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Abstract

Significant nonlinearities are found in several cyclical components macroeconomic time series

across countries. Standard equilibrium models of business cycles successfully explain most first

and second moments of these time series. Neverthelesss, this paper shows that a model of

this class cannot replicate nonlinear features of the data. Applying the Efficient Method of

Moments (Gallant and Tauchen, 1996, 2000) methodology to build an algorithm that searches

over the models parameter space establishes the parameterization that best allows replication

of all statistical properties of the data. The results show that this parameterization captures

nonlinearities in investment but fails to account for observed properties of consumption.
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1 Introduction

The conditional distributions of cyclical components of many macroeconomic time series signif-

icantly deviate from a Gaussian distribution and exhibit conditional heteroskedasticity (ARCH,

GARCH). This paper refers to these characteristics as nonlinearities in a statistical sense.1 As

Table 1 and Table 2 show, these nonlinearities are common for most National Accounts aggregates

for the United States and for a sample of OECD countries including France, Italy, Japan, Mex-

ico and the United Kingdom. Rothman (1996) and Razzak (2001) also document the existence

of asymmetries in business cycles for many industrialized countries. Standard general-equilibrium

models of business cycles are successful at explaining most first and second moments (mean, vari-

ance, covariance, persistence) of these time series. This paper shows, however, that the canonical

Real Business Cycle (RBC) model cannot replicate the nonlinearities reflected in the skewness,

kurtosis and conditional volatility characteristic of United States National Accounts. This is the

case even if the model’s parameters are allowed to adjust to values that yield the best possible fit

to the standard properties of the data. Moreover, the parameters that lead to simulations that

most closely resemble the nonlinear features of the data differ sharply from those that would result

if the nonlinearities are ignored, suggesting sensitivity of model parameters to nonlinear features.

This paper shows that additional insight into economics can be gained by taking a flexible

approach and by studying nonlinearities of economic time series. As described below, nonlinearities

are features of the data that are the object of study (e.g. studies of asymmetry of industrial

production, excess volatility of international capital flows, etc.). Comparing the nonlinearities of

the data and of simulated time series allows us to evaluate whether economic models can replicate

those features observed in the data. Additionally, the additional moments that characterize the

nonlinearities place more restrictions that the economic models have to match. These restrictions

help choose parameters of a candidate economic model because there is more information about the

time series of interest in addition to that contained in the first and second moments. An additional

reason to focus on higher moments is that they are important determinants of risk and may affect

the results of performing policy experiments. As Kim and Kim (2000) have shown, the use of
1See Gallant et al. (1993). This notion is different from the concept of nonlinearity used in the deterministic chaos

literature (e.g. Potter (1999) or Brock (2000)).
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linearization solution methods that fail to incorporate the effect of higher order moments leads to

incorrect welfare evaluations when performing policy experiments that are captured when higher

moments are taken into account.

Interest in the study of nonlinearities in macroeconomic time series surged during the 1980’s.

Neftci (1984) presented evidence that unemployment fluctuations were asymmetrical along the

business cycle. He developed a statistical test of time series asymmetry and found significant

evidence that increases in unemployment were of larger magnitude and lasted fewer periods than

reductions in unemployment. In the financial time series literature, Hinich and Patterson (1985)

found that daily movements in fifteen commonly traded stocks were generated by a nonlinear

process.

In the second half of the 1980’s there was great interest in the statistical modelling of macroe-

conomic and financial time series by using nonlinear deterministic chaos models. Some empirical

studies in this vein posed the question of whether macroeconomic data were characterized by non-

linear chaos, nonlinear stochastic processes or linear stochastic processes. Brock and Sayers (1988)

tested whether real macroeconomic variables could be described by deterministic chaos. They

found that while it was hard to find evidence of chaos, Post-war employment, unemployment and

industrial production could be well approximated by nonlinear stochastic models. Ashley and Pat-

terson (1989) developed a test that detects deviations from linear stochastic processes, either in the

form of nonlinear stochastic process or in the form of deterministic chaos. Their test of industrial

production strongly “suggests that nonlinear dynamics (deterministic or stochastic) should be an

important feature of any empirically plausible macroeconomic model” (Ashley and Patterson, 1989,

p. 685).

Recent research has made further progress in the study of nonlinearities in macroeconomic

time series. Extending the work by Gallant et al. (1993), Potter (2000) generalized the use of

linear impulse response functions from the Vector Autoregression (VAR) literature to the case

of nonlinear stochastic processes. Altug et al. (1999) tested whether technology shocks are the

cause of the nonlinear structure observed in production. Several alternative specification of Solow

residuals were derived and the hypothesis of linearity was tested. The authors found that there is

little evidence of nonlinearity in technology shocks, indicating that it is a nonlinear transmission
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mechanism (economic process) that generates nonlinearities in the aggregate series. Evidently,

linear models with Gaussian shocks cannot produce asymmetry and nonlinearity in the simulated

time series.

The goal of this paper is to document the evidence of nonlinearities for macroeconomic time

series and to explore whether a workhorse RBC model can explain these nonlinearities. Section 2

documents evidence of nonlinearities in quarterly National Account aggregates for five OECD

countries. The evidence presented are for mild forms of nonlinearity (skewness, kurtosis) and not

for more general forms of nonlinearity (e.g., conditional heteroskedasticity). Nonlinearities are

present across a sample of countries. However, nonlinearites are different for the same series across

countries. For example, while Private Consumption in Canada is negatively skewed and has high

kurtosis, in Great Britain it is positively skewed and has low kurtosis. Moreover, the null hypothesis

that Investment is linear is rejected in three of the five countries studied. Having obtained evidence

of nonlinearities in an international setting, the paper documents that nonlinearities are also present

in US quarterly time series. For the United States the series that exhibit the greatest deviations

from the hypothesis of a Normal process are investment and exports.

The next step in the study is to evaluate whether a workhorse RBC model can capture the

nonlinearities present in the time series. Section 3 presents a model similar to that studied by

Brock and Mirman (1972). The model includes a labor/leisure choice and an investment adjustment

cost and is solved using a nonlinear, exact solution method: value-function iteration. The reason

for using this computationally intensive method is that it allows exploration of the full nonlinear

properties of the underlying economic model. Linearization solution methods force simulated series

that are linear and gaussian and hence cannot be used to explore whether the model can explain

the observed nonlinearities. The model’s ability to match the statistical properties of the data

is evaluated by performing an experiment that links estimation and simulation techniques. This

algorithm allows the model’s parameters to change in order to do their best to match the data’s

statistical process.2

Sections 4 and 5 present the results of the analysis of the RBC model using the Efficient Method

of Moments approach (Gallant and Tauchen, 1996, 2000). The economic model is estimated to the
2See Gallant (1995), Hansen and Heckman (1996) and Browning et al. (1999).
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series of consumption and investment. The estimation is based on these two series for two reasons.

First, focusing on two series allows for easy comparison to previous studies because the study of

these two time series has been the focus of protracted analysis in macroeconomics. The second

reason is a technical one. The estimation technique depends on a complete statistical description of

the observed time series. As the number of series under study increases, the number of parameters

of the statistical model increases rapidly, making it harder to estimate it accurately. In order to

focus on a complete set of statistical properties, estimation needs to focus on a few series of interest.

The econometric procedure is a two-step process. The first step is to fully characterize the sta-

tistical properties of investment and consumption for the United States. The statistical tool used is

a Seminonparametric (SNP) estimator (Gallant and Tauchen, 1989). The SNP estimator estimates

a family of statistical models of the time series and chooses the most parsimonious model that best

fits the data. The first important result of the analysis is that conditional heteroskedasticity and

non-Normality are important features of both the consumption and the investment series. This

confirms the preliminary evidence documented in Section 2. A simple VAR structure is not suffi-

cient to characterize the statistical properties of macroeconomic time series. The second step is to

estimate the canonical RBC model using the Efficient Method of Moments (EMM) approach (Gal-

lant and Tauchen, 1996, 2000). EMM uses the information from the statistical model of the data

and chooses parameters that make the economic model most closely resemble the statistical model

under a minimum chi-squared (GMM) criterion. The second important result of the analysis is

that the canonical RBC model cannot replicate either the conditional heteroskedasticity or right

conditional distribution (non-Normal) of consumption and investment. A third result is that the

parameter estimates change after taking into account these nonlinearities.

2 Empirical Evidence

This section presents preliminary evidence of statistical nonlinearities in OECD and US data. The

series of interest are the following: Private Consumption, Private Investment, Government Expen-

ditures and Public Investment, Exports, Imports and Aggregate Output. Inventory Investment and

Fixed Gross Capital Formation series are added together to get a measure of Private Investment.
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The RBC literature primarily focuses on the business cycle frequencies of the macroeconomic

time series and it is common to filter the data to remove trending and seasonal effects. This is

typically done using the Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1980). The problem of

using the HP filter is that it may distort sample second moments of the data in small samples (King

and Rebelo, 1993). That is, the HP filter may distort the true volatility, co-movement and persis-

tence of the observed data at business cycle frequencies. Hence, rather than using the HP filter, an

optimal band pass filter (BP) (Christiano and Fitzgerald, 1999; Baxter and King, 1999) is used to

filter the data 3 The BP filter used in this application minimizes the Mean Squared Error between

the estimated spectral decomposition and the true spectral decomposition of a particular process

and works well for standard macroeconomic time series. The filter used in practice is symmetric

(stationary), nonlinear and isolates the business cycle properties of the data between 6 and 32

quarters. This filter assumes that the raw data is close to having a unit root. Twelve observations

at the beginning and at the end of the sample are lost since the filter is a double-sided moving

average filter.

Table 1 gives summary statistics of the BP filtered data for OECD National Accounts aggre-

gates.4 Three columns are of particular importance. The skewness and kurtosis estimates show

important deviations from normality (the normal distribution has a skewness of 0 and a kurtosis

of 3) for most macroeconomic time series. A positive skewness indicates that increases in a time

series tend to be small but relatively more frequent than negative changes. Kurtosis in excess of 3

indicates that there are frequent “large” changes the time series. The Jarque-Berra (1987) statistic

(J-B column) is a statistical test of the null assumption of normality based on the estimated kurtosis

of the series of interest. This statistic only tests for a mild form of nonlinearity, that of non-Normal

probability processes. Macroeconomic time series could be non-Normal even if the economic model

were linear, as long as the shocks were not Normally distributed. However, as pointed out above,
3The qualitative results of this paper would not change if an HP filter had been used instead. As noted in Section 2,

significant nonlinearities are present regardless of what filter is used. The top of Table 2 gives US summary statistics
for BP filtered quarterly time series data. The bottom of the table shows the same statistics for the HP filtered
data for comparison purposes. The features of non-Normality for skewness and kurtosis are present regardless of the
filter used. If anything, the HP filter accentuates the negative skewness and excess kurtosis of investment. In this
application we use the BP filter by Christiano and Fitzgerald (1999).

4OECD data comes from the OECD Statistical Compendium. Updates are from the OECD Source Web Site. The
data is quarterly and, in most cases, spans the time period from 1960Q1 to 1998Q4.
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Solow residual analysis has shown that the productivity shocks are Normally distributed. Thus,

it must be the case that the economic transmission mechanism is nonlinear. This study will take

into account additional nonlinearities (like conditional heteroskedasticity) when the RBC model is

evaluated against US Data.

There is significant evidence of nonlinearity for most countries and macroeconomic time series.

Four of the six reported values for the Australian National Accounts significantly deviate from

Normality. For Canada, one can reject the null hypothesis of Normality for five of the six series at

the 90% critical level. For Great Britain, the number of rejections is four. These deviations capture

the significant asymmetry (skewness) and excess volatility (kurtosis) of many National Account

statistics. Over the 5 countries, 19 of 30 data series have significant deviations form Normality.

It is important to note that there is not much robustness in the form of nonlinearities across

countries. Australia and Great Britain private consumption shows too little kurtosis relative to the

normal distribution; the same series exhibits excess kurtosis in Canada and Japan. Also, private

consumption is negatively skewed in Canada; it is positively skewed in Australia, Great Britain

and Japan, and symmetric in Mexico. Similar lack of pattern is present for other National Account

time series as well. There is, more robustness in the patter of kurtosis in investment. For three of

the countries, investment exhibits important excess kurtosis (Australia, Canada and Mexico); the

estimate is very close to Normal for the other two countries (Great Britain and Japan).

The data for the United States comes from the National Income and Product Accounts (NIPA)

collected from the Department of Commerce State of the Nation webpage. The data is quarterly

and covers the period from 1959QI to 1998QIV, including the latest revision of the series released in

November 1999. Two data series, private consumption and the sum of gross capital accumulation

and changes in inventories, called investment, are later used in the estimation, but general statistical

properties of all the main aggregates are reported.

Table 2 gives summary statistics for the band pass filtered data. For the United States only two

series, Investment and Imports, show significant deviation from normality. Particularly investment

shows a significant asymmetry (negative skewness) and excess volatility (kurtosis in excess of 3),

features that have been emphasized in many microeconomic studies.

Figure 1 gives a graphical representation of the non-Normality of investment and the relative

7



normality of consumption. The top row shows the two series as percentage deviations from the

mean trend. The bottom row shows histograms for the two series. For consumption, the observed

distribution appears to be symmetric. For investment, the observed distribution is nonsymmetric.

There appear to be more frequent small positive improvements in investment, while there are not

as many negative changes, but they can be larger in magnitude.

Figure 2 captures some of the conditional heteroskedasticity of the two series. The top row shows

the squared consumptions residuals obtained from a VAR(3) regression. The squared residuals are

a proxy for volatility of consumption. The bottom row shows the squared investment residuals for

the same VAR(3) regression. From the two graphs, one can see periods of low volatility and periods

of high volatility in both time series, suggesting the presence of conditional heteroskedasticity.

3 Model

The RBC model is a simple variation of a Brock-Mirman stochastic growth model. The agent

maximizes lifetime utility by choosing savings, consumption and labor. There are no distortions in

the RBC model so the equilibrium can be represented by a central planner problem.

The problem faced by the planner is to maximize her lifetime utility:

max
{ct,kt+1,lt}

E0

t=∞∑
t=0

βtU(ct, lt) (3.1)

subject to the budget constraint:

ct≤F (kt, lt)− kt+1 + kt(1− δ)− φ

2
kt

(
Ψ− kt+1 − kt(1− δ)

kt

)2

. (3.2)

E0 is the expectation given period zero information, the initial capital stock and the current state

of the technology shock. ct is consumption, kt is the capital stock, lt is the labor supply, all dated

at period t. β is the subjective time discount rate. F (kt, lt) is domestic product. The capital stock

inherited from the previous period depreciates at a constant geometric rate, δ, and is augmented

this period by gross investment, kt+1−kt(1−δ). There is an isoelastic adjustment cost to investment

captured by the last term of (3.2). Ψ≡ i
k is the ratio of steady state investment to steady state
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capital. Adjustment costs are zero at the certainty equivalence steady state. Adjustment costs

are introduced here not only because they have been shown to work reasonably well to explain

aggregate investment behavior at the aggregate level (Cooper and Haltiwanger, 2000), but also

because they may capture other distortions present in the real world that this simplified model

does not consider and will give flexibility in the estimation of the model.

The utility function is defined as in Greenwood et al. (1988). The utility is defined as a composite

good made up of consumption, ct, and labor, lt:

U(ct, lt) =

(
ct − lωt

ω

)1−θ
− 1

1− θ
.

1−ω is the inverse of the intertemporal elasticity of substitution in labor supply. The marginal rate

of substitution between consumption and leisure depends on consumption only, for this specification

of instantaneous utility. This allows us to solve for the optimal labor supply period-by-period, l̂t,

l̂t ≡ arg maxltE0

t=∞∑
t=0

U(ct, lt),

which will help in the numerical solution of the model.

The domestic product is given by a Cobb-Douglas production function:

F (kt, lt) = Akα
t l̂t

1−α
exp zt

Production is perfectly competitive, so F (·) exhausts all factor payments. α is the income share

paid to capital, and 1−α is the share paid to labor. zt is a technological (productivity) shock with

zero mean and variance σ. The stochastic shock, zt, is assumed to follow an AR(1) process. That

is:

zt = ρzt−1 + εt, εt ∼ N(0, σε). (3.3)

The stochastic growth model’s parameters are collected into the parameter vector Θ = (σε, ρ, α, A, ω, δ, β, φ, θ).

Given the model’s parameters, Θ, the equilibrium is defined as an infinite sequence of variables

{kt, lt, ct}∞t=0 that solve the problem in (3.1), and that satisfy the aggregate resource constraint
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(3.2), subject to initial conditions for the capital stock and the shock, k0, z0. The model can also

be caste as a solution to a stochastic dynamic programming problem in the usual way, and the

equilibrium concept would be a recursive competitive equilibrium.

The stochastic growth model is solved using the Value Function iteration approach.5 Since

there is strong evidence of nonlinearity in the macroeconomic time series, using local methods that

approximate the agent’s problem using linear decision rules is not an option if the objective is for

the model to replicate those nonlinearities. Even if the underlying problem is nonlinear, the solution

technique will give no opportunity to the economic model to capture nonlinearities in the data. At

most, a linearized economic model could capture non-Normality if the shocks were non-Normal. As

pointed out in the introduction, there is little evidence that real shocks are nonlinear. Furthermore,

the estimation technique studies the simulations’ ergodic distribution and so requires the use of

a global solution method. The approximation error of local solution methods grows as simulated

series move “far away” from the deterministic steady state of the model, even if they are still part

of the ergodic distribution. 6

4 Statistical Properties of the Data

The approach followed here to assess the ability of the stochastic growth model proposed in Sec-

tion 3 to account for the observed business cycle regularities is based on Efficient Method of Mo-

ments (EMM) methodology developed by Gallant and Tauchen (1996, 2000). This method consists

of two steps. In the first step, the statistical properties of the data of interest are characterized

using a Seminonparametric (SNP) estimator. Successively more complex statistical models are

estimated with the data until a full statistical characterization is achieved (full in the sense that

the quasi-Maximum Likelihood probability of the statistical model is maximized but also takes into

account the number of statistical parameters being estimated). The statistical models are flexible
5The grid for capital has 701 points for the capital stock and covers K ± 20%. A 9-point quadrature grid is used

to approximate the stochastic process in (3.3) (Tauchen and Hussey, 1991). The simulations have a length of 20,000
periods, after dropping the first 5,000 periods to eliminate the impact of starting values on the simulation.

6An appendix, available from the author upon request, discusses the use of alternative solution techniques for
solving stochastic general equilibrium (SGE) models of real business cycles. The appendix illustrates the failure of
the Linear Quadratic solution method to solve models when the variance of the stochastic process is large or when
the economic model is very nonlinear; the Value Function solution method does not fail to satisfy the first order
conditions (FOC) of the model.
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enough so as to account for increasing time dependence in the mean of the process (VAR) for con-

ditional heteroskedasticity (ARCH, GARCH) and non-Normal innovations. The key to this first

step is to take a flexible approach to estimating the statistical model. As more data are available,

increasingly rich statistical models are used. The estimates of the statistical model then serve as

moments for the second step of the EMM procedure, the simulation stage, which is described in

the next section. The resulting statistical model is therefore referred to as the score generator (it

is also referred to as the auxiliary model in EMM terminology).

The SNP estimator used here is adopted from Gallant and Tauchen (1998). Define yt as the

“true” stochastic process of a particular time series to be estimated (consumption and investment

in this case). ỹt is the observed stochastic process, that is, the quarterly observations from the

United States NIPA accounts. f(yt | yt−L, . . . , yt−1,Ω) is the distribution of the statistical model

that describes the observed data, with Ω representing the parameter vector of this statistical model.

The goal of the SNP procedure is to estimate the transition density function of the observed

data as a full characterization of all statistical properties of the time series. The SNP estimator

requires parametric assumptions regarding the statistical properties of the data. In particular, SNP

assumes that the data has the following structure:

f(yt | yt−L, . . . , yt−1,Ω) ∝ R−1
xt−1

h
[
R−1

xt−1
(yt − µt−1)

]
,

where xt−1 = (y′t−L, . . . , y′t−1)
′ is the vector of lagged data Rxt−1 is an upper triangular matrix,

Rxt−1R
′
xt−1

= Σxt−1 = V ARt−1(et); that is, the matrix square root of the conditional variance-

covariance matrix. µt−1 is the conditional mean of the process. The linear error is defined as

et ≡ yt − µt−1.

The conditional mean is assumed to be given by:

µt−1 = b0 + B1yt−Lµ + B2yt−Lµ+1 + · · ·+ BLµyt−1

µt−1 = b0 + Bxt−1

That is, the conditional mean can be described by a vector autoregressive process. Ψ = vec[b0 |
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B1 · · ·BLµ ] groups the parameters of the VAR structure in a parameter vector.

The conditional variance (scale) is assumed to be given by:

vech(Rt−1) = ρ0 +
Lr∑
i=1

Pi|et−1−Lr+i|+
Lg∑
i=1

diag(Gi)Rt−2−Lg+j

The scale captures an ARCH structure through the P matrices and a GARCH structure through

the G matrices. In general, SNP nests a GARCH(Lg, Lr) structure. The parameters that describe

the scale are arranged into the following vector T = vec[vec ρ | vechP1 · · ·PLr | vechG1 · · ·GLg ].

The G and P matrices are assumed to be diagonal meaning that the conditional variance terms

for consumption and investment only depend on their own lagged innovations and not on the other

series’ lagged innovations.

The SNP estimator nests a non-Gaussian transition density (Heterogeneity) because it assumes

that the density of the error is a transformation of the normal distribution. A hermite polynomial

is used for this purpose:

h
[
R−1

xt−1
(yt − µt−1)

]
∝ [P (z, x)]2 φ(t | µ,R)

PK(z, x) =
Kz∑
α=0

Kx∑
β=0

(aβαxβ)zα

where z = R−1(yt − µt−1). By increasing the degrees of the polynomial P (z, x), SNP attains

increasingly rich statistical structures. If Kz = 0 and Kx = 0 then the statistical model has a

Gaussian error structure. If Kz > 0, Kx = 0 then the statistical model has a semiparametric

error structure. If Kz > 0, Kx > 0 then conditional distribution is fully non-parametric and

depends on lags of the data. The parameters of the hermite polynomial, aβα, are collected in

the matrix A = [aβα]. The number of parameters grows rapidly as one expands through the

hermite polynomial. Thus, SNP allows suppression of interactions between series through the

control parameters Iz and Ix so that only the terms with interaction between different series of

degree greater than Kz − Iz and Kx − Ix are estimated.

The entire SNP parameter vector Ω is given by Ω = [A | Ψ | T ]. 7 This structure is flexible
7It is the flexibility of the SNP score generator to nest a variety of statistical models that leads EMM to be
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enough to capture a rich family of statistical processes, yet it is tractable enough to easily obtain

scores to be later used in the the second step of the estimation. The empirical RBC literature

has focused on a vector autoregressive structures to summarize the statistical properties of data.

The SNP hierarchy nests VAR. It also allows for richer statistical features, such as periods of low

volatility followed by periods of high volatility (i.e., conditional heteroskedasticity), asymmetric

business cycles (i.e., skewness) and “excess volatility” (i.e., excess kurtosis). These are features of

interest and are characteristic of many macroeconomic time series.

Statistical model selection within the SNP procedure is done by expanding through the SNP

hierarchy of candidate statistical models. Gallant and Tauchen (1998) recommend the use of the

Schwarz Bayesian Information Criterion (BIC) to help choose amongst different statistical models.

Table 3 shows the expansion through the SNP family of models. The arrows on Table 3 show

the BIC-preferred models for expansion through the SNP hierarchy. 8 In particular, increasing the

degree of the hermite polynomial, Kz increases the BIC scores. The lowest score was a statistical

model with a VAR(3) structure for the conditional mean with GARCH(1,1) for the conditional vari-

ance; there is strong evidence that non-Normalities are important. Therefore, a VAR(3) structure

with ARCH(1) and a polynomial of degree 4 will be used as the benchmark model in estimation,

hereafter referred to as the Benchmark Model.

Two additional oversimplified statistical models are used in the estimation step to test for the

robustness of the estimates to the particular statistical specification and to evaluate the importance

of nonlinearities. The first is a linear VAR(3) score generator, hereafter referred to as the VAR

Model.9 This statistical model resembles the RBC procedure of choosing parameters to match the

impulse responses (IR’s) generated by an economic model to the impulse responses obtained from

the macroeconomic time series captured by a VAR. With this specification, the EMM procedure

efficient. Gallant and Nychka (1987) show that as the number of parameters increases with the sample size, SNP is
a consistent estimator of the transition density.

8One problem encountered in the SNP estimation is that for some specifications (those marked with an asterisk
(*) in Table 3) it was not possible to obtain standard errors for the estimate. A second problem is that the estimator
reached a limit on the number of iterations to find the optimum, probably because the objective function was too
flat for the particular specification regardless of the starting value. In either case, the SNP scores cannot be used in
the EMM estimation because both the estimates and the standard errors are used to build the objective function.

9While the VAR Model is the BIC-preferred model, the Benchmark Model is the overall preferred model because
of the statistically significant parameters capturing the nonlinear structure and the ARCH structure of the data.
There is evidence that BIC is too conservative of a criterion and chooses overly-simplistic statistical models of the
data.
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picks the economic model’s parameters so that the economic model’s simulations match a VAR(3)

of the data.

The second oversimplified statistical model is a VAR(3), ARCH(1) conditional variance score

generator, hereafter referred to as VAR-ARCH Model. This statistical model extends the VAR

Model by adding conditional heteroskedasticity terms to the VAR(3) statistical model of the data.

The VAR-ARCH model includes some form of nonlinearity (conditional heteroskedasticity) but the

shocks are still Gaussian.

Table 4 shows the parameter estimates, standard errors and corresponding t-ratios for the

Benchmark Model.10 The Table shows that the parameter that captures the conditional volatility

for investment (P (i) = 0.321) is significantly different from zero (t-ratio = 5.712). The parameter

that captures the kurtosis for investment (A(i4) = 0.069) is positive and significant (t=4.108), indi-

cating excess kurtosis for investment. This confirms the observation from Table 2 that investment

is not Normally distributed. Meanwhile, the behavior of consumption appears to be more Normally

distributed. The parameter that captures the conditional volatility for consumption (P (c) = 0.168,

t=0.740) is not significant nor are the parameters that capture the higher order terms of the hermite

polynomial (A(c3) = −0.164, t=-0.275, A(c4) = 0.032, t=1.225).

5 Simulation and Estimation

In the second step of the EMM method, the economic model is simulated for a candidate set of

parameters (the economic model is referred to as the structural model in the EMM terminology). A

comparison is made between the statistical parameter estimates obtained in the SNP step and the

statistical parameters obtained using the simulated data and the same statistical model. Then, the

candidate parameters of the economic model are adjusted until the economic model’s simulations

have statistical properties similar to those of the data. The objective function is a Chi-squared

(i.e., Generalized Method of Moments (GMM)) statistic.

This econometric technique belongs to the class of Simulated Method of Moments (SMM)

estimators. The estimation technique is made efficient by taking a flexible approach in the first
10Similar tables are available for the VAR and the VAR-ARCH statistical models from the author.
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step of estimation. An appendix, available from the author upon request, describes the approach

in detail and gives references.

Following Gallant and Tauchen (1999), the second step of the EMM methodology starts by

using the score generator from SNP to define the GMM Objective Function. Under the null that

the economic model is the “true” generator of the realized time series, the gradient of the SNP

likelihood function should be approximately equal to zero at the estimated statistical parameters,

Ω̂:

(∂/∂Ω)log[f(yt | yt−L, . . . , yt−1, Ω̂)] ≈ 0 (5.1)

This defines a vector of moments of the same length as Ω. Define ŷt(Θ) as the simulated data

process from the parameters Θ of the stochastic growth model. The EMM estimator plugs is ŷt(Θ)

into the SNP score generator and changes the parameters of the economic model until the moments,

defined by (5.1), of a particular parameterization Θ are approximately equal to zero.

The GMM criterion is used to evaluate the simulated time series to get Θ̂, the estimated

structural parameters. The EMM objective function is distributed χ2 with degrees of freedom

equal to the difference between the number of parameters in the score generator and the number

of parameters being estimated.

Table 5 gives the point estimates for the parameters of the stochastic growth model using the

three alternative statistical models of consumption and investment (the SNP score generators). Ta-

ble 5 also gives a set of parameters that could have been used if the economic model were calibrated

in the standard way. The coefficient of relative risk aversion, θ, is set equal to 1 (logarithmic utility).

The parameter that sets the capital share of income, α, was set equal to 0.36, as in usual in the

RBC literature (e.g., Kydland and Prescott (1982)). The quarterly depreciation rate parameter,

δ, is set equal 2.5%. The parameter that determines the intertemporal elasticity of substitution

in labor supply, ω, is set equal to 1.44, which Mendoza (1991, 1994) used successful in models of

international business cycles. This parameter implies an intertemporal elasticity of substitution in

labor supply of 2.27%, which is in the range found in empirical studies by Heckman and Macurdy

(1980) and Macurdy (1981). The first order autocorrelation parameter for the productivity shock,

ρ, and the standard deviation for the shock, σεz , are set to 0.95 and 0.7%, respectively, as is usual
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in the RBC literature (e.g., Cooley and Prescott (1995)). Finally, the investment adjustment cost

coefficient, φ, is set equal to 0, as closed-economy RBC models typically do not include investment

adjustment costs.

Perhaps the most striking difference amongst the estimates for the three statistical models is

in the size of the investment adjustment cost coefficient, φ. For the VAR Model, the coefficient is

very large (10.21); for the VAR-ARCH Model it is smaller (3.01); the coefficient is even smaller

for the Benchmark model (2.93). This results in the Benchmark model producing simulations with

a small average adjustment cost (0.003% of GDP). A simulation of the Benchmark model with

φ = 10 would have yielded a larger average adjustment cost (0.007% of GDP), twice as large as the

Benchmark but still economically small.

Intuition for these results can be gained by comparing the properties of the simulated series of

consumption and investment reported in Table 6. In the VAR Model, the high estimate for the

adjustment cost coefficient leads to an investment series that has much smaller kurtosis (2.359)

than in the data (3.559) or in either of the other statistical models (2.824 for the Benchmark Model

and 2.827 for the VAR-ARCH Model). This high φ works to smooth changes in investment and

this is appropriate for the VAR Model because, by construction, it neglects the importance of the

kurtosis of investment present in the data. Thus, the adjustment cost parameter, φ, can increase

to help the economic model with other statistical features without punishment for producing low

kurtosis. Additionally, in smoothing the data, the big adjustment cost works against producing

any conditional volatility that could be generated by the economic model. In comparison, the

Benchmark and the VAR-ARCH models take into account the conditional volatility and capture it,

thus requiring much smaller parameter estimates for φ. The higher adjustment cost coefficient also

results in less volatile series. The VAR Model yields a much lower level of volatility for consumption

(0.16% Standard Deviation) and investment (0.25%) than either the Benchmark Model (0.39% for

consumption and 0.72% for investment) or the VAR-ARCH Model (0.31% for consumption and

0.70% for investment).

The parameter ω is also significantly different across models. For this parameter, the main

differences occur between the Benchmark Model (1.39), the VAR Model and the VAR-ARCH

Model (1.47 range). These values imply a labor intertemporal elasticity of substitution of 2.13%
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for the Benchmark Model and of 2.56% for the VAR and VAR-ARCH models. Both are in the

range of values estimated in Macurdy (1981) and Heckman and Macurdy (1980).

The parameter estimates for the volatility and the persistence of the shock process (3.3) are

different for the three alternative models. For the VAR Model, the estimate for the standard

deviation of the shock, σεz , is 0.29% while the estimates for the Benchmark and VAR-ARCH

models are in the 0.9% range. The estimate for the autocorrelation parameter, ρ is 94% for the

simple VAR Model (VAR(3) structure), but taking into account conditional heteroskedasticity and

non-Normality lowered the point estimate for ρ to the 83–84% range. The low level of correlation

of the errors and the difference in the standard deviation result in similar unconditional means

for the shock. The two parameters are changing from one statistical model to another to capture

the ARCH features of the investment. However, as explained in the sections detailing the results

for each of the statistical models, the economic model does not have a good way to capture the

conditional heteroskedasticity.

A troubling result from the estimation is that overall the stochastic growth model of Section 3

fails to pass the null hypothesis that the economic model is the “true” model of the data. This is

reflected in the high levels of the χ2 statistic presented in the next to last row of Table 5. This is the

“omnibus” specification test given by the value of the GMM objective function. It is distributed χ2

with degrees of freedom equal to the number of SNP parameters minus the number of parameters

being estimated (reported in the last row of the same table). The better the statistical model is in

the SNP-sense (the Benchmark Model being the best, and the VAR Model being the worse) the

worse the rejection of the hypothesis (234 for the VAR Model, 362 for the VAR-ARCH Model and

2211 for the Benchmark Model). This pattern does not indicate that the VAR statistical model is

better at describing the data. Rather, it indicates that the economic model is closer to replicating

the features in a purely linear statistical model than the features in nonlinear statistical models.

It fails to replicate the conditional heteroskedasticity (Benchmark and VAR-ARCH models) and

nonlinearity (Benchmark models) that are present in the data. The next three subsections study

in more detail the estimation results for each alternative statistical model, as well as the failures of

each as indicated by the sample scores obtained in each corresponding estimation.
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5.1 Benchmark Model

The Benchmark Model has a VAR(3) structure for the conditional mean, an ARCH(1) structure

for the conditional variance and a non-Normal innovation structure with a hermite expansion of

the fourth degree with all interactions suppressed. Table 8 gives the stochastic growth model’s

parameter estimates, the criterion difference confidence intervals, the Wald standard errors and

t-ratios obtained from the Wald standard errors. The criterion difference confidence intervals are

obtained by inverting the objective function which allow for non-symmetric confidence intervals.

An initial grid search was done over the parameter space of the stochastic growth model to get

good starting values for the estimation, and further testing is done to mitigate problems with local

minima. For the Benchmark model, the objective function is distributed χ2(21) and is equal to

2280.92, well above the 95% significance level of 32.7. The economic model is rejected as the “true”

data generating mechanism, as mentioned above.

Columns (1)-(3) of Table 7 give the mean scores, standard errors and t-statistics for the scores.

The sample score for the ARCH term of investment, P (c), is significantly above zero. This indicates

that the economic model cannot replicate investment’s ARCH structure of conditional variance.

This should not come as a surprise because the economic model does not have a good way to

replicate the conditional heteroskedasticity observed in the data. An example of an economic

feature that might help in this respect is the presence of financial friction that is occasionally

binding and generates excess volatility when it binds. In this case, the simulated time series would

have periods of low volatility when the constraint is not binding and periods of high volatility

when it binds, generating the desired conditional heteroskedasticity. However, at least for the

U.S., the consumption series do not seem to exhibit conditional heteroskedasticity. Therefore, the

mechanisms that introduce conditional heteroskedasticity for investment must not do the same for

consumption. A possible solution to this consumption/investment dichotomy might be to use small

open economy (SOE) models. In deterministic SOE models the savings decision and the investment

decision are uncorrelated. In stochastic models this no longer is the case (Mendoza, 1991) but the

correlation is still weakened creating the possibility that introducing financial frictions may lead

to conditional heteroskedasticity in investment but not in consumption (this avenue is studied in
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Valderrama, 2001).

The RBC model fails to capture the non-Normality of the data. The mean score for A(c3), which

captures the skewness in consumption, is negative and significant indicating that the consumption

simulation is skewed (negatively) relative to the data. The mean score for A(c4), which captures

the excess volatility in consumption, is negative and significantly different from zero. The negative

mean score indicates that the economic model produces a simulation for consumption with overly

thin tails (too little kurtosis) with respect to the data. This means that the RBC model generates

consumption series that exhibit fewer large changes relative to the data. Meanwhile, the terms of

the hermite polynomial for investment are, all but one, insignificant, indicating that the economic

model is better at capturing the statistical properties of investment. In summary, the stochastic

growth model can replicate some of the non-Normal features of investment but not the statistical

features of consumption. Again, the results suggests that the “right” economic model should

introduce non-linearities in one of the time series, investment, but not in the other, consumption.

Therefore, we find more evidence that a candidate economic model that explains the joint behavior

of consumption and investment must introduce nonlinearities in investment and not in consumption.

5.2 VAR-ARCH Model

Table 9 gives the estimates for the stochastic growth model parameters for the first oversimplified

statistical model, the VAR-ARCH Model. The first important observation is that the relative

performance of the economic model in matching the statistical properties of the data improves

relative to the Benchmark Model. The χ2(12) statistic is 335.706. The 95% critical value is 22.4.

Nevertheless, the economic model is still rejected as the “true” data generating mechanism. The

economic model has a simple AR(1) stochastic process and so the heteroskedasticity present in the

data has to be captured by the preference and technology parameters.

Columns (4)-(6) of Table 7 give the mean scores, standard errors and t-statistics for the scores.

The economic model fails to match the stochastic volatility structure for consumption and invest-

ment. All t-statistics but one are over 2, meaning that the stochastic growth model can not explain

the ARCH nature of the observed data. As mentioned above, this is evidence that a candidate

economic model that attempts to explain the full joint statistical properties of consumption and
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investment should include mechanisms that introduce conditional heteroskedasticity because it is

present in the data.

The economic model does capture some of the features of the VAR structure of the data, but

it has problems matching the evolution of the conditional mean for investment as a function of

lagged consumption, (B(it−2, ct−2) and B(it−1, ct−1) are both significantly different from zero) and

of lagged investment (B(it−3, it−3), B(it−2, it−2) and B(it−1, it−1)). Additionally, the stochastic

model cannot replicate effects on the conditional mean of consumption of lagged consumption of

the statistical model of the data (B(ct−3, ct−3) and B(ct−2, ct−2)). The intuition for these failures

can be gained by observing that the optimal path for the euler equations can written as second

order stochastic difference equations. In this case we are trying to use this model to explain a

third order stochastic process. This indicates that one possible “fix” for the economic model might

be to include another stochastic shock (factor), in addition to the productivity shock, to match

the VAR(3) structure of the data. So, in addition to evidence of the dichotomy of consumption

and investment in terms of non-linearity, there is also evidence that a candidate economic model

may need to include more than one stochastic shock to explain the joint statistical properties of

consumption and investment.

5.3 VAR Model

Table 10 gives the estimates for the VAR Model (VAR(3) with Normal shocks and no conditional

heteroskedasticity). In this case, the objective function is distributed χ2(9) and the objective

function is equal to 233.820, well rejected at any significance level. The 99% Critical value is 21.7.

As was mentioned above estimation yields a large adjustment cost coefficient, φ at the quarterly

frequency. More important, the estimates for two parameters that control the stochastic structure

(σεz and ρ) are significantly different from the estimates in the Benchmark and VAR-ARCH models.

The parameter estimate for the correlation of the error is much lower than in the other two models

and the estimate for the standard error of the innovation is higher.

Columns (7)-(9) of Table 7 give the mean scores, standard errors and t-statistics for the scores.

The model matches the volatility terms. All t-statistics are well under 2. These results contrast

with the results found in Sections 5.1 and 5.2. The economic model can capture the unconditional
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volatility of consumption and investment of the simple VAR model. The economic model nev-

ertheless fails to match the conditional volatility found in the data (captured by the Benchmark

and VAR-ARCH models). If the economics model’s parameters would be chosen just to reflect the

unconditional volatility then one would be satisfied with the parameters obtained from using the

VAR statistical model, summarized in Table 10. However, the parameters obtained using the VAR

Model do not match all the properties of the data. A more complete look at the dynamic structure

of volatility for consumption and investment would lead one to chose the parameters obtained using

either the VAR-ARCH or the Benchmark statistical models, summarized in Tables 9 and 8.

In regards to the VAR Structure for the conditional mean, the structural model has problems

matching the evolution of the conditional mean for investment at all lag lengths, both as a function

of lagged consumption, (B(it−3, ct−3), B(it−2, ct−2) and B(it−1, ct−1)) and as a function of lagged

investment (B(it−3, it−3), B(it−2, it−2), B(it−1, it−1)). This is similar to the problems detailed in

Section 5.2. Again, the results indicate that another shock, in addition to the productivity shock,

may be needed to capture the VAR(3) structure found in the data.

6 Conclusions and Extensions

The EMM analysis of the canonical RBC model indicates that the model cannot explain important

nonlinearities present in the data. In particular, the canonical RBC model fails to capture the

conditional heteroskedasticity of investment. The model captures the nonlinearity of investment; it

fails to capture that of consumption. This suggests that while the RBC model is nonlinear it does

not capture the “right” nonlinear features of the data.

The framework presented in this paper allows us to methodically evaluate how the RBC model

fails to capture the nonlinearities, which an analysis based on selected first and second moments

would miss. The study of higher moments gives more information about the economic series of

interest and places more restrictions on the candidate model to satisfy.

The analysis suggests possible avenues to “fix” the model to account for the observed nonlinear-

ities. First, the empirical analysis suggests that for the United States investment is very nonlinear,

showing conditional volatility and excess kurtosis (i.e., excess volatility); consumption is “more”
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linear. This suggests that a candidate model needs to break the strong link between consumption

and investment that arises in a canonical closed economy model (owing to the savings investment

equality). As mentioned above, a possibility might be to use a SOE model because then the link

between investment and consumption is weakened.

Another problem with the RBC model is that it does not capture the conditional volatility found

in investment. As it was discussed above, the canonical RBC model does a decent job at capturing

the unconditional volatility observed in the data. However, this paper showed that there is strong

evidence of conditional heteroskedasticity in the data and the RBC model can not produce. There

are two possible ways to introduce conditional heteroskedasticity into economic models. The first

is to assume it as part of the stochastic shock process. As mentioned in the introduction, empirical

studies have rejected the hypothesis that shocks are nonlinear. The second way is to introduce

economic features into the model that might introduce conditional volatility. One possible way to

do this is to introduce financial frictions into the model that are only occasionally binding.

A third problem with the RBC model is that it fails to capture the VAR(3) statistical process

of consumption and investment. While this issue could be addressed within an entirely statistically

linear framework, the methodology present here also allows us to isolate the problem along this

dimension. A possible “fix” for this problem would be to include another shock with the model, in

addition to the productivity shock.

The analysis here of possible ways of amending the RBC model are meant to be suggestive and

not exhaustive. There are other possible sources of nonlinearity. One possibility is to introduce

irreversibility in investment. However, that constraint was never binding in the model studied here.

Models with multiple equilibria can also potentially exhibit nonlinearities. Different forms of the

utility function such as those including habit persistence may weaken the relationship between the

simulated stochastic process of consumption and investment. More flexible forms of investment

adjustment costs may help capture asymmetries in investment. One possibility, might be to substi-

tute the iso-elastic quadratic adjustment cost used in this paper and repeat the exercise using the

function in Lundgren and Sjöström (2001) that allows for both convex and non-convex adjustment

costs.

A final point is that there exist many macroeconomic time series of interest that have nonlinear

22



features which are the object of research. As a recent example, the East Asian crisis of 1997 and the

Russian crisis of 1998 prompted many researches to study “excess volatility” and “sudden stops”

that were observed in the data (Calvo, 1998; Mendoza, 2001). Many of the theories that were

developed to study these phenomena departed from traditional perfect credit market models and

introduced frictions such as borrowing constraints and margin requirements that potentially lead

to nonlinear transmission mechanisms. In models like these, it is nonlinearities that are really the

objects of interest and the framework presented here would allow for the evaluation of candidate

economic models to explain those features.
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Table 1: Sample Statistics: OECD National Account Data for 1960Q1-1998Q4

Mean Std. Dev. Skewness Kurtosis J-B P-value
Australia
Private Consumption 8.037 0.009 0.193 2.054 6.092 0.048
Investment 7.053 0.047 0.276 4.080 8.590 0.014
Gov’t Consumption 6.854 0.014 0.766 3.768 17.112 0.000
Exports 6.397 0.034 -0.257 2.723 1.984 0.371
Imports 6.520 0.064 0.152 3.285 1.015 0.602
GDP 8.541 0.013 -0.569 3.682 10.273 0.006
Canada (61Q1-98Q4)
Private Consumption 9.366 0.010 -0.403 3.716 6.591 0.037
Investment 8.117 0.057 -0.284 4.771 19.607 0.000
Gov’t Consumption 8.449 0.010 -0.055 2.521 1.370 0.504
Exports 8.304 0.031 -0.332 3.620 4.679 0.096
Imports 8.196 0.045 -0.617 5.548 45.423 0.000
GDP 9.912 0.013 -0.495 3.290 6.038 0.049
Great Britain
Private Consumption 7.218 0.013 0.558 2.877 7.346 0.025
Investment 5.931 0.055 -0.165 2.980 0.637 0.727
Gov’t Consumption 6.223 0.010 0.423 3.041 4.178 0.124
Exports 6.111 0.023 -0.165 3.363 1.400 0.497
Imports 6.136 0.033 0.466 3.764 8.482 0.014
GDP 7.708 0.013 0.574 3.446 8.849 0.012
Japan
Private Consumption 7.185 0.011 0.863 3.757 20.705 0.000
Investment 6.452 0.036 0.486 2.907 5.560 0.062
Gov’t Consumption 5.462 0.011 -1.306 9.250 267.680 0.000
Exports 5.148 0.040 -0.102 2.330 2.860 0.239
Imports 5.165 0.053 0.252 2.299 4.344 0.114
GDP 7.698 0.013 0.853 3.903 21.738 0.000
Mexico (82Q1-96Q3)
Private Consumption 9.192 0.028 0.015 3.015 0.003 0.999
Investment 8.432 0.042 -0.227 3.442 0.989 0.610
Gov’t Consumption 7.347 0.031 0.066 2.081 2.121 0.346
Exports 7.629 0.046 0.195 2.122 2.271 0.321
Imports 7.578 0.138 -0.953 4.572 15.015 0.001
GDP 9.556 0.023 -0.171 3.406 0.692 0.707

Observations for 1960Q1-1998Q4, except where noted. Band Pass filter by Christiano and Fitzgerald (1999) removes
the trend, assumes a random walk and is symmetric and stationary. Skewness is 0 for a Normal distribution and
Kurtosis is 3 for the normal distribution. J-B is the Jarque-Bera (1987) statistic, a Wald Test of Normality with
distribution χ2(2). The 90% χ2(2) critical value is 4.61 and the 95% critical value is 5.99. First and last 8 observations
lost because of filtering.
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Table 2: Sample Statistics: US NIPA Data for 1959Q1-1998Q4

Std. Dev. Skewness Kurtosis J-B
I: Band Pass Filter
Private Consumption 0.011 0.048 3.227 0.344
Investment 0.063 -0.588 3.559 9.617
Exports 0.034 -0.054 3.080 0.102
Imports 0.054 -1.069 5.039 49.474
Government Consumption and Investment 0.013 -0.186 3.366 1.546
Gross Domestic Product 0.014 -0.295 3.176 2.149
II: HP Filter
Private Consumption 0.013 -0.127 2.961 0.373
Investment 0.074 -0.812 4.065 21.353
Exports 0.044 -0.314 3.325 2.835
Imports 0.052 -1.039 4.923 45.471
Government Consumption and Investment 0.017 -0.011 3.492 1.374
Gross Domestic Product 0.016 -0.312 3.188 2.408

The observations for 1959Q1-1998Q4. Band Pass filter by Christiano and Fitzgerald (1999) removes the
trend, assumes a random walk and is symmetric and stationary. Skewness is 0 for a Normal distribution and
Kurtosis is 3 for the normal distribution. J-B is the Jarque-Bera (1987) statistic, a Wald Test of Normality
with distribution χ2(2). The 90% χ2(2) critical value is 4.61 and the 95% critical value is 5.99. Data is in
deviations from the mean. First and last 12 observations were lost because of filtering.
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Table 3: SNP Estimation: Band Pass Filtered Data

Lµ LG LR LP Kz Iz Kx Ix #P BIC
1 0 0 1 0 0 0 0 9 0.918
2 0 0 1 0 0 0 0 13 -0.464

⇒ 3 0 0 1 0 0 0 0 17 -0.505
4 0 0 1 0 0 0 0 21 -0.449

⇒ 3 0 1 1 0 0 0 0 15 -0.494
3 0 2 1 0 0 0 0 17 -0.467
3 0 1 1 2 2 0 0 23 -0.441
3 0 1 1 3 3 0 0 25 -0.445
3 0 1 1 4 4 0 0 21 -0.444
3 0 1 1 5 5 0 0 23 -0.449

⇒ 3 0 1 1 6 6 0 0 25 -0.470
3 0 1 1 7 7 0 0 28 -0.435
3 0 1 1 6 4 0 0 32 -0.456
3 0 1 1 6 6 1 1 57 -0.069
3 0 1 1 2 2 0 0 21 -0.461
3 0 1 1 3 3 0 0 23 -0.435
3 0 1 1 4 4 0 0 25 -0.405

⇒ 3 1 1 1 0 0 0 0 21 -0.511
3 2 1 1 0 0 0 0 23 -0.715 (*)
3 3 1 1 0 0 0 0 25 -0.703 (*)
3 1 1 1 2 2 0 0 25 -0.439 (*)
3 1 1 1 3 3 0 0 27 -0.415 (*)

Results of SNP estimation of NIPA Series for Consumption and Investment. Band Pass filter used is the
Christiano and Fitzgerald (1999) filter that removes the trend, assumes a random walk and is symmetric
and stationary. 4 lags of filtered data were reserved by the SNP estimator. SNP assumes a diagonal
ARCH/GARCH structure where appropriate. BIC is the Schwarz Bayesian Information Criterion. (*)
Represents values for which standard errors are not available.
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Table 4: SNP Estimation: Benchmark Model

Estimate Standard Error t-statistic
VAR
Intercept
b(c) 0.044 0.030 1.439
b(i) 0.058 0.010 5.706
Lµ = 3
B(ct−3, ct−3) 0.305 0.091 3.346
B(ct−3, it−3) 0.348 0.070 4.974
B(it−3, ct−3) 0.116 0.070 1.657
B(it−3, it−3) 0.220 0.052 4.206
Lµ = 2
B(ct−2, ct−2) -1.483 0.159 -9.300
B(ct−2, it−2) -0.675 0.114 -5.911
B(it−2, ct−2) -0.184 0.118 -1.556
B(it−2, it−2) -1.112 0.085 -13.045
Lµ = 1
B(ct−1, ct−1) 2.047 0.088 23.352
B(ct−1, it−1) 0.516 0.064 8.044
B(it−1, ct−1) 0.116 0.070 1.658
B(it−1, it−1) 1.686 0.055 30.812
Variance
T (c) 0.153 0.028 5.535
T (ci) 0.008 0.008 0.943
T (i) 0.046 0.006 7.112
ARCH
P (c) 0.168 0.226 0.740
P (i) 0.321 0.056 5.712
Hermite
A(00) 1.000 0.000 0.000
A(i) -0.299 0.118 -2.530
A(c) -0.259 0.258 -1.001
A(i2) -0.060 0.104 -0.574
A(c2) -0.368 0.139 -2.647
A(i3) 0.011 0.027 0.426
A(c3) -0.016 0.059 -0.275
A(i4) 0.069 0.017 4.108
A(c4) 0.032 0.027 1.225

Results of SNP estimation of NIPA Series for Consumption and Investment. Filtered using Christiano and
Fitzgerald (1999) band-pass filter. 4 lags of filtered data were reserved by the SNP estimator. SNP assumes
a diagonal ARCH/GARCH structure where appropriate.
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Table 5: Summary Results: EMM Parameter Estimates and Standard Calibration Parameters

SNP Score Generator Standard
Benchmark VAR-ARCH VAR Calibration

σεz
0.90% 0.90% 0.29% 0.70%

ρ 0.839 0.838 0.940 0.950
α 0.368 0.366 0.366 0.360
A 4.107 4.179 4.188 4.177
ω 1.390 1.479 1.479 1.440
δ 0.024 0.025 0.025 0.025
β 0.980 0.980 0.980 0.980
φ 2.931 3.011 10.213 0.000
θ 1.000 1.000 1.001 1.000
χ2 2211.241 362.651 233.820
DOF 19 11 9

Benchmark Model (VAR(3),ARCH(1), Kx=4), VAR-ARCH (VAR(3),ARCH(1)), VAR Model (VAR(3)). χ2

row represents value of EMM objective function, which is distributed χ2 with degrees of freedom (DOF
row) equal to the number of statistical parameters (moments) minus the number of economic RBC model
parameters being estimated. Last column represent standard calibration parameters for economic model
described in text.

Table 6: Simulation Statistics: EMM and Standard Calibration

Std. Dev. Skewness Kurtosis Jarque-Berra p-value obs.
Consumption
DATA 1.06E-02 0.048 3.227 0.344 8.420E-01 136
Calibrated 4.51E-02 -0.046 2.442 267.002 1.050E-58 20000
Benchmark 3.39E-02 -0.053 2.805 41.076 1.204E-09 20000
VAR-ARCH 3.14E-02 -0.058 2.803 43.451 3.670E-10 20000
VAR 1.65E-02 -0.040 2.495 217.758 5.181E-48 20000

Investment
DATA 6.35E-02 -0.588 3.559 9.617 8.160E-03 136
Calibrated 8.47E-02 -0.059 2.190 558.362 5.666E-122 20000
Benchmark 7.25E-02 -0.106 2.824 62.876 2.222E-14 20000
VAR-ARCH 6.96E-02 -0.102 2.827 59.545 1.175E-13 20000
VAR 2.63E-02 -0.036 2.359 347.331 3.784E-76 20000

Benchmark Model (VAR(3),ARCH(1), Kx=4), VAR-ARCH (VAR(3),ARCH(1)), VAR Model (VAR(3)).
Last column represent standard calibration parameters for economic model described in text.
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Table 7: EMM Mean Scores

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Benchmark VAR-ARCH VAR
Mean S.E. t-stat Mean S.E. t-stat Mean S.E. t-stat
Score Score Score

VAR
Intercept
b(c) -0.14 77.80 0.00 41.87 80.77 0.52 69.47 93.69 0.74
b(i) 0.55 446.30 0.00 -109.74 146.32 -0.75 -232.61 33.71 -6.90
Lµ = 3
B(ct, ct−3) -17.76 40.36 -0.44 -436.59 78.77 -5.54 -109.92 100.14 -1.10
B(ct, it−3) 76.39 441.54 0.17 21.12 124.16 0.17 -5.81 24.44 -0.24
B(it, ct−3) -2.99 9.51 -0.31 -7.06 9.99 -0.71 172.93 11.45 15.11
B(it, it−3) 14.27 54.53 0.26 -327.09 17.88 -18.30 -667.58 4.12 -162.12
Lµ = 2
B(ct, ct−2) -23.70 58.67 -0.40 -538.06 79.49 -6.77 -137.02 108.27 -1.27
B(ct, it−2) 76.10 162.89 0.47 16.13 43.81 0.37 -26.70 39.39 -0.68
B(it, ct−2) -5.94 9.50 -0.62 -54.50 9.87 -5.52 173.45 11.45 15.15
B(it, it−2) 14.06 54.52 0.26 -325.21 17.88 -18.19 -676.86 4.12 -164.38
Lµ = 1
B(ct, ct−1) -12.30 60.63 -0.20 -116.16 87.10 -1.33 -40.94 120.20 -0.34
B(ct, it−1) 76.29 464.63 0.16 73.18 159.98 0.46 1.11 45.19 0.03
B(it, ct−1) -0.12 9.50 -0.01 173.25 9.87 17.56 181.01 11.45 15.81
B(it, it−1) 14.27 54.52 0.26 -286.73 17.88 -16.04 -655.68 4.12 -159.24

Variance
T (c) -106.51 301.19 -0.35 -5471.94 1390.09 -3.94 -1286.62 2223.73 -0.58
T (ci) 54.09 89.20 0.61 -1571.25 328.69 -4.78 -80.90 696.61 -0.12
T (i) -10.76 1426.40 -0.01 -881.95 367.81 -2.40 -1072.52 1331.36 -0.81
ARCH
P (c) -1699.47 185.79 -9.15 -8297.11 4044.41 -2.05
P (i) -223.43 405.99 -0.55 -165.45 131.83 -1.26

Hermite
A(00)
A(i) -1.31 24.87 -0.05
A(c) -10.03 30.10 -0.33
A(i2) 16.26 24.17 0.67
A(c2) -18.17 35.62 -0.51
A(i3) 21.15 26.94 0.79
A(c3) -167.35 50.50 -3.31
A(i4) 30.91 40.61 0.76
A(c4) -842.99 114.11 -7.39

Benchmark Model (VAR(3),ARCH(1), Kx=4), VAR-ARCH (VAR(3),ARCH(1)), VAR Model (VAR(3)).
Mean scores are the average scores for each of the parameters of the respective statistical model from a
simulation of 20,000 periods, after dropping the initial 5,000 periods to eliminate the impact of starting
values. Standard Errors (S.E.) and t-ratios are not adjusted for uncertainty from estimating economic
model’s parameters.
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Table 8: EMM Parameter Estimates: Benchmark Model

Estimate Wald S.E. t-ratio 95% Confidence Interval
σεz 9.009E-03 0.001 6.658 0.009 0.009

ρ 0.839 0.196 4.280 0.839 0.839
α 0.368 0.085 4.310 0.304 0.442
A 4.107 1.595 2.575 4.106 4.107
ω 1.390 0.291 4.783 1.390 1.611
δ 0.024 0.017 1.409 0.024 0.041
β 0.980
φ 2.931 1.531 1.915 2.930 2.931
θ 1.000 3.513 0.258 1.000 1.091

Parameter estimates based on 30114400 SNP scores (VAR(3), ARCH(1), Kx=4). EMM objective function:
2211.241. EMM Objective function distributed χ2 with 19 degrees of freedom. The 99% critical value is
36.2.

Table 9: EMM Parameter Estimates: VAR-ARCH Model

Estimate Wald S.E. t-ratio 95% Confidence Interval
σεz

9.018E-03 0.000 84.843 0.009 0.009
ρ 0.838 0.006 144.698 0.838 0.838
α 0.366 0.003 140.978 0.366 0.366
A 4.179 0.093 44.809 4.179 4.180
ω 1.479 0.001 1434.581 1.479 1.479
δ 0.025 0.000 76.756 0.025 0.025
β 0.980
φ 3.011 0.053 56.974 3.011 3.011
θ 1.000 0.095 10.576 1.000 1.000

Parameter estimates based on 30110000 SNP scores (VAR(3), ARCH(1)). EMM objective function: 362.651.
EMM Objective function distributed χ2 with 11 degrees of freedom. The 99% critical value is 24.7.

Table 10: EMM Parameter Estimates: VAR Model

Estimate Wald S.E. t-ratio 95% Confidence Interval
σεz 2.941E-03 0.002 1.487 0.098 0.452
ρ 0.940 0.291 3.237 0.652 1.160
α 0.366 0.026 13.893 0.366 0.392
A 4.188 1.437 2.915 0.275 0.494
ω 1.479 0.011 138.761 0.147 0.149
δ 0.025 0.019 1.288 0.006 0.038
β 0.980
φ 10.213 0.402 25.383 9.965 10.614
θ 1.001 3.244 0.309 1.000 4.227

Parameter estimates based on 30010000 SNP scores (VAR(3)). EMM objective function: 233.820. EMM
Objective function distributed χ2 with 9 degrees of freedom. The 99% critical value is 21.7.
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Graph 1

Note: Filtered US NIPA Series for Consumption and Investment.  Band Pass filter by Christiano and Fitzgeral (1999) removes trend,
assumes a random walk and is symmetric and stationary.  Skewness is 0 and Kurtosis is 3 for the Normal Distribution.
Jarque-Bera (1987) statistic is a Wald Test of Normality distributed Chi-Squared with 2 degrees of freedom.  The 90% Critical Value
is 4.61 and the 95% Critical Value is 5.99.

Figure 1: Histograms
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Graph 2.  Conditional Heteroskedasticity in
Consumption and Investment

Note: Residuals obtained from VAR(3) for Band Passed Consumption and Investment Series.  US NIPA Series for Consumption
and Investment 1959Q1-1998Q4. Filtered using Band Pass filter by Christiano and Fitzgeral (1999) removes trend, assumes a
random walk and is symmetric and stationary.  Residuals are squared to get an estimate of conditional volatility through sample.

Figure 2: Conditional Volatility
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