td>
<td>0.40</td>
<td>0.34</td>
<td>0.26</td>
<td>0.56</td>
<td>0.78</td>
</tr>
<tr>
<td>35</td>
<td>Public sector</td>
<td>0.54</td>
<td>0.31</td>
<td>0.15</td>
<td>0.89</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Parameters ϕ_j^{ln}, ϕ_j^{lm} and ϕ_j^{lk} are constructed using the 1997 “Use” tables provided by the BEA. Shares do not add to one due to rounding. α_j^{pp} and α_j^{pw} are obtained from Peneva (2011) and Bils et al. (2014), respectively. The acronyms stand for; FIRE (Finance, Insurance and Real Estate), PROF (Professional and business services (e.g. legal services, computer systems design, etc.)), EHS (Educational services, Health care, and Social assistance). Data are constructed using the 1997 “Use” tables provided by the BEA.
| Parameters κ_{zj} are constructed using the 1997 bridge tables provided by the BEA. For visual presentation, values smaller than 0.01 are truncated to zero (not in the analysis). Row sums do not add to one due to rounding and truncation. The acronyms stand for: FIRE (Finance, Insurance and Real Estate), PROF (professional and business services (e.g. legal services, computer systems design, etc.)), EHS (Educational services, Health care, and Social assistance), AERAF (Arts, entertainment, recreation, accommodation, and food services) and NPISHs (Final consumption expenditures of NonProfit institutions Serving Households). |
Data are constructed using the 1997 PCE tables provided by the BEA. Shares do not add to one due to rounding. Price stickiness ($\alpha^*_p z$) are obtained by suitably aggregating consumption categories from the Nakamura and Steinsson (2008) price–setting statistics (as per Carvalho and Lee (2011)). The household does not consume public sector goods $\xi_{17} = 0$. The government only consumes public sector goods $\zeta_{17} = 1$. The acronyms stand for; NPISHs (Final consumption expenditures of NonProfit institutions Serving Households), PFOPC (purchased for off–premise consumption).

E.5 Model implied steady state vs. historical averages in data

In this section we compare model–implied steady states not explicitly targeted in the calibration exercise to historical averages in the data. Our results indicate that the model–implied steady states of economywide variables (e.g., gross output–to–gdp) relate very well to their empirical counterparts. Similarly for sectoral shares of (i) gross output, (ii) gross value added, (iii) employment and the (iv) capital stock. A good level of mutual consistency between the sectoral and aggregate level is required given that we include variables at both levels as observables in the estimation.
Table 8: Steady state ratios, model vs. data

<table>
<thead>
<tr>
<th>Aggregate steady states (% GDP)</th>
<th>Model counterpart</th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal consumption expenditures-to-gdp</td>
<td>$\sum_{z=1}^{17} \gamma_{gdp,cz}$</td>
<td>0.55</td>
<td>0.62</td>
</tr>
<tr>
<td>Durables-to-gdp</td>
<td>$\sum_{z=1}^{4} \gamma_{gdp,cz}$</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Non-Durables-to-gdp</td>
<td>$\sum_{z=9}^{17} \gamma_{gdp,cz}$</td>
<td>0.16</td>
<td>0.19</td>
</tr>
<tr>
<td>Services-to-gdp</td>
<td>$\sum_{z=17}^{35} \gamma_{gdp,cz}$</td>
<td>0.32</td>
<td>0.34</td>
</tr>
<tr>
<td>Govt. Consumption Expenditures & Govt. Gross Investment-to-gdp</td>
<td>$\sum_{z=17}^{35} \gamma_{gdp,cz} + \gamma_{gdp,i}$</td>
<td>0.16</td>
<td>0.20</td>
</tr>
<tr>
<td>Govt. Consumption Expenditures-to-gdp</td>
<td>$\sum_{z=17}^{35} \gamma_{gdp,cz}$</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>Gross private and Govt. investment-to-gdp</td>
<td>$\sum_{z=17}^{35} \gamma_{gdp,i}$</td>
<td>0.31</td>
<td>0.23</td>
</tr>
<tr>
<td>Gross output-to-gdp</td>
<td>$\sum_{z=17}^{35} \gamma_{gdp,i}$</td>
<td>1.86</td>
<td>1.81</td>
</tr>
</tbody>
</table>

Moments in the data are averages over the post WWII period. Personal consumption expenditures and gross domestic product are obtained from the BEA. Investment data is obtained from the FRED. The model–implied steady states are obtained from the disaggregated version of the model $J = 35, Z = 17$. The structural coefficients can be found in section C.3.

Figure 1: Model–implied steady state ratios vs. historical averages in the data. Comparison is made for a disaggregated version of the model $J = 35, Z = 17$. Data limitations restrict the amount of model–implied ratios we can compare to the data.
F Estimation

F.1 Estimation details

We employ endogenous priors cf. Christiano et al. (2011). The procedure is motivated by sequential Bayesian learning and starts with an initial set of independent priors and consequently updates the priors with information on standard deviations of the data in a “pre–sample”. The latter is taken to be the actual sample used in estimation. The initial priors of the estimated parameters are specified in the main text.

We run two numerical optimization routines sequentially in order to maximize the posterior distribution. This determines the starting point of the Markov chain. We first use the CMA–ES algorithm by Hansen et al. (2003), following the evidence of its good performance for global mode–finding in the context of DSGE models (Andreasen (2010)). We additionally rely on a simplex based optimization routine.

Subsequently, we run four parallel Metropolis-Hastings (MH) chains of 750,000, starting near the mode. The first 200,000 draws are used as burn–in. We tune the scale of the jumping distribution and obtain acceptance ratios of about 1/3 in all chains.2

Across and within chain convergence is monitored following Brooks and Gelman (1998).3 Trace plots are used to verify the absence of an upward/downward trend in the MH-chains. Results are included below, and provide convincing evidence that the individual chains of posterior draws converge. Identification tests à la Iskrev (2010) reveal that the estimated parameters are locally identified at the respective posterior modes.

F.2 Prior posteriors

Available upon demand.

F.3 Trace plots

The following trace plots depict the sampled values for each parameter in the first MCMC chain. For the MCMC to converge to a stable distribution, the trace plot has to be stable. For all parameters, the moving average shows no sign of a trend (trace plots available upon demand).

1See also Del Negro and Schorfheide (2008).
2Under certain conditions, this is the optimal rejection rate. See Gelman et al. (2014).
3Across-chain convergence is monitored by tracking the 80% quantile range of the pooled draws from all four MH chains. Within–chain convergence is verified by the mean 80% quantile range based on the draws of the four individual sequences.
References

A-23

