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Abstract

This paper examines an agent’s choice of forecast method within a standard asset
pricing model. To make a conditional forecast, a representative agent may choose one
of the following: (1) a rational (or fundamentals-based) forecast that employs knowledge
of the stochastic process governing dividends, (2) a constant forecast based on a simple
long-run average of the forecast variable, or (3) a time-varying forecast that extrapolates
from the last observation of the forecast variable. I show that a representative agent
who is concerned about minimizing forecast errors may inadvertently become “locked-
in” to an extrapolative forecast. In particular, the initial use of extrapolation alters the
law of motion of the forecast variable so that the agent perceives no accuracy gain from
switching to one of the alternative forecast methods. Under extrapolative expectations,
the model can generate excess volatility of stock prices, time-varying volatility of returns,
long-horizon predictability of returns, bubbles driven by optimism about the future, and
sharp downward movements in stock prices that resemble market crashes. All of these
features appear to be present in long-run U.S. stock market data.
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Nowhere does history indulge in repetitions so often or so uniformly as in Wall
Street. When you read contemporary accounts of booms or panics the one thing that
strikes you most forcibly is how little either stock speculation or stock speculators
today differ from yesterday. The game does not change and neither does human
nature.
From the thinly-disguised biography of legendary speculator Jesse Livermore,

by E. Lefevére (1923, p. 180).

1 Introduction

1.1 Overview

This paper demonstrates how a simple form of extrapolative expectations might arise and

persist in a standard asset pricing model. In quantitative simulations, the model can generate

excess volatility of stock prices, time-varying volatility of returns, long-horizon predictability

of returns, bubbles driven by optimism about the future, and sharp downward movements

in stock prices that resemble market crashes. All of these features appear to be present in

long-run U.S. stock market data.

The framework for the analysis is a Lucas-type asset pricing model in which a representative

agent forecasts the value of a composite variable that depends on both the growth rate of

dividends and the price-dividend ratio. To make a conditional forecast, the agent may choose

one of the following: (1) a rational (or fundamentals-based) forecast that employs knowledge

of the stochastic process governing dividends, (2) a constant forecast that is based on a simple

long-run average of the forecast variable, or (3) a time-varying forecast that extrapolates from

the last observation of the forecast variable. To ensure that the extrapolation is “operational,”

I assume that the agent employs lagged information about the forecast variable, not the

contemporaneous realization of the variable (which depends on the agent’s own forecast).

I show that an agent who is concerned about minimizing forecast errors may inadvertently

become “locked-in” to an extrapolative forecast. In particular, the initial use of extrapolation

alters the law of motion of the forecast variable so that the agent perceives no accuracy gain

from switching to one of the alternative forecast methods. In deciding whether to switch, the

agent keeps track of the forecast errors associated with each method. If the mean squared

forecast error from extrapolation is less than that of the alternatives, then there is no incentive

to switch. The degree of optimism or pessimism in the extrapolation is governed by a single

parameter which influences the mean, variance, and autocorrelation of the forecast variable.

As the extrapolation parameter increases (reflecting more optimism), the mean shift and the

autocorrelation shift work in favor of lock-in while the variance shift works against lock-in.
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The extrapolation parameter can be interpreted as an index of investor sentiment. Alterna-

tively, a particular value of the extrapolation parameter can be justified as a “restricted percep-

tions equilibrium” (RPE) of the type described by Evans and Honkapohja (2001). Specifically,

if the agent’s perceived law of motion for the forecast variable is a geometric random walk,

then the resulting RPE yields an optimistic extrapolation that satisfies the conditions needed

for lock-in. From the agent’ perspective, a geometric random walk allows for nonstationary

bubble behavior and enforces a non-negativity constraint on the forecast variable.

Lock-in occurs because the (atomistic) representative agent fails to internalize the influence

of his own forecast on the equilibrium law of motion of the forecast variable. Lock-in can

thus be interpreted as a suboptimal competitive equilibrium that arises in the presence of an

externality, i.e., feedback from the agent’s expectations to the law of motion. The term “lock-

in” borrows from the concept of path dependence in problems involving the choice among

competing technologies. The original contributions of David (1985) and Arthur (1989) argue

that early chance events or “historical accidents” may give rise to irreversibilities that cause

agents to stick with an inferior technology. In this model, extrapolation can be viewed as

an inferior forecasting technology because accuracy would improve if the representative agent

could be induced to switch to the fundamentals-based forecast.

For the case of iid dividend growth, I derive (approximate) analytical expressions for the

mean squared forecast errors and the moments of the asset pricing variables under extrapola-

tive expectations. I show that lock-in can occur over a wide range of values for the extrap-

olation parameter and the coefficient of relative risk aversion. As the extrapolative forecast

becomes more optimistic, the mean price-dividend ratio rises above the fundamentals-based

value and the share price becomes more volatile. The price-dividend ratio exhibits positive

serial correlation whereas the equity return can exhibit either positive or negative serial cor-

relation, depending on the size of the risk coefficient. The agent’s use of extrapolation gives

rise to persistent forecast errors. It turns out that the degree of serial correlation in the model

forecast errors is very similar to that found by Mankiw, Reis, and Wolfers (2004) in their

empirical study of survey-based inflation forecast errors.

The model-generated time series for the price-dividend ratio and the equity return com-

pare favorably in many respects to the corresponding series in long-run U.S. data. The price-

dividend ratio can drift upwards for prolonged intervals when the agent employs an optimistic

extrapolation. Oftentimes, these bubble-like episodes are followed by sharp downward move-

ments in stock prices that resemble market crashes. The nonlinear law of motion that governs

the forecast variable contributes to the complicated behavior of the asset pricing variables and

the attendant time-varying volatility.
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The analysis concludes with a discussion of model extensions that allow for; (1) a mixture of

agent types, (2) endogenous switching between forecasts, and (3) alternative forecast methods.

1.2 Related Literature

The model in this paper is motivated by a variety of evidence which suggests that real-world

expectations are often less than fully-rational. In theory, the price of a stock represents a

consensus forecast of the discounted stream of future dividends that will accrue to the owner

of the stock. One characteristic of an optimal forecast is that it should be less variable than

the object being forecasted. This principle appears to be clearly violated in the case of stock

prices. Numerous empirical studies starting with Shiller (1981) and LeRoy and Porter (1981)

have demonstrated that stock prices exhibit “excess volatility,” i.e., observed prices are much

more variable than the discounted stream of ex post realized dividends.1

Studies that directly examine the forecasts of market participants also find evidence of less-

than-rational behavior. Arbarbanell and Bernard (1992) and Easterwood and Nutt (1999),

among others, find that security analysts’ earnings forecasts tend to overreact to new infor-

mation, particularly when the information is positive in nature. Chan, et al. (2003) find

that analysts’ forecasts of long-term earnings growth rates are consistently too optimistic and

exhibit low predictive power for the actual earnings growth rates subsequently achieved.

An empirical study by Chow (1989) finds that an asset pricing model with adaptive expec-

tations outperforms one with rational expectations in accounting for observed movements in

U.S. stock prices and interest rates. Empirical studies by Ritter and War (2002) and Camp-

bell and Vuolteenaho (2004) find support for the hypothesis of Modigliani and Cohn (1979)

that investors are prone to inflation-induced valuation errors.2 Survey-based measures of U.S.

inflation expectations tend to systematically underpredict actual inflation in the sample pe-

riod prior to October 1979 and systematically overpredict it thereafter. Rational inflation

expectations would not give rise a sustained sequence of one-sided forecast errors. Roberts

(1997), Carroll (2003), Mankiw, Reis, and Wolfers (2004), and Branch (2004) all find evidence

that survey-based measures of inflation expectations do not make efficient use of available

information.

Controlled experiments on human subjects suggest that people’s decisions are influenced

by various “heuristics,” as documented by Kahneman and Tversky (1974). The “representa-

tiveness heuristic” is a form of non-Bayesian updating whereby subjects tend to overweight

recent observations relative to the underlying laws of probability that govern the process. The

1The finding of excess volatility is robust to a variety of discounting methods, as demonstrated by Shiller
(2003).

2For a summary of this research, see Lansing (2004).
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“availability heuristic” is the tendency of subjects to overweight information that is easily

recalled from memory. Using both survey and experimental data, DeBondt (1993) finds that

the forecasts of non-professional investors adhere to a simple trend-following methodology;

they tend to be optimistic in bull markets and pessimistic in bear markets. Vissing-Jorgenson

(2004) finds evidence of extrapolative expectations in investor survey data; investors who have

experienced high portfolio returns in the past expect higher returns in the future. In stud-

ies involving experimental asset markets, researchers frequently observe bubbles and crashes

that appear to be driven by irrational expectations.3 Hong and Stein (2003) review the large

body of evidence which suggests that individuals tend to gravitate toward simple models when

making decisions or forecasts. An experimental study by Adam (2005a) finds that subjects’

inflation expectations are well-described by a simple univariate forecasting rule that can be

characterized as a restricted perceptions equilibrium.

It is well-known that the introduction of irrational “noise traders” or agents with distorted

beliefs into asset pricing models can help account for various features of real-world data.4

Research in this area typically postulates the existence of irrational behavior but does not

explain how this behavior might arise and persist over time. These models are often criticized

on the grounds that irrational agents would eventually learn from their systematic forecast

errors, thereby restoring a fully-rational environment. The model set forth in this paper is

intended to address this criticism, at least in part.5 The model relates to the growing body

of literature in which agents are modeled as choosing among a finite number of available

forecasting methods, each exhibiting a different degree of sophistication or computational

cost. Examples within a wide variety of economic settings include: Kirman (1991), Brock and

Hommes (1997, 1998), LeBaron, et al. (1999), Gaunersdorfer (2000), Hommes (2001), Branch

(2004), and Adam (2005b), among others.

2 The Model

The analysis is conducted using the frictionless pure exchange model of Lucas (1978). There

is a representative agent who can purchase equity shares to transfer wealth from one period

to another. Each equity share pays an exogenous stream of stochastic dividends in perpetuity.

3See Smith, Suchanek, and Williams (1988), Lei, Noussair, and Plott (2001), and Hommes et al. (2005).
4See, for example, Delong et al. (1990), Barsky and Delong (1993), Barberis, Schleifer, and Vishney (1998),

Hansen, Sargent, and Tallarini (1999), Cecchetti, Lam, and Mark (2000), Kurz and Motolese (2001), Abel
(2002), and Abreu and Brunnermeier (2003), among others.

5 It should be noted that rational models of asset pricing are not immune to criticism either. Reasonably-
calibrated versions of recent models fail to capture some important features of the data, as noted by Otrok,
Ravikumar, and Whiteman (2002) and Polkovnichenko (2004).
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The agent’s problem is to maximize

bE0 ∞X
t=0

βt
∙
c1−αt − 1
1− α

¸
, (1)

subject to the budget constraint

ct + ptst = (pt + dt) st−1, (2)

where ct is the agent’s consumption in period t, β is the subjective time discount factor, and α

is the coefficient of relative risk aversion (the inverse of the intertemporal elasticity of substi-

tution). When α = 1, the within-period utility function can be written as log (ct) . The symbolbEt represents the agent’s subjective expectation conditioned on information that is available at
time t. Under rational expectations, bEt corresponds to the mathematical expectation operator
evaluated using the objective distribution of dividend growth (which is presumed known to

the agent). The symbol pt denotes the ex-dividend price of the equity share, dt is the dividend,

and st is the number of shares purchased in period t.

The level of dividends dt follows a geometric random walk with drift such that

xt ≡ log
µ
dt
dt−1

¶
= x+ εt, εt ∼ N

¡
0,σ2ε

¢
, (3)

where xt denotes the iid growth rate in period t, and x and σ2ε are the mean and variance of

the growth rate distribution.

The first-order condition that governs the agent’s share holdings is given by

pt = bEtβµct+1
ct

¶−α
(pt+1 + dt+1) . (4)

Equation (4) can be rearranged to obtain

1 = bEt {Mt+1Rt+1} , (5)

whereMt+1 = β (ct+1/ct)
−α is the so-called stochastic discount factor andRt+1 = (pt+1 + dt+1) /pt

is the gross return from holding the equity share from period t to t + 1. Defining the price-

dividend ratio as yt ≡ pt/dt, the gross equity return can be written as

Rt+1 =

µ
yt+1 + 1

yt

¶
exp (xt+1) . (6)

Without loss of generality, shares are assumed to exist in unit net supply. Market clearing

therefore implies st = 1 for all t. Substituting this equilibrium condition into (2) yields, ct = dt

for all t. In equilibrium, equation (4) can now be written as

yt = bEt {β exp (θxt+1) (yt+1 + 1)} , (7)
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where θ ≡ 1−α. Equation (7) shows that the price-dividend ratio in period t depends on the

agent’s subjective joint forecast of next period’s dividend growth rate xt+1 and next period’s

price-dividend ratio yt+1. For the analysis that follows, it is convenient to transform equation

(7) using a change of variables to obtain

zt = β exp (θxt)
h bEtzt+1 + 1i , (8)

where zt ≡ β exp (θxt) (yt + 1) . Under this formulation, zt represents a composite variable

that depends on both the growth rate of dividends and the price-dividend ratio. Equation (8)

shows that the value of zt in period t depends on the agent’s conditional forecast of that same

variable.6

2.1 Rational Expectations

Under rational expectations, the current share price is uniquely pinned down by the agent’s

forecast of the discounted value of all future dividends, adjusted for risk. A crucial assumption

is that the agent knows the stochastic process governing dividends. To derive the unique

rational expectations solution, we first replace bEt in (8) with the mathematical expectation
operator Et. Equation (8) can then be iterated forward to substitute out zt+1+k for k =

0, 1, 2, ... Applying the law of iterated expectations and imposing a transversality condition

yields the following present-value pricing equation

zret = Et
©
β exp (θxt) + β2 exp (θxt + θxt+1) + β3 exp (θxt + θxt+1 + θxt+2) + ...

ª
,

= Et

⎧⎨⎩
∞X
i=t

⎡⎣βi−t+1 exp
⎛⎝ iX
j=t

θxj

⎞⎠⎤⎦⎫⎬⎭ , (9)

where zret represents the value of the forecast variable under rational expectations. Since xt is

iid and normally distributed, equation (9) admits the following closed-form solution

zret =
β exp (θxt)

1− β exp
¡
θ x+ θ2σ2ε/2

¢ , (10)

provided β exp
¡
θ x+ θ2σ2ε/2

¢
< 1. Given zret , we can recover the price-dividend ratio by

applying the definitional relationship yret = z
re
t exp (−θxt) /β − 1. This procedure yields

yret =
β exp

¡
θ x+ θ2σ2ε/2

¢
1− β exp

¡
θ x+ θ2σ2ε/2

¢ , (11)

6The general form of equation (8), whereby the current value of an endogenous variable depends on its
expected future value, appears in a wide variety of economic models. Examples include the cobweb model and
the New Keynesian Phillips curve. Brock and Hommes (1998) derive an asset pricing equation that is similar
to (8) in a model where agents are myopic mean-variance optimizers.
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which shows that the rational (or fundamentals-based) price-dividend ratio is constant for all t.

This result provides a convenient benchmark for evaluating alternative solutions of the model.

If an alternative solution delivers a time-varying price-dividend ratio, then the resulting share

price can be said to exhibit “excess volatility.”

Equation (10) can be used to compute the following conditional forecast

Etz
re
t+1 =

β exp
¡
θ x+ θ2σ2ε/2

¢
1− β exp

¡
θ x+ θ2σ2ε/2

¢ , (12)

which shows that a rational agent will employ a constant forecast that depends only on eco-

nomic fundamentals.

2.2 Expectations Based on a Long-Run Average

The fundamentals-based forecast derived above assumes that agents know the stochastic

process governing dividends. Moreover, the imposition of a transversality condition assumes

that agents are extremely forward-looking–to the point of respecting an arbitrage relationship

applied to distant future periods.7 As an alternative to these strong assumptions, I now con-

sider the case where the agent’s subjective forecast bEtzt+1 takes the form of a simple average

of past observed values of the forecast variable zt. After a long time series of observations, the

agent’s subjective forecast would be given by

bEtzt+1 = E (zt) , (13)

where E (zt) is the unconditional mean of the stochastic process that governs zt.

2.3 Extrapolative Expectations

During the early stages of the time horizon, the agent will not have had sufficient time to

discover the fundamentals of the dividend process. Moreover, there will be very few obser-

vations of zt from which to construct a forecast based on a past average. These limitations

motivate consideration of an alternative forecasting algorithm, one where the agent simply

extrapolates from the last observation of the forecast variable. The formulation used here is

intended to capture the spirit of the representativeness and availability heuristics documented

by Kahneman and Tversky (1974). The formulation also captures the idea that individuals

tend to employ simple rules or models in decision making or forecasting.
7The transversality condition and other technical arguments are often cited to rule out the existence of

so-called “rational bubbles.” But, as noted by LeRoy (2004, p. 801), “[C]ommitting to the full neoclassical
paradigm produces an argument against bubbles that, although logically airtight, is simply not plausible. It is
a testament to economists’ capacity for abstraction that they have accepted without question that an intricate
theoretical argument against bubbles has somehow migrated from the pages of Econometrica to the floor of the
New York Stock Exchange.”
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The agent’s extrapolative forecast is given by

bEtzt+1 = Azt−1, A ∈ (0, Amax) , (14)

where A is a positive extrapolation parameter. Equation (14) can be viewed as a simplified

version of a more general setup where the agent’s forecast is constructed from a weighted

moving average of past values of the forecast variable.8 The upper bound Amax ensures that

zt remains stationary as explained further below. The value of A governs the nature of the

extrapolation, where A = 1 can be viewed as “neutral,” A > 1 can be viewed as “optimistic”

and A < 1 can be viewed as “pessimistic.” Notice that the agent’s forecast does not make

use of the contemporaneous realization zt. The agent’s use of lagged information ensures that

the extrapolation is “operational.” Since equation (8) implies that zt depends on the agent’s

own forecast, it is difficult to see how the agent could make use of zt when constructing the

forecast in real-time. A lagged information assumption is commonly used in adaptive learning

models because it avoids simultaneity in the determination of the actual and expected values

of the forecast variable.9

In contrast to the fundamentals-based forecast and the long-run average forecast which are

both constant for all t, the extrapolative forecast is forever changing, depending on the most re-

cent observation. Importantly, the extrapolative forecast does not nest the fundamentals-based

forecast as a special case. When A 6= 1, the extrapolative forecast is biased because the uncon-
ditional mean of the forecast E

³ bEtzt+1´ = AE (zt) does not coincide with the unconditional
mean of the variable being forecasted.10 When A > 1 the extrapolative forecast is clearly

suboptimal because the unconditional variance of the forecast V ar
³ bEtzt+1´ = A2V ar (zt)

exceeds the variance of the variable being forecasted.

Substituting the extrapolative forecast (14) into equation (8) yields the following nonlinear

law of motion for the forecast variable:

zt = β exp (θxt) [Azt−1 + 1] , (15)

which is autoregressive. For zt to remain stationary, we require E [Aβ exp (θxt)] < 1, which

implies the following upper bound on the extrapolation parameter

A < Amax = β−1 exp
¡−θ x− θ2σ2ε/2

¢
. (16)

8The more-general setup would take the form bEtzt+1 = A £zt−1 + δ zt−2 + δ2zt−3 + ...
¤
= Azt−1 + δ bEt−1zt,

where δ is a discount factor applied to past observations. Traditional adaptive expectations corresponds to the
special case where A ≤ 1 and δ = 1−A. Equation (14) allows A > 1, but imposes δ = 0.

9Recent examples of this approach in the context of asset pricing models include Brock and Hommes (1998),
Gaunersdorfer (2000), Hommes (2001), and S

..
ogner and Mitl

..
ohner (2002), among others.

10Gu and Wu (2003) show that a biased forecast can be optimal when the forecaster’s objective is to minimize
the mean absolute error of the forecast. In this case, the optimal forecast is given by median of the forecast
variable rather than the mean. If the distribution of the forecast variable is negatively (positively) skewed, then
the optimal forecast exhibits optimism (pessimism).
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Using equation (15), the price-dividend ratio can be recovered by applying the definitional

relationship yt = zt exp (−θxt) /β − 1, yielding

yt = Azt−1,

= Aβ exp (θxt−1) [yt−1 + 1] , (17)

which is also nonlinear and autoregressive. Taking the mathematical expectation of both sides

of (17) and noting that xt−1 is not correlated with yt−1 (= Azt−2) , we obtain the following

expression for the mean price-dividend ratio

E (yt) =
Aβ exp

¡
θ x+ θ2σ2ε/2

¢
1−Aβ exp ¡θ x+ θ2σ2ε/2

¢ . (18)

As A increases, the agent becomes more optimistic and the mean price-dividend ratio rises.

When A > 1, the mean price-dividend ratio exceeds the fundamentals-based value given by

equation (11). Thus, irrational optimism about the future gives rise to a “bubble” in which

the share price is persistently above the intrinsic value implied by the underlying fundamentals

of the dividend process. This feature of the model is consistent with historical interpretations

of bubble episodes. Shiller (2000) argues that occurrences of major speculative bubbles have

generally coincided with periods of widespread investor optimism about a “new era.” Indeed,

the law of motion (15) captures the basic form of a feedback mechanism which Shiller (1990)

argues is the basic driving force of speculative bubbles.11

In the appendix, I show that the variance of the price-dividend ratio can be approximated

by the following expression:

V ar (yt) = E (yt)
2

∙
exp

µ
θ2σ2ε
1− ba 2

¶
− 1
¸
, (19)

where E (yt) is given by (18) and ba = Aβ exp (θ x) < 1. As the extrapolation parameter A

increases, the price-dividend ratio becomes more volatile. Equation (19) implies V ar (yt) > 0

whenever θ 6= 0, i.e., whenever the utility function is not logarithmic. Given that V ar (yret ) = 0,
equation (19) shows that the agent’s use of an extrapolative forecast generates excess volatility

whenever θ 6= 0.

2.4 Restricted Perceptions Equilibrium

One interpretation of the extrapolation parameter A is that it represents an index of investor

sentiment. Alternatively, the value of A can be endogenized as part of “restricted perceptions

11For additional discussion of bubble mechanisms and applications to historical episodes, see the symposium
in Journal of Economic Perspectives, Spring 1990.
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equilibrium” (RPE) in which the representative agent’s forecasting rule is optimized for a

perceived law of motion (PLM) that does not nest the actual law of motion (ALM) as a

special case.12 For example, a neutral extrapolation (A = 1) could be justified as an RPE if

the agent’s PLM is a random walk, i.e., zt = zt−1 + vt, where vt is a perceived iid shock with

zero mean. Proposition 1 below shows that an optimistic extrapolation (A > 1) can be justified

as an RPE if the agent’s PLM is a geometric random walk, i.e., log (zt) = log (zt−1)+vt. From

the agent’s perspective, a geometric random walk is a versatile candidate PLM because it

allows for nonstationary bubble behavior and it also enforces the economic constraint zt > 0

for all t.13

Proposition 1. If the representative agent’s PLM is log (zt) = log (zt−1) + vt, where vt ∼
N
¡
0,σ2v

¢
is a perceived iid shock, then a restricted perception equilibrium is given by the ALM

(15) with A = A∗ ≡ exp ¡θ2σ2ε¢ ≥ 1.
Proof : Iterating the PLM ahead two periods (which is the agent’s forecast horizon) yields

zt+1 = zt−1 exp (vt+1 + vt) . The agent’s optimal forecast using lagged information is bEtzt+1 =
zt−1 exp

¡
σ2v
¢
. Comparing this forecast to the form of the extrapolative expectation (14) im-

plies that the RPE value of the extrapolation parameter is given by A∗ = exp
¡
σ2v
¢
. The

perceived shock variance σ2v can be computed directly from sample observations of log (zt) us-

ing the formula 2σ2v = V ar [log (zt+1)− log (zt−1)] . An approximation of the ALM for log (zt)

is derived in the appendix. Straightforward computations yield

2σ2v = V ar {log (zt+1)− log (zt−1)}
= V ar {θxt+1 + ba log (zt)− log (zt−1) + constant terms}
= V ar

©
θxt+1 + baθxt + ¡ba2 − 1¢ log (zt−1) + constant termsª ,

= θ2σ2ε
¡
1 + ba2¢+ ¡ba 2 − 1¢2 V ar [log (zt)] ,

= 2θ2σ2ε,

where I have made repeated substitutions of the approximate ALM for log (zt) . From the

appendix, we have V ar [log (zt)] = θ2σ2ε /
¡
1− ba 2¢ which yields the result σ2v = θ2σ2ε. The

RPE value is thus given by A∗ = exp
¡
σ2v
¢
= exp

¡
θ2σ2ε

¢ ≥ 1.
12The terminology in this section follows Evans and Honkapohja (2001, Chapter 13).
13Froot and Obstfeld (1991) demonstrate how a nonstationary “rational bubble” solution may help account

for some observed features of U.S. stock prices.
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3 Lock-in of Extrapolative Expectations

This section shows how an agent who is concerned about minimizing forecast errors may

inadvertently become locked-in to the use of an extrapolative forecast.

3.1 Forecast Errors

Suppose that the agent initially adopts the extrapolative forecast given by (14). The forecast

error observed by the agent is

err et+1 = zt+1 −Azt−1| {z }bEtzt+1
, (20)

where the superscript “e” stands for “extrapolation.” The ALM for zt is governed by (15).

Given a sufficiently long time series of forecast errors, the agent could compute a fitness

measure for the forecast. One commonly-used fitness measure is the mean squared error

which is given by

MSE e ≡ E
h¡
err et+1

¢2i
= E

¡
z2t+1 − 2Azt+1 zt−1 +A2z2t−1

¢
,

=
¡
1 +A2

¢
E
¡
z2t
¢− 2AE (zt+1 zt−1) ,

=
¡
1 +A2 − 2Abρ2¢V ar (zt) + (1−A)2E (zt)2 (21)

where bρ 2 = A2β2 exp
¡
2θ x+ θ2σ2ε

¢
is the unconditional correlation coefficient between zt+1

and zt−1, as derived in the appendix. In deriving equation (21), I have made use of the relation-

ships E
¡
z2t
¢
= V ar (zt) +E (zt)

2 and E (zt+1 zt−1) = bρ 2V ar (zt)+E (zt)2 . The unconditional
moments of zt (also derived in the appendix) are given by

E (zt) =
β exp

¡
θ x+ θ2σ2ε/2

¢
1−Aβ exp ¡θ x+ θ2σ2ε/2

¢ , (22)

V ar (zt) = E (zt)
2

∙
exp

µ
θ2σ2ε
1− ba 2

¶
− 1
¸
, (23)

where ba = Aβ exp (θ x) < 1.
Now consider an agent who is contemplating a switch to either the fundamentals-based

forecast or a forecast based on a long-run average. Before the switch occurs, the actual law of

motion for zt is governed by (15). For simplicity, assume that enough time has gone by to allow

the agent to have discovered the stochastic process for dividends. The fundamentals-based

forecast is thus given by equation (12). The long-run average forecast is given by equation (22).
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In deciding whether to switch forecasts, the agent keeps track of the forecast errors associated

with each method. If the mean squared forecast error associated with extrapolation is less

than that of the other two methods, then there is no incentive to switch; the agent is said to

be locked-in to the extrapolative forecast.

For the fundamentals-based forecast, the agent’s perceived forecast error is given by

err ft+1 = zt+1 −
β exp

¡
θ x+ θ2σ2ε/2

¢
1− β exp

¡
θ x+ θ2σ2ε/2

¢| {z }
z f

, (24)

where the superscript “f” stands for “fundamentals.” The symbol z f ≡ Etzret+1 will henceforth
be used to represent the fundamentals-based forecast which is constant for all t. Given a

sufficiently long time series of forecast errors, the agent could compute the following fitness

measure for the fundamentals-based forecast

MSE f ≡ E
∙³
err ft+1

´2¸
= V ar

³
err ft+1

´
+
h
E
³
err ft+1

´i2
= V ar (zt) +

h
E (zt)− z f

i2
, (25)

where E (zt) and V ar (zt) continue to be given by equations (22) and (23).

For the long-run average forecast, the agent’s perceived forecast error is given by

err at+1 = zt+1 −
β exp

¡
θ x+ θ2σ2ε/2

¢
1−Aβ exp ¡θ x+ θ2σ2ε/2

¢| {z }
E(zt)

, (26)

where the superscript “a” stands for “average.” Notice that the long-run average forecast

is identical to the fundamentals-based forecast in the special case when A = 1. The fitness

measure for the long-run average forecast is given by

MSE a ≡ E
h¡
err at+1

¢2i
= V ar

¡
err at+1

¢
= V ar (zt) , (27)

where V ar (zt) is again given by equation (23).

3.2 Factors Influencing Lock-in

Definition. Lock-in of extrapolative expectations occurs for the forecast variable zt ≡
β exp (θxt) (yt + 1) such that

(i) The ALM for zt is given by equation (15),

(ii) A ∈ (0, Amax), and
(iii) MSE e = min

©
MSE e,MSE f,MSE a

ª
.

12



A comparison of the forecast fitness measures given by equations (21), (25), and (27),

reveals three factors that influence whether lock-in will occur.

First, the agent’s use of an extrapolative forecast can shift the mean of the forecast variable

relative to that which prevails under a fundamentals-based forecast. This factor, which is

captured by the term
£
E (zt)− z f

¤2
in equation (25), works in favor of lock-in because it

increases the mean squared error of the fundamentals-based forecast. When A = 1, the mean

shift term vanishes, making lock-in less likely to occur. In the case of the long-run average

forecast, equation (27) shows that the mean shift term is absent for any value of A. This occurs

because a long-run average is based on the observed times series of zt itself. In contrast, the

fundamentals-based forecast z f is a theoretical construct that depends only on preference

parameters and the observed stochastic process for dividends.

Second, the use of an extrapolative forecast imparts self-fulling autocorrelation to the

forecast variable. This factor, which is captured by the term−2Abρ 2V ar (zt) in (21), also works
in favor of lock-in because it reduces the mean-squared error of the extrapolative forecast. The

other two forecasts are constant for all t and thus do not exploit the autocorrelation in zt.

Third, the use of a time-varying forecast raises the variance of the forecast relative to the

other two methods, which employ constant forecasts. This factor, which is captured by the

term
¡
1 +A2

¢
V ar (zt) in (21), works against lock-in because it increases the mean squared

error of the extrapolative forecast relative to the alternatives.

Lock-in occurs if the first two factors dominate the third factor. In general, the outcome

will depend on the values of some key parameters, namely A, θ, and β. Analytical results

are derived below for the case of log utility which implies θ = 0. Other cases are explored

numerically.

The intuition for why lock-in occurs is straightforward. In computing the forecast fitness

measures, the representative agent views the evolution of zt as being determined outside of

his control. In equilibrium, of course, the chosen forecast method does in fact influence the

evolution of zt.When the agent chooses the extrapolative forecast, the resulting law of motion

for zt is such that the fundamentals-based forecast is no longer the most accurate.14 Similar

to the lock-in phenomena described by David (1985) and Arthur (1989), externalities that

arise from an initial choice can lead to irreversibilities that may cause agents to stick with

an inferior technology. In this case, extrapolation can be viewed as an inferior forecasting

technology because the mean squared forecast error could be lowered relative to MSE e if the

representative agent could be induced to switch to the fundamentals-based forecast.

14Adam (2005b, p. 13) shows that similar intuition accounts for the existence of a restricted perceptions
equilibrium in a representative agent version of a sticky price model.
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3.3 Analytical Results for Log Utility

The case of log utility (θ = 0) provides some useful insight into the conditions needed to achieve

lock-in of extrapolative expectations. Imposing θ = 0 in the law of motion (15) removes any

influence of stochastic dividends on the forecast variable. The unconditional moments of zt

are now given by E (zt) = β/ (1−Aβ) and V ar (zt) = 0. Substituting these moments into the
forecast fitness measures (21), (25), and (27) yields

MSE e =
β2 (1−A)2
(1−Aβ)2 , (28)

MSE f =
β4 (1−A)2

(1− β)2 (1−Aβ)2 =

µ
β

1− β

¶2
MSE e, (29)

MSE a = 0, (30)

where A ∈ ¡0,β−1¢ . When A = 1, all three fitness measures equal zero. In this case, all three
forecast methods are identical and fully-rational.

When A 6= 1, equations (28) and (29) imply MSE e < MSE f for β > 0.5. Thus, a suffi-

ciently patient agent would refrain from switching to a fundamentals-based forecast because

the switch would appear to result in a larger mean squared forecast error. This result can

be attributed to the mean shift in zt that is induced whenever A 6= 1. With log utility, the

autocorrelation and variance of zt are not shifted because the forecast variable is constant for

all t. When A 6= 1, equations (28) and (30) imply MSE e > MSE a. Thus, an agent with log

utility would be inclined to abandon extrapolation in favor of the long-run average forecast.

This result can be attributed to the absence of a mean shift relative to the alternative forecast.

3.4 Numerical Results for General Power Utility

In the case of general power utility, analytical comparisons of the mean squared forecast errors

are not tractable. Figures 1A through 1F present numerical comparisons for three different

risk coefficients: α = {1.5, 3.0, 6.0} , which correspond to the values θ = {−0.5,−2.0,−5.0} .
These risk coefficients are below the maximum level of 10 considered plausible by Mehra

and Prescott (1985). Throughout the paper, the agent’s discount factor is assumed to be

β = 0.999. As shown further below, the parameter combination β = 0.999 and α = 6 yields

model-generated statistics that are reasonably close to those observed in long-run U.S. data.15

The parameters of the consumption/dividend process are calibrated to match the first two

15 I follow the common practice of restricting attention to the case where β < 1. However, it should be noted
that an equilibrium with positive interest rates can still exist with β > 1, as shown by Kocherlakota (1990).
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moments of U.S. annual data on the growth of real per capita consumption of nondurables

and services from 1889 to 1997. This procedure yields x = 0.0173 and σε = 0.0324.
16

For scaling purposes, I plot a monotonic transformation of the fitness measure, i.e., the

logarithm of the root mean squared error. A lower value for the fitness measure implies a more

accurate forecast. The fitness measure is plotted over a range of values for A, where vertical

lines mark the RPE value A∗ from Proposition 1 and the upper bound Amax from equation

(16). In each figure, the fitness measure for the extrapolative forecast (solid line) is compared

to the fitness measure for the alternative forecast (dotted line).

Figures 1A and 1B plot the results for α = 1.5, which represents a utility function with

a bit more risk aversion than log utility. In Figure 1A, the extrapolative forecast is more

accurate than the fundamentals-based forecast for all A ∈ (0, Amax) . The downward spike at
A = 1 results from taking the logarithm of a small positive number. In Figure 1B, the ex-

trapolative forecast is more accurate than the long-run average forecast for A ∈ (0.96, Amax).
Higher values of A increase the autocorrelation of the forecast variable thus allowing the

extrapolative forecast to dominate the long-run average forecast which ignores any autocor-

relation. Recall that the unconditional correlation coefficient between zt+1 and zt−1 is given

by bρ 2 = A2β2 exp
¡
2θ x+ θ2σ2ε

¢
, which is increasing in the value of A. The RPE value is

A∗ = 1.0003, which satisfies the conditions needed for lock-in. As A → Amax, the actual law

of motion for zt becomes non-stationary and the mean-squared error of all forecasts explodes.

Figures 1C and 1D plot the results for α = 3.0, which magnifies the influence of stochastic

dividends on the forecast variable zt. Again, the extrapolative forecast is always more accurate

than the fundamentals-based forecast. Now the extrapolative forecast is more accurate than

the long-run average forecast over a wider range of values for the extrapolation parameter, i.e.,

for A ∈ (0.91, Amax) . In general, as the risk coefficient increases, the extrapolative forecast
dominates the long-run average forecast over a wider range of values for A. The RPE value is

A∗ = 1.0042, which satisfies the conditions needed for lock-in.

Figures 1E and 1F plot the results for α = 6.0 The extrapolative forecast is always more

accurate than the fundamentals-based forecast. Now the extrapolative forecast is more accu-

rate than the long-run average forecast for A ∈ (0.85, Amax) . The RPE value is A∗ = 1.0266,
which again satisfies the conditions needed for lock-in.

Overall, the numerical results show that lock-in of extrapolative expectations is more likely

to occur for higher degrees of risk aversion (as measured by α) and higher levels of investor

optimism (as measured by A). Equation (16) shows that the upper bound Amax is decreasing

16Over the period from 1889 to 1997, U.S. consumption growth exhibits weak serial correla-
tion with an AR(1) coefficient of −0.128. The data are available from John Campbell’s website:
http://kuznets.fas.harvard.edu/~campbell/data/newdata.
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in the agent’s discount factor β. As β increases, the qualitative features of the figures remain

unchanged but the vertical asymptote which marks Amax shifts to the left.

3.5 Moments of Asset Pricing Variables

Figures 2A through 2H show how changes in the value of the extrapolation parameter A in-

fluence the unconditional moments of the asset pricing variables. In each figure, the moment

obtained under extrapolative expectations (solid line) is compared to the corresponding mo-

ment under rational expectations (dotted line). The expressions that govern the moments are

derived in the appendix. For illustrative purposes, I focus on a particular risk coefficient with

α = 6.

Figure 2A plots the mean price-dividend ratios computed from equations (11) and (18).

Under extrapolative expectations, higher values of A cause the mean price-dividend ratio to

increase in a nonlinear fashion. A check of figures 1E and 1F shows that the conditions needed

for lock-in are satisfied at the RPE value of A∗ = 1.0266. When A = A∗, the model implies

E (yt) = 20.4, which is reasonably close the U.S. average of 25.2 for the period 1871 to 2002.17

Under rational expectations, the model implies a much lower price-dividend ratio of yret = 13.0

for all t. Since the agent forecasts the value of zt+1 using the observation zt−1, the RPE value

of A∗ = 1.0266 implies that the agent optimistically projects about a 3 percent increase in the

forecast variable over the next two periods.

Figure 2B plots the mean equity return computed using the following expressions:

E
¡
Rret+1

¢
= β−1 exp

£
αx+

¡
1− θ2

¢
σ2ε/2

¤
, (31)

E (Rt+1) = (Aβ)−1 exp
£
αx+

¡
1 + θ2

¢
σ2ε/2

¤
, (32)

which are derived in the appendix. Under extrapolative expectations, a higher value of A,

reflecting more optimism, results in a lower mean return. Under both types of expectations,

a higher value of the discount factor β also results in a lower mean return. The intuition is

straightforward. Increased optimism about future payoffs or increased patience about future

payoffs make the agent more willing to defer current consumption and increase saving, thereby

driving up the share price and reducing the realized return. At the RPE value of A∗ = 1.0266,

the mean net return is 9.6% which is somewhat above the U.S. arithmetic average real return

of 8.2% over the period 1871 to 2002. Interestingly, the mean net return under rational

expectations is also 9.6%. It turns out that equations (31) and (32) are identical when the

extrapolation parameter A is set to the RPE value of A∗ = exp
¡
θ2σ2ε

¢
.

17The long-run historical data for the U.S. stock market cited in the paper were obtained from Robert Shiller’s
website: http://www.econ.yale.edu/~shiller/.
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Figure 2C plots the volatility (standard deviation) of the price-dividend ratio computed

from the approximate expression (19). Under extrapolative expectations, volatility increases

with A in a nonlinear fashion whereas volatility is always zero under rational expectations.

At the RPE value of A∗ = 1.0266, the standard deviation of yt predicted by equation (19) is

10.3. This value is reasonably close to the corresponding U.S. value of 12.4 for the period 1871

to 2002. As A→ Amax, the actual law of motion (17) implies that yt becomes non-stationary

and volatility increases without bound.

Figure 2D plots the volatility of the equity return computed from the expressions:

V ar
¡
Rret+1

¢
= E

¡
Rret+1

¢2 £
exp

¡
σ2ε
¢− 1¤ , (33)

V ar (Rt+1) = E (Rt+1)
2 ©exp £¡1 + θ2

¢
σ2ε
¤− 1ª , (34)

where E
¡
Rret+1

¢
and E (Rt+1) are given by equations (31) and (32). For any given value of A,

the figure shows that return volatility is substantially higher under extrapolative expectations.

This result is not surprising given that equation (6) shows that the change in the price-dividend

ratio from period t to t+1 represents one component of the equity return, with dividend growth

representing the other component. At the RPE value of A∗ = 1.0266, the standard deviation of

Rt+1 predicted by equation (34) is 18.2%. Under rational expectations, the standard deviation

of Rret+1 is 3.55%. Over the period 1871 to 2002, the standard deviation of real U.S. equity

returns is 17.8%. In equation (34), a higher value of the risk coefficient implies a higher value

of θ2, thereby magnifying the impact of stochastic dividend growth on return volatility.

Figure 2E plots the persistence of the price-dividend ratio, as measured by the uncon-

ditional correlation coefficient between yt and yt−1. Under extrapolative expectations, the

correlation coefficient is given by bρ = Aβ
¡
θ x+ θ2σ2ε/2

¢
which increases with A in a linear

fashion. At the RPE value of A∗ = 1.0266, we have bρ = 0.95. This figure is a bit higher than
the corresponding U.S. value of 0.87 for the period 1871 to 2002. Under rational expectations,

the price-dividend ratio is constant which technically implies that the correlation coefficient is

undefined. In this case, the figure plots a horizontal line at 1.0 to indicate the result yret = y
re
t−1

for all t.

Figure 2F plots the persistence of the equity return computed from the expressions:

Corr
¡
Rret+1, R

re
t

¢
= 0, (35)

Corr (Rt+1,Rt) =
exp

¡ba θσ2ε¢− 1
exp

£¡
1 + θ2

¢
σ2ε
¤− 1 , (36)

where Corr (·, ·) denotes the unconditional correlation coefficient and ba = Aβ exp (θ x) . Under
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extrapolative expectations, the sign of the correlation coefficient depends on the degree of risk

aversion via the parameter θ ≡ 1 − α. The value of θ governs the co-movement between the

price-dividend ratio and lagged dividend growth, as shown by the ALM for yt (17). When

utility is logarithmic (θ = 0) , we have Corr (Rt+1,Rt) = 0 for any value of A. Decreased risk

aversion relative to log utility causes the numerator of equation (36) to become positive such

that Corr (Rt+1,Rt) > 0. Increased risk aversion relative to log utility causes the numerator to

become negative such that Corr (Rt+1,Rt) < 0. In this case, an increase in the extrapolation

parameter A causes the correlation coefficient to become more negative, as shown in figure

2F. When α = 6 and A = A∗, we have Corr (Rt+1,Rt) = −0.18. Using annual data for the
period 1871 to 2002, real U.S. equity returns exhibit slightly positive serial correlation, with

a correlation coefficient of 0.04. Experiments with the model indicate that a small positive

correlation coefficient can be obtained if the law of motion for consumption/dividend growth

(3) is modified to allow for an AR(1) process with positive serial correlation.18

Figure 2G plots the autocorrelation of the agent’s two-step ahead forecast errors. Figure

2H plots the autocorrelation of the agent’s perceived exogenous shock vt when the PLM for

the forecast variable is a geometric random walk. Straightforward computations yield the

following expressions:

Corr
¡
erret+1, err

e
t

¢
=
bρ £1 +A2 − 2Abρ 2 −A ¡1− bρ 2¢¤¡

1 +A2 − 2Abρ 2¢ , (37)

Corr (vt+1,vt) = − (1− ba)
(1 + ba) , (38)

where erret+1 is defined by equation (20) and vt = log (zt)−log (zt−1) from Proposition 1. At the
RPE value of A∗ = 1.0266, we have Corr

¡
erret+1, err

e
t

¢
= 0.48 which shows that extrapolation

gives rise to persistent forecast errors. Interestingly, Mankiw, Reis, and Wolfers (2004, p.

219) find that survey-based measures of inflation forecast errors exhibit similar persistence

properties, with autocorrelation coefficients ranging from 0.37 to 0.64. In a theoretical study

using a sticky price model, Adam (2005b) solves for an RPE in which the autocorrelation of

forecast errors is also around 0.5. He shows that it would take more than 33 data points on

average for the agent to reject the hypothesis of no autocorrelation. At the RPE value of

A∗ = 1.0266, we have Corr (vt+1,vt) = −0.03 which is very close to the agent’s perception of
no autocorrelation in the shock term.
18Over the shorter sample period from 1926 to 1997, U.S. consumption growth exhibits positive serial cor-

relation, with an AR(1) coefficient of 0.268. During this same period, inflation-adjusted U.S. equity returns
continue to exhibit slightly positive serial correlation, with a correlation coefficient of 0.07.
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3.6 Model Simulations

Table 1 presents unconditional moments of the asset pricing variables computed from a long

simulation of the model. The table also reports the corresponding statistics from U.S. data over

the period 1871 to 2002. For the model with extrapolative expectations, the statistics reported

in Table 1 may differ slightly from the values computed from the approximate analytical

expressions that were used to construct Figures 2A through 2F.

Table 1. Unconditional Moments

Model Simulations

Variable Statistic
U.S. Data
1871 — 2002

Rational
Expectations

Extrapolative
Expectations

μt Mean – 0 1

yt = pt/dt Mean 25.2 13.0 20.2
Std. Dev. 12.4 0 10.6
Skewness 2.82 – 2.64
Kurtosis 12.77 – 21.8
Corr. Lag 1 0.87 – 0.94
Corr. Lag 2 0.71 – 0.87
Corr. Lag 3 0.57 – 0.80

Rt+1 − 1 Mean 8.17% 9.60% 9.44%
Std. Dev 17.8% 3.54% 18.1%
Skewness 0.00 0.10 0.51
Kurtosis 2.84 3.04 3.41
Corr. Lag 1 0.04 0.01 −0.17
Corr. Lag 2 −0.16 −0.01 0.02
Corr. Lag 3 0.08 −0.02 0.01

Note: Model statistics are based on a 4000 period simulation after dropping 100 periods,
with x = 0.0173, σε = 0.0324, α = 6, β = 0.999, and A = A∗ = exp

¡
θ2σ2ε

¢
= 1.0266.

The model price-dividend ratio under extrapolative expectations exhibits high volatility,

positive skewness, and excess kurtosis, all of which are also present in long-run U.S. data. The

model equity return under extrapolative expectations exhibits high volatility, but only small

amounts of positive skewness and excess kurtosis. Annual U.S. equity returns exhibit neither

skewness nor excess kurtosis, but there is evidence of positive skewness and excess kurtosis at

quarterly and monthly frequencies.

Figures 3A through 3H plot U.S. stock market data together with the corresponding model-

generated series. Under extrapolative expectations, the model-generated series compare favor-

ably in many respects to the U.S. counterparts. Figure 3A shows the sharp run-up in the U.S.
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price-dividend ratio during the stock market bubble of the late 1990s. The bubble episodes in

the model are somewhat less extreme (Figure 3B), but larger bubbles can be observed with dif-

ferent draws for the dividend growth shocks. Figure 3C shows that the real stock price in U.S.

data exhibits long upward swings which are often punctuated by sharp, short-lived declines.

Similar behavior can be observed in the model with extrapolative expectations (Figure 3D).

The complicated behavior of the asset pricing variables under extrapolative expectations de-

rives from the nonlinear law of motion (15). Coakley and Fuertes (2004) and Bohl and Siklos

(2004) fit nonlinear time series models to U.S. stock market valuation ratios over the period

1871 to 2001. Both studies find evidence that valuation ratios drift upwards into bubble ter-

ritory during bull markets, but these persistent departures from fundamentals are eventually

eliminated via swift downward adjustments during bear markets.

Figures 3E illustrates the extreme volatility of U.S. equity returns, a feature that is cap-

tured by the model under extrapolative expectations (Figure 3F). Figure 3G provides evidence

of time-varying volatility in U.S. equity returns. As noted by Schwert (1989), U.S. equity re-

turns exhibit high volatility during the middle part of the sample which includes the Great

Depression. From 1871 to 2002, the 20—year rolling standard deviation of returns varies from

a minimum of 12.5% to a maximum of 27.9%. The full-sample standard deviation is 17.8%.

Figure 3H provides evidence of time varying return volatility in the model with extrapolative

expectations. Table 2 provides a quantitative comparison of the return volatilities in the data

and the model.

Table 2. 20-Year Rolling Volatility of Returns

Model Simulations

Std. Dev.
U.S. Data
1871 — 2002

Rational
Expectations

Extrapolative
Expectations

Min 20-Yr. 12.5% 1.88% 9.20%
Max 20-Yr. 27.9% 6.02% 29.4%
Full Sample 17.8% 3.54% 18.1%

Note: Model statistics are based on a 4000 period simulation after
dropping 100 periods, with x = 0.0173, σε = 0.0324, α = 6,
β = 0.999, and A = A∗ = exp

¡
θ2σ2ε

¢
= 1.0266.

Numerous empirical studies starting with Fama and French (1988) and Campbell and

Shiller (1988) have demonstrated that the log price-dividend ratio forecasts aggregate U.S.

equity returns in excess of the risk-free rate over long horizons. Cochrane (2001, p. 394)

points out that long-horizon predictability is directly related to the phenomenon of excess

volatility. Table 3 shows that the model-generated returns under extrapolative expectations
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are highly forecastable over long horizons. As usual, predictability is demonstrated using a

simple regression of the holding period return on a constant and the logarithm of the price-

dividend ratio that prevails at the beginning of the period. Similar to the behavior observed in

U.S. data, the R2 of the regression increases with the forecast horizon as does the magnitude

of the estimated slope coefficient. The intuition for long-horizon predictability in the model is

straightforward. A high price-dividend ratio implies that the ratio is more likely to be above its

long-run mean. Since the price-dividend ratio is stationary, the ratio will eventually revert to

its long-run mean. The inevitable drop in the price-dividend ratio over a long horizon produces

a lower realized return. Under rational expectations, the price-dividend ratio is constant for

all t and thus provides no information about future returns.

Table 3. Long-Horizon Predictability Regressions

Horizon
(Years)

U.S. Data
1871 — 2002

Model with
Extrapolative
Expectations

Slope R2 Slope R2

1 −0.07 0.02 −0.11 0.10
2 −0.16 0.06 −0.21 0.23
4 −0.27 0.08 −0.41 0.45
6 −0.39 0.10 −0.58 0.60
8 −0.58 0.15 −0.73 0.70

Notes: The results shown are for the regression equationPj
1 log (Rt+j) = b0 + b1 log (yt) , where b1 is the estimated

slope. Model regressions are based on a 4000 period simulation
after dropping 100 periods, with x = 0.0173, σε = 0.0324,
α = 6, β = 0.999, and A = A∗ exp

¡
θ2σ2ε

¢
= 1.0266.

4 Extensions of the Basic Model

4.1 Mixture of Agent Types

In the basic model, a representative agent initially adopts the extrapolative forecast given

by (14) and then contemplates switching to either the fundamentals-based forecast or the

long-run average forecast. A simple extension allows for a mixture of agent types, with

each type initially employing a different forecast method.. Following Kirman (1991) and

others, I assume that the governing market expectation that enters the law of motion of the

forecast variable is the average expectation across agents. For an economy initially pop-

ulated by extrapolators and fundamentalists, the ALM for the forecast variable becomes

zt = β exp (θxt)
£
λ (Azt−1) + (1− λ) z f + 1

¤
, where λ ∈ [0, 1] is the proportion of agents who
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employ the extrapolative forecast. For an economy initially populated by extrapolators and

long-run averagers, the ALM becomes zt = β exp (θxt) [λ (Azt−1) + (1− λ)E (zt) + 1] , where

E (zt) is no longer given by (22) but instead now depends on λ. In both versions of the heteroge-

nous agent economy, the introduction of the parameter λ shifts the unconditional moments

of zt that appear in the expressions for the forecast fitness measures MSE e, MSE f, MSE a.

In either case, as λ declines, the extrapolative forecast becomes less accurate relative to the

alternatives, making lock-in less likely to occur. This result is not surprising because λ governs

the influence that the extrapolators have on the ALM for zt. In this context, lock-in can be

interpreted as a type of suboptimal Nash equilibrium in which the extrapolators choose not to

deviate from their initial forecast given that a sufficient number of other agents are forecasting

in the same way.

4.2 Endogenous Switching Between Forecasts

A slight modification of the model allows for the possibility of endogenous switching between

forecast methods. This occurs when the agent’s metric for assessing performance is the forecast

error observed in the most-recent period (which corresponds to a year in the model calibra-

tion). From a modeling perspective, a tendency to overweight recent forecast performance is

consistent with the availability and representativeness heuristics. From an individual agen-

t’s perspective, an emphasis on recent data appears to be justified, given the (self-induced)

regime-switching that is evident in observable variables.

The setup is similar to the “adaptive belief systems” examined by Brock and Hommes

(1997, 1998) and Hommes (2001), among others. To keep things simple, I abstract from

heterogeneity of beliefs among agents but allow the representative agent’s beliefs to vary over

time. I also abstract from any costs of collecting and processing information that might be

expected to increase with the degree of sophistication of the forecast method.

Simulations of the adaptive belief system give rise to endogenous switches between fore-

casts at intervals of varying length. Each forecast regime exhibits persistence even though

the underlying forecast fitness measures depend only on the forecast errors in the most-recent

period.19 The price-dividend ratio and the equity return both exhibit regime-switching be-

havior where the means, variances, and autocorrelations vary across regimes. When the agent

switches to an optimistic extrapolation, the price-dividend ratio starts drifting up from below

to fluctuate around a higher mean while the equity return becomes more volatile. Eventually,

there is a correction and the price-dividend ratio falls sharply back to the level implied by

19Lengthening the forecast evaluation window (or alternatively, imposing geometrically-declining weights on
past squared forecast errors) imparts more inertia to the fitness measures which has the effect of increasing the
average interval between regime switches.
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fundamentals. The sharp downward movement can be interpreted as a crash-like event.20

4.3 Alternative Forecast Methods

In the basic model, a representative agent considers only two alternatives to the extrapola-

tive forecast, i.e., a fundamentals-based forecast and a long-run average forecast. A more-

sophisticated agent might consider an expanded set of alternatives. One possibility is a first-

order autoregression on the observed time series of zt. Given a long time series of observations

and assuming that the agent employs lagged information, an autoregressive forecast would

take the form bEtzt+1 = bρ 2zt−1 + ¡1− bρ 2¢E (zt) , where E (zt) is given by equation (22)
and bρ 2 = A2β2 exp

¡
2θ x+ θ2σ2ε

¢
is the correlation coefficient between zt+1 and zt−1. Un-

like the other two alternatives, this forecast method exploits the autocorrelation in zt.21 It

is straightforward to show that the fitness measure for the autoregressive forecast is given

by MSE ar =
¡
1− bρ 4¢V ar (zt) , where V ar (zt) is given by equation (23).22 Comparing this

expression to equation (27) shows that the autoregressive forecast improves accuracy over the

long-run average forecast which yields MSE a = V ar (zt) . It turns out that this improvement

is sufficient to induce the agent to abandon the extrapolative forecast in favor of the autore-

gressive forecast, if available. Of course, adoption of the autoregressive forecast would then

cause the ALM for zt to shift, thereby altering the performance of the autoregressive forecast.23

More generally, if an alternative forecast does a better job of capturing the actual dynamics of

the forecast variable, then the agent will have an incentive to adopt that method. In this case,

the two-parameter autoregressive forecast does a better job of capturing the actual dynamics

of zt than does the single-parameter extrapolative forecast for any A ∈ (0, Amax) . It should be
noted, however, that the foregoing analysis abstracts from any increased computation costs

associated with the autoregressive forecast. David (1985) emphasizes how the occurrence of

technological lock-in is greatly influenced by conversion costs that can lead to the irreversibility

of an initial choice. In this model, the introduction of an explicit computation cost that in-

creases with the degree of sophistication of the forecast algorithm could restore lock-in against

the autoregressive forecast or other alternatives.

20An interesting issue for future research, suggested by a referee, would be to characterize the basins of
attraction of each forecast method when equal weights are assigned to past squared forecast errors.
21Another closely-related possibility is an adaptive forecast which takes the form bEtzt+1 = Azt−1 +

(1−A) bEt−1zt, where A < 1.
22We have errart+1 = zt+1 − bρ 2zt−1 − ¡1− bρ 2¢E (zt) . The expression for MSE ar ≡ E £(errart+1)2¤ , is derived

using the relationships E
¡
z2t
¢
= V ar (zt) + E (zt)

2 and E (zt+1 zt−1) = bρ 2V ar (zt) + E (zt)2 .
23One can show that the new law of motion for zt will become nonstationary when the agent switches to an

autoregressive forecast that is parameterized using the sample moments of zt generated by the original law of
motion (15). More generally, one can show that an autoregressive forecast cannot be justified as a stationary
consistent expectations equilibrium (CEE) of the type described by S

..
ogner and Mitl

..
ohner (2002).
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5 Concluding Remarks

Theories about expectations have long played a role in efforts to account for the observed

behavior of equity prices. Keynes (1936, p. 156) likened the stock market to a “beauty

contest” where participants devoted their efforts not to judging the underlying concept of

beauty, but instead to “anticipating what average opinion expects the average opinion to be.”

Keynes readily acknowledged the concept of irrational, herd-like behavior among investors

in stating (p. 157): “There is no clear evidence from experience that the investment policy

which is socially advantageous coincides with that which is most profitable.” He cautioned

that it may be “scarcely practicable” to employ a rational, long-term investment strategy in

a market dominated by short-term “game-players.” More recently, Federal Reserve Chairman

Alan Greenspan (1999) warned that “an unwarranted, perhaps euphoric, extension of recent

developments can drive equity prices to levels that are unsupportable.”

The flavor of the above ideas is clearly evident in the model set forth in this paper. The

main contribution is to show that an individual agent can become locked-in to the use of

a suboptimal, extrapolative forecast if other agents ( i.e., “game-players”) are following the

same approach. From the perspective of an individual agent, switching to a fundamentals-

based forecast would appear to reduce forecast accuracy, so there is no incentive to switch.

A reasonably calibrated version of the model is capable of generating excess volatility, time-

varying volatility, bubbles, crashes, and other well-documented features of long-run U.S. stock

market data.

In the model, the representative agent’s choice of forecast method is guided by the principle

of minimizing forecast errors. In this sense, the agent can be viewed as boundedly rational. The

use of a forecast algorithm that extrapolates from the last observation can also be viewed as

boundedly rational because it economizes on the costs of collecting and processing information.

As noted by Nerlove (1983, p. 1255): “Purposeful economic agents have incentives to eliminate

errors up to a point justified by the costs of obtaining the information necessary to do so...The

most readily available and least costly information about the future value of a variable is its

past value.”

Further extensions of the basic model to include bond pricing may provide insight into

other observed features of real-world asset markets.
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A Appendix

This appendix derives analytical expressions for the unconditional moments of the price-
dividend ratio and the equity return.

A.1 Rational Expectations

Equation (11) shows that yret is constant for all t. This result implies

E (yret ) =
β exp

¡
θ x+ θ2σ2ε/2

¢
1− β exp

¡
θ x+ θ2σ2ε/2

¢ , (A.1)

V ar (yret ) = 0 (A.2)

Corr
¡
yret , y

re
t−1
¢
= undefined, (A.3)

where Corr
¡
yret , y

re
t−1
¢
denotes the unconditional correlation coefficient between yret and y

re
t−1.

Making use of equations (6) and (11), the gross equity return is given by

Rret+1 =

µ
yret + 1

yret

¶
exp (xt+1) ,

=
exp (xt+1)

β exp
¡
θ x+ θ2σ2ε/2

¢ , (A.4)

where yret is the constant price-dividend ratio from (11). Equation (A.4) implies that the mean
and variance of the equity return are given by

E
¡
Rret+1

¢
= β−1 exp

£
αx+

¡
1− θ2

¢
σ2ε/2

¤
, (A.5)

V ar
¡
Rret+1

¢
= E

¡
Rret+1

¢2 £
exp

¡
σ2ε
¢− 1¤ , (A.6)

where I have made use of the properties of the log-normal distribution.24 The corresponding
moments of the log equity return are given by

E
£
log
¡
Rret+1

¢¤
= − log (β) + αx− θ2σ2ε/2, (A.7)

V ar
£
log
¡
Rret+1

¢¤
= σ2ε. (A.8)

The unconditional correlation coefficient between Rret+1 and R
re
t is given by

Corr
¡
Rret+1, R

re
t

¢
=

E
¡
Rret+1R

re
t

¢−E ¡Rret+1¢2
V ar

¡
Rret+1

¢ ,

24 If x ∼ N
¡
x,σ2ε

¢
, then E [exp (θx)] = exp

¡
θx+ θ2σ2ε/2

¢
, where θ is a constant. Since V ar [exp (θx)] =

E
£
exp (θx)2

¤− {E [exp (θx)]}2 , we have V ar [exp (θx)] = {E [exp (θx)]}2 £exp ¡θ2σ2ε¢− 1¤ .
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=
E [exp (xt+1) exp (xt)]−E [exp (xt+1)]2

V ar [exp (xt+1)]
,

= 0, (A.9)

where I have made use of the relationship E [exp (xt+1) exp (xt)] = E [exp (xt+1)]E [exp (xt)]
because xt is iid.

A.2 Extrapolative Expectations

Taking the unconditional expectation of both sides of (15) and noting that xt is not correlated
with zt−1, we obtain the following expression for the mean of the forecast variable

E (zt) =
β exp

¡
θ x+ θ2σ2ε/2

¢
1−Aβ exp ¡θ x+ θ2σ2ε/2

¢ . (A.10)

To obtain a simple expression for the variance of the forecast variable, I approximate
the law of motion for log (zt) using a first-order Taylor-series expansion around the pointbz0 = E [log (zt)] . Specifically,

log (zt) = log β + θxt + log [Azt−1 + 1] ,

' log β + θxt + ba [log (zt−1)− bz0 ] +bb, (A.11)

where the Taylor-series coefficients are given by ba = Aβ exp (θ x) and bb = − log (1− ba) . Taking
the unconditional variance of both sides of equation (A.11) yields

V ar [log (zt)] =
θ2σ2ε
1− ba 2 . (A.12)

Assuming that the distribution of zt is approximately log-normal, we can make use of the
relationship

V ar (zt) = E (zt)
2 {exp (V ar [log (zt)])− 1} ,

= E (zt)
2

∙
exp

µ
θ2σ2ε
1− ba 2

¶
− 1
¸
, (A.13)

where E (zt) is given by (A.10). Given that yt = Azt−1 from (17), the unconditional moments
of the price-dividend ratio can be computed using the relationships, E (yt) = AE (zt) and
V ar (yt) = A2V ar (zt) .

The unconditional correlation coefficient between zt and zt−1 is defined as

Corr (zt, zt−1) =
E (ztzt−1)−E (zt)2

V ar (zt)
. (A.14)
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The expectation E (ztzt−1) can be computed from the law of motion (15) as follows:

E (ztzt−1) = E {β exp (θxt) [Azt−1 + 1] zt−1} ,
= β exp

¡
θ x+ θ2σ2ε/2

¢ ©
AE

¡
z2t
¢
+E (zt)

ª
,

= Aβ exp
¡
θ x+ θ2σ2ε/2

¢
E (zt)

2
n
V ar(zt)

E(zt)
2,
+ 1 + 1

AE(zt)

o
= bρV ar (zt) +E (zt)2 , (A.15)

where I have made use of the relationship E
¡
z2t
¢
= V ar (zt) + E (zt)

2 and equation (A.10).
Substituting the above expression for E (ztzt−1) into equation (A.14) yields the result that
Corr (zt, zt−1) = bρ = Aβ exp

¡
θ x+ θ2σ2ε/2

¢
. A similar procedure can be used to show that

Corr (zt+1, zt−1) = bρ 2 = A2β2 exp
¡
2θ x+ θ2σ2ε

¢
. Given that yt = Azt−1, the price-dividend

ratio has the same autocorrelation structure as the forecast variable.
The gross equity return can be written as

Rt+1 =

µ
yt+1 + 1

yt

¶
exp (xt+1) ,

=

µ
zt+1
Aβzt−1

¶
exp (αxt+1) , (A.16)

where I have eliminated yt+1 using the definitional relationship yt+1 = zt+1 exp (−θxt+1) /β−1
and eliminated yt using the relationship yt = Azt−1 from (17). From the above expression, it
follows directly that

E [log (Rt+1)] = − log (Aβ) + αx. (A.17)

Using equation (A.16), straightforward computations yield

V ar [log (Rt+1)] = V ar {αxt+1 + log (zt+1)− log (zt−1)− log (Aβ)}
= V ar

n
αxt+1 + log β + θxt+1 + ba [log (zt)− bz0] +bb− log (zt−1)o

= V ar
©
xt+1 + baθxt + ¡ba 2 − 1¢ log (zt−1) + constant termsª

= σ2ε
¡
1 + ba 2θ2¢+ ¡ba 2 − 1¢2 V ar [log (zt)] ,

=
¡
1 + θ2

¢
σ2ε, (A.18)

where I have again made use of the Taylor-series approximation in (A.11) and the expression
for V ar [log (zt)] in (A.12).

Given the unconditional moments of log (Rt+1) from (A.17) and (A.18), and assuming that
the distribution of Rt+1 is approximately log-normal, the moments of Rt+1 can be computed
using the following relationships

E (Rt+1) = exp
©
E [log (Rt+1)] +

1
2V ar [log (Rt+1)]

ª
,

= (Aβ)−1 exp
£
αx+

¡
1 + θ2

¢
σ2ε/2

¤
, (A.19)
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V ar (Rt+1) = E (Rt+1)
2 {exp (V ar [log (Rt+1)])− 1} ,

= E (Rt+1)
2 ©exp £¡1 + θ2

¢
σ2ε
¤− 1ª . (A.20)

To compute the unconditional correlation coefficient between Rt+1 and Rt, we must first
obtain an expression for E (Rt+1Rt) . Assuming that the distribution of the product term
Rt+1Rt is approximately log-normal, we can make use of the relationship

E (Rt+1Rt) = exp
©
E [log (Rt+1Rt)] +

1
2V ar [log (Rt+1Rt)]

ª
, (A.21)

where (A.16) implies that log (Rt+1Rt) is given by

log (Rt+1Rt) = αxt+1 + αxt − 2 log (Aβ)

+ log (zt+1) + log (zt)− log (zt−1)− log (zt−2) . (A.22)

Using (A.22), straightforward computations yield the following unconditional moments:

E [log (Rt+1Rt)] = 2αx− 2 log (Aβ) , (A.23)

V ar [log (Rt+1Rt)] = 2σ2ε
¡
1 + baθ + θ2

¢
, (A.24)

where (A.24) is obtained by repeated substitution of the approximate law of motion for log (zt)
given by (A.11). Substituting the above moments into (A.21) and collecting terms yields
E (Rt+1Rt) = E (Rt+1)

2 exp
¡ba θσ2ε¢ . This moment can be combined with the moments given

by (A.19) and (A.20) to yield the following expression for the correlation coefficient:

Corr (Rt+1,Rt) =
E (Rt+1Rt)−E (Rt+1)2

V ar (Rt+1)
,

=
E (Rt+1)

2 £exp ¡ba θσ2ε¢− 1¤
V ar (Rt+1)

,

=
exp

¡ba θσ2ε¢− 1
exp

£¡
1 + θ2

¢
σ2ε
¤− 1 , (A.25)

where θ ≡ 1− α and ba = Aβ exp (θ x) .
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