Capital Controls, Monetary Policy, and Sudden Stops

Michael B. Devereux1 Eric R. Young2 Changhua Yu3

1University of British Columbia
2University of Virginia
3Peking University

AEPC Conference, San Francisco Federal Reserve
November 2017
Macroeconomic Policy for Emerging Economies

- Capital inflows may stimulate growth, but have downside
- Booms in asset prices appreciating currency, followed by “Sudden Stops”, crashes and depreciation
Macroeconomic Policy for Emerging Economies

- Capital inflows may stimulate growth, but have downside
- Booms in asset prices appreciating currency, followed by “Sudden Stops”, crashes and depreciation
 - Classic Case is a) sharp fall in GDP, b) big reversal of CA, c) large ER depreciation
Argentina 2001 case

Argentina Sudden Stop

- Source: WDI
Experience of EME’s pre and post GFC has been similar

Source: WEO
Policy for EMEs

- Independent monetary policy and flexible exchange rates not necessarily a solution
 - Policy ‘dilemma’ - policy effectiveness or open capital markets, not both
 - Need to supplement flexible exchange rates with capital market intervention?
Policy for EMEs

- Independent monetary policy and flexible exchange rates not necessarily a solution
 - Policy ‘dilemma’ - policy effectiveness or open capital markets, not both
 - Need to supplement flexible exchange rates with capital market intervention?

- Complete closure of capital markets unrealistic for most EMEs
 - But selective capital controls may be needed?
 - New ‘orthodoxy’ calls for combination of capital controls and monetary policy
New orthodoxy?

- When capital flows generate financial instability and sudden stops, what can/should monetary policy do?

Yes.
When capital flows generate financial instability and sudden stops, what can/should monetary policy do?

Little...
New orthodoxy?

- When capital flows generate financial instability and sudden stops, what can/should monetary policy do?
- Little...
- Should monetary policy be supplemented with capital controls?
New orthodoxy?

- When capital flows generate financial instability and sudden stops, what can/should monetary policy do?
- Little...
- Should monetary policy be supplemented with capital controls?
- Yes..
New orthodoxy?

- When capital flows generate financial instability and sudden stops, what can/should monetary policy do?
- Little...
- Should monetary policy be supplemented with capital controls?
- Yes..
- Should monetary policy/capital controls be macro-prudential (lean against the wind)?
New orthodoxy?

- When capital flows generate financial instability and sudden stops, what can/should monetary policy do?
 - Little...

- Should monetary policy be supplemented with capital controls?
 - Yes..

- Should monetary policy/capital controls be macro-prudential (lean against the wind)?
 - Yes
This paper

- Small open-economy DSGE model
 - Financial frictions
 - Sudden stops associated with occasionally-binding credit constraints
 - Sticky nominal prices
- Use this to conduct a normative analysis of optimal monetary policy and capital controls
Dual roles for economic policies

- Monetary policy useful due to nominal rigidities
- Capital controls fix pecuniary externalities caused by financial frictions
Dual roles for economic policies

- Monetary policy useful due to nominal rigidities
- Capital controls fix pecuniary externalities caused by financial frictions
- Are these policies complements or substitutes?
Dual roles for economic policies

- Monetary policy useful due to nominal rigidities
- Capital controls fix pecuniary externalities caused by financial frictions
- Are these policies complements or substitutes?
- Should monetary policy/capital controls be macro-prudential?
Preview of results

- Monetary policy: Price stability in normal times, inflation during a crisis
- Capital controls: capital inflow tax in a crisis
 - Capital controls substitutes for an active monetary policy
 - But, capital controls suffer from severe problem of time consistency
- No role for ‘macro-prudential’ policy
Related literature: Theory

- Sudden Stop Crises and Macro-prudential Policy
 - Mendoza (2010), Mendoza and Yue (2010)

- Aggregate demand externalities, exchange rate pegs

- Monetary policy

- Monetary stability vs. financial stability
 - Limited interaction: i.e., Collard, Dellas, Diba and Loisel (2013)
 - Leaning against growing financial imbalances, but secondary in monetary policy, i.e., Borio and Lowe (2002); Woodford (2012)
 - Financial stability is price stability: i.e., Brunnermeier and Sannikov (2012)
The model

- Wholesale good production
 - Imported intermediate goods, hire labor and rent capital
- Final good production
 - Use wholesale goods to produce varieties of consumption goods (sticky prices)
- Consumption composite
 - Domestically consumed or exported
- Firm-households
 - Own all domestic firms, make consumption-saving decisions
 - Accumulate capital (in aggregate fixed supply)
 - Supply labor
 - Borrow in dollars from the rest of the world
 - Face borrowing constraints (expected value of capital is collateral)
Budget Constraint

\[P_t c_t + Q_t k_{t+1} + \frac{B_{t+1}}{R_{t+1}} + \frac{B^*_t E_t}{R^*_t} (1 - \tau_{c,t}) \]

\[\leq W_t l_t + k_t (R_{K,t} + Q_t) + B_t + B^*_t E_t + T_t \]

\[+ [P_{M,t} M(Y_{F,t}, L_t, K_t) - (1 + \tau_N) Y_{F,t} P^*_{F,t} E_t - W_t L_t - R_{K,t} K_t] + D_t. \]

Collateral constraint

\[\forall Y_{F,t} P^*_{F,t} (1 + \tau_N) - B^*_{t+1} \leq \kappa_t E_t \left\{ \frac{Q_{t+1} k_{t+1}}{E_{t+1}} \right\} \]
Budget Constraint

\[P_t c_t + Q_t k_{t+1} + \frac{B_{t+1}}{R_{t+1}} + \frac{B_{t+1}^* \varepsilon_t}{R_{t+1}^*} (1 - \tau_{c,t}) \]

\[\leq W_t l_t + k_t (R_{K,t} + Q_t) + B_t + B_{t}^* \varepsilon_t + T_t \]

\[+ [P_{M,t} M(Y_{F,t}, L_t, K_t) - (1 + \tau_N) Y_{F,t} P_{F,t}^* \varepsilon_t - W_t L_t - R_{K,t} K_t] + D_t. \]

Collateral constraint

\[\nu Y_{F,t} P_{F,t}^* (1 + \tau_N) - B_{t+1}^* \leq \kappa_t E_t \left\{ \frac{Q_{t+1} k_{t+1}}{\varepsilon_{t+1}} \right\} \]

- Two kinds of borrowing
 - Inter-temporal borrowing
 - A-temporal working capital loans
- Future expected capital price limits borrowing capacity
Optimal monetary policy under discretion

- Policy maker maximizes the representative household’s welfare
- Policy instrument: nominal interest rate R_{t+1}

$$V(b_t^*, Z_t) = \max \left\{ U(C_t, L_t) + \beta E_t V(b_{t+1}^*, Z_{t+1}) \right\}$$

with

$$\Xi \equiv \{ L_t, C_t, Y_t, Y_{F,t}, b_{t+1}^*, q_t, \mu_t, r_{K,t}, e_t, p_{M,t}, \pi_t \}$$

- subject to implementability constraints
- Key feature is no commitment - government takes future policy functions as given
Theoretical results

- Absent collateral constraints, price stability is optimal
- Implication - active monetary policy used only due to presence of financial frictions
Proposition 1

- Without working capital in the collateral constraint, \(\theta = 0 \), the optimal monetary policy strictly stabilizes inflation \(\pi_t = \pi \).
Intuition: Monetary policy to correct pecuniary externalities

Planner

$$1 = \lambda_t R_{t+1}^* (1 + \kappa_t \frac{\partial (q_{t+1}/e_{t+1})}{\partial b_{t+1}^*}) + E_t \left\{ \beta \frac{U_c(t+1)}{U_c(t)} e_{t+1} R_{t+1}^* \right\}$$

Private sector

$$1 = \mu_t R_{t+1}^* + E_t \left\{ \beta \frac{U_c(t+1)}{U_c(t)} e_{t+1} R_{t+1}^* \right\} ,$$
Intuition: Monetary policy to correct pecuniary externalities

Planner

\[1 = \lambda_t R^*_{t+1} (1 + \kappa_t \frac{\partial(q_{t+1}/e_{t+1})}{\partial b^*_{t+1}}) + E_t \left\{ \beta \frac{U_c(t + 1)}{U_c(t)} \frac{e_{t+1}}{e_t} R^*_{t+1} \right\} \]

Private sector

\[1 = \mu_t R^*_{t+1} + E_t \left\{ \beta \frac{U_c(t + 1)}{U_c(t)} \frac{e_{t+1}}{e_t} R^*_{t+1} \right\}, \]

- When \(\mu > 0 \), want to raise \(b^*_{t+1} \) to raise \(q_{t+1} \).
- But without working capital cannot do this

\[-b^*_{t+1} \leq \kappa_t E_t \left\{ \frac{q_{t+1}}{e_{t+1}} (b^*_{t+1}) k^*_{t+1} \right\} \]
Proposition 2

- When $\mu_t = 0$ (constraint not binding), monetary policy stabilizes inflation
 - *No macro-prudential role for monetary policy*
Proposition 2

- When $\mu_t = 0$ (constraint not binding), monetary policy stabilizes inflation
 - *No macro-prudential role for monetary policy*

- Intuition: Planner/Household Euler equations identical

\[
1 = E_t \left\{ \beta \frac{U_c(t + 1)}{U_c(t)} \frac{e_{t+1}}{e_t} R^*_t \right\}
\]

- *Does not depend on* $E_t \mu_{t+1}$
- Therefore, no pecuniary externality to correct
Optimal monetary and capital control policy

- Policy instruments: R_{t+1} and ‘capital control’ $\tau_{c,t}$

\[V(b_t^*, Z_t) = \max_{\Xi} \left\{ U(C_t, L_t) + \beta E_t V(b_{t+1}^*, Z_{t+1}) \right\} \]

with

\[\Xi \equiv \{ L_t, C_t, Y_t, Y_{F,t}, b_{t+1}^*, q_t, \mu_t, r_{K,t}, e_t, p_{M,t}, \pi_t \} \]

- Subject to implementability constraints
- Optimal capital control
- Omit foreign bond Euler equation from the set of constraints
Proposition 3

When the social planner sets monetary policy and inter-temporal capital inflow tax without commitment:
a) The optimal monetary policy strictly stabilizes inflation \(\pi_t = \pi \),
Proposition 3

When the social planner sets monetary policy and inter-temporal capital inflow tax without commitment:

a) The optimal monetary policy strictly stabilizes inflation $\pi_t = \pi$,

b) The capital inflow tax satisfies,

$$\tau_{c,t} \equiv \frac{\mu_t R^*_{t+1}}{\rho} \left[-1 + (\rho - 1) \kappa_t \frac{\partial (q_{t+1}/e_{t+1})}{\partial b^*_{t+1}} \right],$$

Impose a capital inflow tax when constraint is binding
Intuition

- Part a) depart from $\pi_t = \pi$ only to influence b_{t+1}^* through working capital
- But capital inflow tax is perfect substitute for monetary policy
Part b) Private Euler equation

\[1 - \tau_{c,t} = E_t \left\{ \beta \frac{U_c(t + 1)}{U_c(t)} \frac{e_{t+1}}{e_t} R_{t+1}^* \right\} + \mu_t R_{t+1}^* \]

Planner Euler equation

\[1 = E_t \left\{ \beta \frac{U_c(t + 1)}{U_c(t)} \frac{e_{t+1}}{e_t} R_{t+1}^* \right\} + \lambda_t (1 + \kappa_t \frac{\partial (q_{t+1}/e_{t+1})}{\partial b_{t+1}^*}) \]

Tax corrects the pecuniary externality
Comments

- When constraint binds, planner corrects pecuniary externality through capital inflow tax - correct private sector’s ‘over-borrowing’
 - But welfare implications are questionable - see below
When constraint binds, planner corrects pecuniary externality through capital inflow tax - correct private sector’s ‘over-borrowing’

 But welfare implications are questionable - see below

When constraint doesn’t bind, no gain from capital inflow tax
Comments

- When constraint binds, planner corrects pecuniary externality through capital inflow tax - correct private sector’s ‘over-borrowing’
 - But welfare implications are questionable - see below
- When constraint doesn’t bind, no gain from capital inflow tax
- With both wage and price rigidities, capital controls do not fully substitute for monetary policy
Quantitative evaluation

Data sample: 26 emerging market economies during 1980-2014

Table: Parameter values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preference</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>Subjective discount factor 0.90</td>
</tr>
<tr>
<td>σ</td>
<td>Relative risk aversion 2</td>
</tr>
<tr>
<td>ν</td>
<td>Inverse of Frisch labor supply elasticity 1</td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>α_F</td>
<td>Intermediate input share in production 0.145</td>
</tr>
<tr>
<td>α_L</td>
<td>Labor share in production 0.57</td>
</tr>
<tr>
<td>α_K</td>
<td>Capital share in production 0.14</td>
</tr>
<tr>
<td>ϑ</td>
<td>Share of working capital 1.4</td>
</tr>
<tr>
<td>ϕ_P</td>
<td>Price adjustment cost 76</td>
</tr>
<tr>
<td>γ</td>
<td>Asymmetry of price adjustment cost -100</td>
</tr>
<tr>
<td>θ</td>
<td>Elasticity of substitution among varieties 10</td>
</tr>
<tr>
<td>ρ</td>
<td>Trade elasticity of substitution 5</td>
</tr>
<tr>
<td>Shocks</td>
<td></td>
</tr>
<tr>
<td>ρ_A</td>
<td>Persistence of TFP shocks 0.60</td>
</tr>
<tr>
<td>σ_A</td>
<td>Standard deviation of TFP shocks 0.0295</td>
</tr>
<tr>
<td>ρ_R</td>
<td>Persistence of foreign interest rate shocks 0.42</td>
</tr>
<tr>
<td>σ_R</td>
<td>Standard deviation of foreign interest rate shocks 0.0133</td>
</tr>
<tr>
<td>$p_{H,H}$</td>
<td>Transitional probability of high leverage to high leverage 0.9722</td>
</tr>
<tr>
<td>$p_{L,L}$</td>
<td>Transitional probability of low leverage to low leverage 0.7323</td>
</tr>
</tbody>
</table>
Crisis ‘event’: CC binds at \(t = 0 \) Policy=price stability
Optimal monetary policy

Inflation when the constraint binds
Event analysis: CE vs. optimal monetary policy

- Output
- Real exchange rate
- Import-GDP ratio
- Bond-GDP ratio

Graphs showing the comparison between CE with PI targeting, Monetary and Data.
Key findings

- Outside of crises, price stability is optimal
 - No macro-prudential interest rate activity
- During crisis (when $\mu_t > 0$) generate inflation
- But has only small effect on real economy
- Small effects on q or b^*
Now allow for capital Controls

- When $\mu_t > 0$, policy maker imposes capital inflow tax?
- In baseline calibration, this raises $E_t \frac{q_{t+1}}{e_{t+1}}$, relaxes constraint
Optimal monetary vs. monetary & capital control policies

- Inflation
- Capital inflow tax
- Output
- Bond-GDP ratio

Optimal M
Optimal M and C
Data
Capital inflow taxes reduce the fall in output during a crisis

- By reducing borrowing, relax the credit constraint
- But in a time-consistent equilibrium, borrowing turns out to be inefficiently low
Equilibrium time consistent policy functions

Lower equilibrium capital price

- Inflation (%)
- Labor
- Capital price
- Expected price-RER ratio
- Bond
- Capital flow tax

M worst shock
M and C worst shock
Equilibrium time consistent policy functions

In equilibrium, lower borrowing, and tighter borrowing constraints.

Graphs showing:
- Inflation (%)
- Labor
- Capital price
- Expected price-RER ratio
- Bond
- Capital flow tax

Legend: M worst shock, M and C worst shock
Conditional welfare gains

(a) Welfare gains (%) relative to CE (Worst state)

(b) Welfare gains (%) relative to CE (Best state)
Conclusion: time consistent capital controls reduce welfare

- Policymaker corrects current pecuniary externality - ‘overborrowing’ in order to raise $E(q_{t+1})$ and relax constraint
 - But ignores the effect on q_t
- In equilibrium, lower q_t and inefficiently low debt
 - In equilibrium, the economy is ‘underborrowing’

- But what taxes are optimal with commitment?
Policy under commitment: A simplified perfect foresight model

- Consider a special path with

 \[\mu_{t-2} = \mu_{t-1} = 0, \quad \mu_t > 0, \quad \mu_{t+1} = \mu_{t+2} = 0 \]

- Optimal Policy:
 - Tax inflows in period \(t \)
 \[\tau_{c,t} > 0 \]
 - Subsidize inflows at period \(t + 1 \)
 \[\tau_{c,t+1} < 0 \]
Policy under commitment: Ad hoc capital inflow subsidies

Let’s conjecture simple rule $\tau_{c,t} = -\varsigma \mu_t$ with $\varsigma = 0.2$
Policy under commitment: Ad hoc capital inflow subsidies

Figure: $\tau_{c,t} = -\zeta \mu_t$ with $\zeta = 0.2$
Conclusions

- Monetary policy should generate inflation during a crisis, even though it depreciates the currency.
- Capital controls are welfare-reducing and should be kept out of the control of the central bank.
- Arguments for prudential policymaking depend critically on nature of borrowing constraint.