Learning the Macro-Dynamics of U.S. Treasury Yields

Discussion by Greg Duffee, Johns Hopkins

SF Fed Conference, March 2014
Rigorous modeling of learning about price dynamics is hard

Past and future market participants also learn; need to account for learning dynamics in setting prices

Reduced-form term structure model bypasses much of this difficulty

Paper argues model-based forecasts are (mostly) similar to median professional survey forecast

… but model-based forecasts can do better if macro info is incorporated

Models and professionals differ in implied dynamics of expected excess returns to long-term bonds
Learning (in the model)

- Dynamics

 (Simplified version)

 Assume reduced-form yield dynamics through t, including learning about macro dynamics, prices that depend on expectations of future learning, are approximated by a first-order, low-dimension VAR estimated at t

- Fit n yields to VAR through t to get params

- Yields on other bonds determined by restricted interpolation
No-arbitrage restrictions

- Paper finds that no-arb curve-fitting function varies little over the sample
- Can think of learning as continually updating estimates of the VAR, don’t worry about interaction between learning and no-arb restrictions – very nice empirical result
Blue Chip versus model-based forecasts

Paper’s conclusions

- Similar forecasts when model uses recursive least-squares estimation
- Models are more accurate when
 - They downweight older observations
 - They incorporate macro data in the VAR

My interpretation of the same evidence

- Blue Chip, model-based forecasts differ substantially
- Model-based are more accurate because of known features of survey forecasts
Blue Chip, JSZ model forecasts

Overview
Methodology
Forecast comparison

One quarter ahead

Four quarters ahead
Root mean squared forecast differences and errors

Basis points, annualized yields

<table>
<thead>
<tr>
<th>Diff/Error</th>
<th>Method</th>
<th>Horizon</th>
<th>6 mon</th>
<th>5 yr</th>
<th>10 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diff</td>
<td>BC-JSZ</td>
<td>1Q</td>
<td>23</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Diff</td>
<td>BC-JPS</td>
<td>1Q</td>
<td>37</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Error</td>
<td>BC</td>
<td>1Q</td>
<td>52</td>
<td>49</td>
<td>45</td>
</tr>
<tr>
<td>Error</td>
<td>JSZ</td>
<td>1Q</td>
<td>40</td>
<td>43</td>
<td>38</td>
</tr>
<tr>
<td>Error</td>
<td>JPS</td>
<td>1Q</td>
<td>36</td>
<td>41</td>
<td>39</td>
</tr>
<tr>
<td>Diff</td>
<td>BC-JSZ</td>
<td>4Q</td>
<td>37</td>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>Diff</td>
<td>BC-JPS</td>
<td>4Q</td>
<td>85</td>
<td>81</td>
<td>73</td>
</tr>
<tr>
<td>Error</td>
<td>BC</td>
<td>4Q</td>
<td>148</td>
<td>120</td>
<td>106</td>
</tr>
<tr>
<td>Error</td>
<td>JSZ</td>
<td>4Q</td>
<td>142</td>
<td>112</td>
<td>93</td>
</tr>
<tr>
<td>Error</td>
<td>JPS</td>
<td>4Q</td>
<td>134</td>
<td>106</td>
<td>91</td>
</tr>
</tbody>
</table>
Decomposing forecast errors

\[\text{survey forecast error}_t = \text{JSZ forecast error}_t - \left(\text{survey forecast}_t - \text{JSZ forecast}_t \right) \]

\[\text{RMSE}_{BC}^2 = \text{RMSE}_{JSZ}^2 + \text{RMSD}_{BC,JSZ}^2 - 2\bar{\Pi}(\text{JSZ error, forecast diff}) \]

Five-year yield, one and four quarters ahead (normalize by LHS)

\[1 = 0.755 + 0.210 + 0.035; \quad 1 = 0.872 + 0.125 + 0.002 \]

Replace JSZ with JPS

\[1 = 0.699 + 0.274 + 0.027; \quad 1 = 0.725 + 0.335 - 0.060 \]
Survey bias 1: Slow adjustment

- Coibion and Gorodnichenko: mean forecasts from surveys are sluggish (informational rigidities?)

- Serial correlations of monthly changes in forecasts of ten-year yield
 - Blue Chip: 0.32 (one-Q-ahead), 0.35 (four-Q-ahead)
 - JSZ model: 0.02 (one-Q-ahead), 0.00 (four-Q-ahead)
 - JPS model: 0.07 (one-Q-ahead), 0.08 (four-Q-ahead)
Survey bias 2: Excess persistence

- Piazzesi/Salomao/Schneider (Trend and cycle in bond premia): survey forecasts imply much higher persistence of slope than models imply

\[\hat{E}_t(\text{slope}_{t+4\text{ quarters}}) = a + b \text{slope}_t + e_t \]

- Point estimates of \(b \): Blue Chip, 0.82; JSZ model, 0.71; JPS model, 0.70
- Replace LHS with realized slope: \(b = 0.56 \)
Forecasting the slope of the term structure

- Black line: actual slope
- Blue line: Blue Chip 4-Q-ahead forecast of slope
- Red line: JSZ model 4-Q-ahead forecast of slope
The slope and expected excess returns

- Models: Steep slope implies high, transitory expected excess returns to long-maturity bonds

- Blue Chip: Steep slow implies moderately high, long-lived expected excess returns to long-maturity bonds
Conclusions

- Result that no-arb pricing function varies little over the long sample is surprising and useful

- Comparison with Blue Chip survey forecasts is too sympathetic to the survey forecasts