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Abstract

We estimate Taylor (1993) rules and identify monetary policy shocks using no-arbitrage
pricing techniques. Long-term interest rates are risk-adjusted expected values of future short
rates and thus provide strong over-identifying restrictions about the policy rule used by the
Federal Reserve. The no-arbitrage framework also accommodates backward-looking and
forward-looking Taylor rules. We find that inflation and GDP growth account for over half
of the time-variation of yield levels and we attribute almost all of the movements in the term
spread to inflation. Taylor rules estimated with no-arbitrage restrictions differ substantially
from Taylor rules estimated by OLS and monetary policy shocks identified with no-arbitrage
techniques are less volatile than their OLS counterparts.



1 Introduction

Most central banks, including the U.S. Federal Reserve (Fed), conduct monetary policy to only
influence the short end of the yield curve. However, the entire yield curve responds to the
actions of the Fed because long interest rates are conditional expected values of future short
rates, after adjusting for risk premia. These risk-adjusted expectations of long yields are formed
based on a view of how the Fed conducts monetary policy using short yields. Thus, the whole
yield curve reflects the monetary actions of the Fed, so the entire term structure of interest rates
can be used to estimate monetary policy rules and extract estimates of monetary policy shocks.

According to the Taylor (1993) rule, the Fed sets short interest rates by reacting to
CPI inflation and the deviation of GDP from its trend. To exploit the over-identifying no-
arbitrage movements of the yield curve, we place the Taylor rule in a term structure model
that excludes arbitrage opportunities. The assumption of no arbitrage is reasonable in a world
of large investment banks and active hedge funds, who take positions eliminating arbitrage
opportunities arising in bond prices that are inconsistent with each other in either the cross-
section or their expected movements over time. Moreover, the absence of arbitrage is a
necessary condition for standard equilibrium models. Imposing no arbitrage therefore can
be viewed as a useful first step towards a structural model.

We describe expectations of future short rates by the Taylor rule and a Vector Autoregres-
sion (VAR) for macroeconomic variables. Following the approach taken in many papers in
macroeconomics (see, for example, Fuhrer and Moore, 1995; Cogley, 2003), we could infer
the values of long yields from these expectations by imposing the Expectations Hypothesis
(EH). However, there is strong empirical evidence against the EH (see, for example, Fama
and Bliss, 1987; Campbell and Shiller, 1991; Bansal, Tauchen and Zhou, 2004; Cochrane and
Piazzesi, 2004, among many others). Term structure models can account for deviations from
the EH by explicitly incorporating time-varying risk premia (see, for example, Fisher, 1998;
Dai and Singleton, 2002).

We develop a methodology to embed Taylor rules in an affine term structure model with
time-varying risk premia. The structure accommodates standard Taylor rules, backward-
looking Taylor rules that allow multiple lags of inflation and GDP growth to influence the
actions of the Fed, and forward-looking Taylor rules where the Fed responds to anticipated
inflation and GDP growth. The model specifies standard VAR dynamics for the macro
indicators, inflation and GDP growth, together with an additional latent factor that drives
interest rates and is related to monetary policy shocks. Our framework also allows risk premia
to depend on the state of the macroeconomy.



By combining no-arbitrage pricing with the Fed’s policy rule, we extract information from
the entire term structure about monetary policy, and vice versa, use our knowledge about
monetary policy to model the term structure of interest rates. In particular, we use information
from the whole yield curve to obtain more efficient estimates of how monetary policy shocks
affect the future path of macro aggregates. The term structure model also allows us to measure
how a yield of any maturity responds to monetary policy or macro shocks. Interestingly, the
model implies that a large amount of interest rate volatility is explained by movements in macro
variables. For example, 65% of the variance of the 1-quarter yield and 61% of the variance of
the 5-year yield can be attributed to movements in inflation and GDP growth. Over 95% of
the variance in the 5-year term spread is due to time-varying inflation and inflation risk. The
estimated model also captures the counter-cyclical properties of time-varying expected excess
returns on bonds.

To estimate the model, we use Bayesian techniques that allow us to estimate flexible
dynamics and extract estimates of latent monetary policy shocks. Existing papers that
incorporate macro variables into term structure models make strong — and often arbitrary —
restrictions on the VAR dynamics, risk premia, and measurement errors. For example, Ang
and Piazzesi (2003) assume that macro dynamics do not depend on interest rates. Dewachter
and Lyrio (2004), and Rudebusch and Wu (2004), among others, set arbitrary risk premia
parameters to be zero.drlahl, Tristani and Vestin (2003), Rudebusch and Wu (2003), and
Ang, Piazzesi, and Wei (2004), among others, assume that only certain yields are measured
with error, while others are observed without error. These restrictions are not motivated from
economic theory, but are only made for reasons of econometric tractability. In contrast, we do
not impose these restrictions and find that the added flexibility helps the performance of the
model.

Our paper is related to a growing literature on linking the dynamics of the term structure
with macro factors. Piazzesi (2005) develops a term structure model where the Fed targets the
short rate and reacts to information contained in the yield curve. Piazzesi uses data measured
at high-frequencies to identify monetary policy shocks. By assuming that the Fed reacts to
information available right before its policy decision, she identifies the unexpected change in
the target as the monetary policy shock and identifies the expected target as the policy rule. In
contrast, we estimate Taylor rules following the large macro literature that uses the standard
low frequencies (we use quarterly data) at which GDP and inflation are reported. At low
frequencies, the Piazzesi identification scheme does not make sense because we would have to
assume that the Fed uses only lagged one-quarter bond market information and ignores more
recent data.



In contrast, we assume that the Fed follows the Taylor rule, and thus reacts to contem-
poraneous output and inflation numbers. This identification strategy relies on the reasonable
assumption that these macroeconomic variables react only slowly — not within the same quarter
— to monetary policy shocks. This popular identification strategy has also been used by
Christiano, Eichenbaum, and Evans (1996), Evans and Marshall (1998, 2001), and many
others. By using this strategy, we are not implicitly assuming that the Fed completely ignores
current and lagged information from the bond market (or other financial markets). To the
contrary, yields in our model depend on the current values of output and inflation. Thus, we
are implicitly assuming that the Fed cares about yield data because yields provide information
about the future expectations of macro variables.

The other papers in this literature are less interested in estimating various Taylor rules,
rather than embedding a particular form of a Taylor rule, sometimes pre-estimated, in a
macroeconomic model. For example, Bekaert, Cho, and Moreno (2008)iaHl, Tristani,
and Vestin (2003), and Rudebusch and Wu (2003) estimate structural term structure models
with macroeconomic variables. In contrast to these studies, we do not impose any structure
in addition to the assumption of no arbitrage, which makes our approach more closely related
to the identified VAR literature in macroeconomics (for a survey, see Christiano, Eichenbaum
and Evans, 1999). This gives us additional flexibility in matching the dynamics of the term
structure. While Bagliano and Favero (1998) and Evans and Marshall (1998, 2001), among
others, estimate VARs with many yields and macroeconomic variables, they do not impose
no-arbitrage restrictions. Bernanke, Boivin and Eliasz (2004), and Diebold, Rudebusch, and
Aruoba (2004) estimate latent factor models with macro variables, but they also do not preclude
no-arbitrage movements of bond yields. Dai and Philippon (2004) examine the effect of fiscal
shocks on yields with a term structure model, whereas our focus is embedding monetary policy
rules into a no-arbitrage model.

We do not claim that our new no-arbitrage identification techniques are superior to
estimating monetary policy rules using structural models (see, among others, Bernanke and
Mihov, 1998) or using real-time information sets like central bank forecasts to control for
the endogenous effects of monetary policy taken in response to current economic conditions
(see, for example, Romer and Romer, 2004). Rather, we believe that identifying monetary
policy shocks using no-arbitrage restrictions are a useful addition to existing methods. Our
framework enables the entire cross-section and time-series of yields to be modeled and provides
a unifying framework to jointly estimate standard, backward-, and forward-looking Taylor rules
in a single, consistent framework. Naturally, our methodology can be used in more structural
approaches that effectively constrain the factor dynamics and risk premia and we can extend



our set of instruments to include richer information sets. We intentionally focus on the most
parsimonious set-up where Taylor rules can be identified in a no-arbitrage model.

The rest of the paper is organized as follows. Section 2 outlines the model and develops
the methodology showing how Taylor rules can be identified with no-arbitrage conditions. We
briefly discuss the estimation strategy in Section 3. In Section 4, we lay out the empirical
results. After describing the parameter estimates, we attribute the time-variation of yields and
expected excess holding period returns of long-term bonds to economic sources. We describe in
detail the implied Taylor rule estimates from the model and contrast them with OLS estimates.
We compare the no-arbitrage monetary policy shocks and impulse response functions with
traditional VAR and other identification approaches. Section 5 concludes.

2 The Model

We detail the set-up of the model in Section 2.1. Section 2.2 shows how the model implies
closed-form solutions for bond prices (yields) and expected returns. In Sections 2.3 to 2.7,
we detail how Taylor rules can be identified using the over-identifying restrictions imposed on
bond prices through no-arbitrage.

2.1 General Set-up

We denote th& x 1 vector of state variables as

X = [gt Tt ftu]T,

whereg;, is quarterly GDP growth from—1 to ¢, 7, is the quarterly inflation rate from-1 to ¢,

andf;" is a latent term structure state variable. Both GDP growth and inflation are continuously
compounded. We use one latent state variable because this is the most parsimonious set-up
where the Taylor rule residuals can be identified (as the next section makes clear) using no-
arbitrage restrictions. The latent factgi;, is a standard latent term structure factor in the
tradition of the affine term structure literature. However, we show below that this factor can be
interpreted as a transformation of policy actions taken by the Fed on the short rate.

We specify thatX; follows a VAR(1):
Xy =pu+ PXp oy + Xey, (1)
wheree; ~ [ID N(0,I). The short rate is given by:

7"t=50+51TXt7 (2)
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for §p a scalar and; a3 x 1 vector. To complete the model, we specify the pricing kernel to
take the standard form:

1
Mi41 = €XP (—7} - 5)\;% - )\t5t+1) ) (3)
with the time-varying prices of risk:
)\t - )\0 + )\1Xt, (4)

for the 3 x 1 vector )\, and the3 x 3 matrix \;. The pricing kernel prices all assets in the
economy, which are zero-coupon bonds, from the recursive relation:

Pt(n) = Et[mtﬂpt(ffl)],
WherePt(") is the price of a zero-coupon bond of maturitguarters at time.

Equivalently, we can solve the price of a zero-coupon bond as

n—1
exXp <— ZTtH)] )
i=0

whereEtQ denotes the expectation under the risk-neutral probability measure, under which

P, t(n) = EtQ

the dynamics of the state vectoY; are characterized by the risk-neutral constant and
autocorrelation matrix

MQ = p— XA

¢ = - ¥\,
If investors are risk-neutral, = 0 and\; = 0, and no risk adjustment is necessary.

This model belongs to the Duffie and Kan (1996) affine class of term structure models, but
uses both latent and observable macro factors. The affine prices of risk specification in equation
(4) has been used by, among others, Constantinides (1992), Fisher (1998), Dai and Singleton
(2002), Brandt and Chapman (2003), and Duffee (2002) in continuous time and by Ang and
Piazzesi (2003), Ang, Piazzesi and Wei (2004), and Dai and Philippon (2004) in discrete time.
As Dai and Singleton (2002) demonstrate, the flexible affine price of risk specification is able
to capture patterns of expected holding period returns on bonds that we observe in the data.

2.2 Bond Prices and Expected Returns

Ang and Piazzesi (2003) show that the model in equations (1) to (4) implies that bond yields
take the form:
y"” = an + b, X, (5)
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Whereyfn) is the yield on am-period zero coupon bond at timehat is implied by the model,
which satisfies?™ = exp(—ny™).

The scalaw,, and the3 x 1 vectorb,, are given by, = — A, /n andb,, = —B,,/n, where
A,, and B,, satisfy the recursive relations:
1
Apgr = Ay +B)(n—3X) + 5BJEZTBn — &
BIH = B;(Q) - Z)\l) - 51Ta (6)

whereA, = —§, andB; = —d;. In terms of notation, the one-period yiejﬂ) is the same as
the short rate; in equation (2).

Since yields take an affine form, expected holding period returns on bonds are also affine
in the state variableX;. We define the one-period excess holding period return as:

P("—l)
rxl(ti)l = 10g< ;(11) ) -7y
t

=y —(n— Dy — 7, 7)

The conditional expected excess holding period return can be computed using:

1
Efrzl?] = —5BIASS By + B B + B SM X,
= AL+ By X, (8)

From this expression, we can see directly that the expected excess return comprises three
terms: (i) a Jensen’s inequality term, (ii) a constant risk premium, and (iii) a time-varying
risk premium. The time variation is governed by the parameters in the matri8ince both

bond yields and the expected holding period returns of bonds are affine functions wk

can also easily compute variance decompositions following standard methods for a VAR.

2.3 The Benchmark Taylor Rule

The Taylor (1993) rule is a convenient reduced-form policy rule that captures the notion that the
Fed adjusts short-term interest rates in response to movements in inflation and real activity. The
Taylor rule is consistent with a monetary authority minimizing a loss function over inflation
and output (see, for example, Svenson 1997). We can interpret the short rate equation (2)
of the term structure model as a Taylor rule of monetary policy. Following Taylor’s original
specification, we define the benchmark Taylor rule to be:

T¢ = 00 + 01,9G¢ + 0177 + &}jewP’T; 9)
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where the short rate is set by the Federal Reserve to be a function of current output and inflation.
The basic Taylor rule (9) can be interpreted as the short rate equation (2) in a standard affine
term structure model, where the unobserved monetary policy sﬁ%’éﬁ corresponds to a
latent term structure factor)’©" = dsu f*. This corresponds to the short rate equation (2) in

the term structure model with = (8,01 . 61.pu) .

The Taylor rule (9) can be estimated consistently using OLS under the assumption that
gi”P’T, or f*, is contemporaneously uncorrelated with GDP growth and inflation. If monetary
policy is effective, policy actions by the Federal Reserve today predict the future path of GDP
and inflation, causing an unconditional correlation between monetary policy actions and macro
factors. In this case, running OLS on equation (9) may not provide efficient estimates of the
Taylor rule. In our setting, we aIIow,f”P’T to be unconditionally correlated with GDP or
inflation and thus our estimates should be more efficient, under the null of no-arbitrage, than
OLS. In our model, the coefficients , andd, . in equation (9) are simply the coefficients on

g andm, in the vectors; in the short rate equation (2).

There are several advantages to estimating the policy coefficigntand extracting the
monetary policy shock; "
running OLS on equation (9). First, although OLS is consistent under the assumption that

, using no-arbitrage identification restrictions rather than simply

GDP growth and inflation are contemporaneously uncorrelatedsﬂﬁﬁ’lT, it is not efficient.
No-arbitrage allows for many additional yields to be employed in estimating the Taylor rule.
Second, the term structure model can identify the effect of a policy or macro shock on any
segment of the yield curve, which an OLS estimation of equation (9) cannot provide. Finally,
we can trace the predictability of risk premia in bond yields to macroeconomic or monetary
policy sources only by imposing no-arbitrage constraints.

The Taylor rule in equation (9) does not depend on the past level of the short rate. Therefore,
empirical studies typically find that the implied monetary policy shocks from the benchmark
Taylor rule,e)""", are highly persistent (see Rudebusch and Svensson, 1999). The reason is
that the short rate is highly autocorrelated and its movements are not well explained by the
right-hand side variables in equation (9). This causes the implied shock to inherit the dynamics
of the level of the persistent short rate. In affine term structure models, this finding is reflected
by the properties of the implied latent variables. In particulff:”" corresponds 1oy o f1,
which is the scaled latent term structure variable. Ang and Piazzesi (2003) show that the first
latent factor implied by an affine model with both latent factors and observable macro factors
closely corresponds to the traditional first, highly persistent, latent factor in term structure
models with only unobservable factors. This latent variable also corresponds closely to the
first principal component of yields, or the average level of the yield curve, which is highly



autocorrelated.

2.4 Backward-Looking Taylor Rules

Eichenbaum and Evans (1995), Christiano, Eichenbaum, and Evans (1996), Clarida, Gali, and
Gertler (1998), among others, consider modified Taylor rules that include current as well as
lagged values of macro variables and the previous short rate:

Ty = 00 + 01,99t + 01,27 + 02, gGe—1 + 02 771 + O2,7¢—1 + 87{\413’37 (10)

wheres!""" is the implied monetary policy shock from the backward-looking Taylor rule. This

formulation has the statistical advantage that we compute monetary policy shocks recognizing
that the short rate is a highly persistent process. The economic mechanism behind equation
(10) may be that the objective of the central bank is to smooth interest rates (see Goodfriend,
1991) and thus we should consider computing monetary policy shocks taking into account
lagged short rates.

In the setting of our model, we can modify the short rate equation (2) to take the same form
as equation (10). Collecting the macro factgrendr; into a vector of observable variables
fe = (g:m)", we can rewrite the short rate dynamics in equation (2) as:

re = 0o+ 81 o f + O g f (11)

where we decompose the vectorinto d; = (8], d1,pu)" = (61,4012 61,4) . We also rewrite
the dynamics ofX; = (f;’T )T in equation (1) as:

O 0E ) e
It 2 Dy Doy Ji U?

whereu, = (ul' u2)T ~ IID N(0,£%7). Equation (12) is equivalent to equation (1), but the
notation in equation (12) separates the dynamics of the macro varighlésmm the dynamics
of the latent factorf;".

Using equation (12), we can substitute fgrin equation (11) to obtain:
re = (1= @o2)Sg + 01, puptn + 0] o + (61,50 Py — Posdin) T f7) + Poorey + 78, (13)

where we substitute for the dynamicsffin the first line and where we define the backward-
looking monetary policy shock to be’”” = 4, juu? in the second line. Equation (13)
expresses the short rate as a function of current and lagged macro fg¢tarsd /7 ,, the
lagged short rate;_,, and a monetary policy shoe’"".
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In equation (13), the response of the Fed to contemporaneous GDP and inflation captured
by thed, , coefficient onf; is identical to the response of the Fed in the benchmark Taylor rule
(9) because the, , coefficient is unchanged. The intuition behind this result is that the short
rate equation (2) already embeds the full response of the short rate to current macro factors.
The latent factor, however, represents the action of past short rates and past macro factors. We
have rewritten the benchmark Taylor rule to equivalently represent the predictable component
of the latent factor as lagged macro variables and lagged short rates. Importantly, the backward-
looking Taylor rule in equation (13) and the benchmark Taylor rule (9) are equivalent — they
are merely different ways of expressing the same relationship between yields and macro factors
captured by the term structure model.

The implied monetary policy shocks from the backwards-looking Taylor ﬂfﬂ’(—?;B, are
potentially very different from the benchmark Taylor rule sho@%{j " In the no-arbitrage
model, the backward-looking monetary policy sha¢k”” is identified as the scaled shock
to the latent term structure factar, ;.u?. In the set-up of the factor dynamics in equation
(1) (or equivalently equation (12)), the¢’ shocks are IID. In comparison, the shocks in the

standard Taylor rule (9} "

are highly autocorrelated. Note that the coefficients on lagged
macro variables in the extended Taylor rule (13) are equal to zero onlyd®,, = D201 .

Under this restriction, the combined movements of the past macro factors must exactly offset
the movements in the lagged term structure latent factor so that the short rate is affected only

by unpredictable shocks.

Once our model is estimated, we can easily back out the implied extended Taylor rule (10)
from the estimated coefficients. This is done by using the implied dynamitsiofthe factor

dynamics (12):
U? = fi' = po — Por f{ | — P fi .
Again, if e;"" = §, juu? is unconditionally correlated with the shocks to the macro factors

17, then OLS does not provide efficient estimates of the monetary policy rule, and may provide
biased estimates of the Taylor rule in small samples.

2.5 Forward-Looking Taylor Rules

Finite Horizon Forward-Looking Taylor Rules

Clarida and Gertler (1997) and Clarida, Gahd Gertler (2000), among others, propose a
forward-looking Taylor rule, where the Fed sets interest rates based on expected future GDP
growth and expected future inflation over the next few quarters. For example, a forward-



looking Taylor rule using expected GDP growth and inflation over the next quarter takes the
form:
e = 00 + 01,gBe(gir1) + 012 Ee(mi1) + 5?/[P’F7 (14)

where we define!’"" to be the forward-looking Taylor rule monetary policy shock. We now

show howe " can be identified using no-arbitrage restrictions from a term structure model.

We can compute the conditional expectation of GDP growth and inflation from our model
by noting that:
Ei(Xiy1) = p+ X,

from the dynamics ofX; in equation (1). Since the conditional expectations of future GDP
growth and inflation are simply a function of currei{, we can map the forward-looking
Taylor rule (14) into the framework of an affine term structure model. Denetiag a vector

of zeros with a one in thé&h position, we can write equation (14) as:

re = 0o + (01,461 + 51,7r62)T,u + (51,961 + 51,7r62)T(I)Xt + €£4P’F> (15)

asg; andr, are ordered as the first and second elemenis in

Equation (15) is an affine short rate equation where the short rate coefficients are a function
of the parameters of the dynamics.bf:

re = 0 + 07 Xy, (16)
where
b0 = 6o+ (e1+ex)'
6 = (61461 + 61,W62)T<I> + &y, fues,
andgi”P’F = 0,4« f;. Hence, we can identify a forward-looking Taylor rule by imposing no-

arbitrage restrictions by redefining the bond price recursions in equation (6) using tlég new
andJ, coefficients in place of, andd;. Hence, a complete term structure model is defined

by the same set-up as equations (1) to (4), except we use the new short rate equation (16)
that embodies the forward-looking structure, in place of the basic short rate equation (2). The
restrictions ondy, 61, 1, and® in equation (16) imply that the forward-looking Taylor rule is
effectively a constrained estimation of a general affine term structure model.

The new no-arbitrage bond recursions usipgndé; reflect the conditional expectations
of GDP and inflation that enter in the short rate equation (16). Furthermore, the conditional
expectationsi;(g,+1) andE; (7,1 ) are those implied by the underlying dynamicsypand,
in the VAR process (1). Other approaches, like Rudebusch and Wu (2003), specify the future
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expectations of macro variables entering the short rate equation in a manner not necessarily
consistent with the underlying dynamics of the macro variables. The monetary policy shocks
MPF
t

in the forward-looking Taylor rule (14) or (15 , can be consistently estimated by OLS

only if f;*is orthogonal to the dynamics of and;.

Sincek-period ahead conditional expectations of GDP and inflation remain affine functions
of the current state variable's;, we can also specify a more general forward-looking Taylor
rule based on expected GDP or inflation over the hextiarters:

P,F

re = 00 + 01,6E(Gran k) + 01,7 Ee(Tesnr) + 5?/[ ) (17)

whereg, , andm, , represent GDP growth and inflation over the nlexteriods:

k
Z Titei- (18)
i=1

%[P,F

Jt+kk =

| =

k
thﬂ‘ and =
i=1

| =

The forward-looking Taylor rule monetary policy shoe is the scaled latent term
structure factors;' ™" = §, ;. f*. As Clarida, Gdland Gertler (2000) note, the general case
(17) also nests the benchmark Taylor rule (9) as a special case by gettirly In Appendix

A, we detail the appropriate transformations required to map equation (17) into an affine term
structure model and discuss the estimation procedure for a forward-looking Taylor rule for a

k-quarter horizon.
Infinite Horizon Forward-Looking Taylor Rules

An alternative approach to assigningzgeriod horizon for which the Fed considers future
GDP growth and inflation in its policy rule is that the Fed discounts the entire expected path of
future economic conditions. For simplicity, we assume the Fed discounts both expected future
GDP growth and expected future inflation at the same discounttate this formulation, the
forward-looking Taylor rule takes the form:

Ty = 00 + 01,39 + 01,47 + 01 pu ' (19)

whereg; andx; are infinite sums of expected future GDP growth and inflation, respectively,
both discounted at raté per period. Many papers have s¢fat one, or very close to one,
sometimes motivated by calibrating it to an average real interest rate (see Salemi, 1995;
Rudebusch and Svenson, 1999; Favero and Rovelli, 2003; Collins and Siklos, 2004).

We can estimate the discount rat@s part of a standard term structure model by using the

11



dynamics ofX; in equation (1) to writgj; as:

go= Y BelBy(Xip)
1=0
= e/ (X, + Bu+ BOX, + B(I + D) + F2P2X, + - --)
= el (uWB+ I +P)ufP+- ) +ef [+ P8+ P°F +--)X,

— LT —es) el (1 - a9) X, (20)

(1-5)

wheree; is a vector or zeros with a one in the first position to pick @utvhich is ordered first

in X;. We can also write discounted future inflatiagn, in a similar fashion:

0
Y (a-p)

wheree, is a vector of zeros with a one in the second position.

e (I = @) ptey(I—2B)7' X, (21)

In a similar fashion to mapping the Clarida-Gali-Gertler forward-looking Taylor without
discounting into a term structure model, we can accommodate a forward-looking Taylor rule
with discounting by re-writing the short rate equation (2) as:

Tt = 50 + 5;I—Xt, (22)
where

do = o+ [01461 O1nea]” (ﬁ(l - @5)_1M) :
(51 = [(51,!]61 517W62}T(I — (I)ﬁ)_l -+ 517fu €3. (23)

Similarly, we modify the bond price recursions for the standard affine model in equation (6) by
usingd, andd; in place ofs, ands;.

2.6 Forward- and Backward-Looking Taylor Rules

As a final case, we combine the forward- and backward-looking Taylor rules, so that the
monetary policy rule is computed taking into account forward-looking expectations of macro

variables, lagged realizations of macro variables, while also controlling for lagged short rates.
We illustrate the rule considering expectations for inflation and GDP over the next quarter
(k = 1), but similar rules apply for other horizons.

We start with the standard forward-looking Taylor rule in equation (14):

re =00 + 01 Eu(fory) +er 0T,
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whereE,(f2,,) = (Bi(gir1) Ei(me)) T andel™™ = 6, 7 f*. We substitute forf* using
equation (12) to obtain:

re = (1= ®o2)80 401, pupta+0y JEe(f211) + (O, pu®gy — Po2d o) T 1y +Poorer 42010, (24)

where £}'"FP = 5, ;u? is the forward- and backward-looking monetary policy shock.

Equation (24) expresses the short rate as a function of both expected future macro factors and
lagged macro factors, the lagged short rage;, and a monetary policy shock)’”"”. The
forward- and backward-looking Taylor rule (24) is an equivalent representation of the forward-
looking Taylor rule in (14). Hence, similar to how the coefficients on contemporaneous macro
variables in the backward-looking Taylor rule (13) are identical to the coefficients in the
benchmark Taylor rule (9), the coefficients, on future expected macro variables are exactly

the same as the coefficients in the forward-looking Taylor rule (14).

2.7 Summary of Taylor Rules

The no-arbitrage framework is able to estimate several structural Taylor rule specifications
from the same reduced-form term structure model. Table 1 summarizes the various Taylor
Rule specifications that can be identified by no-arbitrage restrictions. The benchmark and
backward-looking Taylor rules are different structural rules that give rise to the same reduced-
form term structure model. Similarly, the forward-looking and the backward- and forward-
looking Taylor rules produce observationally equivalent term structure models. In all cases, the
monetary policy shocks are transformations of either levels or innovations of the latent term
structure variable. Finally, the last column of Table 1 reports if the no-arbitrage model requires
additional restrictions. Both the forward-looking specifications require parameter restrictions
in the short rate equation to ensure that we compute the expectations of the macro variables
consistent with the dynamics of the VAR.

3 Data and Econometric Methodology

The objective of this section is to briefly discuss the data and the econometric methodology
used to estimate the model. In particular, we motivate our estimation approach and discuss
several econometric issues. We relegate all technical issues to Appendix C.
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3.1 Data

To estimate the model, we use continuously compounded yields of maturities 1, 4, 8, 12, 16,
and 20 quarters, at a quarterly frequency. The bond yields of one year maturity and longer are
from the CRSP Fama-Bliss discount bond files, while the short rate (one-quarter maturity) is
taken from the CRSP Fama risk-free rate file. The sample period is June 1952 to December
2002. The consumer price index and real GDP numbers are taken from the Federal Reserve
Database (FRED) at Saint Louis.

3.2 Estimation Method

We estimate the term structure model using Markov Chain Monte Carlo (MCMC) and Gibbs
sampling methods. There are three main reasons why we choose to use a Bayesian estimation
approach. First, the term structure factfit, and the corresponding monetary policy shocks
implied by f;* are unobserved variables. In a Bayesian estimation strategy, we obtain a posterior
distribution of the time-series path ¢f* and monetary policy shocks. That is, the Bayesian
algorithm provides a way to compute the mean of the posterior distribution of the time-series of
fi* through the sample, and, consequently, we can obtain a best estimate of implied monetary
policy shocks.

The second advantage of our estimation method is that, although the maximum likelihood
function of the model can be written down (see Ang and Piazzesi, 2003), the model is high
dimensional and extremely non-linear. This causes the maximum likelihood function to have
many possible local optima, some of which may lie in unreasonable or implausible regions
of the parameter space. In our Bayesian setting, using uninformative priors on reasonable
regions of the parameter space effectively rules out parameter values that are implausible.
A maximum likelihood estimator also involves a difficult optimization problem, whereas the
Bayesian algorithm is based on a series of simulations that are computationally much more
tractable.

Third, in a situation with only one yield and one latent factor, the maximum likelihood
function has a point mass at zero for the set of parameter values that assigns a one-to-one
correspondence between the observed yield and the latent factor. In this set of parameter values,
there is no effect of macro variables on the dynamics of interest rates and the yield is driven
entirely by the latent factor that takes on the same dynamics as the yield itself. Specifically,
in the maximum likelihood function, the coefficients, on the observable macro variables in
equation (11) may tend to go to zero, and the feedback coefficients between the latent factor and
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the macro variables in the VAR equation (1) may also tend to go to zero. A similar problem
occurs in our setting with a cross-section of yields and one latent factor, where a maximum
likelihood estimator may assign almost all the explanatory power to the latent factor that is
inverted from a single yield and thus gives little role to the macro factors. Given that there
must be some underlying economic relation between bond prices and macro variables, we
have strong priors that this set of parameters is not a reasonable representation of the true
joint dynamics of yields and macro variables. A Bayesian estimation avoids this stochastic
singularity by a suitable choice of priors on the Taylor rule coefficients and on the companion
form of the VAR, while avoiding the use of a single yield to identify the latent factor.

An affine term structure model can only exactly price the same number of yields as the
number of latent factors. In our case, the model in equations (1)-(4) can only price one yield
exactly since we use only one latent factft, The usual estimation approach, following Chen
and Scott (1993), is to specify some (arbitrary) yield maturities to be observed without error,
and the remaining yields to have observation, or measurement, error. We do not arbitrarily
impose observation error across certain yields. Instead, we assign an observation error to each
yield, so that the equation for each yield is:

g =y 4, (25)

Whereyt(”) is the model-implied yield from equation (5) anﬁ” is the zero-mean observation
error is 11D across time and yields. We speoiﬂ) to be normally distributed and denote the
standard deviation of the error terma#.

Importantly, by not assigning one arbitrary yield to have zero observation error (and the
other yields to have non-zero observation error), we do not bias our estimated monetary policy
shocks to have undue influence from only one yield. Instead, the extracted latent factor reflects
the dynamics of the entire cross-section of yields. Below, we discuss the effect of choosing an
arbitrary yield, like the short rate, to invert the latent factor.

Finally, since the factorf}" is latent, f/* can be arbitrarily shifted and scaled to yield an
observationally equivalent model. Dai and Singleton (2000) and Collin-Dufresne, Goldstein
and Jones (2003) discuss some identification issues for affine models with latent factors. We
discuss our identification strategy in Appendix B.

4 Empirical Results

Section 4.1 discusses the parameter estimates, the behavior of the latent factor, and the fit of
the model to data. Section 4.2 investigates what are the driving determinants of the yield curve.
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We compare benchmark, backward-, and forward-looking Taylor rules in Section 4.3. Sections
4.4 and 4.5 discuss the implied no-arbitrage monetary policy shocks and impulse responses,
respectively.

4.1 Parameter Estimates

Table 2 presents the parameter estimates of the unconstrained term structure model in equations
(2)-(4). The first row of the companion ford shows that GDP growth can be forecasted

by lagged inflation and lagged GDP growth. The parameter estimates of the second row of
® shows that term structure information helps to forecast inflation. The large coefficient on
lagged inflation reveals that inflation, even at the quarterly frequency, is highly persistent. The
third row of ® shows that both inflation and GDP help forecast the latent term structure factor
factor. This is consistent with results in Ang and Piazzesi (2003), who show that adding macro
variables improves out-of-sample forecasts of interest rates. The large coefficient on the lagged
latent factor indicates thg* series is more persistent that inflation. Interestingly, the estimated
covariance matriXx>X " shows that innovations to inflation and GDP growth are positively
correlated, whereas high inflation Granger-causes low GDP growth in the conditional mean.

The short rate coefficients in are all positive, so higher inflation and GDP growth lead to
increases in the short rate, which is consistent with the basic Taylor-rule intuition. In particular,
a 1% increase in contemporaneous inflation leads to a 32 basis point (bp) increase in the short
rate, while the effect of a 1% increase in GDP growth is small at 9bp and not significant. Below,
we compare these magnitudes withiveaOLS estimates of the Taylor rule.

The )\, parameters indicate that risk premia vary significantly over time. Risk premia
depend mostly on inflation and the latent factor, since most of the prices of risk in the columns
corresponding to GDP growth and the latent factor are statistically significant. Although the
estimates in the; matrix in the column corresponding to GDP growth are of the same order of
magnitude, these parameters are insignificant. Hence, we expect inflation and the latent factor
to drive time-varying expected excess returns with less of an effect from GDP growth.

The standard deviations of the observation errors are fairly large. For example, the
observation error standard deviation of the one-quarter yield (20-quarter yield) is 19bp (7bp)
per quarter. For the one-quarter yield, the measurement errors are comparable to, and slightly
smaller than, other estimations containing latent and macro factors (see, for example, Dai and
Phillipon, 2004). This is not surprising, because we only have one latent factor to fit the
entire yield curve. Piazzesi (2005) shows that traditional affine models often produce large
observation errors of the short end of the yield curve relative to other maturities. Note that the
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largest observation error variance occurs at the short end of the yield curve, which indicates
that treating the short rate as an observable factor may lead to large discrepancies between the
true latent factor and the short réte.

Latent Factor Dynamics

The monetary policy shocks identified using no-arbitrage assumptions depend crucially on the
behavior of the latent factof,*. Figure 1 plots the latent factor together with the OLS Taylor
rule residual and the demeaned short rate. We plot the time-series of the latent factor posterior
mean produced from the Gibbs sampler. The plot illustrates the strong relationship between
these three series. However, note that the behavior of the OLS benchmark Taylor rule residual
is more closely aligned with the short rate movements rather than with the latent factor. This
indicates that the behavior of monetary policy shocks basef}‘amill look very different to

the estimates of Taylor rule residuals estimated by OLS using the short rate.

To more formally characterize the relation betwg&mwith macro factors and yields, Table
3 reports correlations of the latent factor with various instruments. We report the correlations
of the time-series of the posterior mean of the latent factor with GDP, inflation, and yields
in the row labelled “Data” and correlations implied by the model point estimates in the row
labelled “Implied.” Both sets of correlations are very similar. Table 3 shows that the latent
factor is positively correlated with inflation at 49% and negatively correlated with GDP growth
at -17%. These strong correlations suggest that simple OLS estimates of the Taylor rule (9)
may be biased in small samples, which we investigate below. The correlations bgjiemeah
the yields range between 91% and 98%. Herf¢esan be interpreted as level factor, similar to
the findings of Ang and Piazzesi (2003). In comparison, the correlation betfife@md term
spreads is below 20%.

Importantly, the correlation between the latent factor and any given yield data series is not
perfect. This is because we are estimating the latent factor by extracting information from
the entire yield curve, not just a particular yield. The estimation method could have led us to

L1f we use only the short rate to filter the latent factor in the estimation, we can marginally fit the short rate
better, but at the expense of the other yields. We find that the gain is limited, as the measurement error for the
short rate drops slightly to 15bp, compared to 19bp for our benchmark model, while the measurement errors for
the other yields deteriorate significantly. For example, the measurement errors for the 8-quarter yield (20-quarter
yield) is 22bp (25bp), compared to 7bp (7bp) in our benchmark estimates. If we invert the latent factor directly
from the short rate and so assume that the short rate contains zero measurement error, then the measurement errors
for the other yields are even larger. Interestingly, this approach produces estimates of backward-looking monetary
policy shocks that are even more volatile than the OLS estimates in Figure 3.
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parameter values that minimize observation error on one particular yield and thereby maximize
the correlation betweelfi“ and this yield. However, the estimation results indicate that this

is not optimal. This suggests that an estimation method based on an observable (arbitrarily
chosen) yield like the short rate may give misleading results. The highest correlation between
the latent factor and the yields occurs at the 20-quarter maturity (98%), while the short rate has
a correlation with the latent factor of only 91%.

Matching Moments

Table 4 reports the first and second unconditional moments of yields and macro variables
computed from data and implied by the model. We compute standard errors of the data
estimates using GMM. To test if the model estimates match the data, it is most appropriate
to use standard errors from data. This is because large standard errors of parameters may
result when the data provide little information about the model, while very efficient estimates
produce small standard errors. Nevertheless, we also report posterior standard deviations of the
model-implied moments. The moments computed from the model are well within two standard
deviations from their counterparts in data for macro variables (Panel A), yields (Panel B), and
correlations (Panel C). Panel A shows that the model provides an almost exact match with the
unconditional moments of inflation and GDP.

Panel B shows that the autocorrelations in data increase from 0.925 for the short rate
to 0.959 for the 5-year yield. In comparison, the model-implied autocorrelations exhibit a
smaller range in point estimates from 0.955 for the short rate to 0.965 for the 5-year yield.
However, the model-implied estimates are well within two standard deviations of the data
point estimates. The smaller range of yield autocorrelations implied by the model is due to
only having one latent factor. Since inflation and GDP have lower autocorrelations than yields,
the autocorrelations of the yields are primarily driven by the single latent fggtor

Panel C shows that the model is able to match the correlation of the short rate with GDP and
inflation present in the data. The correlation of the short rate yittmplied by the model is
0.947. This implies that using the short rate to identify monetary policy shocks may potentially
lead to different estimates than the no-arbitrage shocks identified thigugh

4.2 What Drives the Dynamics of the Yield Curve?

From the yield equation (5), the variablesin explain all yield dynamics in our model. To
understand the role of each state variableXin we compute variance decompositions from
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the model and the data. These decompositions are based on Cholesky decompositions of the
innovation variance in the following ordefy, 7, f;*), which is consistent with the Christiano,
Eichenbaum, and Evans (1996) recursive scheme. We ignore observation error in the yields
when computing variance decompositions.

Yield Levels

In Panel A of Table 5, we report variance decompositions of yield levels for various forecasting
horizons. The unconditional variance decompositions correspond to an infinite forecasting
horizon. The columns under the heading “Proportion Risk Premia” report the proportion of the
forecast variance attributable to time-varying risk premia. The remainder is the proportion of
the variance implied by the predictability embedded in the VAR dynamics without risk premia,
or due purely to the EH.

To compute the variance decompositions of yields due to risk premia and due to the EH, we
partition the bond coefficierit, on X, in equation (5) into an EH term and into a risk-premia
term:

by = by 4 b

where theé)“ bond pricing coefficient is computed by setting the prices of kisk= 0. We let
Q" represent the forecast variance of the factorsat horizonh, whereQ?" = var(X, ., —
E:(X:+1)). Since yields are given by™ = b, + b, X; from equation (5), the forecast variance
of then-maturity yield at horizorh is given byb, QF"b,,.

We compute the decomposition of the forecast variance of yields to risk premia in two
ways. First, we report the proportion
RPTQF,thP

Pure Risk Premia Proportioa anQTbn

Second, we include the covariance terms and report the total risk premia decomposition

EHTQF,thH
Total Risk Premia Proportios 1 — W

in the column labelled “Including Covariances.”

Panel A of Table 5 shows that risk premia play very important roles in explaining the
level of yields. Unconditionally, the pure risk premia proportion of the 20-quarter yield is
17%, and including the covariance terms, time-varying risk premia account for over 52%
of movements of the 20-quarter yield. As the maturity increases, the importance of the risk
premia increases. For the unconditional variance decompositions, the attribution to the total
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risk premia components range from 15% for the 4-quarter yield to 52% for the 20-quarter
yield.

The numbers under the line “Variance Decompositions” report the variance decompositions
for the total forecast variancé, Q*"b, and the pure risk premia variancg?” QF"pEP,
respectively. The total variance decompositions reveal that over shorter forecasting horizons,
like one- and four-quarter horizons, inflation shocks matter more for the short end of the yield
curve, while GDP growth tends to be more important for longer yields. Unconditionally, shocks
to macro variables explain more than 60% of the total variance of yield levels. Shocks to GDP
growth and inflation are about equally important; each of these shock series explains roughly
30% of the unconditional yield variance. However, focusing only on the pure risk premia
decompositions assigns a much larger role to the latent factor at shorter horizons. At a one-
quarter forecasting horizon, shocks to GDP (inflation) mostly impact the long-end (short-end)
of the yield curve. Both the GDP and inflation components in the pure risk premia term become
much larger as the horizon increases. Thus, long-run risk to macro factors is an important
determinant of yield levels.

Yield Spreads

In Panel B of Table 5, we report variance decompositions of yield spreads of matqtigrters

in excess of the one-quarter yiey;f?) — yfl)

. Panel B documents that risk premia has an even

larger effect of determining yield spreads compared to yield levels, as the proportion of pure
risk premia components are larger in Panel B than in Panel A. Unconditionally, the pure risk
premia term increases with maturity, from 23% for the four-quarter spread to 30% for the
20-quarter spread. Interestingly, the covariance terms involving time-varying risk premia are
negative, indicating that the effect of risk premia on yield spreads acts in the opposite direction

to the pure EH terms from the VAR.

The total variance decompositions in Panel B document that shocks to inflation are the main
driving force of yield spreads. Over any horizon, shocks to inflation explain more than 86% of
the variance of yield spreads. Inflation shocks are even more important at longer horizons and
for long maturity yield spreads. For example, movements in inflation account for 96% of the
unconditional variance of the 5-year spread. These results are consistent with Mishkin (1992)
and Ang and Bekaert (2004), who find that inflation accounts for a large proportion of term
spread changes.

In contrast, for the pure risk premia terms, the effects of inflation dominate only for short
yield spreads at the one-quarter forecasting horizon. At longer forecasting horizons, GDP

20



and latent factor shocks dominate. In particular, GDP shocks account for 21-31% of the pure
risk premia variance decomposition. These results show that the large total effect of inflation

on yield spreads comes from the EH terms and from the covariances of EH components and
time-varying risk premia.

Expected Excess Holding Period Returns

We examine the variance decomposition of expected excess holding period returns in Panel
C of Table 5, which have, by definition, no EH components. Time-varying expected excess
returns are driven primarily by shocks to inflation and the latent factor. At a one-quarter
forecasting horizon, GDP growth and inflation account for 25% and 61%, respectively, of
the variance of 20-quarter expected excess holding period returns. The proportion of the
expected excess return variance explained by macro variables also significantly increases as
the yield maturity increases. Hence, long bond excess returns are more sensitive to macro
movements than short maturity excess returns. Unconditionally, the variance decompositions
for excess returns assign little explanatory power to GDP growth (less than 9%). At short
maturities, most of the variation in excess returns is attributable to latent factor shocks, but
at long maturities, inflation and inflation risk still impressively account for at least half of the
dynamics of expected excess returns.

In Table 6, we further characterize conditional excess returns. In Panel A, we report the the
coefficients of the conditional expected excess holding period réluim:,ﬁi)l = A? + BT X,
defined in equation (8). ThB? coefficients on GDP and inflation are negative, indicating that
conditional expected excess returns are strongly counter-cyclical. High GDP growth and high
inflation rates are more likely to occur during the peaks of economic expansions, so excess
returns of holding bonds are lowest during the peaks of economic expansions.

In Panel B, we report regressions of excess returns onto macro factors and yield variables
both in data and implied by the model. We choose the 20-quarter yield because this yield is
most highly correlated with the latent factor (see Table 3). The macro predictability of excess
returns is fairly weak in our quarterly sample, compared to the monthly regressions reported by
Cochrane and Piazzesi (2004). Nevertheless, comparing the model-implied coefficients with
the data reveals that the model is able to match the predictability patterns in the data well.

Consistent with the factor coefficients in Panel A, the point estimates of the loadings on
GDP and inflation both increase in magnitude with maturity, indicating that long bond excess
returns are more affected by macro factor variation. Similarly, the loadings on both GDP and
inflation are negative, so both high GDP and high inflation reduce the risk premia on long-term
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bonds. Finally, the loading on the latent factor is positive and significant, and so the latent
factor accounts for a large proportion of risk premia.

Figure 2 shows the time-series of one-period expected excess holding period returns for the
4-quarter and 20-quarter bond. We compute the expected excess returns using the posterior
mean of the latent factors through the sample. Expected excess returns are much more volatile
for the long maturity bond, reaching a high of over 13% per quarter during the 1982 recession
and drop below -4% during 1953 and 1978. In contrast, expected excess returns for the 4-
guarter bond lie in a more narrow range between -0.3% and 2.9% per quarter. Note that during
every recession, expected excess returns increase. In particular, the increase in expected excess
returns for the 20-quarter bond at the onset of the 1981 recession is dramatic, rising from 5.8%
per quarter in September 1981 to 13.4% per quarter in March1982.

4.3 A Comparison of Taylor Rules

In this section, we provide a comparison of the benchmark, backward-looking, and forward-
looking Taylor rules estimated by no-arbitrage techniques. We first discuss the estimates of
each Taylor rule in turn, and then compare the monetary policy shocks computed from each
different Taylor specification.

The Benchmark Taylor Rule

Panel A of Table 7 contrasts the OLS and model-implied estimates of the benchmark Taylor
rule in equation (9). Over the full sample, the OLS estimate of the output coefficient is small
at 0.036, and is not significant. The model-implied coefficient is similar in magnitude at 0.091.
In contrast, the OLS estimate of the inflation coefficient is 0.643 and strongly significant. The
model-implied coefficient onr, of 0.322 is much smaller. Hence, OLS over-estimates the
response of the Fed on the short rate by approximately half compared to the model-implied
estimate. This indicates that the endogenous fluctuations in inflation and output are important
in estimating the Taylor rule (also see comments by Woodford, 2000).

Although the estimation uses quarterly data, we obtain similar magnitudes fa¥; the
coefficients in equation (9) using annual GDP growth and inflation in the Taylor rule.

2 At 1982:Q1, the 13.4% expected excess return for the 20-quarter bond can be broken down into the various
proportions: 27% to the constant term premium, 9% to GDP, -10% to inflation, and 73% to the latent factor.
Although the effect of the latent factor is large at this date, the implied monetary policy shock is much smaller, as
it is the scaled latent factaf; ¢« f*. We discuss this below in further detail.
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Specifically, we re-write equation (9) to use GDP growth and inflation over the past year:

re =00+ 01,4(9t + Gr—1 + gr—2 + gi—3) + 61 (T + Ty + T2 + T_3) + €i\/[P’T7 (26)

wheree!""" = 4, ;. f#. In this formulation, bond yields now become affine functions\ef

Xi 1, X;_o, and X;_3. Using annual GDP growth and inflation, the posterior mean of the
coefficient on GDP growth (inflation) is 0.036 (0.334), with a posterior standard deviation of
0.023 (0.092). These values are almost identical to the estimates using the quarterly frequency
data in Table 7.

An important question is whether the monetary policy rule coefficients in the short rate
equation (2) are time-invariadt. By estimating the model over the full sample, we follow
Christiano, Eichenbaum, and Evans (1996), Cochrane (1998) and others and assume that
the Taylor rule relationships are stable. We can address the potential time variation in
these coefficients (and other parameters) by estimating our model over different subsamples,
especially over the more recent post-1980’s data corresponding to declining macroeconomic
volatility (see Stock and Watson, 2003) and the post-Volcker era of leadership at the Federal
Reserve.

In Panel A of Table 7, we also report estimates of both OLS Taylor rules and the benchmark
Taylor rule estimated by no-arbitrage restrictions using data only to the end of December
1982, and over the post-1982 peribdSurprisingly, the coefficients on inflation for both the
model and OLS are very stable over the pre-1982 and the post-1982 period. For example,
the model (OLS) coefficient is 0.352 (0.677) over the pre-1982 sample and 0.253 (0.605) over
the post-1982 sample, compared with 0.322 (0.643) over the whole sample. The inflation
coefficients are slightly lower post-1982 because inflation is much lower over the post-Volcker
period, but it is surprising how close the inflation coefficient is across the two samples. The
model coefficients on GDP are also fairly stable, at 0.067 (0.160) over the pre-1982 (post-
1982) period. In contrast, the OLS coefficient on GDP differs widely across the samples,
ranging from 0.004 in the pre-1982 sample to 0.238 in the post-1982 sample. Hence, the OLS
coefficients of GDP are more prone to structural instability compared to the no-arbitrage Taylor
rule estimation.

The Backward-Looking Taylor Rule

3 Several recent studies have emphasized that the linear coeffi€igmasentially vary over time (see, among
others, Clarida, Galand Gertler, 2000; Cogley and Sargent, 2001 and 2004; Boivin, 2004). However, other
authors like Bernanke and Mihov (1998), Sims (1999 and 2001), Sims and Zha (2002), and Primiceri (2003) find
either little or no evidence for time-varying policy rules, or negligible effect on the impulse responses of macro

variables from time-varying policy rules.
4 To obtain convergence, we specify the post-1982 estimation to have a diaganatrix in equation (4).
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Panel B of Table 7 reports the estimation results for the backward-looking Taylor rule.
Consistent with equation (13), the model coefficientsgpand 7; are unchanged from the
benchmark Taylor rule in Panel A at 0.091 and 0.332, respectively. The corresponding OLS
estimates of the backward-looking Taylor rule coefficients on GDP and inflation are 0.074 and
0.182, respectively. Here, the model-implied rule predicts that the Fed reacts more to inflation
than the OLS estimates suggest. As expected, the coefficients on the lagged short rate in both
the OLS estimates and the model-implied estimates are similar to the autocorrelation of the
short rate (0.925 in Table 4).

The Finite-Horizon Forward-Looking Taylor Rule

In Panel C of Table 7, we list the estimates of the forward-looking Taylor rule coefficigpts
andd, , in equation (17) for various horizoris For eachk, we re-estimate the whole term
structure model, but only report the forward-looking Taylor rule coefficients for comparison
acrossk.

For a one-quarter ahead forward-looking Taylor rule, the coefficient on expected GDP
growth (inflation) is 0.151 (0.509). These are larger than the contemporaneous responses for
GDP growth and inflation over the past quarter in the benchmark Taylor rule, which are 0.091
and 0.322, respectively. ThHe= 1 coefficients ford, , andd, . also correspond roughly to a
weighted average of the pre-Volcker and Volcker-Greenspan coefficients reported by Clarida,
Gali, and Gertler (2000). For a one-year £ 4) horizon, the short interest rate responds by
just over half the level of a shock to GDP expectations, with= 0.502, and almost one-to-
one with inflation expectations, with . = 0.998. Thus, in the no-arbitrage forward-looking
Taylor rule, the Fed responds very aggressively to changes in inflation expectations over a
one-year horizon.

As k increases beyond one year, the coefficients on GDP and inflation expectations
differ widely and the posterior standard deviations become very large. This is due to two
reasons. First, ak becomes large, the conditional expectations approach their unconditional
expectations, or £g;+x ) —E(¢9:) and E(m11 ) —E(m;). Econometrically, this makes ,
andd, , hard to identify for larget, and unidentified in the limit a8 — oo. The intuition
behind this result is that ds— oo, the only variable driving the dynamics of the short rate in
equation (17) is the latent monetary policy shock:

re = 60 + 01,4E(g9:) + 01.-E(m) + Ein,F’

and it is impossible to differentiate the (scaled) effect of GDP or inflation expectations from
do. Hence, for large:, identification issues cause the coefficiefits and d, . to be poorly
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estimated.

The second reason is that each estimation for diffekerst trying to capture the same
contemporaneous relation betwegyr,, andr,. Panel C also reports the estimaigands, =
(61401501, 44)" Of the short rate equation (16) implied by the forward-looking Taylor rules.
These coefficients are very similar across horizons. In particular, the inflation coefficient
is almost unchanged at around 0.32 forkallThe coefficients o, andr; are also very similar
to the coefficients in the benchmark Taylor rule in Panel A. Both the benchmark estimation
and the forward-looking estimation are trying to capture the same response of the short rate to
macro factors, but the forward-looking Taylor rule transforms the contemporaneous response
into the loadings on conditional expectations of future macro factors implied by the factor
dynamics.

As k increases, even though, andd, . are theoretically identified, the state-dependence
of r, on g, andm, is diminished. This means that Asncreases, the coefficiends, andd; .
must be large in order for there to be any contemporaneous effgecantim, on the short rate.
Since the data exhibits a strong contemporaneous relation begyweerandr; (see Table 4)
and the forward-looking restrictions for largeshrink the contemporaneous effectgptindr,
onry, the estimation compensates by increasing the valués,aindd; . to match the same
short rate dynamics.

The Infinite-Horizon Forward-Looking Taylor Rule

We report the estimates of the infinite-horizon forward-looking Taylor rule (24) in Panel D of
Table 7. The coefficient on future discounted GDP growth (inflation) is 0.27 (0.62), which
is between thé& = 1 andk = 4 horizons in Panel C for the finite-horizon forward-looking
Taylor rule that does not discount future expectations of GDP or inflation. The discount
rate 3 = 0.933, which implies an effective horizon df/(1 — 0.93) quarters, or 3.7 yeafs.

This estimate is much lower than the discount rates above 0.97 used in the literature (see
Salemi, 1995; Rudebusch and Svenson, 1999; Favero and Rovelli, 2003), but still much higher
than the estimate of 0.76 calibrated by Collins and Siklos (2004). The effective horizon of
approximately four years is consistent with transcripts of FOMC meetings, which indicate that
the Fed usually considers forecasts and policy scenarios of up to three to five years ahead.

The Forward- and Backward-Looking Taylor Rule

5We can also allow different discount rates on future expected inflation and future expected GDP growth.
These discount rates turn out to be very similar, at 0.932 and 0.935, respectively.
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Finally, In Panel E of Table 6, reports the estimates of the forward- and backward-looking
Taylor rule in equation (24) for horizons &f = 1 andk = 4 quarters. These are the same
restricted estimations as the forward-looking Taylor rules in Panel C for the corresponding
horizons and, hence, have the same coefficient8,00 ., ;) andE; (7. ;). The estimates

show that after taking into account the effect of forward-looking components, the response of
the Fed to lagged macro variables is negligible. However, the lagged short rate continues to
play a large role.

4.4 Monetary Policy Shocks

The no-arbitrage monetary policy shocks are transformations of either levels or innovations
of the latent factor. There are different no-arbitrage policy shocks depending on the chosen
structural specification, like benchmark, forward-looking, or backward-looking Taylor rules.
Note that the implied policy shock is a choice of a particular structural rule, but the same
no-arbitrage model produces several versions of monetary policy shocks (see Table 1).

As an example, we graph the model-implied monetary policy shocks based on the
backward-looking Taylor rule in Figure 3 and contrast them with OLS estimates of the
backward Taylor rule. We plot the OLS estimate in the top panel and the model-implied shocks,
P8 from equation (13) in the bottom panel. We compsfte*” using the posterior mean
estimates of the latent factor through time. Figure 3 shows that the model-implied shocks are
much smaller than the shocks estimated by OLS. In particular, during the early 1980’s, the
OLS shocks range from below -6% to above 4%. In contrast, the model-implied shocks lie
between -2% and 2% during this period. This indicates that the Volcker-experience according
to the no-arbitrage estimates was not as big a surprise as suggested by OLS. These results are
consistent with our findings that the pre- and post-Volcker estimates of the Taylor rule using

no-arbitrage identification techniques are very similar.

Table 8 characterizes the various model-implied monetary policy shocks in more detail and
explicitly compares them with OLS estimates. We list model-implied estimates of the no-
arbitrage benchmark Taylor rule shoe%P’T, which is the scaled latent factqfy, in equation
(9):; the backward-looking Taylor rule shocks$!””, from equation (13); the forward-looking
Taylor rule shocksz;"""", over a horizon of: = 4 quarters from equation (17); and the no-
arbitrage forward- and backward-looking Taylor policy shacdk!**'? from equation (24), also

with a k = 4-quarter horizon.

First, the only difference between the no-arbitrage benchmark shgtk!, and the

forward-looking shocks;" """, are the restrictions imposed on the estimation to take the VAR-
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implied expectations of future GDP growth and inflation. These estimations are near identical
(see Panels A and C of Table 7),56"" ande}""" have a correlation of over 99%. Similarly,

both the no-arbitrage backward-looking shod{P ‘% and the forward- and backward-looking
shock,c)"*""P | are both scaled innovations of the latent factor, with the only difference being
the restrictions to take the expectations of future macro factors in the short rate equation. Again,
these estimations are very similar, producing a correlation beta#ér¥ andeM"*? over

99%.

We also compare the no-arbitrage shocks with the Romer and Romer (2004) policy shocks
that are computed using the Fed’s internal forecasts of macro variables and intended changes
of the federal funds rate. The OLS residual from the backward Taylor rule has the highest
correlation with the Romer-Romer shock, at 72%. In comparison, the no-arbitrage backward-
looking shocks have only a 47% correlation with the Romer-Romer series. However, the
volatility of the OLS backward-looking residuals are more volatile, at 1.8% per annum than
either the no-arbitrage)’"*” shocks, which have a volatility of 1.2% per annum. Figure
3 clearly illustrates this. The volatility and range dl{P’B are closer to the volatility and
range of the Romer-Romer shocks. The OLS backward-looking Taylor residuals are also more
negatively autocorrelated (-0.267) than #]é"” series, which has an autocorrelation of -

0.195. This is very similar to the -0.183 autocorrelation of the Romer-Romer series.

The last two columns of Table 8 report statistics on the one-quarter short rated the
change in the short ratéyr. The OLS backward-looking Taylor rule shocks are more highly
correlated with, at 32%, thare;”"*”, which has a correlation of only 15% withand only
54% with Ar. Hence, using the short rate as an instrument to estimate monetary policy shocks
produces dissimilar estimates to extracting a no-arbitrage estimate of the Taylor rule shocks
using the whole yield curve.

4.5 Impulse Responses

In order to gauge the effect of the various shocks on the yield curve and on macro variables,
we compute impulse response functions. We obtain the posterior distribution of the impulse
responses by computing the implied impulse response functions in each iteration of the Gibbs
sampler. In the plots, we show the posterior mean of the impulse response functions. These
responses are based on Cholesky decompositions that use the same ordering as the variance
decompositions{g;, m;, f*).

Impulse Responses of Factors
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Figure 4 plots impulse responses from our model (left-hand column) and the corresponding
impulse responses from an unrestricted VAR (right-hand column). The VAR contains GDP
growth, inflation, and the short rate. We compute impulse responses from the VAR using the
ordering(g;, m;, r¢).

The top row of Figure 4 graphs responses to a 1% shock to GDP. In the model on the LHS,
the GDP shock has a short-lived effect on GDP itself, and its effect on the short rate is modest,
at just approximately 10bp per quarter, and very persistent. By comparison, the response of
the short rate in the unconstrained VAR is even smaller. There is almost no effect of the GDP
shock on inflation in either the model or in the unconstrained VAR.

In the middle row of Figure 4, we plot the impulse responses corresponding to a 1% increase
in inflation. In both the model and the VAR, the inflation shock has a persistent effect on
inflation itself. The effect of the inflation shock in the model is to contemporaneously increase
the short rate by around 30bp per quarter, which slowly dies out. In the VAR, the response of
the short rate is weaker, around 20bp per quarter, and the short rate more rapidly mean-reverts
to zero. The response of GDP to the inflation shock is more pronounced in the model than
in the unrestricted VAR; GDP declines by more than -30bp (-20bp) per quarter in the model
(VAR) at horizons of two and three quarters.

The last row shows the responses to a 1% shock to the short rate. For the model, we shock
the latent factor to produce a total shock of 1% to the short rate. The short rate shock is more
persistent in the model than in the VAR. After twenty quarters, the short rate is still above 0.5
in the no-arbitrage response, compared to above 0.2 in the VAR. As expected, GDP falls in
response to a contractionary policy shock for both the the model and the VAR in a very similar
fashion. However, the responses of inflation reveal a “price puzzle,” because inflation increases
after a shock to the short rate. Note that the no-arbitrage restrictions mitigate the price puzzle
effect, but certainly do not remove it. To fully eliminate the prize puzzle, we would need to
add certain state variables to our system, such as commodity prices (see comments by Sims,
1992; Christiano, Eichenbaum and Evans, 1996, among others). This is an interesting avenue
for future research; the goal of our paper is to illustrate how Taylor rules can be estimated using
no-arbitrage techniques, and so we keep the system as low-dimensional as possible.

Impulse Responses of Yields
Figure 5 plots the responses of yields and yield spreads to GDP shocks, inflation shocks, and

a short rate shock. A 1% inflation shock produces persistent effects on all yields. The initial
response is highest for the short rate, at 32bp per annum, while the initial response of the long,
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20-quarter yield is approximately 16bp per annum. Hence, the term spread narrows from an
unexpected inflation shock. Shocks to GDP also increase yields, but the effect from a GDP
shock is much smaller. The initial response from a 1% GDP shock is almost the same across
the yield curve, at approximately 10bp.

The 1% shock to the short rate is constructed by shocking all of the state variables in
proportion to their Cholesky decomposition so that the sum of the shock adds up to 1%. This
allows us to trace the effect of a change in the short rate across the yield curve. As expected,
the initial shock to a 1% increase in the short rate dies out gradually across the yield curve. At
a five-year maturity, the response is approximately 82bp per annum.

In Figure 6, we plot the impulse responses for GDP growth and inflation to a 1% shock in
the latent factorf;* for different forward-looking Taylor rules (without discounting). The top
panel shows that in comparison to the benchmark Taylor kute ()) shown in discrete squares,
GDP growth declines slightly more (less) for a one-quarter (four-quarter) ahead forward-
looking Taylor rule. For example, from an initial 1% shock b, GDP growth declines by
11bp (8bp) per annum after one year for the Taylor rule that incorporates expectations of
macro variables over the one-quarter (four-quarter) horizon, compared to a decline of 10bp
for the basic Taylor rule after six quarters. Thus, increasing the horizon does not necessarily
imply that the response for GDP becomes larger.

The impulse response for inflation in the bottom panel shows that a forward-looking Taylor
rule does not ameliorate the price puzzle. For all horiZzgmsflation increases after a 1% latent
factor shock. In fact, the price puzzle is exacerbated for the one-quarter horizon, where inflation
rises by 26bp per annum after one year, compared to 19bp per annum for the benchmark
Taylor rule. For the forward-looking Taylor rule ovér= 20 quarters, inflation increases to
approximately 30bp per annum after five quarters. The structure of the forward-looking Taylor
rule cannot remove the price puzzle because the underlying short rate dynamics driving the
term structure are largely unchanged (see Panel C of Table 7) and the forward-looking Taylor
rule only indirectly imposes restrictions on the companion fdrrm the VAR dynamics in
equation (1), which governs the impulse responses of the macro variables.

5 Conclusion
We exploit information from the entire term structure to estimate Federal Reserve (Fed) policy

rules. The framework accommodates original Taylor (1993) rules that describe the Fed as
reacting to current values of GDP growth and inflation; backward-looking Taylor rules where
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the Fed reacts to current and lagged macro variables and lagged policy rates; and forward-
looking Taylor rules where the Fed takes into account conditional expectations of future real
activity and inflation. An advantage of the model is that all these types of Taylor rules are
estimated jointly in a unified system that provides consistent expectations of future macro
factors.

The methodology embeds the Taylor rules in a term structure model with time-varying
risk premia that excludes arbitrage opportunities. The absence of arbitrage implies that long
yields are expected values of future short rates after adjusting for risk. The tractability of the
system is based on flexible Vector Autoregression (VAR) dynamics for the macro and latent
state variables and by specifying risk premia that are also linear combinations of the VAR
state variables. The key identifying assumption is that the scaled latent factor can be defined as
monetary policy shocks from a Taylor rule and is identified by the no-arbitrage over-identifying
restrictions on the cross-section of yields.

We find that shocks to GDP growth and inflation account for over 60% of the time-
variation of yields, while inflation shocks are mostly responsible for driving yield spreads.
Macro factors also account for a significant fraction of time-varying expected excess returns
of long-term bonds. We find that monetary policy shocks identified by no-arbitrage are much
less volatile that Taylor rule residuals estimated by OLS and than the no-arbitrage restrictions
also produce larger responses of interest rates from macro shocks than unrestricted VARS.
Interesting extensions of this no-arbitrage methodology are to estimate general Taylor rules in
more structural models of the economy or to expand the state space to include other macro
factors.
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Appendix

A Forward-Looking Taylor Rules

In this appendix, we describe how to compdte §; in equation (16) of a forward looking Taylor rule without
discounting for ak-quarter horizon. From the dynamics &% in equation (1), the conditional expectation of
k-quarter ahead GDP growth and inflation can be written as:

k
1 1
Ei(giri) = Ei (k Z%—H‘) = %61— (
i1
1 1
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wheree; is a vector of zeros with a 1 in théh position, andp; is given by:
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The bond price recursions for the standard affine model in equation (6) are modified by usingd; in
place oféy anddy, where

k
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k
Using this notation also enables us to write the short rate observation equation as:

'Iﬁt = (50 + (SEFXt + ’I]t(l)
= 8o+ X; +ntY. (A-4)

whereX; = [E¢(gitk.k) Et(meirx) f] andr, = §o + 8 X, is the forward-looking Taylor rule in equation (17)
with 0 = ((517_(] 51,71— (517fu)T.

As k — oo, bothE;(g;4rx) andE,(m+x %) approach their unconditional means and there is no state-
dependence. Hence, the limit of the short rate equatign-ascc is:

re =00+ (01461 S1xeo] (I — @)+ 00 pu fi', (A-5)
which implies that whet is large, the short rate effectively becomes a function onlff‘ofandg, andr; can only

indirectly affect the term structure through the feedback in the VAR equation (1). In the limiting case, the
coefficientss; , andd, » are unidentified because they act exactly like the constantdgrm

B Econometric Identification

Our identification strategy is to set the mearypfto be zero and to pin down the conditional variancg;of This
allowsd, andd; to be unconstrained parameters in the short rate equation (2). To ensufg ihatean zero, we
parameterize, = (u, pir 1) | SO thatu, solves the equation:

6;([ - q))*l‘u = 07

wherees is a vector of zeros with a one in the third position.
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We parameterize the conditional covariance maftix' to take the form:

Yip1 Y2 0
YT =% Zp 0], (B-1)
0 0 ¢

which allows shocks to the macro factors to be conditionally correlated while the conditional shocks to the latent
factor f* are conditionally uncorrelated wit andr;. The form for2X " in equation (B-1) can be interpreted

as the Taylor residual having no contemporaneous effect on current GDP growth or inflation, which is the same
assumption made by Christiano, Eichenbaum and Evans (1999). However, because the compadicilfoven

full feedback,f;* is unconditionally correlated with botjy andr;. We setc = 0.05, which is chosen so that the
coefficientsd; in the short rate equation (2) are all of the same magnitude.

To match the mean of the short rate in the sample, wé,sSeteach Gibbs iteration so that:
So=7—0, X, (B-2)

wheref is the average short rate from data a¥ds the time-series average of the factdfs, which change
becausef* is drawn in each iteration. This means thgtis not individually drawn as a separate parameter, but
do changes its value in each Gibbs iteration because it is a functi®naofd the draws of the latent factg.

C Estimating the Model

We estimate the model by MCMC with a Gibbs sampling algorithm. Lamoureux and Witte (2002), Mikkelsen
(2002), Bester (2003), and Johannes and Polson (2003) develop similar Bayesian methods for estimating term
structure models, but their settings do not have macro variables or time-varying prices of risk.

The parameters of the model a@& = (u, ®, X, do, 01, Ao, A1, 0yy), Whereo, denotes the vector of

observation error volatilitie$a,(7")}. The latent factoyf™ = {f} is also generated in each iteration of the Gibbs
sampler. We simulate 50,000 iterations of the Gibbs sampler after an initial burn-in period of 10,000 observations.

We now detail the procedure for drawing each of these variables. We denote the factofsX;} and the
set of yields for all maturities in data 5= {g)t(")}. Note that the model-implied yields = {yt")} differ from

the yields in datay” by observation error. Note that observiiigis equivalent to observing the term structiife
through the bond recursions (6).

Drawing the Latent Factor f*

The factor dynamics (1), together with the yield equations (25), imply that the term structure model can be written
as a state-space system. The state and observation equations for the system areflfndartialso involve the
macro variableg; andm;. To generatef“, we use the Carter and Kohn (1994) forward-backward algorithm
(see also Kim and Nelson, 1999). We first run the Kalman filter forward taking the macro vafigbtesto be
exogenous variables, and then samfiidbackwards. We use a Kalman filter algorithm that includes time-varying
exogenous variables in the state equation following Harvey (1989). Since we specify the nj#ato dfe zero

for identification, we set each generated dravwfvto have a mean of zero.

Drawing p and ¢

Since X, follows a VAR in equation (1), it is tempting to just drgwand® using a conjugate normal posterior
distribution given the factor;. However, as Johannes and Polson (2003) comment, this procedure ignores

the information contained in the yields. Updatingy, and® requires Metropolis algorithms as the conditional
posteriors are not standard distributions.

To drawy and®, we note that the posterior pfand® conditional onX, ¥ and the other parameters is:
P(u,®|©_,X,Y) o< P(Y | ©, X)P(X | 1, ®, ) P(ps, @), (C-1)

where®_ denotes the set of all parameters exgepnhd®. This posterior suggests an Independence Metropolis
draw, where we first draw a proposal for the + 1)th value ofu and® (™ *! and®™*!, respectively) from the
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proposal density:
q(p, ®) o< P(X | p, @, X)P(p, ),

where we specify the priaP(u, @) to be normally distributed, so, consequentlfy:, ) is a natural conjugate
normal distribution. The proposal draw™ !, ®™+1) is then accepted with probability, where

P(ymtl gmtl ,XY' m_gpm
a—min{ (wm |0, X,Y)  q(u™, )),1}

P(um’ pm | @77 X, }A/) q(Mm—i-l7 pm+1

Y m—+1 m—+1
— min P(Y |AILL v(I) a®—7X) , 1 , (C'Z)
P(V | pm, &m0, X)

where P(Y|u, ®,©_, X) is the likelihood function, which is normally distributed from the assumption of
normality for the observation errorg™. From equation (C-2) is just the ratio of the likelihoods of the new
draw of x and® relative to the old draw. For the valuesfind® corresponding to the equations fgrand,,

we drawy and® separately for each equation in the VAR system (1), but we perform the accept/reject step for
each individual parameter.

For the values ofi and® corresponding to thé¢* equation, we modify the algorithm. Fogs, the element in
the third row and third column ¢b, the Independence Metropolis algorithm yields very low accept rates because
the likelihood is very sensitive to the value ¢%;. To increase the acceptance rate, we use a Random Walk

Metropolis draw forgss:

0T = 0 + Cpusv (C-3)

wherev ~ N(0,1) and(y,, is the scaling factor used to adjust the acceptance rate. The accept probability for
¢33 is given by:

in d PO 10, X Y) alé | 0557
P50, X,Y) a(¢55™ | ¢5)

m-+1 9
- mm{% 6, X.¥) ,1}, (4
P(¢5y |6, X,Y)

where the posterioP (¢330 _, X, Y) is given by:
P(¢33|0_, X,Y) ox P(Y|33,0_, X)P(X|p, $33, %)
Thus, in the case of the draw fggs, « is the posterior ratio of new and old drawsd®f;.

We also impose the restriction thAt is mean zero for identification. We draw the parametgrsand ¢so
(which are the elements i in the third row and first column, and the third row and second column, respectively)
separately fromus, the third element of the vectgr. We draw¢s; and ¢3» jointly, but we setus to satisfy
es (I — ®)~'p = 0 to ensure that the factofi* has mean zero. Henge; is simply a function of the other
parameters in the factor VAR in equation (1).

Drawing ©X 7

We drawX3 " from the proposal densit =X ") = P(X | u, ®, $)P(EX ), which is an Inverse Wisharf (V')
distribution if we specify the prioP(XX ") to beIW, so thatg(XX ") is anIWW natural conjugate. Similar to the
independence metropolis case0énd®, the accept/reject probability for the drawsX¥E " from the proposal
density is the likelihood ratio of the new draw relative to old draviaf " (see equation (C-2)).

Drawing 41

To drawd,, we exploit the observation short rate equation:
Py =00 + 01 X+,

which is simply a regression af = gﬁl) (data) on factorsX, with observation erront(l). We drawd; as a
conjugate normal. Note that in drawidg, sincer; is observable, and is treated as observable for the purpose
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of drawingd;, we base the Taylor rule estimation only on short rate data. We do not draw the cagstaunt
instead sef, to match the sample mean of the short rate.

To drawd; in the forward-looking Taylor rule system entails only a very simple modification. Since the
observation equation for the short rate is a standard regression, we caéy drsivg a conjugate normal. Again,
we setd, to match the sample mean of the short rate.

Drawing A\g and \;

We draw)y and\; with a Random Walk Metropolis algorithm. We assume a flat prior, and for each parameter
separately il = (Ao, A1), we draw the(m + 1)th price of risk as:

DU ULeY? (C-5)

wherev ~ N(0,1) and(), is the scaling factor used to adjust the accept rate. Equation (C-5) represents the draw
for each individual parameter ih The acceptance probabilityis given by:

. {P(Wl |0-,X,Y) g\ | A }
« = min

PO |O_,X,y) qAmtl|am)’

POA™ | ©_,X,Y)

9 m-+1
= min P(YA‘)\ ’@_’X),l , (C-6)
P [A™,0_, X)

m—+1 9
_ min{P()\ |6_,X.,7) 71}

whereO _ represents all the parameters except the individyerameter that is being drawn aﬁ’tﬂf/p\, 0_,X)
is the likelihood function.

Drawing o,

Drawing the variance of the observation err@:r#, is straightforward, because we can view the observation errors

7 as regression residuals from equation (25). We draw the observation va(rdéyﬁl:)é’ separately from each yield
using an Inverse Gamma posterior distribution.

Drawing g

For the case of the forward-looking Taylor rule with an infinite horizon and discounting, we augment the parameter
space to include the discount rate,To draw(3, we use an Independence Metropolis-Hastings step. The candidate
draw, 3m*1, is drawn from a proposal density(3™*! | ™) = q(8™*!), which we specify to be a doubly
truncated normal distribution, with mean 0.95 and standard deviation 0.03 but truncated at 0.8 from below and at
0.99 from above.

Assuming a flat prior, the acceptance probabilitior 3™is given by:

a = min P(ﬂm+1|@—7X’Y) Q(ﬂm) 1
P(B™ |0, X,y) q(BmF)’

. P(}A/ ‘ ﬁ77L+1,@,,X) q(ﬁ’”) -
mm{ P(Y | pm,0_,X) Q(ﬂmﬂ)’l}’ (C-7)

where©_ represents all the parameters exceptghgarameter that is being drawn aﬁt{ff\ﬁ, ©_,X) is the
likelihood function.

Scaling Factors and Accept Ratios

The table below lists the scaling factors and acceptance ratios used in the Random Walk Metropolis steps for the
benchmark Taylor rule and backward-looking Taylor rule estimation.
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Scaling Acceptance Scaling Acceptance

Parameter Factor Ratio Parameter  Factor Ratio
¢33 0.001 0.458 A121 0.100 0.716
Ao,1 0.010 0.484 AlL22 0.100 0.669
0,2 0.010 0.465 A123 0.100 0.777
0,3 0.010 0.409 A1,31 0.100 0.684
A1 0.100 0.720 A1,32 0.100 0.636
A112 0.100 0.675 1,33 0.100 0.742
A113 0.100 0.786

whereXy = (o1 Ao2 >\0_,3)T and); ;; denotes the element af in thesth row andjth column. The acceptance
rate for theg parameter when estimating the forward-looking Taylor rule with discounting is 0.606.

Checks for Convergence

To check the reliability of our estimation approach, we perform several exercises. First, we tried starting the chain
from many different initial values on real data and we obtained almost exactly the same results for the posterior
means and standard deviations of the parameters. We also check that the posterior distributions for the parameters
© are unimodal.

Second, we compute the Raftery and Lewis (1992) minimum burn-in and the minimum number of runs
required to estimate the 0.025 quantile to witkif.005 with probability 0.95, using every draw in the MCMC-
Gibbs algorithm, which is conservative. For all the parameters (with one exception) and the complete time-series
of the latent factorg™, the minimum required burn-in is only several hundred and the minimum number of runs
is several thousand. This is substantially below the burn-in sample (10,000) and the number of iterations (50,000)
for our estimation. The only exception is the estimates in the companion dooorresponding to the latent
factor equationf;*, which require a Raftery-Lewis minimum burn-in and number of iterations of the same order
of magnitude that we perform in the estimation. This is not surprising, begguisea very persistent series and
mean-reversion parameters of persistent series are notoriously difficult to estimate in small samples.

The third, and probably most compelling check of the estimation method is that the MCMC-Gibbs sampler
works very well on simulated data. We perform Monte Carlo simulations, similar to the experiments performed by
Eraker, Johannes and Polson (2003). We take the posterior means of the parameters in Table 2 as the population
values and simulate a small sample of 203 quarterly observations, which is the same length as our data. Applying
our MCMC algorithm to the simulated small sample, we find that the draws of the VAR parametérs),
the short rate parameter& (d,), the constant prices of risk\§), and the observation error standard deviations

(07(7")) converge extremely fast. After our estimation procedure, the posterior means for these parameters are
all well within one posterior standard deviation of the population parameters. We find that a burn-in sample of
only 1,000 observations is sufficient to start drawing values for these parameters that closely correspond to the
population distributions. The time-varying prices of risk \ were estimated less precisely on the simulated data,

but the posterior means of eight out of nine prices of risk were also within one posterior standard deviation of the
population parameters. The algorithm is also successful in estimating the time-series of the latefit fadtere

the true series of “ in the simulated sample lies within one posterior standard deviation bound of the posterior
mean of the generatefl from the Gibbs sampler.

In summary, these results verify that we can reliably estimate the parameters of the term structure model
given our sample size and, thus, we are very confident about the convergence of our algorithm.
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Table 2: PARAMETER ESTIMATES

Factor Dynamics

Companion Fornd 337 x 10000
K g m I 9 m I
g 0.008 0.271  -0.299 -0.024 0.874  -0.008 0.000
(0.002) (0.064) (0.010) (0.069) (0.112) (0.043) -
™ 0.002 0.052 0.711 0.090 -0.008 0.270 0.000
(0.001) (0.038) (0.060) (0.044) (0.043) (0.032) -
e -0.002 0.133 0.162 0.931 0.000 0.000 0.050

(0.001)  (0.056) (0.066) (0.032)

Short Rate Equation

1
do g ™ f*
0.009 0.091 0.322 0.499

(0.002)  (0.064) (0.143) (0.228)

Risk Premia Parameters

A1
Ao g9 m f*
g -0.986 10.886 5.128 -18.749
(0.487)  (7.426) (6.292) (5.300)
T -0.402 -7.033 -10.055 -14.952
(0.180)  (7.660) (5.377) (5.602)
f 0.583 4.378 23.867 -0.310

(0.272)  (4.969) (8.637) (8.565)

Observation Error Standard Deviation

o 0.188 0.130 0.066  0.032 0.046 0.072
(0.011) (0.013) (0.020) (0.026)  (0.036)  (0.064)

The table lists parameter values for the model in equations (1)-(4) and observation error standard deviations in
equation (25) for yields of maturity quarters. We use 50,000 simulations after a burn-in sample of 10,000.

We report the posterior mean and posterior standard deviation (in parentheses) of each parameter. The sample
period is June 1952 to December 2002 and the data frequency is quarterly.
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Table 3: Latent Factof* Correlations

Correlations with Macro Factors

qg ™
Data -0.173 0.489

Implied -0.186 0.530

Correlations with Yields

Yield Levelsy ™

Data 0.912 0941 0.965 0.975 0.977 0.977
Implied 0.950 0.966 0.975 0.979 0.981 0.982

Yield Spreadg,™ — 4"

Data 0.196 0.188 0.110 0.087 0.044

Implied 0.284 0.245 0.190 0.129 0.066

The table reports correlations between the latent fgtt@nd macro variables, yield levels, and yield spreads.

In the row labelled “Data,” we report the correlations using the time-series of the posterior mean of the latent
factor from the Gibbs sampler. In the row labelled “Implied,” we report the correlations implied by the
parameter estimates of the model, which we compute using the posterior mean of the model parameters.
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Table 4:SUMMARY STATISTICS

PANEL A: MOMENTS OFMACRO FACTORS

Means % Standard Deviations % Autocorrelations

Data Model Data Model Data Model

g 0.803 0.666 0.964 1.061 0.340 0.361
(0.088) (0.301) (0.067) (0.132) (0.068) (0.097)

m  0.950 0.942 0.792 0.900 0.762 0.778
(0.110) (0.396) (0.097) (0.257) (0.058) (0.072)

PANEL B: MOMENTS OFYIELDS

Means

Data  1.334 1.438 1.488 1528 1558 1.576
(0.107) (0.108) (0.107) (0.105) (0.105) (0.104)

Model 1.334 1424 1.492 1531 1555 1570
—  (0.023) (0.032) (0.035) (0.048) (0.076)

Standard Deviations

Data 0720 0721 0713 0697 0.693 0.684
(0.092) (0.083) (0.082) (0.080) (0.080) (0.076)
Model 0.697 0702 0703 0.699 0.692  0.685
(0.048) (0.048) (0.047) (0.046) (0.044) (0.045)

Autocorrelations

Data  0.925 0.932 00943 0949 0.955  0.959
(0.032) (0.031) (0.029) (0.028) (0.028) (0.026)
Model 0.955 0961 0963 0.964 0.964  0.965
(0.005) (0.004) (0.004) (0.004) (0.004) (0.005)

PANEL C: SHORT RATE CORRELATIONS
g m I

Data -0.090 0.695 -
(0.100)  (0.063)
r -0.136  0.740 0.947
(0.182) (0.134) (0.035)

Panel A lists moments of GDP and inflation in data and implied by the model. For the model, we construct the
posterior distribution of unconditional moments by computing the unconditional moments implied from the
parameters in each iteration of the Gibbs sampler. Panel B reports data and model unconditional moments of
n-guarter maturity yields. We compute the posterior distribution of the model-implied y}'f—:‘lam equation

(5) using the generated latent factg¥ in each iteration. In Panel C, we report correlations of the short
rate with various factors. For the model, we compute the posterior distribution of the correlations of the
model-implied short rate in equation (2). In all the panels, the data standard errors (in parentheses) are
computed using GMM and all moments are computed at a quarterly frequency. For the model, we report

posterior means and standard deviations (in parentheses) of each moment. The sample period is June 1952 to
December 2002 and the data frequency is quarterly.
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Table 5:VARIANCE DECOMPOSITIONS

Proportion Risk Premia

PANEL A: YIELD LEVELS yt(n)

Variance Decompositions

Including
Premia Covariances

Pure Risk Premia

fu

fu

Pure Risk
Maturity (qtrs)
One-Quarter Ahead
1 0.0
4 0.5
12 4.2
20 10.2
Four-Quarters Ahead
1 0.0
4 0.4
12 5.0
20 12.9
Unconditional
1 0.0
4 0.7
12 6.9
20 16.5

0.0
1.3
20.4
37.0

0.0
10.0
31.9
46.7

0.0
14.9
38.2
52.1

43

26.3
35.9
47.9
51.5

30.2
35.7
41.6
43.3

36.4
37.6
38.8
39.1

70.4
86.7
85.7

76.8
66.1
60.4

229 455
247 43.3
257 423



Table 5 Continued

PANEL B: YIELD SPREADSY™ — 3V

Proportion Risk Premia Variance Decompositions
Total Pure Risk Premia
Pure Risk Including
Maturity (qtrs) Premia Covariances g T fv g T i
One-Quarter Ahead
4 19.3 38.3 83 86.0 5.7 0.2 294 704
12 21.3 24.2 25 93.0 4.6 6.3 7.0 86.7
20 22.9 1.3 14 954 33 137 0.6 857
Four-Quarters Ahead
4 21.4 24.9 49 877 7.3 134 34 832
12 26.3 -11.1 1.6 928 5.6 244 02 754
20 28.3 -54.3 0.7 956 3.7 28.2 2.7 69.1
Unconditional
4 23.1 16.2 39 88.1 8.0 21.2 0.6 78.2
12 28.2 -27.9 1.4 926 6.0 29.1 13 69.6
20 30.1 -79.6 05 956 3.9 31.3 4.7 64.0

PANEL C: EXPECTEDEXCESSRETURNS

One-Quarter Ahead Four-Quarters Ahead Unconditional
Maturity (qtrs) g T f g T s g T f
4 119 49.1 39.0 15 218 76.7 8.7 11.2 80.2
12 23.2 591 17.7 16 521 46.3 0.4 41.7 58.0
20 254 605 14.1 3.4 58.9 37.7 0.0 509 49.1

The table reports variance decompositions of forecast variance (in percentages) for yieldyﬁ&)/elm

Panel A; yield spreadgt") — yﬁl), in Panel B; and unconditional expected excess holding period returns,
E(mﬁi’l) = E(nyt(n) —(n— 1)yt(i]1) —r¢), in Panel C. For yield levels and yield spreads, we also examine
the variance decomposition due to time-varying risk premia and predictability of state vargblesPanels

A and B, we also attribute the total forecast variance into time-varying risk premia and EH components using
the method outlined in Section 4.2. We patrtition the bond yield coeffidigin X; in equation (6) into an

EH term and into a risk-premia termy;, = bZH + bIF 'wherebZ! is computed by setting the prices of risk

A = 0. If Q" represents the forecast variance of the factors at horizdhen the the pure risk premia
proportion report$iP " QF-hpRP /pTQF R, and the column that includes the covariance terms reports the
proportion1 — bEH QFhyEH /pTFhy  The total variance decomposition is performedidi©2?b,,,

while the pure risk premia decomposition is performedBR QF b2 All maturities are in quarters. We
ignore observation error for computing variance decompositions for yield levels and yield spreads. All the
variance decompositions are computed using the posterior mean of the parameters listed in Table 2.
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Table 6:CHARACTERIZING EXCESSRETURNS

PANEL A: FACTOR COEFFICIENTS

Maturity (qtrs)
4 8 12 16 20
Az 0.002 0.004 0.006 0.008 0.009

BY ¢ -0016 -0.056 -0.101 -0.145 -0.189
m -0.056 -0.165 -0.282 -0.398 -0.512
f* 0117 0.244 0358 0.468 0.574

PANEL B: PREDICTABILITY REGRESSIONS

Data Estimates Model-Implied Estimates
g T y(zo) R2 g - y(zo) R2
n=4 -0.072 -0.078 0.223 0.036 -0.037 -0.051 0.163 0.034
(0.064) (0.090) (0.096) (0.049) (0.087) (0.065)
n=12 -0.193 -0.461 0.752 0.040 -0.171 -0.360 0.622 0.036
(0.184) (0.240) (0.296) (0.175) (0.327) (0.217)
n=20 -0.237 -0.719 1.129 0.039 -0.306 -0.678 1.040 0.037
(0.266) (0.366) (0.450) (0.317) (0.598) (0.356)

In Panel A, we report the coefficients of the conditional expected excess holding period]i‘g(m:n:ﬁﬁ1 =
A7+ BrT X, defined in equation (8) on the factoXs = (g; 7, f;*). In Panel B, we regress one-guarter excess

holding period returns for an-period bondrx§1)1 onto GDP, inflation, and a bond yield. The standard errors
for the OLS estimates from data (in parentheses) are computed using robust standard errors. We compute the
model-implied coefficients an&? as follows. We construct the posterior distributions of the model-implied
estimates by computing the implied coefficients from the model parameters in each iteration of the Gibbs
sampler. We report posterior means and standard deviations (in parentheses) of each coefficient. The data

frequency is quarterly and the sample period is June 1952 to December 2002.
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Table 7: TAYLOR RULES

PANEL A: BENCHMARK TAYLOR RULE

Full Sample Pre-82:Q4 Post-82:Q4
oLS Model oLS Model oLS Model
const  0.007 0.009 0.006 0.009 0.007 0.011

(0.001) (0.002)  (0.001) (0.002)  (0.002) (0.001)

g 0.036  0.091 0.004  0.067 0.238  0.160
(0.071) (0.064)  (0.080) (0.073)  (0.104) (0.109)

- 0.643  0.322 0.677  0.352 0.605  0.253
(0.080) (0.143)  (0.082) (0.194)  (0.130) (0.106)

PANEL B: BACKWARD-LOOKING TAYLOR RULE

const gt U gt—1 -1 Ti_1 R?

OLS 0000 0074 0.182 -0.005 -0.077 0.879 0.895
(0.000) (0.027) (0.046) (0.029) (0.041) (0.035)

Model -0.000 0.091 0.322 -0.019 -0.218 0.931 0.976
(0.001) (0.064) (0.143) (0.021) (0.092) (0.032)

PANEL C: FINITE-HORIZON FORWARD-LOOKING TAYLOR RULE

Forward-Looking Taylor Rule Coefficients Implied Short Rate Coefficients
const  Ei(girk) Ee(misnn) R? b1, O1,m b1 g
k=1 0.007 0.151 0.509 0.117 0.074  0.331 0.587
(0.003) (0.221) (0.154) (0.077) (0.122) (0.233)
k=4 0.001 0.502 0.998 0.139 0.099 0.331 0.492
(0.006) (0.417) (0.286) (0.052) (0.081) (0.146)
k=8 -0.008 0.751 1.277 0.132 0.072  0.306 0.514
(0.096) (5.096) (1.658) (0.083) (0.146) (0.284)
k=20 -0.010 0.003 2.066 0.142 0.016 0.311 0.600
(0.172) (6.878) (4.854) (0.089) (0.127) (0.224)
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Table 7 Continued

PANEL D: INFINITE-HORIZON FORWARD-LOOKING TAYLOR RULE

Forward-Looking Taylor Rule Coefficients Implied Short Rate Coefficients
const i e 8 1.4 1x Oy fu
k=00 -0.007 0.015 0.098 0.933 0.057  0.267 0.615
(0.024) (0.034) (0.037) (0.036) (0.061) (0.078) (0.181)

PANEL E: FORWARD- AND BACKWARD-LOOKING TAYLOR RULE

const  Ei(giinr) Ee(meynr)  gi-1 M1 Ti_1 R?

k=1 -0002  0.151 0.509 -0.013 -0.071 0.857 0.983
(0.003)  (0.221) (0.154)  (0.029) (0.150) (0.057)

k=4 -0007  0.502 0.998  -0.014 -0.045 0.686 0.989
(0.006)  (0.417) (0.286)  (0.016) (0.067) (0.163)

Panel A reports the OLS and model-implied estimates of the benchmark Taylor (1993) rule in equation (9)
over the full sample and over subperiods; Panel B reports the backward-looking Taylor rule (10); Panel C
reports the finite-horizon, forward-looking Taylor rule without discounting in equation (17); Panel D reports
the infinite-horizon forward-looking Taylor rule with discounting in equation (19); and Panel E reports the
forward- and backward-looking Taylor rule in equation (24). Panels C and D also report the implied short rate
coefficients corresponding to the forward-looking Taylor rules without discounting in equation (16) for each
horizonk and equation (22) for the forward-looking Taylor rule with discounting. For the model-implied
coefficients, we construct the posterior distribution of Taylor rule coefficients by computing the implied
coefficients from the model parameters in each iteration of the Gibbs sampler. We report posterior means
and standard deviations (in parentheses) of each coefficient. The standard errors for the OLS estimates (in
parentheses) are computed using robust standard errors. In each panel, the data frequency is quarterly and the
full sample period is June 1952 to December 2002.
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Table 8:MONETARY PoLICY SHOCKS

OLS Estimates Model-Implied Estimates

Fwd- Romer-
Bmk Bwd Bmk Bwd Fwd Bwd Romer r Ar

Correlations

OLS Benchmark Rule 1.000 0.454 0.807 0.340 0.814 0.344 0.276 0.713 0.140

OLS Backward Rule 1.000 0.250 0.720 0.254 0.712 0.715 0.325 0.886
Model Benchmark Rule 1.000 0.210 0.999 0.214 0.155 0.916 0.017
Model Backward Rule 1.000 0.223 0.999 0.465 0.147 0.540
Model Forward Rule 1.000 0.228 0.151 0.907 0.009
Model Fwd-Bwd Rule 1.000 0.452 0.145 0.518
Romer-Romer Shock 1.000 0.290 0.726
Short Rate- 1.000 0.187
Change of Short Rate 1.000
Autocorrelations 0.743 -0.267 0.948 -0.195 0.942 -0.195 -0.183 0.924 -0.184
Standard Deviation 0.021 0.009 0.024 0.006 0.022 0.004 0.007 0.029 0.011
Minimum -0.049 -0.058 -0.042 -0.022 -0.040 -0.016 -0.040 0.006 -0.073
Maximum 0.094 0.043 0.085 0.024 0.079 0.018 0.025 0.154 0.037

The table reports summary statistics of OLS estimates and model-implied estimates of various Taylor rule
specifications. We denote the benchmark Taylor rule as “Bmk,” the forward-looking rule as “Fwd,”, the
backward-looking Taylor rule as “Bwd,” and the forward- and backward-looking Taylor rule as "Fwd-Bwd.”
The OLS estimates of benchmark and backward-looking Taylor rules are simply the residuals from equations
(9) and (10), respectively. The no-arbitrage benchmark shock is the scaled latentfdétdr,in equation

(9). The no-arbitrage backward-looking Taylor policy shocks areth€&? terms in (13). The no-arbitrage
forward-looking Taylor rule shocks ™', are computed from equation (17) for a horizorkef 4 quarters.

The no-arbitrage forward- and backward-looking Taylor rule residuals repre¥ént® from equation (24),

also with ak = 4-quarter horizon. We construct the Romer and Romer (2004) measure of policy shocks
converted to a quarterly sequence by summing the monthly Romer-Romer shocks in Table 2 of Romer and
Romer (2004). The last two columns report the correlations of the 1-quarter short, ratel, the change in

the 1-quarter short ratéyr. All monetary policy shocks and the short rate are annualized. The no-arbitrage
shocks are computed using the posterior mean of the latent factors. The sample period is June 1952 to
December 2002 and the data frequency is quarterly.
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Figure 1:LATENT FACTOR, SHORT RATE, AND THE OLS BENCHMARK TAYLOR RULE

0.2 T T
— Latent Factor
Demeaned Short Rate
= OLS Basic Taylor Rule Residual

0.15

0.1

0.05

-0.05

-0.1

1 1 1 1 1 1 1 1
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

We plot the posterior mean of the latent facf, the demeaned short rate from data, and the OLS estimate
of the basic Taylor Rule, which is computed by running OLS on equation (9). The latent factor, short rate,
and OLS residuals are all annualized.

49



Figure 2:EXPECTEDEXCESSBOND RETURNS

Conditional Expected Excess Return
4r AR m I I M [
W — 4 Quarter Bond
—— 20 Quarter Bond

12

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

We plot the conditional expected excess holding period re}fyimﬁ)l] of a four-quarter and twenty-quarter
bond implied by the posterior mean of the latent factors through time.
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Figure 3:MONETARY POLICY SHOCKS
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In the top panel, we plot the OLS estimates of the residuals of the backwards-looking Taylor rule (equation
(10)). The bottom panel plots the corresponding model-implied monetary policy shocks, which are the
posterior mean estimates ejVIP’B = 610u? from equation (13). In both the top and bottom panels, we
plot annualized monetary policy shocks. NBER recessions are shown as shaded bars.
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Figure 4:IMPULSE RESPONSES OFFACTORS
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The left (right) column shows the impulse response for the model (an unrestricted VAR). The unrestricted
VAR contains GDP growth, inflation, and the short rate. #laxis responses are in percentages, and we
show quarters on the-axis. All initial shocks are 1% and are computed using a Cholesky decomposition
that orders the variabldg,, 7, f;*) in the model andg;, 7, ) in the unrestricted VAR. To produce the
bottom left-hand plot, we shock the latent factor in the model VAR in proportion so that the initial response
to the short rate is 1%.
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Figure 5:IMPULSE RESPONSES OFY IELDS
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The panels show the responses of the one-, four- and twenty-quarter yield, and the term spread between the
twenty- and one-quarter yields to 1% shocks to GDP graw#mnd inflationr,. We also plot the response of

a 1% shock in the short rate, which is computed by constructing a shock to the state variables proportional
to their Cholesky decomposition that sums to a 1% short rate shock. Yields grattie are annualized and

we show quarters on the-axis. The impulse responses are computed using a Cholesky decomposition that

orders the variablegy;, ¢, f*).
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Figure 6:IMPULSE RESPONSES FROMFORWARD-LOOKING TAYLOR RULES
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We plot impulse responses to GDP (top panel) and inflation (bottom panel) from benchmark Taylor rules and
from forward-looking Taylor rules (finite horizon, without discounting) to a 1% shock in the latent fggtor,
Yields on they-axis are annualized and we show quarters orrthgis. The impulse responses are computed
using a Cholesky decomposition that orders the varialgles:, f;*).
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