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1 Introduction

What is the proper way to report the uncertainty associated with the forecast of a variable

over several periods —a path-forecast in Jordà and Marcellino (2010) parlance? This is a

deceptively simple question yet intricate to answer. The region ensuring that each period

a given proportion of realizations is contained within will not, in general, contain that pro-

portion of the path-forecast’s realizations. Conversely, the region designed to simultaneously

contain a proportion of all future trajectories will, in general, lack the desired per-period

coverage. Part of this tension resides in making multiple probability statements, another

part is explained by the inherent serial correlation in the forecast errors of typical time-series

prediction models, and yet another part is due to differences in the prediction error rate one

may wish to control for. These are some of the central themes in our paper.

Imagine a central bank considering the optimal path for the policy rate based on inflation

forecasts for the next eight quarters. The implicit control problem underlying the policy

choices likely emphasizes the overall trajectory of inflation relative to a pre-determined target

over an occasional oscillation in prices. The former is more likely to form the basis for a

revision in policy than the latter. And in that case, simultaneous prediction error control

may be preferable to family-wise prediction error control. A good discussion on optimal

policy projections and their role for monetary policy is available in Svensson (2009) and

references therein. Moreover, many central banks now release inflation path-forecasts and

policy path-projections such as the Swedish Riksbank, the Bank of England or more recently,

the U.S. Federal Reserve, to cite a few.

Socioeconomic models lack the precision and stability of models of physical phenomena
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so that their approximative nature makes them more vulnerable to traditional assumptions

commonly used to derive closed-form expressions. In the extreme, the decision-maker may

in fact be ignorant of the model used to generate the forecasts themselves. This is often the

case when the forecasts are not produced under the direct supervision of the decision-maker.

For example, several forecasting firms (Blue Chip Forecasting, Macroeconomic Advisors,

Standard and Poor, etc.) release U.S. inflation forecasts but not suffi cient details about the

forecasting null model. How should prediction intervals be calculated when the forecasting

model may be misspecified, or altogether unavailable?

Providing appropriate prediction intervals for path-forecasts in these conditions is com-

plicated. Prediction bands for the path-forecast should appropriately summarize the infor-

mation in high-dimensional densities. For these reasons, we investigate a simple method to

construct empirical simultaneous prediction regions based on the methods by Williams and

Goodman (1971), whose ideas precede but are related to the resampling methods in Efron’s

(1979) well-known bootstrap procedures, and subsequent literature (see, e.g. Politis, Romano

and Wolf 1999). In particular, the methods we propose are based on the evaluation sample

of forecast errors at different horizons. Given typical predictive sample sizes, non-parametric

estimates of the joint forecast error distribution and its relevant quantile contours (which

one would need to construct non-parametric simultaneous prediction regions) are impracti-

cal. Instead, we begin by constructing the empirical Mahalanobis (1936) distance from which

we induce a simultaneous prediction region. Critical values can then be directly obtained

from the evaluation sample or using distributional assumptions. Next, we provide a rectan-

gular approximation to the induced simultaneous prediction region to obtain appropriate,
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per-period, prediction intervals using a version of Scheffé (1953) projections.

The procedures proposed rely on the assumption that the empirical distribution of the

forecast errors remains constant over time. While this may appear restrictive, it is a weaker

assumption than making conjectures about the data generating process and hence its sta-

bility over time —that is, a changing DGP approximated by an appropriately changing null

model may nevertheless produce stable forecast errors. Such a way of thinking differs from

common applications of bootstrap procedures such as forecasting applications with ARIMA

models in Masarotto (1990), Thombs and Schucany (1990), Kim (1999), Pascual, Romo and

Ruiz (2000), and Clements and Taylor (2001). This literature typically relies on residual

resampling given the null model. In contrast, we make no assumption about whether the

null model is or is not correct.

Using our assumptions on the null forecasting model means that typical asymptotic argu-

ments are unavailable. Even with infinite evaluation samples, large sample approximations

speak of the approximate distribution of the moments of the empirical forecast error distri-

bution, but not what that distribution may look like. Instead, we provide ample simulation

evidence about how our procedures may work in practice. In addition, we provide a realistic

application of our procedures by assessing the growth and inflation forecasts generated by

the U.S. Federal Reserve, whose null model is not revealed to the public.

The simulations show that the use of prediction intervals based on forecast errors is

strongly advisable if the null model is misspecified, particularly if the simultaneous prob-

ability coverage of the intervals is to be evaluated. The effects of incorrect distributional

assumptions turn out to be relatively well contained, at least in the settings considered in
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this paper. As further illustration, we construct prediction regions using Greenbook1 fore-

casts produced by the staff of the U.S. Federal Reserve. The model used to generate the

forecasts is not made available to the public. Nevertheless, we are able to compute empirical

prediction regions that quantify practical measures of uncertainty surrounding these fore-

casts. Such measures are important to evaluate forecasting uncertainty in general, and to

policymakers in particular when entertaining forecasts from other sources.

2 Statistical Discussion

The typical forecasting environment often contains the following elements: (1) a training

sample {yt}Rt=1 and an evaluation sample {yτ}Tτ=R+1; (2) an assumption about the stochastic

process for yt; (3) model estimates based on this assumption using the training sample; (4)

an implicit or explicit forecast loss-function whose associated optimal forecast often is an

estimate of the conditional mean of yt based on the assumed model and its estimates; and

(5) ancillary attributes that derive from the interaction between the assumed model and the

properties of yt. These attributes determine forecast bias, accuracy, construction of prediction

intervals, and so on.

Instead, we proceed from a more agnostic but more general starting point that will allow

us to deal, for example, with forecasts whose provenance is unknown. Specifically, let yτ (h)

be a random variable and let ŷτ (h) denote a realization of this random variable —an h-step

ahead prediction of yτ+h. The observed realization of yτ+h is denoted as ŷτ+h. Hence the

forecast error ûhτ ≡ ŷτ+h − ŷτ (h) is a realization of the random variable uhτ ≡ yτ+h − yτ (h),

whose distribution is assumed to have mean zero (i.e., without loss of generality we assume

1 Greenbook forecasts are now refered to as Tealbook forecasts.

4



that the forecasts are unbiased) with constant variance σ2h and independent of τ . Further, we

will assume that the uhτ are weakly stationary. Notice that this assumption is less restrictive

than making any stationarity assumptions directly on yτ (h) or yτ+h.

In what follows, we are interested in the 1-to-H step-ahead predictions with τ = R +

1, ..., T − H observations available for forecast evaluation with N = T − H − R. We also

find it convenient to define the H × 1 random vectors Yτ (H) ≡ [yτ (1), ..., yτ (H)]′; Yτ ,H ≡

[yτ+1, ..., yτ+H ]′ and Uτ (H) ≡ [u1τ , ..., u
H
τ ]′ with Ŷτ (H), Ŷτ ,H and Ûτ (H) denoting the actual

forecasts, realizations and forecast errors, respectively. We assume that the distribution of

the forecast error path Uτ (H) is elliptically contoured, that is, it has the form:

fU (Uτ (H)) = det (ΩH)−1/2 g[(Uτ (H)− µU )′Ω−1H (Uτ (H)− µU )] (1)

where g(.) is a non-negative monotonic function and does not depend on τ with ΩH an H×H

covariance matrix. This assumption is restrictive but encompasses the majority of forecasting

environments encountered in practice and makes the justification for the calculations that

follow straight-forward. We call (1) the path-error generating distribution.

This distribution reflects a variety of sources of uncertainty associated with the predic-

tions in Ŷτ (H), among these the most common are: (1) uncertainty about the data generating

distribution of Yτ ,H from which innovations are drawn; (2) uncertainty about the null model

used to describe the data generating distribution; and (3) uncertainty about the parameter

estimates of the null model in finite samples with respect to their population values. The

reader is referred to Clements and Hendry (1998) for a more exhaustive list. For our pur-

poses, it is unnecessary to be explicit about this breakdown. Our framework also extends

to forecasting the paths of a vector of random variables and we do this in the simulations,
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but here we prefer to keep the discussion simple. It will be important for our purposes that

the path-error generating distribution be stable over time. This assumption is less restrictive

than assuming that the data generating distribution is itself stable. In the next sections

we discuss some of the particular statistical issues on forecasting uncertainty with particu-

lar effort in distinguishing the results that do not require distributional assumptions from

those that do. The availability of N observations for evaluation will allow us to characterize

empirically the path-error generating distribution.

2.1 Period-Specific Prediction Intervals

Consider first the simpler problem of constructing a prediction interval for the individual

elements of the path-forecast. That is, for each yτ+h, call this interval Sh, such that P (yτ+h ∈

Sh) ≥ 1−α for some pre-specified error-level α chosen by the researcher and for h = 1, ...,H.

In the simpler case of unimodally distributed uhτ (to avoid having to discuss disjoint intervals

here),

Sh =
{
yτ+h : c ≤ wh(uhτ ) ≤ c

}
(2)

where wh(.) : R→ R. In the simplest case wh(uhτ ) = uhτ = yτ+h − yτ (h) and an empirical

prediction interval could be calculated from the α/2 and 1− α/2 quantiles of
{
ûhτ
}T−h
τ=R+1

={
wh(ûhτ )

}T−h
τ=R+1

when N is suffi ciently large. If the
{
ûhτ
}T−h
τ=R+1

are thought to be roughly

Gaussian and using

σ̂2h =
1

N − 1

T−h∑
τ=R+1

(ûhτ − uh)2

with uh denoting the sample mean, then another example is

wh(ûhτ ) ≡ ûhτ − uh
σ̂h

∼ tN−1
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from which symmetric and approximately 100(1−α)% coverage level predictive intervals can

be easily constructed as is customary from the appropriate quantiles of the t-distribution.

Distribution-free methods for any population with a continuous density function can

be used to construct prediction intervals using the theory of ranks. Suppose a sample of

{yt}Rt=1 is available and weakly stationary (stationarity of the yt could be trivially replaced

by stationarity of the uhτ and rank the û
h
τ instead but we prefer to keep the presentation

simple) and rank in ascending order the elements in the sample such that y[1] ≤ ... ≤ y[R]

where y[i] denotes the i-th ranked observation. Danziger and Davis (1964) show that the

probability that yτ+1 will fall between y[r1] and y[r2] for 1 ≤ r1 < r2 ≤ R is

P (y[r1] ≤ yτ+1 ≤ y[r2]) =
r2 − r1
R+ 1

. (3)

Notice that in this case we would likely set R = T since there is no advantage to reserving

some of the sample for out-of-sample forecast evaluation. Intervals based on the data itself are

disarmingly simple to construct, but do not take advantage of the conditioning information

set. Rather, their derivation is based on the unconditional distribution of the data over the

sample and hence may be too wide relative to the more traditional approach. In addition,

small sample sizes may make these intervals particularly imprecise.

In order to assess the errors of coverage from different methods we introduce the auxiliary

variable dhτ ∈ {0, 1} . This variable records whether a given realization yτ+h falls outside the

pre-determined prediction region Sh, dhτ = 1, or not, dhτ = 0. If we choose Sh such that

P (yτ+h ∈ Sh) ≥ 1− α then E(dhτ ) = P (dhτ = 1) = α, and the auxiliary variable dhτ provides

a simple way to calculate the empirical value of α through averaging either in applications

or in simulations.
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2.2 Simultaneous Prediction Intervals

Constructing prediction regions for Yτ ,H is considerably more complicated. Suppose the

{Sh}Hh=1 individual prediction regions are independent across horizons to begin with (an

assumption that usually fails in time series data, but temporarily set aside for expositional

purposes here). Using the binomial distribution, it is easy to see that the probability that

h out of the next H realizations of yτ will fall within the individual per-period prediction

intervals is given by

B(h,H, 1− α) =
H∑
i=h

 H

i

 (1− α)iαH−i. (4)

For example, if α = 0.05, h = 5 and H = 6 then B(5, 6, 0.95) = 0.9672 but this probability

drops down to 0.7351 if all six realizations are required to fall inside the intervals defined

by the individual prediction regions, a number that is quite different from the intended

point-wise 0.95 level.

Distribution-free arguments similar to those used in expression (3) can be used to con-

struct intervals that include at least h out of the next H forecasts. This provides a natural

link between expressions (3) and (4).2 Using the same rank ordering of the data for

1 ≤ r1 < r2 ≤ R, then the probability that h out of the next H forecasts will fall between

2 Further explanations as well as the following two formulas can be found in Chew (1968).
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y[r1] and y[r2] is

P
{
y[r1] ≤ yτ+i ≤ y[r2]

}
=

∑H
j=h

 (H − j) + (r1 +R− r2)

H − j


 j + r2 − r1 − 1

j


 R+H

H


for all i in the subset of indexes of {1, ...,H} with cardinality at least equal to h. As an

example, if we choose 1 = r1 < r2 = R and require that all H future realizations {yτ+h}Hh=1

be contained within the interval [y[1], y[R]] then the probability associated with this interval

is

P
{
y[1] ≤ yτ+1, ..., yτ+H ≤ y[R]

}
=

R(R− 1)

(R+H)(R+H − 1)
.

At this point it is useful to define another auxiliary variable for the purposes of evaluating

path-forecast error rates. Let, kHτ =
∑H

h=1 d
h
τ , that is, the number of realizations in the

path that fall outside the union of per-period prediction regions Sh. In multiple comparison

situations, it is often desired to control the probability error rate

P (kHτ > 0) = γ

which we will call here the family-wise prediction error rate (FWPER) to use a nomenclature

that is similar to that used in hypothesis testing. In the example just described, notice that

by choosing individual error rates with P (dhτ = 1) = αh for h = 1, ...H, we have that

P (kHτ > 0) = B(H,H, 1− αh)

so that γ = 0.7351 if H = 6 and αh = 0.05.
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A crude bound relating γ with the individual αh is provided by Bonferroni’s inequality,

using the fact that

1− P (kHτ > 0) = 1− α1 − ...− αH

that is

P (∩Hh=1dhτ = 0) ≥ 1−
H∑
h=1

P (dhτ = 1).

Hence, by choosing αh = α/H one ensures that γ = α. There are, of course, several al-

ternatives to providing a bound for γ using the αh under more restrictive assumptions and

there are step-wise methods that can be used, such as Holm’s (1979) procedure. However,

Bonferroni’s procedure is by far the most commonly used adjustment when an adjustment

is made at all. For extensions of the Bonferroni procedure the reader is referred to Lehmann

and Romano (2005).

An alternative criterion to FWPER is, using analogous notation to the hypothesis testing

literature, k-FWPER. Here the goal is to control the probability error rate

P (kHτ > k) = γ

with k > 0. Returning to our previous example and using expression (4), we have

P (kτ > k) = B(H − k,H, 1− α) = γ.

As mentioned above, under independence with α = 0.05, k = 1 and H = 6 results in

γ = 0.9672 which is close to 1 − α. It is easy to see that by making the original FWPER

criterion more flexible, k-FWPER can be used to account for the length of the path-forecast

where one can use k as a function of H. Although there is no specific function that would
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provide a tight connection between k andH, the researcher can choose slightly more flexibility

on an ad-hoc basis.

Common practice in economics is to construct per-period (point-wise) prediction intervals

with the desired coverage and ignore any issues related to simultaneity and control of the

prediction error rate of the family. This practice is not entirely without justification. Implicit

to this common practice is perhaps the desire to control the expected prediction error rate

(EPER)

E

(
kHτ
H

)
= γ, (5)

which has the nice property of being directly related to the marginal performances of each

individual prediction interval. The EPER is related to αh by

E

(
kHτ
H

)
=
α1 + ...+ αH

H
= γ

and although there is no requirement that all αh = α, it is immediately clear that such a

choice would guarantee that γ = α. In the special case were the family consists of a single

prediction interval,

γ = E

(
k1τ
1

)
= E

(
d1τ = 1

)
= P (d1τ = 1) = α

and EPER and FWPER coincide but in general

E

(
kHτ
H

)
≤ P

(
kHτ > 0

)
≤ H × E

(
kHτ
H

)
.

Independence across horizons will often fail in a forecasting setting —positive serial corre-

lation in yt means that if yτ+1 is above ŷτ (1) then yτ+2 is more likely to be above ŷτ (2) than

otherwise. In terms of the path-error generating distribution of Uτ (H), this simply means

that ΩH will not be spherical.

11



Consider then the problem of constructing a prediction region S such that P (Yτ ,H ∈ S) ≥

1− α. In particular, it helps to transform the problem as follows. Let

S =
{
Yτ ,H : δ ≤W (Uτ (H)) ≤ δ

}
where W (.) : RH → R is a one-dimensional distance function.

In statistics, a popular distance functionW (.) related to the class of elliptical distributions

described in (1) is the Mahalanobis distance3

Wτ =
√

(Yτ (H)− Yτ ,H)′Ω−1H (Yτ (H)− Yτ ,H) ∈ [0,∞) (6)

where ΩH can be estimated from the evaluation sample using

Ω̂H =
1

N − 1

T−H∑
τ=R+1

(
Ûτ (H)− U(H)

)(
Ûτ (H)− U(H)

)′
(7)

where

U(H) =
1

N

T−H∑
τ=R+1

Ûτ (H)

and will have an expectation of 0H if forecasts are unbiased.

The Mahalanobis distance evaluates the distance of a point from the center of the ellipsoid

accounting for correlation. To help draw the connection between a prediction region based

on (6) with the per-period prediction regions based on (2), notice that ΩH is symmetric and

positive definite and hence admits a unique Cholesky decomposition ΩH = QQ′ where Q is

a lower triangular matrix. Another way to think of this decomposition is as the projection

of the h-step ahead forecast error into the 1 to h− 1 previous forecast errors.

Define the path of orthogonalized forecast errors as

Vτ (H) = Q−1(Uτ (H)− U(H)).

3 Note that an elliptical distribution is not necessarily normal.
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Rewriting (6) in terms of these orthogonalized forecast errors, we have

Wτ =
√

(Uτ (H)− U(H))′Ω−1H (Uτ (H)− U(H)) =
√
Vτ (H)′Vτ (H) (8)

=

√√√√ H∑
h=1

vτ (h)2.

Summarizing, the simultaneous prediction region S with P (Yτ ,H ∈ S) = 1− α based on

the Mahalanobis distance W is an ellipsoid given by the condition

Pr(W 2
τ ≤ δ2) = 1− α,

which can be transformed into the sphere given by the condition

P

(
H∑
h=1

vτ (h)2 ≤ δ2
)

= 1− α. (9)

A sphere such as that in the previous expression, is still a complicated object to represent

in two-dimensional space — a rectangular region is far more convenient. The question we

examine next is how to choose the vertices of this rectangular region.

2.3 Per-period Simultaneous Prediction Intervals: A Balanced Approach

Expression (9), is a correct probabilistic statement about the proportion of realizations of

Yτ ,H expected to fall within the multi-dimensional sphere described in that expression for

an appropriately chosen value of δ. However, this is not something we can represent in two-

dimensional space. One solution is to use a version of Scheffé’s (1953) projections to our

problem.

Consider the easier case where H = 2 first, with the additional simplification implied by

the assumption

Yτ ,2 ∼ N(Yτ (2), I).
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Then the region such that P (Yτ ,2 ∈ S) = 1− α is a circumference that results from noticing

that

(Yτ ,2 − Yτ (2))′(Yτ ,2 − Yτ (2)) ∼ χ22

and hence

P
[
W 2
τ ≤ χ22(1− α)

]
= 1− α (10)

where χ22(1−α) refers to the critical value of a chi-squared random variable with two degrees

of freedom evaluated at confidence level 1 − α. This prediction region is displayed in figure

1 for α = 0.05. Scheffé (1953) introduced a rectangular projection of this region using an

inversion of the usual F-statistic in a simultaneous hypothesis test. The goal was to search

for all the directions where the null hypothesis could be rejected. Such a search is implicitly

a data-snooping exercise and the virtue of the Scheffé (1953) procedure is to correct the

statistical statements to account for this search process.

Geometrically and in the context of the illustrative example in figure 1, the Scheffé

(1953) intervals can be calculated without diffi culty. These are yτ+h ∈ yτ (h)± χ22(1− α)1/2

for h = 1, 2 (when the covariance matrix has to be estimated one can use instead the F-

distribution critical values, which is the original form that appears in Scheffé, 1953). The

Scheffé (1953) bounds are displayed in figure 1 as the box that contains the circumference

corresponding to expression (10). As Miller (1981) explains, Scheffé (1953) intervals in

practical applications will generally be wider than Bonferroni intervals for small H, but

narrower when H is large. There is, however, another important lesson that figure 1 contains

in regard to the allocation of uncertainty across horizons.

The bounds of the Scheffé (1953) projections are, in our opinion, unreasonably conser-
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vative for most path-forecasting problems. The reason is that they bound the worst case

scenario in which the total uncertainty of the pair yτ+1, yτ+2 is allocated to one realization

but not the other. Protection against such an extreme event may make sense when the objec-

tive is to quantify the worst possible risks. But in most forecasting applications the end-user

probably favors a more balanced allocation of uncertainty. The strictly balanced allocation

of uncertainty for the pair yτ+1, yτ+2 is displayed in figure 1 as the inner rectangular region

encased by the circumference. That region intersects the original circumference at the point

where yτ+1 and yτ+2 simultaneously achieve maximum variability. The diagonal represented

in figure 1 has slope equal to the ratio of the variances of yτ+1 and yτ+2 (which in this case

is 1). In what follows we provide a more formal derivation of how this region is constructed

and the implicit forecast-error control that would justify such a calculation.

The following lemma from Turner and Bowden (1977), which is a version of the Cauchy-

Schwarz inequality, will be useful in the derivations that follow.

Lemma 1 Let a and V be H × 1 real vectors. Let δ be a real constant. Then V ′V ≤ δ2 if
and only if |a′V | ≤ δ(a′a)1/2 for all real vectors a.

Returning to expression (8) and applying the lemma, we have

P (W 2
τ ≤ δ2) = P (Vτ (H)′Vτ (H) ≤ δ2) = P

(∣∣a′Vτ (H)
∣∣ ≤ δ(a′a)1/2 for all a

)
where a is any H × 1 real valued vector. As explained in Turner and Bowden (1977), if at

least one element of a is restricted to a specific value, one obtains the inequality

P (Vτ (H)′Vτ (H) ≤ δ2) ≤ P
(∣∣a′Vτ (H)

∣∣ ≤ δ(a′a)1/2
)
.

For reasons that will be apparent momentarily, consider what happens when a = ( 1H , ...,
1
H )′.
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Notice that a′a = 1
H and hence

P

∣∣a′Vτ (H)
∣∣ ≤

√
δ2

H

 = P

∣∣∣∣∣ 1

H

H∑
h=1

vτ (h)

∣∣∣∣∣ ≤
√
δ2

H

 ≥ P (Vτ (H)′Vτ (H) ≤ δ2
)

= 1− α.

(11)

The middle term of expression (11) makes a probabilistic statement about the interval

associated with the average value of the orthogonalized components of the path-forecast.

Now suppose that we consider H vectors of identical length, the vector a1 = a =

( 1H , ...,
1
H )′ and all H − 1 vectors a2, a3, . . . , aH orthogonal to it. In many cases, these

can be vectors with typical element
{
± 1
H

}
.4 We then have that

P

∣∣a′Vτ (H)
∣∣ ≤

√
δ2

H

 ≥ P
 H⋂
h=1

∣∣a′hVτ (H)
∣∣ ≤

√
δ2

H

 ≥ 1− α, (12)

where the middle term describes an H-cube. Figure 1 displays the H-cube associated with

this probabilistic statement for H = 2, which can be seen as the rhombus encasing the

circumference given by (10). Rotating this rhombus gives the box corresponding to the

Scheffé bounds mentioned above.

As argued above, the Scheffé bounds appear rather conservative for the purpose of path-

forecasting. We therefore propose a smaller H-cube which intersects the original circum-

ference at the point where vτ (1) and vτ (2) simultaneously achieve maximum variability. In

H-dimensional space, this region is defined by the H conditions

|Vτ (H)| ≤

√
δ2

H
iH ,

where iH is an H × 1 vector of ones, and δ will depend on the desired α. Note that this

4 These cases are given by H = 2 and H = 4k with k ∈ N, where the orthogonal vectors can be obtained
as the columns of an H ×H Hadamard matrix multiplied by 1/H. In the other cases, some elements of a2,
a3, . . . , aH differ from ± 1

H
.
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region guarantees that the allocation of prediction-error control is balanced in the sense of

Beran (1988).

Recall that Vτ (H) = Q−1(Uτ (H)−U(H)) so that to express the intervals in terms of the

original forecast errors we have

∣∣Q−1(Uτ (H)− U(H))
∣∣ ≤

√
δ2

H
iH . (13)

Premultiplying expression (13) by |Q| and then applying the matrix inequality |AB| ≤ |A| |B|

to the first expression, we get5

∣∣Uτ (H)− U(H)
∣∣ ≤ |Q|

√
δ2

H
iH ,

and if the forecasts are unbiased such that U(H) = 0 so that Y τ ,H = Y τ (H), then

Yτ ,H ∈ Yτ (H)± |Q|

√
δ2

H
iH . (14)

Expression (14) forms the basis for the per-period prediction intervals that we propose in

this paper and which we will call Scheffé bands or intervals to use the Jordà and Marcellino

(2010) nomenclature and to stand in opposition to the Scheffé bounds discussed earlier.

Several remarks deserve mention. First and returning to figure 1, the intervals proposed

in expression (14) correspond to the inner square mentioned earlier. That square is tangent

to the circumference given by (10) and the rhombus given by the middle term of expression

(11). The point-wise intervals implied by that square are of equal length to achieve balance

as desired. Second, notice that the Scheffé intervals that we propose in (14) are narrower

5 Jordà and Marcellino (2010) neglected to invert Q using the absolute value. This is usually not a problem
in practice because path-forecasts tend to be positively correlated. However, the general result requires the
absolute value transformation. This correction was first introduced in a manuscript by Staszewska-Bystrova
(2012). The matrix inequality used can be found in Lütkepohl (1996, p.40).
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than the intervals based on the marginal distribution of each element (which in this example

would correspond to the [−1.96, 1.96] × [−1.96, 1.96] square) and much narrower than the

Scheffé bounds. This is explained by our desire to control for general variability along the

path rather than controlling for worst-case scenario type variability. Third, in practice we

have Ŷτ (H) rather than Yτ (H) and Q has to be estimated. That is, the elements of prediction

interval itself are random. When evaluated at their average (or estimates), we obtain the

traditional prediction interval. In this paper space considerations prevent us from discussing

tolerance intervals, a probabilistic statement related to the quantiles of the distribution of

the prediction interval. Tolerance intervals would be natural in any discussion associated

with measures of Value at Risk (VaR), for example.

In practice and when the null distribution is unknown and one wants to make as few

assumptions as possible, the evaluation sample or N -sample for short (R-sample will refer to

the sample used to estimate the model and T = R+N +H comprises all the available data),

can be used to construct the Scheffé intervals. Suppose one wants to provide prediction

intervals for ŶT (H). The N -sample can then be used to estimate Ω̂H and the Cholesky

decomposition to calculate Q̂. Finally, using N -sample estimates of Y τ (H) together with Ω̂H ,

one can generate {Ŵ 2
τ }T−Hτ=R+1 and use Ŵ

2
[1−α] as an estimate of δ

2. Alternatively and if the

data are reasonably well approximated by the Gaussian distribution, δ2 could be calculated

as the critical value of a chi-square distributed random variable at 1 − α confidence level

or, if a small sample correction is desired, as H times the critical value of an F-distributed

random variable with H,N degrees of freedom at 1− α confidence level.

Another practical matter has to do with the fact that the critical value chosen depends
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on the length of the interval considered. As a result, the width of the intervals for the

earlier forecasts depends on the researcher’s choice of H. This is a natural consequence of

the simultaneous nature of the evaluation problem. However, one could construct stable

per-period intervals with some additional coverage replacing the intervals in expression (14)

with

Yτ ,H ∈ Yτ (H)± |Q|

√δ2h
h

H
h=1

(15)

where δ2h denotes the critical value calculated for period h (either empirically or using the

chi-square or F-distribution assumption) and where the H × 1 vector in brackets has typical

element
√

δ2h
h for h = 1, ...,H. Below we use this version of the Scheffé bands for the Monte

Carlo simulations and the application since we feel researchers may feel more comfortable

choosing a method of prediction interval construction that is independent of H.6

We conclude this section with a brief discussion of prediction-error rate control. As we

mentioned earlier, there does not appear to be a universally agreed upon control metric.

FWPER seems appropriate if one is concerned about controlling for even the occasional

stray realization in an otherwise properly predicted path-forecast. We have instead argued

in favor of a metric that considers the entire path-forecast variability simultaneously while

generating per-period prediction intervals that allocate uncertainty in a balanced manner.

Such an interval is designed to capture stray trajectories as opposed to stray observations.

In what follows we will call control of the probability error rate based on the Mahalanobis

distance induced by the path-forecast constrained to have equal per-period variability as

6 The difference between expressions (14) and (15) depends on the choice of α. For common values of α
such as 0.05 or 0.32, (15) tends to yield wider intervals.
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Wald control.7 That is, the Scheffé bands that we propose generate an implied value

for W 2 in expressions such as (10). Call this value W 2
s . In Monte Carlo simulations we

then compute the proportion of the simulated path-forecasts whose Ŵτ
2
exceedsW 2

s . Proper

calibration of the bands produces Wald control that corresponds to the desired α error rate.

It should be clear that neither version of the Scheffé bands proposed is designed to

guarantee correct FWPER control. And yet in many applications and depending on the

serial correlation patterns in the data, it will turn out that FWPER is close to the equivalent

α control level. In contrast, Bonferroni bands control the FWPER (by design), but their

Wald coverage can deviate substantially from the pre-specified nominal level. We examine

these and many other features in the simulation exercises discussed in the next section.

3 Probability Coverage of Alternative Prediction Bands: Sim-
ulation Evidence

We now present simulation evidence on the probability coverage of different types of predic-

tion bands for a path-forecast. The next section describes the experimental design, and the

following section reports the results. Concerning FWPER control, if the actual coverage of

the bands exceeds (falls short of) the nominal level, the bands are commonly said to be too

wide (narrow). For convenience, we adopt the same terminology when evaluating the Wald

coverage.

7 Wald control seems appropriate since the Mahalanobis distance is the main ingredient in constructing
the celebrated Wald statistic.
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3.1 Experimental design

We simulate data from the AR(1)-model

yt = ρyt−1 + εt, (16)

with coeffi cient ρ equal to 0.5 or 0.9, E [εt] = 0 and E
[
ε2t
]

= 1. Three distributions are

considered for the errors εt. The first is the standard normal distribution, the second is the

t-distribution with 4 degrees of freedom, scaled to have a variance equal to 1. In both cases,

the errors are i.i.d. For the third distribution, εt is generated by the ARCH process

εt =
√
ztvt

zt = a0 + a1ε
2
t−1

where vt is i.i.d. standard normal, and a0 = 1 − a1, so that E
[
ε2t
]

= 1. The parameter

a1 is set to 1/
√

3. Thus, in the case of the t-distributed errors and the ARCH errors,

the kurtosis of εt does not exist for the parameter values chosen here, but it does exist

in their local neighborhoods. Choosing these parameter values yields similar unconditional

non-normal distributions of εt. For example, using the critical value c = 0.99 (1.96, 2.58),

which yields a coverage of P (−c < εt < c) = 0.68 (0.95, 0.99) in the case of the standard

normal distribution, the coverage equals 0.77 (0.95, 0.98) in the case of the t-distribution

and 0.75 (0.95, 0.98) in the case where εt is generated by the ARCH process. Note that

the (unconditional) covariance matrices of the forecast errors are identical for all three error

distributions considered.

Let R denote the estimation sample size, N denote the predictive sample size, and H

denote the length of the path-forecast considered. We consider the values R = 25, 100;
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N = 40, 80; and H = 1, 4, 8 and 12. For each combination R,N and H we generate 10,000

Monte Carlo samples.

At each replication, we use that sample to generate path-forecasts of length H over a

predictive sample N using OLS estimates from an AR(1) model without constant fitted on

R observations. Then, we construct three types of prediction bands: (1) traditional marginal

error bands; (2) Bonferroni bands; and (3) Scheffé bands (using expression (15)). We consider

both the analytic formulas derived in Jordà and Marcellino (2010), based on the null model

being the DGP, as well as the empirical formulas described in the previous section based

on the forecast errors only.8 The empirical covariance matrices of the forecast errors are

estimated assuming unbiased forecasts. We examine bands for 68% and 95% probability

coverage rates.

As mentioned above, coverage is evaluated in terms of FWPER and Wald control.

FWPER control means that any path with one or more elements outside the prescribed

bands is considered to fall outside the bands. Wald control is calculated using the Maha-

lanobis distance squared and then recording as being outside the bands all those paths with

distances aboveW 2
s , defined in the previous section. We do not use the empirical critical val-

ues because the empirical predictive sample sizes usually do not allow for accurate estimates

of their α-quantiles. In practice, a normal distribution for error terms is frequently assumed

and the normality hypothesis, probably, could often not be rejected due to the small sample

size even if the errors are not normal. Therefore, we consider situations where the errors are

non-normal, but the bands are constructed using the normality assumption, and evaluations

8 In the case of using the analytic formulas, the size N of the predictive sample is obviously inconsequential.
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of the Wald coverage also rest on the normal distribution. This is probably a more realistic

situation in practice.

In addition to the design described above, we also investigate a simple case of misspeci-

fication, where we assume that the forecaster uses the misspecified model

yt = εt

instead of the true model given by (16), so that ŶT (H) is an H × 1 vector of zeros. The

only parameter that has to be estimated then in the case of model-based bands is the second

moment of yt. Finally, the true covariance matrix needed for evaluating the Wald coverage

is unknown and has to be estimated from the N -sample.9

3.2 Simulation Results

Tables 1 and 2 summarize the results of our experiments. Table 1 contains the results ob-

tained with forecasts from the null model, whereas the results for the case of misspecification

can be found in Table 2.

The top panel in Table 1 refers to the case where all parameters of the model are known.

The left half of these results contains information about the deviations of coverage with

respect to the nominal level. For example, a value of 10 means that the coverage is 10

percentage points higher than the nominal level. The results displayed are averages over

the deviations observed for both values of ρ, both values of α, and the four values of H

considered. In the right half of the table, the averages over the absolute deviations can

be found. If the values for the average deviations and the absolute deviations coincide,

9 Additional simulations and results for a VAR model based on Stock and Watson (2001) with several
types of misspecifications can be found in Jordà, Knüppel, and Marcellino (2010).
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this means that the sign of the deviations is identical for all combinations of ρ, α, and H

considered. The individual coverage results can be found in Table A.1.

The remaining results in Table 1 are concerned with cases where the bands are based

on estimates. We report the deviations with respect to the case where all parameters are

known. Thus, the results contain information about the effects of estimation uncertainty,

not about nominal coverage per se. That is, it might be possible that, say, the bands based

on estimated parameters are narrower than the bands based on known parameters, leading

to smaller coverage. Yet, if the bands in the case of known parameters are too wide, it

could be that both effects cancel out, so that the coverage of the bands based on estimated

parameters is actually equal to the nominal level. However, here we are primarily interested

in the effects of estimation uncertainty, so that smaller deviations from the case of known

parameters are preferable.

The left half of the results for each case of estimated bands considered contains informa-

tion about the average deviations of coverage with respect to the case of known parameters,

where the results are averages over the deviations observed for both values of ρ, both values

of α, and the four values of H. In the right half, the averages over the absolute deviations

with respect to the the case of known parameters can be found. The individual coverage

results can be found in Tables A.1 - A.7.

Turning to the case of known parameters, for normal errors the results of Jordà and

Marcellino (2010) are reproduced. Marginal bands are far too narrow with respect to FWPER

and Wald control, Bonferroni bands tend to be moderately too wide for FWPER control

and have problems with Wald control, being too narrow in some cases and too wide in
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others. Scheffé bands are too narrow with respect to FWPER control as expected, but only

marginally too wide with respect to Wald control. Considering the individual results, one

finds that the FWPER control of Scheffé bands improves with the persistence of the process.

Concerning the non-normal errors, the results for the t-distribution and the ARCH

process are fairly similar. In general, the coverage of the bands becomes larger. This might

be surprising at first sight, but it is directly related to the coverage for certain critical values

reported above. For a nominal coverage of 68%, the bands based on a normal distribution are

actually too wide if the errors are t-distributed or follow an ARCH process. For a nominal

coverage of 95%, the normal bands have approximately the correct coverage.10

If the bands are constructed using estimates of ρ and E
[
ε2t
]
, the bands tend to be narrower

than with known parameters. While there are exceptions to this for the marginal bands, it

holds for virtually all specifications considered in the case of the Bonferroni and the Scheffé

bands. For all bands, the average effects are of similar magnitudes. The effects of estimation

uncertainty increase with ρ and H. The effects can be large for R = 25, but they are fairly

contained for R = 100. For example, with ρ = 0.9, α = 0.32, H = 12, and R = 25, the

FWPER coverage of the Bonferroni bands is 15 percentage points smaller than with known

parameters. For R = 100, the difference drops to 5 percentage points. The deviations from

the case with known parameters tend to be smaller for the non-normal errors.

If forecast errors are used to construct the bands, the estimation uncertainty also tends

to narrow the bands. This effect is most pronounced for the Scheffé bands, which, in contrast

to the other bands, require the additional estimation of covariances. The non-normal errors

10 Had we considered 99% bands, we would, of course, find, that the bands based on the normal distribution
tend to have a smaller coverage in the cases of the non-normal errors.
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cause stronger deviations than the normal errors, with the ARCH errors having the largest

impact. This result appears plausible, because the conditional heteroskedasticity makes

inference about the unconditional second moments of the forecast errors diffi cult in small

predictive samples. Comparing the results for R = 25 to those for R = 100, it turns out that

the estimation uncertainty with respect to ρ has negligible effects on the coverage. In contrast

to that, the predictive sample size N is decisive. With N = 40, the average deviations attain

up to −9 percentage points for FWPER control and up to −12 percentage points for Wald

control. These numbers drop to −6 and −7 percentage points, respectively, with N = 80.

Looking at the individual coverage results in Tables A.4 - A.7, it turns out that deviations

larger than 10 percentage points mainly occur for H = 8 and H = 12 if N = 40, whereas

with N = 80, such deviations are mostly restricted to H = 12 only.11

Table 2 reports the results for the misspecified forecasting model and has the same struc-

ture as Table 1. The individual coverage results can be found in Tables A.8 to A.12. However,

the results which now serve as the reference concerning the deviations in coverage are ob-

tained by simulations with N = 1000. In this case, the covariance matrix of the forecast

errors is estimated in a suffi ciently accurate manner, so that the coverage obtained can be

regarded as the actual coverage given the misspecification considered. The results are actu-

ally not too different from the results for the well-specified model with known parameters.12

11 It should be noted that, concerning the results for bands based on forecast errors, the estimation un-
certainty affecting the bands is only one reason for the deviations with respect to Wald coverage. A second
reason is given by the effect of the estimation uncertainty on the covariance matrix which is used to deter-
mine the Wald coverage of the forecast path. Additional simulations not reported here show that the second
effect accounts for −1 to −3 percentage points of the average deviations with respect to the Wald coverage if
N = 40. With N = 80, the effect becomes negligible for the average deviations. Concerning the individual
deviations, the effect tends to be larger in the case of longer paths.
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Comparing the Scheffé bands and the Bonferroni bands for the misspecified model, both

bands have almost identical FWPER control on average, but the Scheffé bands perform much

better with respect to Wald control.

If the bands are constructed based on the misspecified model instead, the FWPER control

changes strongly for the Scheffé bands. For the marginal and the Bonferroni bands, the

changes are only moderate for R = 25 and small for R = 100. This, however, is due to the

special case analyzed here. Both methods for the construction of bands give identical results,

asymptotically, for the marginal and the Bonferroni method here, because the variance of

the actual forecast errors is equal to
(
1− ρ2

)−1 for each horizon, and the same holds for
the variance of the forecast errors derived from the misspecified model. The Scheffé bands,

however, depend on the method of construction. Only if the forecast errors are used for the

construction, the Scheffé bands widen with the forecast horizon. This example illustrates

that the Scheffé bands contain more information than the other bands, since the positive

correlation of the forecast errors only becomes visible in the (forecast error-based) Scheffé

bands.

Since both methods for the construction of bands, asymptotically, yield identical marginal

and Bonferroni bands, respectively, their coverage does not depend on the method used. Yet,

Table 2 suggests that the Wald control of model-based bands is very different from the Wald

control of bands generated from forecast errors. The reason for this apparent difference is

given by the misspecification of the covariance matrix used to evaluate the Wald coverage

12 The reason for the similarity is given by the similarity of the correlations of the forecast errors. Consider,
for example, the correlation between the 1- and the 2-step-ahead forecast error. In the case of correct
specification, this correlation equals ρ/

√
1− ρ2, whereas it simply equals ρ in the case of misspecification.

Both correlations are similar if |ρ| is not too large, as, for example, in the case ρ = 0.5. For larger forecast
horizons h and h+ 1 with h > 1, the differences between the correlations become even smaller.
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in the case of model-based bands. The evaluation of the Wald coverage, however, only

makes sense if the estimator of the covariance matrix of the forecast errors is consistent. If

the forecasting model is misspecified, this can only be achieved using the covariance matrix

based on empirical forecast errors.

As in the case of correct specification and bands based on forecast errors, the coverage

of the Scheffé bands is more affected by the estimation uncertainty than the coverage of the

bands which do not make use of covariances. If εt follows an ARCH-process, the estimation

uncertainty for the covariance matrix becomes larger than with homoskedastic errors, leading

to stronger deviations of the coverage with respect to the reference case. However, the

differences between the average coverages of the three error distributions are again small.

To summarize, if the parameters that the bands are based on have to be estimated,

this tends to lead to lower coverage. The effects of estimation uncertainty are of similar

magnitudes for all bands if the bands are based on a model. If they are based on forecast

errors, the effects are strongest for the Scheffé bands, because the additional estimation of

covariances is required. In the case of model misspecification, in contrast to the forecast-

error-based construction of bands, the model-based construction can lead to pronounced

coverage problems, and the evaluation of the Wald coverage can give very misleading results.

If the errors are assumed to be normal although they are not, the effects on the coverage

depend on the nominal level of α and the type of non-normality, but they are relatively small

in most settings considered here.
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4 An Application to the Greenbook Forecasts

The staff at the Board of Governors of the Federal Reserve routinely produces, among many

other variables, inflation and output forecasts. These forecasts, colloquially known as the

Greenbook forecasts (and more recently as Tealbook forecasts), are made available to all the

members of the Federal Open Market Committee (FOMC) prior to each FOMC meeting.

Because the forecasting model is not made available nor forecasting uncertainty routinely

reported, we find it a natural environment where our methods can be applied. The sample

of Greenbook forecasts is relatively large so that it can be used to evaluate our simultaneous

prediction regions by splitting the predictive sample and saving the second subsample for

evaluation. Notice that while the forecasts and the realizations are available, the null model

is not and hence one has to rely entirely on the empirical approach we have proposed.

4.1 Data and Construction of Bands

We have collected quarterly Greenbook forecasts starting in 1974:Q2, for which H = 5 is

available. The data for h = 1 represents a nowcast, so that we have path-forecasts up to

1-year ahead. The sample ends in 2003:Q4, since the Greenbook data are released with a

delay of 5 years. Forecasts are for output growth (where output is measured by GNP until

1991, GDP afterwards) and inflation (measured as growth in the GNP deflator until 1991,

in the GDP deflator afterwards) measured as 400 ∗ ln(yt/yt−1). For comparison with actual

data, we use the chain-weighted GNP and GDP, and their deflators.13

Using forecasts and corresponding actual data, we have constructed the sequences of

13 Here, we use the data as published in 2009. In Jordà, Knüppel, and Marcellino (2010) we also consider
the role of real time data in the context of this application.
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path-forecast errors and tested them for normality using the test of Bai and Ng (2005).

Having obtained non-rejections of normality in all cases, we proceed using the normality

assumption.14 We have then used the error sequences to estimate the ΩH matrix empirically

on the predictive sample. Of course, the analytic approach is unavailable since the null model

that produces the forecasts is unknown.

Next, we construct marginal, Bonferroni and Scheffé bands for the growth and inflation

forecasts for different nominal coverage rates. In figure 2 we plot the (one-sided) 95% bands,

centered at zero for convenience.15 The Bonferroni bands are in general wider than the

Scheffé bands for low values of h, but sometimes narrower for higher values of h. The com-

monly used marginal bands are clearly the narrowest except for h = 1. A similar picture

(but with larger values for each type of band) emerges for a 68% (one standard deviation)

coverage rate.16

We now assess the relative performance of the bands in the application at hand in terms

of actual coverage rates. For the evaluation, we split the sample at T ∗ = 1985:Q1. With the

sample of forecast paths starting in 1974:Q2 and ending in T ∗, we get 40 forecast paths and

corresponding errors from which we construct the empirical estimate Ω̂H . This estimate is

used to construct uncertainty bands for the forecast path from T ∗ + 1, i.e. from 1985:Q2.

Then we roll the window of forecast paths to calculate Ω̂H , one observation at a time by

deleting the first path and adding one path at the end, and we also roll the forecast path for

which we construct uncertainty bands. We do so until the uncertainty bands are constructed

14 Detailed results are available upon request.

15 This means that for any given path-forecast, adding and subtracting the values we provide in the figure
would generate the appropriate 95% prediction interval.

16 Available upon request.
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for the final path starting in T = 2003:Q4, for which the final window of forecast paths

starting from 1992:Q4 to 2002:Q3 is used to determine Ω̂H . In this way, we have produced

uncertainty bands for 75 forecast paths. This procedure yields a set of measures of path-

forecast uncertainty that can be compared with the actual realizations in order to compute

the actual coverage rate of each type of prediction band. Table 3 reports actual coverage

rates under FWPER and Wald control for U.S. inflation and output growth for nominal

levels of 68% and 95%.

As expected, the marginal bands perform very poorly, in particular for 68% nominal

coverage rates, but also for 95% they are dominated by the Bonferroni and Scheffé bands.

The ranking of the latter is less clear-cut. In terms of FWPER control, the coverage of the

Bonferroni bands is, in general, closer to the nominal levels. For Wald control, the Scheffé

bands tend to yield the best results. Thus, the empirical results are overall in line with

those found in the Monte Carlo simulations, but they also confirm a certain robustness in

the coverage of the bands even in the likely presence of structural changes in distribution of

the forecast errors due to the Great Moderation described by McConnell and Pérez Quirós

(2000).

5 Conclusions

This paper introduces new methods to compute prediction intervals with simultaneous proba-

bility coverage where variability is distributed evenly across the elements of the path-forecast

depending on their variance and serial correlation. We believe such bands reflect the predic-

tion uncertainty that is most likely to be relevant for the end-user of such forecasts. We make

few assumptions to derive our results, including situations where the model generating the
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forecasts may be unavailable. Using our methods, one can still construct prediction intervals

using the empirical distribution of past forecast errors. Moreover, the empirical distribution

appears to offer reasonable protection against possible misspecification of the forecasting

model as our simulation evidence demonstrates.

There is no agreement as to the best metric of prediction error control for path-forecasts

and this leads to considerable confusion in the literature as to how to determine and evaluate

the probability coverage of any proposed prediction intervals. However, simulation evidence

suggests that the bands that we discuss in this paper appear to work best under a variety

of metrics and also under a variety of misspecification alternatives. Traditional methods of

prediction interval calculation often work well under one metric but not another and suffer

greatly under misspecification. In an empirical application to the Greenbook forecasts for

inflation and output growth, we find that the use of traditional point-wise intervals based

on the marginal distribution of forecast errors is not recommended. The Bonferroni bands

yield the best results with respect to FWPER control but often provide poor Wald coverage.

Scheffé bands have the best Wald coverage and perform reasonably well when evaluated with

alternative metrics.
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Figure 1 – The Geometry of Two-Dimensional Prediction Regions 

 

 

 

Notes: 95% chi-square circumference. Scheffé (1953) bounds are the square encasing this circumference. 
The Turner-Bowden Rhombus results from applying the Cauchy-Schwarz inequality. The bands that we 
propose are the square encircled by the 95% chi-square circumference, the result of rotating the Turner-
Bowden rhombus. 

  



Figure 2 – Width of Empirical Prediction Bands based on Greenbook Forecasts of Output and 
Inflation. Sample: 1974Q2 – 2003Q4. 

 

 

Notes: these bands show how much should be added/subtracted to a path-forecast to construct prediction 
bands with 95% coverage as defined in the paper (i.e., they have been re-centered at zero. The bands are 
constructed from the empirical sample of forecast errors using a rolling window that begins with the 
sample 1974Q2 to 1985Q1. The data comes from the Federal Reserve’s Greenbook forecasts (now called 
Tealbook). Output is measured as GNP until 1991 and GDP afterwards. We report the forecasts based on 
the annualized quarterly growth rate. The inflation forecast is based on the GNP/GDP deflator and 
calculated as the annualized quarterly growth rate. For h = 0, it refers to a nowcast. For h = 1, 2, 3, 4, it 
refers to the h-period ahead forecast. 



Table 1: Correct null model

Reference case: All parameters known
Deviations from nominal coverage levels

average deviations average absolute deviations
Metric Null Distn. Marginal Bonf. Scheffé Marginal Bonf. Scheffé

norm -26 4 -8 26 5 8
FWPER t -21 4 -5 24 6 7

ARCH -18 5 -3 20 7 5
norm -32 0 1 32 10 1

Wald t -26 3 3 28 8 4
ARCH -23 4 4 25 7 5

Notes: Average deviations from coverage levels over H, ρ and α. In percentage points
H is the forecast horizon, ρ is the AR parameter in the DGP and 1-α the coverage

Bands based on model
Deviations from coverage levels obtained with all parameters known

Estimation sample: R = 25 Estimation sample: R = 100
average deviations average absolute deviations average deviations average absolute deviations

Metric Null D. Marginal Bonf. Scheffé Marginal Bonf. Scheffé Marginal Bonf. Scheffé Marginal Bonf. Scheffé

norm -4 -6 -6 4 6 6 -1 -2 -2 1 2 2
FWPER t -2 -2 -3 2 2 3 -1 0 -1 1 1 1

ARCH -2 -2 -3 3 2 3 -1 -1 -1 1 1 1
norm -1 -3 -5 4 4 5 0 -1 -1 1 1 1

Wald t 2 0 -2 3 1 2 1 0 0 1 1 0
ARCH 2 0 -2 3 1 2 1 0 0 1 0 0

Notes: Average deviations from coverage levels over H, ρ and α. In percentage points. H is the forecast horizon, ρ is the AR parameter in the DGP
and 1-α the coverage.

Bands based on forecast errors
Deviations from coverage levels obtained with all parameters known

Estimation sample: R = 25. Evaluation sample: N = 40 Estimation sample: R = 25. Evaluation sample: N = 80
average deviations average absolute deviations average deviations average absolute deviations

Metric Null D. Marginal Bonf. Scheffé Marginal Bonf. Scheffé Marginal Bonf. Scheffé Marginal Bonf. Scheffé

norm -1 -3 -5 2 3 5 -1 -2 -3 1 2 3
FWPER t -4 -4 -6 4 4 6 -2 -3 -4 2 3 4

ARCH -6 -6 -9 6 6 9 -4 -4 -5 4 4 5
norm -3 -6 -9 4 6 9 -2 -4 -5 3 4 5

Wald t -5 -8 -10 5 8 10 -3 -5 -5 3 5 5
ARCH -7 -10 -12 7 10 12 -5 -7 -7 5 7 7

Notes: Average deviations from coverage levels over H, ρ and α. In percentage points. H is the forecast horizon, ρ is the AR parameter in the DGP
and 1-α the coverage.

Estimation sample: R = 100. Evaluation sample: N = 40 Estimation sample: R = 100. Evaluation sample: N = 80
average deviations average absolute deviations average deviations average absolute deviations

Metric Null D. Marginal Bonf. Scheffé Marginal Bonf. Scheffé Marginal Bonf. Scheffé Marginal Bonf. Scheffé

norm -2 -3 -5 2 3 5 -1 -2 -3 1 2 3
FWPER t -4 -4 -6 4 4 6 -2 -3 -4 2 3 4

ARCH -6 -6 -9 6 6 9 -4 -4 -6 4 4 6
norm -2 -6 -9 4 6 9 -2 -3 -4 2 3 5

Wald t -4 -7 -10 5 7 10 -3 -4 -5 3 4 5
ARCH -7 -9 -12 7 9 12 -4 -6 -7 4 6 7

Notes: Average deviations from coverage levels over H, ρ and α. In percentage points. H is the forecast horizon, ρ is the AR parameter in the DGP
and 1-α the coverage.



Table 2: Misspecified null model

Reference case: Bands based on forecast errors. Evaluation sample: N = 1000
Deviations from nominal coverage levels

average deviations average absolute deviations
Metric Null Distn. Marginal Bonf. Scheffé Marginal Bonf. Scheffé

norm -24 5 -7 24 5 7
FWPER t -21 4 -6 22 6 7

ARCH -18 5 -4 19 7 6
norm -35 -5 0 35 15 1

Wald t -30 -2 2 31 11 4
ARCH -27 -1 2 28 10 5

Notes: Average deviations from coverage levels over H, ρ and α. In percentage points
H is the forecast horizon, ρ is the AR parameter in the DGP and 1-α the coverage

Bands based on model
Deviations from coverage levels obtained with bands based on forecast errors and N = 1000

Estimation sample: R = 25 Estimation sample: R = 100
average deviations average absolute deviations average deviations average absolute deviations

Metric Null D. Marginal Bonf. Scheffé Marginal Bonf. Scheffé Marginal Bonf. Scheffé Marginal Bonf. Scheffé

norm -7 -8 -30 7 8 30 -2 -2 -26 2 2 26
FWPER t -8 -9 -28 9 9 28 -3 -3 -22 3 3 22

ARCH -11 -11 -29 11 11 29 -4 -4 -22 4 4 22
norm 28 15 -8 30 17 8 33 17 -2 33 18 2

Wald t 23 11 -10 25 14 10 28 14 -3 29 15 3
ARCH 19 9 -11 23 12 11 26 12 -4 27 13 4

Notes: Average deviations from coverage levels over H, ρ and α. In percentage points. H is the forecast horizon, ρ is the AR parameter in the DGP
and 1-α the coverage.

Bands based on forecast errors
Deviations from coverage levels obtained with bands based on forecast errors and N = 1000

Evaluation sample: N = 40 Evaluation sample: N = 80
average deviations average absolute deviations average deviations average absolute deviations

Metric Null D. Marginal Bonf. Scheffé Marginal Bonf. Scheffé Marginal Bonf. Scheffé Marginal Bonf. Scheffé

norm -4 -5 -8 4 5 8 -2 -3 -4 2 3 4
FWPER t -6 -6 -9 6 6 9 -3 -3 -5 3 3 5

ARCH -8 -8 -11 8 8 11 -5 -5 -6 5 5 6
norm -2 -4 -11 4 5 11 -1 -2 -5 2 3 5

Wald t -3 -6 -11 4 6 11 -2 -3 -5 3 3 5
ARCH -5 -8 -13 6 8 13 -3 -5 -7 4 5 7

Notes: Average deviations from coverage levels over H, ρ and α. In percentage points. H is the forecast horizon, ρ is the AR parameter in the DGP
and 1-α the coverage.



Table 3: Coverage of alternative bands for US inflation and growth

nominal

Marg Bonf Schef Marg Bonf Schef Marg Bonf Schef Marg Bonf Schef

FWPER control
actual 31 79 60 88 92 93 27 72 51 73 100 91

actual 16 73 75 75 88 91 40 83 73 85 99 99
Note: The Table reports the coverage rates of alternative bands for forecast paths in percent. Sample 1974:Q2-1985:Q1 is used
for estimation of first variance covariance matrix of forecast errors. First forecast path used starts in 1985:Q2. Exercise is repeated
in a rolling fashion. Last available forecast path comes from 2003:Q4, so that the coverage of bands for 75 paths is evaluated.

Wald control

Inflation Growth
Coverage: 68% Coverage: 95% Coverage: 68% Coverage: 95%



Table A.1: Actual coverage in percent with correct null model, model-based bands and known parameters

H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S

norm 1 0.5 68 68 68 68 1 0.9 68 69 69 69 4 0.5 68 26 75 52 4 0.9 68 35 80 62
FWPER t 1 0.5 68 77 77 77 1 0.9 68 76 76 76 4 0.5 68 39 78 62 4 0.9 68 48 83 70

ARCH 1 0.5 68 75 75 75 1 0.9 68 75 75 75 4 0.5 68 45 82 66 4 0.9 68 51 84 71

norm 1 0.5 68 68 68 68 1 0.9 68 69 69 69 4 0.5 68 27 83 67 4 0.9 68 16 64 68
Wald t 1 0.5 68 77 77 77 1 0.9 68 76 76 76 4 0.5 68 43 85 75 4 0.9 68 30 74 76

ARCH 1 0.5 68 75 75 75 1 0.9 68 75 75 75 4 0.5 68 49 86 78 4 0.9 68 33 76 78

norm 1 0.5 95 95 95 95 1 0.9 95 95 95 95 4 0.5 95 84 96 92 4 0.9 95 87 96 94
FWPER t 1 0.5 95 95 95 95 1 0.9 95 95 95 95 4 0.5 95 83 92 89 4 0.9 95 87 95 93

ARCH 1 0.5 95 96 96 96 1 0.9 95 95 95 95 4 0.5 95 87 94 92 4 0.9 95 88 94 93

norm 1 0.5 95 95 95 95 1 0.9 95 95 95 95 4 0.5 95 91 99 97 4 0.9 95 76 94 96
Wald t 1 0.5 95 95 95 95 1 0.9 95 95 95 95 4 0.5 95 89 96 94 4 0.9 95 81 91 93

ARCH 1 0.5 95 96 96 96 1 0.9 95 95 95 95 4 0.5 95 90 95 94 4 0.9 95 83 92 93

norm 8 0.5 68 7 75 42 8 0.9 68 20 83 61 12 0.5 68 2 75 33 12 0.9 68 11 85 60
FWPER t 8 0.5 68 16 73 50 8 0.9 68 31 83 69 12 0.5 68 6 70 41 12 0.9 68 20 85 69

ARCH 8 0.5 68 22 79 56 8 0.9 68 37 85 70 12 0.5 68 11 76 49 12 0.9 68 27 85 69

norm 8 0.5 68 9 93 67 8 0.9 68 1 50 68 12 0.5 68 3 97 68 12 0.9 68 0 35 68
Wald t 8 0.5 68 22 89 74 8 0.9 68 5 63 74 12 0.5 68 12 92 74 12 0.9 68 0 53 74

ARCH 8 0.5 68 29 89 77 8 0.9 68 7 68 77 12 0.5 68 19 91 77 12 0.9 68 1 60 77

norm 8 0.5 95 71 96 87 8 0.9 95 80 97 94 12 0.5 95 60 95 81 12 0.9 95 74 97 94
FWPER t 8 0.5 95 71 89 82 8 0.9 95 82 94 92 12 0.5 95 60 87 75 12 0.9 95 76 94 92

ARCH 8 0.5 95 77 91 86 8 0.9 95 83 94 93 12 0.5 95 68 89 79 12 0.9 95 78 93 93

norm 8 0.5 95 90 100 98 8 0.9 95 44 88 97 12 0.5 95 89 100 99 12 0.9 95 19 81 97
Wald t 8 0.5 95 86 97 94 8 0.9 95 58 87 93 12 0.5 95 86 98 94 12 0.9 95 37 81 92

ARCH 8 0.5 95 87 96 93 8 0.9 95 64 87 92 12 0.5 95 86 97 93 12 0.9 95 45 82 91

Notes:  H refers to the forecast horizon, ρ refers to the autoregressive parameter of the DGP, 1- α refers to the coverage, 
M stands for "marginal," B stands for "Bonferroni", and S stands for "Scheffé."



Table A.2: Actual coverage in percent with correct null model, model-based bands, R = 25

H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S

norm 1 0.5 68 66 66 66 1 0.9 68 65 65 65 4 0.5 68 25 72 47 4 0.9 68 31 72 55
FWPER t 1 0.5 68 76 76 76 1 0.9 68 76 76 76 4 0.5 68 40 78 60 4 0.9 68 45 79 67

ARCH 1 0.5 68 75 75 75 1 0.9 68 74 74 74 4 0.5 68 45 82 64 4 0.9 68 48 81 68

norm 1 0.5 68 66 66 66 1 0.9 68 65 65 65 4 0.5 68 30 79 64 4 0.9 68 17 63 63
Wald t 1 0.5 68 76 76 76 1 0.9 68 76 76 76 4 0.5 68 45 84 74 4 0.9 68 32 73 73

ARCH 1 0.5 68 75 75 75 1 0.9 68 74 74 74 4 0.5 68 52 85 77 4 0.9 68 37 76 77

norm 1 0.5 95 93 93 93 1 0.9 95 93 93 93 4 0.5 95 79 92 85 4 0.9 95 79 91 89
FWPER t 1 0.5 95 94 94 94 1 0.9 95 94 94 94 4 0.5 95 83 92 87 4 0.9 95 84 92 91

ARCH 1 0.5 95 94 94 94 1 0.9 95 95 95 95 4 0.5 95 86 93 88 4 0.9 95 86 92 91

norm 1 0.5 95 93 93 93 1 0.9 95 93 93 93 4 0.5 95 87 96 94 4 0.9 95 72 90 92
Wald t 1 0.5 95 94 94 94 1 0.9 95 94 94 94 4 0.5 95 89 95 94 4 0.9 95 81 91 92

ARCH 1 0.5 95 94 94 94 1 0.9 95 95 95 95 4 0.5 95 90 95 93 4 0.9 95 82 91 92

norm 8 0.5 68 8 71 37 8 0.9 68 16 71 52 12 0.5 68 3 70 30 12 0.9 68 9 69 50
FWPER t 8 0.5 68 18 73 46 8 0.9 68 26 78 64 12 0.5 68 8 70 39 12 0.9 68 18 76 61

ARCH 8 0.5 68 25 78 52 8 0.9 68 30 80 65 12 0.5 68 14 77 44 12 0.9 68 22 77 63

norm 8 0.5 68 14 86 62 8 0.9 68 2 50 60 12 0.5 68 8 88 60 12 0.9 68 0 44 59
Wald t 8 0.5 68 28 87 72 8 0.9 68 9 65 72 12 0.5 68 19 89 71 12 0.9 68 4 57 70

ARCH 8 0.5 68 36 87 75 8 0.9 68 14 70 75 12 0.5 68 29 89 75 12 0.9 68 6 64 74

norm 8 0.5 95 66 91 75 8 0.9 95 68 89 86 12 0.5 95 56 91 68 12 0.9 95 59 87 84
FWPER t 8 0.5 95 70 88 78 8 0.9 95 74 90 89 12 0.5 95 60 86 69 12 0.9 95 67 89 88

ARCH 8 0.5 95 76 90 80 8 0.9 95 77 90 89 12 0.5 95 68 88 72 12 0.9 95 69 88 86

norm 8 0.5 95 81 97 94 8 0.9 95 45 84 90 12 0.5 95 79 98 93 12 0.9 95 27 77 89
Wald t 8 0.5 95 84 96 93 8 0.9 95 60 86 91 12 0.5 95 82 96 92 12 0.9 95 45 81 89

ARCH 8 0.5 95 85 95 92 8 0.9 95 66 86 90 12 0.5 95 84 96 91 12 0.9 95 52 82 88

Notes:  H refers to the forecast horizon, ρ refers to the autoregressive parameter of the DGP, 1- α refers to the coverage, 
M stands for "marginal," B stands for "Bonferroni", and S stands for "Scheffé."



Table A.3: Actual coverage in percent with correct null model, model-based bands, R = 100

H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S

norm 1 0.5 68 67 67 67 1 0.9 68 67 67 67 4 0.5 68 25 73 49 4 0.9 68 34 77 60
FWPER t 1 0.5 68 76 76 76 1 0.9 68 77 77 77 4 0.5 68 39 77 60 4 0.9 68 47 82 69

ARCH 1 0.5 68 74 74 74 1 0.9 68 75 75 75 4 0.5 68 44 82 64 4 0.9 68 52 84 71

norm 1 0.5 68 67 67 67 1 0.9 68 67 67 67 4 0.5 68 28 81 65 4 0.9 68 16 63 66
Wald t 1 0.5 68 76 76 76 1 0.9 68 77 77 77 4 0.5 68 44 84 75 4 0.9 68 29 74 75

ARCH 1 0.5 68 74 74 74 1 0.9 68 75 75 75 4 0.5 68 49 86 78 4 0.9 68 35 77 78

norm 1 0.5 95 95 95 95 1 0.9 95 95 95 95 4 0.5 95 82 95 89 4 0.9 95 85 96 93
FWPER t 1 0.5 95 95 95 95 1 0.9 95 95 95 95 4 0.5 95 83 92 88 4 0.9 95 87 94 93

ARCH 1 0.5 95 96 96 96 1 0.9 95 95 95 95 4 0.5 95 86 93 90 4 0.9 95 88 94 93

norm 1 0.5 95 95 95 95 1 0.9 95 95 95 95 4 0.5 95 89 98 97 4 0.9 95 76 93 95
Wald t 1 0.5 95 95 95 95 1 0.9 95 95 95 95 4 0.5 95 89 95 94 4 0.9 95 81 92 93

ARCH 1 0.5 95 96 96 96 1 0.9 95 95 95 95 4 0.5 95 90 95 94 4 0.9 95 83 92 93

norm 8 0.5 68 7 74 39 8 0.9 68 19 80 59 12 0.5 68 2 73 32 12 0.9 68 11 80 58
FWPER t 8 0.5 68 16 74 50 8 0.9 68 29 82 67 12 0.5 68 8 72 42 12 0.9 68 19 82 67

ARCH 8 0.5 68 23 80 55 8 0.9 68 34 82 68 12 0.5 68 13 77 48 12 0.9 68 23 82 68

norm 8 0.5 68 10 91 65 8 0.9 68 1 50 65 12 0.5 68 4 95 66 12 0.9 68 0 39 65
Wald t 8 0.5 68 24 89 75 8 0.9 68 6 64 75 12 0.5 68 16 91 74 12 0.9 68 1 55 74

ARCH 8 0.5 68 33 89 77 8 0.9 68 10 68 76 12 0.5 68 24 90 77 12 0.9 68 2 62 76

norm 8 0.5 95 68 94 83 8 0.9 95 77 95 92 12 0.5 95 58 94 76 12 0.9 95 69 95 92
FWPER t 8 0.5 95 71 89 81 8 0.9 95 79 93 92 12 0.5 95 60 86 72 12 0.9 95 73 93 91

ARCH 8 0.5 95 77 91 84 8 0.9 95 81 93 92 12 0.5 95 68 89 76 12 0.9 95 75 92 91

norm 8 0.5 95 86 100 98 8 0.9 95 44 87 95 12 0.5 95 85 100 98 12 0.9 95 22 81 96
Wald t 8 0.5 95 87 97 94 8 0.9 95 59 87 92 12 0.5 95 84 97 93 12 0.9 95 39 82 92

ARCH 8 0.5 95 87 96 93 8 0.9 95 65 87 91 12 0.5 95 85 96 92 12 0.9 95 49 83 91

Notes:  H refers to the forecast horizon, ρ refers to the autoregressive parameter of the DGP, 1- α refers to the coverage, 
M stands for "marginal," B stands for "Bonferroni", and S stands for "Scheffé."



Table A.4: Actual coverage in percent with correct null model, forecast error-based bands, R = 25, N = 40

H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S

norm 1 0.5 68 67 67 67 1 0.9 68 68 68 68 4 0.5 68 25 73 49 4 0.9 68 34 77 59
FWPER t 1 0.5 68 75 75 75 1 0.9 68 73 73 73 4 0.5 68 36 74 56 4 0.9 68 44 78 65

ARCH 1 0.5 68 70 70 70 1 0.9 68 71 71 71 4 0.5 68 39 75 57 4 0.9 68 45 77 64

norm 1 0.5 68 67 67 67 1 0.9 68 68 68 68 4 0.5 68 26 79 62 4 0.9 68 14 58 62
Wald t 1 0.5 68 75 75 75 1 0.9 68 73 73 73 4 0.5 68 39 79 68 4 0.9 68 25 66 69

ARCH 1 0.5 68 70 70 70 1 0.9 68 71 71 71 4 0.5 68 40 78 67 4 0.9 68 26 64 67

norm 1 0.5 95 94 94 94 1 0.9 95 94 94 94 4 0.5 95 81 93 88 4 0.9 95 84 94 92
FWPER t 1 0.5 95 94 94 94 1 0.9 95 94 94 94 4 0.5 95 79 89 84 4 0.9 95 83 92 90

ARCH 1 0.5 95 93 93 93 1 0.9 95 93 93 93 4 0.5 95 81 90 85 4 0.9 95 82 91 89

norm 1 0.5 95 94 94 94 1 0.9 95 94 94 94 4 0.5 95 86 96 94 4 0.9 95 70 89 92
Wald t 1 0.5 95 94 94 94 1 0.9 95 94 94 94 4 0.5 95 84 93 90 4 0.9 95 73 86 89

ARCH 1 0.5 95 93 93 93 1 0.9 95 93 93 93 4 0.5 95 83 91 88 4 0.9 95 71 84 86

norm 8 0.5 68 8 72 36 8 0.9 68 21 79 58 12 0.5 68 3 71 24 12 0.9 68 13 77 55
FWPER t 8 0.5 68 15 68 41 8 0.9 68 27 77 62 12 0.5 68 7 64 30 12 0.9 68 19 76 60

ARCH 8 0.5 68 20 70 43 8 0.9 68 30 76 61 12 0.5 68 12 67 33 12 0.9 68 22 74 60

norm 8 0.5 68 13 83 54 8 0.9 68 1 40 54 12 0.5 68 9 83 44 12 0.9 68 0 27 43
Wald t 8 0.5 68 22 80 60 8 0.9 68 5 49 59 12 0.5 68 16 80 51 12 0.9 68 1 37 51

ARCH 8 0.5 68 25 78 59 8 0.9 68 6 50 59 12 0.5 68 20 77 51 12 0.9 68 2 39 51

norm 8 0.5 95 67 92 74 8 0.9 95 75 93 91 12 0.5 95 56 92 57 12 0.9 95 68 92 89
FWPER t 8 0.5 95 65 85 70 8 0.9 95 74 90 88 12 0.5 95 53 82 55 12 0.9 95 67 88 87

ARCH 8 0.5 95 67 85 70 8 0.9 95 73 88 86 12 0.5 95 57 82 55 12 0.9 95 66 86 85

norm 8 0.5 95 78 96 91 8 0.9 95 35 76 86 12 0.5 95 72 96 85 12 0.9 95 15 61 78
Wald t 8 0.5 95 77 93 86 8 0.9 95 44 74 81 12 0.5 95 71 92 80 12 0.9 95 25 62 74

ARCH 8 0.5 95 75 90 83 8 0.9 95 45 72 79 12 0.5 95 69 89 77 12 0.9 95 28 61 72

Notes:  H refers to the forecast horizon, ρ refers to the autoregressive parameter of the DGP, 1- α refers to the coverage, 
M stands for "marginal," B stands for "Bonferroni", and S stands for "Scheffé."



Table A.5: Actual coverage in percent with correct null model, forecast error-based bands, R = 25, N = 80

H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S

norm 1 0.5 68 67 67 67 1 0.9 68 67 67 67 4 0.5 68 26 73 50 4 0.9 68 36 78 61
FWPER t 1 0.5 68 75 75 75 1 0.9 68 74 74 74 4 0.5 68 37 76 59 4 0.9 68 46 80 67

ARCH 1 0.5 68 72 72 72 1 0.9 68 71 71 71 4 0.5 68 41 77 60 4 0.9 68 47 80 67

norm 1 0.5 68 67 67 67 1 0.9 68 67 67 67 4 0.5 68 26 80 64 4 0.9 68 15 60 65
Wald t 1 0.5 68 75 75 75 1 0.9 68 74 74 74 4 0.5 68 41 81 71 4 0.9 68 26 68 71

ARCH 1 0.5 68 72 72 72 1 0.9 68 71 71 71 4 0.5 68 43 80 71 4 0.9 68 28 68 71

norm 1 0.5 95 94 94 94 1 0.9 95 95 95 95 4 0.5 95 82 94 89 4 0.9 95 85 95 93
FWPER t 1 0.5 95 94 94 94 1 0.9 95 94 94 94 4 0.5 95 81 91 87 4 0.9 95 85 92 91

ARCH 1 0.5 95 93 93 93 1 0.9 95 94 94 94 4 0.5 95 84 91 88 4 0.9 95 85 93 91

norm 1 0.5 95 94 94 94 1 0.9 95 95 95 95 4 0.5 95 88 98 96 4 0.9 95 71 91 94
Wald t 1 0.5 95 94 94 94 1 0.9 95 94 94 94 4 0.5 95 86 94 92 4 0.9 95 76 88 90

ARCH 1 0.5 95 93 93 93 1 0.9 95 94 94 94 4 0.5 95 86 93 91 4 0.9 95 76 88 90

norm 8 0.5 68 7 73 39 8 0.9 68 21 82 60 12 0.5 68 2 73 28 12 0.9 68 13 81 59
FWPER t 8 0.5 68 16 71 45 8 0.9 68 29 79 65 12 0.5 68 7 67 34 12 0.9 68 20 79 63

ARCH 8 0.5 68 20 74 48 8 0.9 68 32 80 65 12 0.5 68 11 69 37 12 0.9 68 23 78 63

norm 8 0.5 68 10 86 61 8 0.9 68 1 43 61 12 0.5 68 6 89 54 12 0.9 68 0 29 55
Wald t 8 0.5 68 22 83 66 8 0.9 68 4 53 65 12 0.5 68 16 85 61 12 0.9 68 1 42 61

ARCH 8 0.5 68 26 82 67 8 0.9 68 7 56 67 12 0.5 68 19 82 60 12 0.9 68 2 45 62

norm 8 0.5 95 68 94 79 8 0.9 95 77 95 92 12 0.5 95 57 94 66 12 0.9 95 72 95 92
FWPER t 8 0.5 95 66 87 76 8 0.9 95 77 92 90 12 0.5 95 56 83 63 12 0.9 95 71 91 90

ARCH 8 0.5 95 71 88 77 8 0.9 95 77 90 89 12 0.5 95 60 84 65 12 0.9 95 72 89 88

norm 8 0.5 95 83 99 95 8 0.9 95 36 80 92 12 0.5 95 79 99 94 12 0.9 95 16 68 89
Wald t 8 0.5 95 81 95 90 8 0.9 95 49 79 87 12 0.5 95 77 95 87 12 0.9 95 29 69 83

ARCH 8 0.5 95 80 93 88 8 0.9 95 51 77 85 12 0.5 95 75 93 85 12 0.9 95 32 69 81

Notes:  H refers to the forecast horizon, ρ refers to the autoregressive parameter of the DGP, 1- α refers to the coverage, 
M stands for "marginal," B stands for "Bonferroni", and S stands for "Scheffé."



Table A.6: Actual coverage in percent with correct null model, forecast error-based bands, R = 100, N = 40

H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S

norm 1 0.5 68 68 68 68 1 0.9 68 68 68 68 4 0.5 68 26 72 49 4 0.9 68 35 76 59
FWPER t 1 0.5 68 75 75 75 1 0.9 68 74 74 74 4 0.5 68 36 73 56 4 0.9 68 44 79 66

ARCH 1 0.5 68 71 71 71 1 0.9 68 70 70 70 4 0.5 68 39 75 57 4 0.9 68 45 77 64

norm 1 0.5 68 68 68 68 1 0.9 68 68 68 68 4 0.5 68 27 78 62 4 0.9 68 15 60 63
Wald t 1 0.5 68 75 75 75 1 0.9 68 74 74 74 4 0.5 68 40 79 68 4 0.9 68 26 67 69

ARCH 1 0.5 68 71 71 71 1 0.9 68 70 70 70 4 0.5 68 41 78 67 4 0.9 68 27 66 68

norm 1 0.5 95 94 94 94 1 0.9 95 94 94 94 4 0.5 95 81 94 87 4 0.9 95 83 94 92
FWPER t 1 0.5 95 93 93 93 1 0.9 95 94 94 94 4 0.5 95 80 89 84 4 0.9 95 83 92 90

ARCH 1 0.5 95 93 93 93 1 0.9 95 93 93 93 4 0.5 95 80 89 84 4 0.9 95 83 91 89

norm 1 0.5 95 94 94 94 1 0.9 95 94 94 94 4 0.5 95 87 97 94 4 0.9 95 71 90 92
Wald t 1 0.5 95 93 93 93 1 0.9 95 94 94 94 4 0.5 95 85 93 91 4 0.9 95 74 87 89

ARCH 1 0.5 95 93 93 93 1 0.9 95 93 93 93 4 0.5 95 83 91 88 4 0.9 95 73 85 87

norm 8 0.5 68 8 72 34 8 0.9 68 19 78 57 12 0.5 68 3 71 25 12 0.9 68 12 77 56
FWPER t 8 0.5 68 15 68 40 8 0.9 68 27 76 62 12 0.5 68 7 64 29 12 0.9 68 18 76 61

ARCH 8 0.5 68 20 70 42 8 0.9 68 30 76 61 12 0.5 68 11 66 32 12 0.9 68 21 73 59

norm 8 0.5 68 13 82 53 8 0.9 68 1 41 53 12 0.5 68 10 83 43 12 0.9 68 0 28 44
Wald t 8 0.5 68 23 80 59 8 0.9 68 5 51 59 12 0.5 68 17 80 51 12 0.9 68 1 38 51

ARCH 8 0.5 68 26 78 59 8 0.9 68 7 52 60 12 0.5 68 20 78 51 12 0.9 68 2 40 50

norm 8 0.5 95 66 93 73 8 0.9 95 74 93 91 12 0.5 95 55 92 57 12 0.9 95 67 92 89
FWPER t 8 0.5 95 64 85 69 8 0.9 95 74 89 89 12 0.5 95 53 82 54 12 0.9 95 67 88 87

ARCH 8 0.5 95 67 86 70 8 0.9 95 73 87 86 12 0.5 95 57 81 54 12 0.9 95 66 86 84

norm 8 0.5 95 79 97 91 8 0.9 95 37 77 87 12 0.5 95 72 96 85 12 0.9 95 16 64 79
Wald t 8 0.5 95 77 93 86 8 0.9 95 46 75 82 12 0.5 95 71 92 80 12 0.9 95 27 65 75

ARCH 8 0.5 95 75 91 83 8 0.9 95 47 74 80 12 0.5 95 70 90 77 12 0.9 95 29 63 72

Notes:  H refers to the forecast horizon, ρ refers to the autoregressive parameter of the DGP, 1- α refers to the coverage, 
M stands for "marginal," B stands for "Bonferroni", and S stands for "Scheffé."



Table A.7: Actual coverage in percent with correct null model, forecast error-based bands, R = 100, N = 80

H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S

norm 1 0.5 68 68 68 68 1 0.9 68 68 68 68 4 0.5 68 26 73 50 4 0.9 68 35 78 61
FWPER t 1 0.5 68 75 75 75 1 0.9 68 74 74 74 4 0.5 68 37 75 59 4 0.9 68 45 79 67

ARCH 1 0.5 68 72 72 72 1 0.9 68 72 72 72 4 0.5 68 41 78 60 4 0.9 68 47 80 67

norm 1 0.5 68 68 68 68 1 0.9 68 68 68 68 4 0.5 68 27 79 64 4 0.9 68 15 62 66
Wald t 1 0.5 68 75 75 75 1 0.9 68 74 74 74 4 0.5 68 40 82 71 4 0.9 68 26 69 71

ARCH 1 0.5 68 72 72 72 1 0.9 68 72 72 72 4 0.5 68 44 81 71 4 0.9 68 29 69 71

norm 1 0.5 95 95 95 95 1 0.9 95 95 95 95 4 0.5 95 82 94 89 4 0.9 95 86 96 93
FWPER t 1 0.5 95 94 94 94 1 0.9 95 95 95 95 4 0.5 95 80 90 86 4 0.9 95 85 93 91

ARCH 1 0.5 95 93 93 93 1 0.9 95 94 94 94 4 0.5 95 82 92 88 4 0.9 95 85 92 91

norm 1 0.5 95 95 95 95 1 0.9 95 95 95 95 4 0.5 95 88 98 96 4 0.9 95 73 92 95
Wald t 1 0.5 95 94 94 94 1 0.9 95 95 95 95 4 0.5 95 87 94 92 4 0.9 95 77 89 91

ARCH 1 0.5 95 93 93 93 1 0.9 95 94 94 94 4 0.5 95 86 93 91 4 0.9 95 77 88 90

norm 8 0.5 68 8 74 37 8 0.9 68 20 80 59 12 0.5 68 2 72 28 12 0.9 68 12 81 57
FWPER t 8 0.5 68 16 71 45 8 0.9 68 29 80 65 12 0.5 68 7 67 33 12 0.9 68 18 78 64

ARCH 8 0.5 68 21 74 48 8 0.9 68 31 79 64 12 0.5 68 11 70 37 12 0.9 68 22 78 63

norm 8 0.5 68 11 88 60 8 0.9 68 1 45 60 12 0.5 68 6 89 54 12 0.9 68 0 31 55
Wald t 8 0.5 68 23 84 67 8 0.9 68 5 56 66 12 0.5 68 15 85 62 12 0.9 68 1 43 61

ARCH 8 0.5 68 27 82 67 8 0.9 68 8 57 67 12 0.5 68 20 83 62 12 0.9 68 2 46 61

norm 8 0.5 95 68 94 80 8 0.9 95 77 95 93 12 0.5 95 58 94 67 12 0.9 95 70 94 92
FWPER t 8 0.5 95 66 86 75 8 0.9 95 77 92 90 12 0.5 95 56 84 63 12 0.9 95 70 90 89

ARCH 8 0.5 95 71 88 77 8 0.9 95 77 90 89 12 0.5 95 60 84 65 12 0.9 95 70 89 88

norm 8 0.5 95 83 99 95 8 0.9 95 39 82 92 12 0.5 95 79 99 94 12 0.9 95 17 71 90
Wald t 8 0.5 95 81 95 90 8 0.9 95 51 80 88 12 0.5 95 78 95 88 12 0.9 95 30 71 84

ARCH 8 0.5 95 81 93 88 8 0.9 95 53 79 85 12 0.5 95 77 94 86 12 0.9 95 35 70 82

Notes:  H refers to the forecast horizon, ρ refers to the autoregressive parameter of the DGP, 1- α refers to the coverage, 
M stands for "marginal," B stands for "Bonferroni", and S stands for "Scheffé."



Table A.8: Actual coverage in percent with misspecified null model, bands based on forecast errors, N = 1000

H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S

norm 1 0.5 68 68 68 68 1 0.9 68 67 67 67 4 0.5 68 26 74 53 4 0.9 68 47 84 65
FWPER t 1 0.5 68 74 74 74 1 0.9 68 70 70 70 4 0.5 68 38 77 60 4 0.9 68 51 85 66

ARCH 1 0.5 68 76 76 76 1 0.9 68 73 73 73 4 0.5 68 45 81 66 4 0.9 68 55 85 70

norm 1 0.5 68 68 68 68 1 0.9 68 67 67 67 4 0.5 68 26 81 66 4 0.9 68 12 54 71
Wald t 1 0.5 68 74 74 74 1 0.9 68 70 70 70 4 0.5 68 41 83 74 4 0.9 68 19 63 75

ARCH 1 0.5 68 76 76 76 1 0.9 68 73 73 73 4 0.5 68 47 84 77 4 0.9 68 24 67 78

norm 1 0.5 95 95 95 95 1 0.9 95 95 95 95 4 0.5 95 83 95 91 4 0.9 95 89 97 94
FWPER t 1 0.5 95 95 95 95 1 0.9 95 94 94 94 4 0.5 95 84 93 90 4 0.9 95 89 96 93

ARCH 1 0.5 95 95 95 95 1 0.9 95 95 95 95 4 0.5 95 86 93 91 4 0.9 95 90 96 93

norm 1 0.5 95 95 95 95 1 0.9 95 95 95 95 4 0.5 95 89 98 97 4 0.9 95 65 88 93
Wald t 1 0.5 95 95 95 95 1 0.9 95 94 94 94 4 0.5 95 89 95 94 4 0.9 95 72 87 91

ARCH 1 0.5 95 95 95 95 1 0.9 95 95 95 95 4 0.5 95 89 95 94 4 0.9 95 75 88 91

norm 8 0.5 68 7 75 42 8 0.9 68 30 86 65 12 0.5 68 2 75 34 12 0.9 68 19 87 64
FWPER t 8 0.5 68 15 74 49 8 0.9 68 35 86 66 12 0.5 68 6 71 40 12 0.9 68 24 86 66

ARCH 8 0.5 68 21 78 55 8 0.9 68 40 86 69 12 0.5 68 11 75 48 12 0.9 68 29 85 69

norm 8 0.5 68 8 91 67 8 0.9 68 0 33 69 12 0.5 68 3 96 67 12 0.9 68 0 20 68
Wald t 8 0.5 68 21 88 73 8 0.9 68 2 48 74 12 0.5 68 12 91 73 12 0.9 68 0 37 73

ARCH 8 0.5 68 29 88 76 8 0.9 68 4 54 76 12 0.5 68 19 90 74 12 0.9 68 1 44 74

norm 8 0.5 95 70 95 86 8 0.9 95 83 97 94 12 0.5 95 59 96 80 12 0.9 95 78 97 94
FWPER t 8 0.5 95 71 89 82 8 0.9 95 84 96 93 12 0.5 95 59 87 74 12 0.9 95 79 95 93

ARCH 8 0.5 95 75 91 85 8 0.9 95 85 95 93 12 0.5 95 67 88 78 12 0.9 95 79 94 92

norm 8 0.5 95 87 100 98 8 0.9 95 27 75 94 12 0.5 95 87 100 99 12 0.9 95 9 62 95
Wald t 8 0.5 95 86 97 94 8 0.9 95 43 78 90 12 0.5 95 84 98 94 12 0.9 95 22 70 90

ARCH 8 0.5 95 86 96 93 8 0.9 95 49 79 90 12 0.5 95 84 96 92 12 0.9 95 30 73 89

Notes:  H refers to the forecast horizon, ρ refers to the autoregressive parameter of the DGP, 1- α refers to the coverage, 
M stands for "marginal," B stands for "Bonferroni", and S stands for "Scheffé."



Table A.9: Actual coverage in percent with misspecified null model, bands based on model, R = 25

H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S

norm 1 0.5 68 67 67 67 1 0.9 68 58 58 58 4 0.5 68 25 70 29 4 0.9 68 33 70 36
FWPER t 1 0.5 68 70 70 70 1 0.9 68 59 59 59 4 0.5 68 34 71 37 4 0.9 68 36 71 39

ARCH 1 0.5 68 70 70 70 1 0.9 68 59 59 59 4 0.5 68 37 72 41 4 0.9 68 37 72 40

norm 1 0.5 68 67 67 67 1 0.9 68 58 58 58 4 0.5 68 58 94 63 4 0.9 68 55 86 58
Wald t 1 0.5 68 70 70 70 1 0.9 68 59 59 59 4 0.5 68 63 91 67 4 0.9 68 55 85 59

ARCH 1 0.5 68 70 70 70 1 0.9 68 59 59 59 4 0.5 68 63 90 67 4 0.9 68 56 85 59

norm 1 0.5 95 94 94 94 1 0.9 95 90 90 90 4 0.5 95 79 92 67 4 0.9 95 78 90 68
FWPER t 1 0.5 95 93 93 93 1 0.9 95 91 91 91 4 0.5 95 78 88 70 4 0.9 95 77 89 69

ARCH 1 0.5 95 93 93 93 1 0.9 95 89 89 89 4 0.5 95 77 87 69 4 0.9 95 77 88 69

norm 1 0.5 95 94 94 94 1 0.9 95 90 90 90 4 0.5 95 97 99 94 4 0.9 95 90 96 85
Wald t 1 0.5 95 93 93 93 1 0.9 95 91 91 91 4 0.5 95 94 98 90 4 0.9 95 89 95 84

ARCH 1 0.5 95 93 93 93 1 0.9 95 89 89 89 4 0.5 95 92 96 89 4 0.9 95 89 95 84

norm 8 0.5 68 8 69 11 8 0.9 68 19 69 22 12 0.5 68 3 69 5 12 0.9 68 12 68 15
FWPER t 8 0.5 68 15 65 18 8 0.9 68 22 70 25 12 0.5 68 7 60 9 12 0.9 68 15 66 17

ARCH 8 0.5 68 18 67 22 8 0.9 68 23 68 26 12 0.5 68 10 62 13 12 0.9 68 16 65 19

norm 8 0.5 68 54 99 62 8 0.9 68 50 91 55 12 0.5 68 52 100 62 12 0.9 68 48 93 54
Wald t 8 0.5 68 57 96 63 8 0.9 68 52 90 56 12 0.5 68 54 97 60 12 0.9 68 48 91 52

ARCH 8 0.5 68 58 94 64 8 0.9 68 52 89 56 12 0.5 68 55 96 61 12 0.9 68 49 89 54

norm 8 0.5 95 64 91 39 8 0.9 95 66 87 48 12 0.5 95 54 90 22 12 0.9 95 58 84 35
FWPER t 8 0.5 95 62 83 43 8 0.9 95 66 85 50 12 0.5 95 50 79 27 12 0.9 95 59 82 38

ARCH 8 0.5 95 63 83 46 8 0.9 95 66 84 50 12 0.5 95 54 79 33 12 0.9 95 58 80 39

norm 8 0.5 95 98 100 93 8 0.9 95 90 98 81 12 0.5 95 99 100 92 12 0.9 95 89 98 77
Wald t 8 0.5 95 95 99 88 8 0.9 95 88 96 79 12 0.5 95 95 99 86 12 0.9 95 87 97 75

ARCH 8 0.5 95 93 98 86 8 0.9 95 88 95 79 12 0.5 95 93 99 84 12 0.9 95 86 96 75

Notes:  H refers to the forecast horizon, ρ refers to the autoregressive parameter of the DGP, 1- α refers to the coverage, 
M stands for "marginal," B stands for "Bonferroni", and S stands for "Scheffé."



Table A.10: Actual coverage in percent with misspecified null model, bands based on model, R = 100

H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S

norm 1 0.5 68 68 68 68 1 0.9 68 65 65 65 4 0.5 68 26 73 30 4 0.9 68 42 79 45
FWPER t 1 0.5 68 73 73 73 1 0.9 68 67 67 67 4 0.5 68 37 76 41 4 0.9 68 47 81 50

ARCH 1 0.5 68 73 73 73 1 0.9 68 68 68 68 4 0.5 68 40 77 44 4 0.9 68 48 81 51

norm 1 0.5 68 68 68 68 1 0.9 68 65 65 65 4 0.5 68 61 96 67 4 0.9 68 63 91 66
Wald t 1 0.5 68 73 73 73 1 0.9 68 67 67 67 4 0.5 68 68 94 72 4 0.9 68 64 91 67

ARCH 1 0.5 68 73 73 73 1 0.9 68 68 68 68 4 0.5 68 69 92 73 4 0.9 68 66 90 69

norm 1 0.5 95 95 95 95 1 0.9 95 93 93 93 4 0.5 95 82 94 70 4 0.9 95 85 95 77
FWPER t 1 0.5 95 94 94 94 1 0.9 95 93 93 93 4 0.5 95 82 91 73 4 0.9 95 86 94 78

ARCH 1 0.5 95 94 94 94 1 0.9 95 93 93 93 4 0.5 95 83 91 76 4 0.9 95 86 93 79

norm 1 0.5 95 95 95 95 1 0.9 95 93 93 93 4 0.5 95 98 100 96 4 0.9 95 94 98 90
Wald t 1 0.5 95 94 94 94 1 0.9 95 93 93 93 4 0.5 95 96 99 93 4 0.9 95 93 98 90

ARCH 1 0.5 95 94 94 94 1 0.9 95 93 93 93 4 0.5 95 95 98 92 4 0.9 95 93 97 90

norm 8 0.5 68 8 73 11 8 0.9 68 26 82 30 12 0.5 68 2 74 4 12 0.9 68 17 81 20
FWPER t 8 0.5 68 15 72 19 8 0.9 68 30 82 34 12 0.5 68 7 67 9 12 0.9 68 21 81 25

ARCH 8 0.5 68 20 74 24 8 0.9 68 33 80 37 12 0.5 68 11 71 15 12 0.9 68 25 79 28

norm 8 0.5 68 58 100 66 8 0.9 68 61 96 66 12 0.5 68 56 100 67 12 0.9 68 60 98 66
Wald t 8 0.5 68 64 97 70 8 0.9 68 63 95 67 12 0.5 68 61 99 69 12 0.9 68 61 97 66

ARCH 8 0.5 68 66 96 71 8 0.9 68 64 94 68 12 0.5 68 65 97 71 12 0.9 68 63 95 67

norm 8 0.5 95 68 95 41 8 0.9 95 78 94 59 12 0.5 95 57 94 22 12 0.9 95 72 94 47
FWPER t 8 0.5 95 68 87 49 8 0.9 95 78 93 62 12 0.5 95 56 84 30 12 0.9 95 73 93 50

ARCH 8 0.5 95 72 89 54 8 0.9 95 78 91 64 12 0.5 95 62 86 38 12 0.9 95 71 90 51

norm 8 0.5 95 99 100 96 8 0.9 95 95 99 88 12 0.5 95 100 100 96 12 0.9 95 95 100 87
Wald t 8 0.5 95 97 99 92 8 0.9 95 94 99 87 12 0.5 95 97 100 91 12 0.9 95 95 99 86

ARCH 8 0.5 95 96 99 92 8 0.9 95 93 98 87 12 0.5 95 96 99 90 12 0.9 95 93 98 85

Notes:  H refers to the forecast horizon, ρ refers to the autoregressive parameter of the DGP, 1- α refers to the coverage, 
M stands for "marginal," B stands for "Bonferroni", and S stands for "Scheffé."



Table A.11: Actual coverage in percent with misspecified null model, bands based on forecast errors, N = 40

H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S

norm 1 0.5 68 67 67 67 1 0.9 68 61 61 61 4 0.5 68 26 71 49 4 0.9 68 38 75 57
FWPER t 1 0.5 68 73 73 73 1 0.9 68 62 62 62 4 0.5 68 36 72 54 4 0.9 68 41 75 57

ARCH 1 0.5 68 71 71 71 1 0.9 68 63 63 63 4 0.5 68 39 75 57 4 0.9 68 43 75 58

norm 1 0.5 68 67 67 67 1 0.9 68 61 61 61 4 0.5 68 27 77 61 4 0.9 68 11 50 61
Wald t 1 0.5 68 73 73 73 1 0.9 68 62 62 62 4 0.5 68 38 78 67 4 0.9 68 17 55 64

ARCH 1 0.5 68 71 71 71 1 0.9 68 63 63 63 4 0.5 68 42 78 67 4 0.9 68 19 56 64

norm 1 0.5 95 94 94 94 1 0.9 95 92 92 92 4 0.5 95 81 93 86 4 0.9 95 81 92 88
FWPER t 1 0.5 95 94 94 94 1 0.9 95 92 92 92 4 0.5 95 80 90 84 4 0.9 95 81 91 87

ARCH 1 0.5 95 93 93 93 1 0.9 95 92 92 92 4 0.5 95 80 89 83 4 0.9 95 80 89 87

norm 1 0.5 95 94 94 94 1 0.9 95 92 92 92 4 0.5 95 86 96 94 4 0.9 95 60 82 87
Wald t 1 0.5 95 94 94 94 1 0.9 95 92 92 92 4 0.5 95 85 93 90 4 0.9 95 65 81 85

ARCH 1 0.5 95 93 93 93 1 0.9 95 92 92 92 4 0.5 95 83 91 89 4 0.9 95 65 80 84

norm 8 0.5 68 8 71 34 8 0.9 68 24 75 55 12 0.5 68 3 71 25 12 0.9 68 17 74 54
FWPER t 8 0.5 68 15 68 38 8 0.9 68 27 74 54 12 0.5 68 7 63 29 12 0.9 68 20 73 53

ARCH 8 0.5 68 19 70 42 8 0.9 68 29 73 55 12 0.5 68 11 66 31 12 0.9 68 22 71 52

norm 8 0.5 68 13 82 53 8 0.9 68 1 33 52 12 0.5 68 11 82 43 12 0.9 68 0 24 43
Wald t 8 0.5 68 23 80 59 8 0.9 68 3 40 56 12 0.5 68 18 79 50 12 0.9 68 1 33 48

ARCH 8 0.5 68 26 78 58 8 0.9 68 5 43 56 12 0.5 68 21 78 51 12 0.9 68 2 34 48

norm 8 0.5 95 66 92 71 8 0.9 95 72 90 85 12 0.5 95 56 92 56 12 0.9 95 66 88 83
FWPER t 8 0.5 95 64 85 68 8 0.9 95 72 88 84 12 0.5 95 52 81 53 12 0.9 95 64 86 81

ARCH 8 0.5 95 67 85 69 8 0.9 95 70 86 82 12 0.5 95 57 81 54 12 0.9 95 63 83 79

norm 8 0.5 95 78 96 91 8 0.9 95 28 67 82 12 0.5 95 72 95 86 12 0.9 95 14 54 74
Wald t 8 0.5 95 76 92 85 8 0.9 95 37 67 78 12 0.5 95 71 92 80 12 0.9 95 22 57 71

ARCH 8 0.5 95 76 91 83 8 0.9 95 38 66 76 12 0.5 95 70 90 78 12 0.9 95 25 56 68

Notes:  H refers to the forecast horizon, ρ refers to the autoregressive parameter of the DGP, 1- α refers to the coverage, 
M stands for "marginal," B stands for "Bonferroni", and S stands for "Scheffé."



Table A.12: Actual coverage in percent with misspecified null model, bands based on forecast errors, N = 80

H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S H ρ 1-α M B S

norm 1 0.5 68 67 67 67 1 0.9 68 64 64 64 4 0.5 68 25 74 50 4 0.9 68 41 79 60
FWPER t 1 0.5 68 73 73 73 1 0.9 68 66 66 66 4 0.5 68 36 75 57 4 0.9 68 45 80 62

ARCH 1 0.5 68 73 73 73 1 0.9 68 67 67 67 4 0.5 68 41 77 60 4 0.9 68 47 79 62

norm 1 0.5 68 67 67 67 1 0.9 68 64 64 64 4 0.5 68 26 79 64 4 0.9 68 11 50 65
Wald t 1 0.5 68 73 73 73 1 0.9 68 66 66 66 4 0.5 68 38 81 70 4 0.9 68 18 58 70

ARCH 1 0.5 68 73 73 73 1 0.9 68 67 67 67 4 0.5 68 42 81 71 4 0.9 68 21 59 70

norm 1 0.5 95 94 94 94 1 0.9 95 94 94 94 4 0.5 95 82 95 89 4 0.9 95 85 95 92
FWPER t 1 0.5 95 94 94 94 1 0.9 95 93 93 93 4 0.5 95 81 90 86 4 0.9 95 85 93 90

ARCH 1 0.5 95 94 94 94 1 0.9 95 93 93 93 4 0.5 95 82 91 87 4 0.9 95 84 92 89

norm 1 0.5 95 94 94 94 1 0.9 95 94 94 94 4 0.5 95 88 98 96 4 0.9 95 63 85 90
Wald t 1 0.5 95 94 94 94 1 0.9 95 93 93 93 4 0.5 95 86 94 92 4 0.9 95 67 83 88

ARCH 1 0.5 95 94 94 94 1 0.9 95 93 93 93 4 0.5 95 86 93 91 4 0.9 95 68 83 86

norm 8 0.5 68 7 73 37 8 0.9 68 27 80 61 12 0.5 68 2 72 28 12 0.9 68 17 80 58
FWPER t 8 0.5 68 16 71 44 8 0.9 68 31 80 60 12 0.5 68 7 66 34 12 0.9 68 22 79 60

ARCH 8 0.5 68 21 74 48 8 0.9 68 33 78 61 12 0.5 68 11 70 38 12 0.9 68 25 78 60

norm 8 0.5 68 11 86 60 8 0.9 68 1 33 60 12 0.5 68 7 88 54 12 0.9 68 0 23 55
Wald t 8 0.5 68 22 84 66 8 0.9 68 2 45 65 12 0.5 68 16 85 62 12 0.9 68 1 34 60

ARCH 8 0.5 68 28 82 67 8 0.9 68 4 47 65 12 0.5 68 20 84 62 12 0.9 68 1 38 61

norm 8 0.5 95 68 94 79 8 0.9 95 77 93 90 12 0.5 95 57 94 65 12 0.9 95 71 93 90
FWPER t 8 0.5 95 67 87 75 8 0.9 95 77 92 89 12 0.5 95 56 84 62 12 0.9 95 71 91 88

ARCH 8 0.5 95 70 87 76 8 0.9 95 76 90 87 12 0.5 95 60 83 63 12 0.9 95 70 88 86

norm 8 0.5 95 82 98 95 8 0.9 95 28 70 88 12 0.5 95 78 98 94 12 0.9 95 12 57 86
Wald t 8 0.5 95 81 95 91 8 0.9 95 40 73 85 12 0.5 95 76 95 88 12 0.9 95 24 64 82

ARCH 8 0.5 95 80 93 88 8 0.9 95 42 71 82 12 0.5 95 75 92 84 12 0.9 95 27 63 79

Notes:  H refers to the forecast horizon, ρ refers to the autoregressive parameter of the DGP, 1- α refers to the coverage, 
M stands for "marginal," B stands for "Bonferroni", and S stands for "Scheffé."
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