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Abstract

Consumption-based asset-pricing models have experienced success in recent years by augment-

ing the consumption process in ‘exotic’ ways. Two notable examples are the Long-Run Risk and

rare disaster frameworks. Such models are difficult to characterize from consumption data alone.

Accordingly, concerns have been raised regarding their specification. Acknowledging that both phe-

nomena are naturally subject to ambiguity, we show that an ambiguity-averse agent may behave

as if Long-Run Risk and disasters exist even if they do not or exaggerate them if they do. Conse-

quently, prices may be misleading in characterizing these phenomena since they encode a pessimistic

perspective of the data-generating process.
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1 Introduction

A principal challenge for the early generations of consumption-based asset pricing models

was to generate sufficiently high risk premia and prices of risk while respecting the apparent

smoothness in consumption growth from period to period (Mehra and Prescott (1985) and

Hansen and Jagannathan (1991)). One response to this challenge was been to introduce

‘exotic’ elements in consumption dynamics. Notably, the Long-Run Risk (LRR) model of

Bansal and Yaron (2004) asserts a small but persistent component in consumption growth

that allows the process to exhibit considerable risk over longer horizons without introducing

counterfactual volatility at high frequencies. An alternative strategy is to appeal to rare

disasters in consumption growth (Rietz (1988), Barro (2006) and Wachter (2013)).1

Despite the successes achieved using these exotic processes, concerns have been raised as

to their specification, or even existence. By definition, direct evidence of the LRR component

is hard to detect in post-war consumption data, leading to the question of whether or not

the component actually exists (Hansen, Heaton, and Li (2008), Marakani (2009) and Beeler

and Campbell (2012)). With regard to disasters, as noted in Dolmas (2013), the rarity of the

phenomenon in question inevitably undermines empirical analysis. Unlike in the LRR case

there is perhaps no debate as to whether disasters exist but there certainly is substantial

debate over their calibration.

In this paper, we take a different approach. Rather than positing the existence of Long-

run Risk or taking a firm stance on the calibration of rare disasters we show that an ambiguity

averse agent’s fear of model misspecification can nevertheless generate or exaggerate these

phenomena endogenously in the mind of the agent.2 Consequently, one explanation for why

these exotic properties appear to be encoded in prices, but are simultaneously difficult to

identify in the consumption data directly, is that prices reflect not only the true model of

consumption but also the agent’s fear of misspecification.

Our agent does not fully trust her ‘benchmark’ model of consumption growth, as captured

by the implied joint distribution over sequences of its various components. She acknowledges

that the benchmark is an approximation to the true data generating process and fears it is

misspecified in some unknown way. She expresses these fears by envisaging alternative prob-

ability distributions, which she thinks may plausibly describe consumption growth. Formally,

we endow the agent with a desire for robustness to model misspecification, as captured by

the multiplier preferences of Hansen and Sargent (2008). As a way of constructing a robust

1See also Barro (2006), Barro and Ursua (2008), Gourio (2012), Gabaix (2012) and Nakamura, Steinsson,
Barro, and Ursa (2013)

2For an interesting alternative approach to generating a phenomenon interpretable as subjective long-run
consumption risks, see Collin-Dufresne, Johannes, and Lochstoer (2013).
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evaluation of random payoffs the agent envisages adverse distortions, balancing the damage

they could cause against their plausibility. A particular ‘worst case’ distribution emerges

from the agent’s optimization problem, allowing insight into the sort of misspecifications she

desires robustness against. The agent then evaluates risky payoffs as if this worst case is

generating the data. We show that that this worst case will naturally encode phenomena

akin to LRR and disasters.

In our simplest specification the benchmark model features white noise consumption

growth with persistent variation in its conditional volatility. The worst case reflects the

agent’s fear of misspecifications that would imply lower growth and higher volatility, as rep-

resented by negative and positive mean shifts in the marginal distributions for endowment

and volatility innovations, respectively. Most importantly, the agent’s pessimism becomes

more extreme when volatility is high, as captured by a greater negative distortion to the

mean of the endowment innovation. Since the volatility process is persistent, the consump-

tion growth process under the worst case therefore inherits this persistence. Consequently,

the worst case exhibits the hallmark of LRR models - a small but persistent component in

consumption growth. We generalize from the white noise benchmark to introduce a degree of

LRR in the true data generating process but show how the amount of LRR can be reduced

from a counterfactually high level, while still allowing asset pricing success, if one trades off

LRR in the benchmark against LRR in the worst case model in the mind of the agent.

The association of high volatility with low growth under the worst case also induces neg-

ative skewness in the consumption growth process which (together with an overall uncondi-

tional negative mean shift) implies that dramatic declines in consumption occur significantly

more frequently than under the benchmark model so that ‘disasters’ are more common, in

terms of a longer left tail of the unconditional distribution of consumption growth. In order

to allow for more a more standard, ‘conditional’ concept of disasters we go on to consider a

benchmark model featuring a non-normal ‘jump’ component in consumption growth to allow

for occasional dramatic declines in consumption. In this context we show that disasters are

a more powerful phenomenon to interact with robustness, in the sense that a more reason-

able calibration of ambiguity aversion can attain stylized asset pricing facts, such as elevated

premia and prices of risk, along with predictability evidence, than in the heteroscedastic

Gaussian case. It is entirely reasonable for an agent with a plausible degree of ambiguity

aversion to behave as if disasters arrive with significantly greater frequency than implied by

the model and, thus, not allowing for this fear of misspecification could undermine inference.

Our paper also contributes to the methodology of robust control analysis in that we

show how to exploit the formalism of cumulant generating functions (CGFs) to obtain clear

characterizations of the worst case distribution in discrete time. More importantly, we develop
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methods to draw from the worst case distribution using importance sampling and other Monte

Carlo techniques that are more broadly applicable in models featuring robust agents.

The paper is organized as follows: Section 2 introduces our modeling framework, including

our basic description of the benchmark consumption process and preferences. Section 3 solves

the model and shows how we characterize the worst case distribution, analytically and using

Monte Carlo methods. Section 4 contains our results on a robust interpretation of LRR.

Section 5 contains our results on a robust reinterpretation of the rare disasters framework.

Section 6 concludes.

2 Modeling framework

We here lay our basic modeling framework, constituting a description of an endowment

economy and the preferences of an ambiguity averse representative agent.

2.1 The endowment process

We take as a starting point the Long-run Risk (LRR) model of Bansal, Kiku, and Yaron

(2012), augmented by a non-Gaussian ‘jump’ process. In what follows we will examine special

cases of this framework but we describe it here in its full generality.

log gt+1 = G0 + xt + wz,t+1 + v0.5
t wg,t+1

log gd,t+1 = Gd,0 + φxt + φzwz,t+1 + ϕdv
0.5
t wd,t+1 + τdv

0.5
t wg,t+1

xt+1 = ρxt + ϕxv
0.5
t wx,t+1

vt+1 = (1− ϕv) v̄ + ϕvvt + σvwv,t+1

ht+1 = δhch + ϕhht + wh,t+1

where gt ≡ Ct
Ct−1

and gd,t ≡ Dt
Dt−1

are consumption and dividend growth, respectively. wi,t+1

for i ∈ {g, d, x, v} are standard Normal iid innovations. wz,t+1 v PN (θ, δ;ht), meaning that

wt+1 is a Poisson mixture of Normals, such that

wz,t+1|jt+1 v N
(
jt+1θz, jt+1δ

2
)

jt+1|t v
e−hth

jt+1

t

jt+1!
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Finally, wh,t+1 is a Martingale difference series that yields an Autoregressive Gamma (ARG)

process for ht v ARG(ch, ϕh, δh).
3 If one sets ch =

σ2
h

2
and δh = (1− ϕh) h̄ch then we have

ht = (1− ϕh)h̄+ ϕhht−1 + wh,t

and we can interpret h̄ as the steady state jump intensity.

We will refer to xt as the LRR component since it allows us to introduce time variation

in the conditional mean of consumption growth. With appropriate calibration, xt allows

the power of the consumption growth process to be focused at low frequencies - leaving

consumption relatively smooth at high frequencies. This is at the core of the standard LRR

mechanism of Bansal and Yaron (2004). The wz,t component allows us to introduce non-

Normality and, in particular, conditional skewness in the consumption growth process. In

the work of Backus, Chernov, and Martin (2011) and Backus, Chernov, and Zin (2014) this

specification has been used as a flexible way of modeling disasters.

When simulating this system in the presence of stochastic volatility we censor the sim-

ulations of vt at a very small positive number but do not adjust the solution procedure to

take account of this censoring. This approach is standard (see Bansal and Yaron (2004) and

Beeler and Campbell (2012)) and, as discussed in Backus, Chernov, and Zin (2014), for rea-

sonable calibrations of the the volatility process the solution remains a good approximation

to that obtained when explicitly taking account of the censoring. The choice of an ARG

process for ht, rather than a Gaussian autoregression (AR), as for vt reflects the fact that,

for the calibrations we will use below, the probability of the process going negative in the

AR case is uncomfortably high. Of course, one could also use an ARG for vt but we eschew

this because, setting aside the low probability of vt going negative under our calibrations, the

analytic insight and computational benefits we obtain in the AR case are considerable.

2.2 Preferences

There is much evidence suggesting that, when faced with situations that are ‘ambiguous’ or

uncertain in the Knightian sense, agents do not behave in accordance with standard axioms

of choice. One commonly cited example of this is the famous paradox of Ellsberg (1961).

An important literature has emerged suggesting possible formalizations for how agents make

decisions in such contexts. One of the more prominent and intuitively appealing formaliza-

tions is the Robust Control framework, which has been adapted to economic applications by

Hansen and Sargent (2008).

3The ergodic distribution for ht is Gamma with shape parameter, δh and scale parameter ch
1−ϕh

. The

conditional variance of wh,t+1 is δhc
2
h + 2ϕhchht.
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2.2.1 An intuitive description of robustness

Our agent is endowed with a ‘benchmark’ model which she takes to be a reasonable description

of the world, but which she suspects is misspecified. She expresses her doubts over her model

by considering alternative distributions that are distorted versions of the joint distribution

over sequences implied by the benchmark. The alternative distributions considered are not

expressed as explicit structural models, but only as statistical objects - changes in measure

relative to the benchmark distribution. This captures the intuitively appealing idea that,

faced with ambiguity, an agent may not be able to exhaustively enumerate ‘known unknowns’

and instead faces ‘unknown unknowns’.

Reflecting an aversion to model uncertainty and her desire to identify vulnerabilities to

misspecification, the agent explores adverse distortions to the benchmark distribution. She

disciplines this search by considering only ‘plausible’ alternative models. Thus, the agent

discounts more heavily distributions that are more distant from the benchmark. Implicit in

the discounting of alternatives according to their distance from the benchmark is the idea

that the benchmark has been obtained through a reasonable selection process and is thought

a ‘good’, if flawed model. The agent’s assessment of an alternative model’s plausibility is

tied to whether or not it is difficult to distinguish the benchmark and the worst case using a

realistic sample size of data. If they are difficult to disttinguish then it is reasonable to think

that the agent might regard the worst case and other similar models as possibly the truth.4

In balancing the pain of an implicit misspecification against its plausibility the agent

identifies what is typically referred to as a ‘worst case distribution’. This distribution is not

the agent’s ‘belief’ or even the only distribution she fears but it is especially revealing of the

agent’s concerns about misspecification. Properties exhibited by this distribution indicate

the sort of misspecifications that particularly worry the agent and, importantly, the agent

behaves as if this model is the truth. We now formalize this intuition.

2.2.2 A formal description of robustness

A robust agent entertains a benchmark model in which the state, control and innovation

sequences are related according to the (possibly nonlinear) vector valued equation

st+1 = g(st, ut, wt+1) (1)

4The model selection process and any learning and estimation by the agent in deriving the benchmark are
left unspecified. For work combining robustness with filtering and learning, see Hansen and Sargent (2007)
and the relevant chapters of Hansen and Sargent (2008).

6



where st is the state vector, ut is a vector of controls and wt is a vector-valued random

innovation. Since our analysis will ultimately deal exclusively with representative agent

endowment economies, our inclusion of an explicit control is in some sense redundant since

consumption is exogenous and all asset holdings must be in zero net supply in equilibrium.

Nevertheless, it is pedagogically convenient for now to include it in this description of a

robustness problem. In addition, of course, envisaging the agent as deciding on asset positions

given prices is a fundamental ingredient to the equilibrium concept, even if the representative

agent will hold a net zero position in equilibrium.

Given a control law, ut = u(st), and a density, pw (wt+1|st), for wt+1, equation (1) im-

plies a benchmark transition density p(st+1|st). It is convenient to partition the state, st

into elements unknown on entering the period, which we identify with wt, and those ele-

ments that are predetermined, denoted ŝt. We capture the dependence of ŝt on the state

prevailing in the previous period by the function f , such that ŝt = f(st−1). With this

decomposition we have p(st+1|st) = pw(wt+1|st)δf(st)(ŝt+1).5 In the context of our model,

wt ≡ (wd,t, wg,t, wx,t, wv,t, wz,t, wh,t)
′ and ŝt ≡ (xt−1, vt−1, ht−1)′.

We endow the agent with multiplier preferences, which are discussed extensively in Hansen

and Sargent (2008) and are axiomatized in Strzalecki (2011). Our agent is not a Bayesian

- her problem progresses from a situation of multiple models to making a decision not by

integrating over the models with respect to a unique prior (essentially resolving the multiple

models to a single hyper-model) but by a penalized max-min approach. Formally, the decision

problem of the agent takes the form of a particular two-player zero-sum game between the

robust agent (the maximizer) and a metaphorical ‘evil agent’ or ‘nature’ (the minimizer)

max
{ut}

min
{mt+1}

∞∑
t=0

E
[
βtMt {h(st, ut) + βθE (mt+1 logmt+1|=t)} |=0

]
(2)

where h(·, ·) is the period payoff function (taken to be (1− β) logCt in our case) and the

problem is subject to equation (1), Mt+1 = mt+1Mt, E[mt+1|=t] = 1, mt+1 ≥ 0 and M0 = 1.

We assume that the robust agent’s information set, =t contains the entire history of states.

Thus, {mt+1, t ≥ 0} is a sequence of Martingale increments that recursively define a non-

negative Martingale, Mt = M0

∏t
j=1mj.

Mt defines Radon-Nikodym derivatives that twist the measures implicit in the benchmark

model to yield absolutely continuous measures that represent alternative distributions consid-

ered by the agent. The agent’s desire for robustness is reflected in the minimization over the

sequence of martingale increments, mt, chosen by the ‘evil’ player to twist the distributions

5Note that the st may contain wt as an element of the state so that an identity mapping is implicit in g.
δf(st)(·) takes the value of unity at f(st) and zero elsewhere.
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towards realizations of the state sequence that are painful to the robust agent. This accords

with our earlier intuition of the agent identifying her vulnerability to model misspecification

by envisaging adverse alternative models or distributions.

The degree of robustness is controlled by the penalty parameter, θ > 0, that enters

the objective by multiplying the relative entropy associated with a given distortion. The

penalty reflects our earlier intuition that the agent considers models that, although different,

are somehow ‘near’ the benchmark. A particular alternative distribution, associated with

a particular Martingale, may be especially painful in the sense of implying a very expected

payoff, but may not solve the minimization problem due to the offsetting effect of the entropy

penalty. Thus, the two components in equation (2) capture the way in which the robust agent

balances pain and plausibility.

We seek a recursive expression of the problem and, invoking results in Hansen and Sargent

(2008), obtain a value function of the following form

V (wt, ŝt) = max
ut

min
m(wt+1,ŝt+1)

h(st, ut) (3)

+ β

∫
m(wt+1, ŝt+1)V (wt+1, ŝt+1)pw(wt+1|st) (4)

+ θm(wt+1, ŝt+1) logm(wt+1, ŝt+1)pw(wt+1|st)dwt+1 (5)

subject to
∫
m(wt+1, ŝt+1)p(wt+1|st)dwt+1 = 1 for all values of ŝt+1.

Under the twisted measures one can form objects interpretable as expectations taken in the

context of a distorted alternative model. Thus, we define a distorted conditional expectation

operator to be

Ẽt[bt+1] ≡ E[mt+1bt+1|=t]

for some =t+1 measurable random variable bt+1, given =t. The conditional relative entropy

associated with the twisted conditional distribution is given by the term E[mt+1 logmt+1|=t],
which is a measure of how different the distorted measure is from the benchmark.

2.2.3 The worst case distribution

Solving the inner minimization problem we obtain the minimizing, or ‘worst case’, Martingale

increment, which has the form

m(wt+1, ŝt+1) =
e−

V (wt+1,ŝt+1)

θ

E
[
e−

V (wt+1,ŝt+1)

θ |st
] (6)
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Substituting this solution into the original problem, we obtain the following expression

V (st) = max
ut

h(st, ut)− βθ logE

[
exp

(
−V (st+1)

θ

)
|st
]

and, finally, we abstract from the max operator and explicit presence of a control, in antici-

pation of our endowment economy, representative agent analysis

V (st) = h(st)− βθ logE

[
exp

(
−V (st+1)

θ

)
|st
]

(7)

The Martingale Mt implied by the solution of the agent’s problem is a ratio of joint

densities, p̃(s1:t|=0)
p(s1:t|=0)

, where p and p̃ denote the benchmark and worst case densities over state

sequences, s1:t, conditional on information at t = 0. The minimizing Martingale increment

in equation (6), is the associated ratio of conditional densities, p̃(st+1|st)
p(st+1|st) that is more natural

to work with in the recursive formulation of our problem.

p̃(st+1|st) = m(st+1)p(st+1|st) is the worst case conditional distribution of the state and im-

plicit in this is the conditional distribution over innovations, p̃w(wt+1|st) = m(wt+1, ŝt+1)pw(wt+1|st).
By iteratively drawing from p̃w(wt+1|st) and evolving the state according to the law of motion

(1) we obtain draws of sequences from p̃(s1:t).

While p̃ is not directly interpretable as the ‘beliefs’ of the agent, the fact that it differs

from p emphasizes that, unlike under Rational Expectations, more than one distribution plays

a role in the equilibrium. In what follows, we assert equality between the agent’s benchmark

model and the true model so that the agent’s fears of mis-specification are ‘all in her head’ and

our only (highly restricted) deviation from Rational Expectations is to relax the requirement

that the agent fully trusts the benchmark.6

We also note that equation (7) is algebraically equivalent to that of an agent with risk

sensitive preferences (see Tallarini (2000) and Barillas, Hansen, and Sargent (2009)) and

that of an Epstein-Zin agent with unity elasticity of intertemporal substitution (EIS). In the

latter case, we have the relation α ≡ −1
θ

where 1−α is the coefficient of relative risk aversion.

Under the risk sensitivity and Epstein-Zin interpretations, however, θ reflects sensitivity to

well defined, Knightian ‘risk’ whereas here it reflects the degree to which the agent fears

Knightian ‘uncertainty’. Further details of this equivalence are discussed in A.2.

6We refer the reader to Hansen and Sargent (2010a) for an extensive discussion of the relationship between
Robust Control, Rational Expectations and other decision-making and modeling paradigms.
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2.2.4 The stochastic discount factor

Our agent prices assets using a stochastic discount factor of the following form

Λt,t+1 = ΛR
t,t+1ΛU

t,t+1

ΛR
t,t+1 = β

(
Ct+1

Ct

)−1

ΛU
t,t+1 =

exp
(
−Vt+1

θ

)
Et

[
exp

(
−Vt+1

θ

)]
Thus, provided that θ < ∞, the stochastic discount factor comprises two components. The

first component, ΛR
t,t+1, is the stochastic discount factor derived from time separable loga-

rithmic preferences. The second component, ΛU
t,t+1, is the minimizing Martingale increment

discussed above. ΛU
t,t+1 induces a wedge in the fundamental asset pricing equation relative

to the expected utility case. Clearly, as θ → ∞ we recover expected utility as the concern

for robustness vanishes. In this case, the entropy penalty term in the robustness problem (2)

is given infinite weight so the solution to the minimization features no deviation from the

benchmark distribution and the Martingale increment is identically unity.

Consequently, an agent who fears her model is misspecified will price assets as if she has

logarithmic period utility, but under a distorted conditional expectations operator Ẽt and an

associated distorted density p̃(xt|xt−1) as follows

1 = Et
[
ΛR
t,t+1ΛU

t,t+1Rt+1

]
= Ẽt

[
ΛR
t,t+1Rt+1

]
For pricing assets beyond the next period, a similarly distorted expectations operator will be

used. This latter operator will encode how the distorted conditional distribution of the state

(captured by ΛU
t,t+1) varies over time and across contingencies

1 = Et
[
ΛR
t,t+kΛ

U
t,t+kRt+k

]
= Ẽt

[
ΛR
t,t+kRt+k

]
ΛR
t,t+k ≡

k−1∏
j=0

ΛR
t+j,t+j+1

ΛU
t,t+k ≡

k−1∏
j=0

ΛU
t+j,t+j+1
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In general, the worst case conditional distribution will be state dependent. Thus, while

it is true that the agent will, in t, price payoffs in t+ 1 as an expected utility agent with log

preferences under the worst case and thus only price t + 1 shocks to consumption growth,

distorted dynamics under the worst case can introduce interesting differences in pricing,

relative to the expected utility case.

Our stochastic discount factor does not have the standard interpretation of an intertempo-

ral marginal rate of substitution under a fully trusted model. Instead it involves a component

that reflects the agent’s concern that her model of the economy might be misspecified in a

way that is damaging for lifetime utility and does not simply relate to marginal utility in

future periods.

2.2.5 Interpreting θ

To be able to interpret how the agent trades off her concerns for misspecifications against

their plausibility, we will follow the standard approach of the literature in connecting θ to

a measure of statistical closeness, referred to as ‘detection error probability’ (Hansen and

Sargent (2008) and Barillas, Hansen, and Sargent (2009)).7

Detection error probabilities (DEPs) characterize a set of distorted models in terms of

whether or not, with a limited amount of data, an agent could accurately distinguish between

the worst case and benchmark models using likelihood ratio tests. That is, we ask what

the probability of mis-identifying the data generating process would be if one were running

likelihood ratio tests on data generated under the benchmark and the worst case.

Formally, one picks a sample length, T and simulates many samples of length T from

both the benchmark and worst case distributions. Each time, one calculates a likelihood

ratio test of the benchmark versus the worst case and tallies the number of times that the

test favors the model that did not generate the data - a ‘detection error’. One then calculates

the equally weighted average of the fraction of detection errors obtained from simulations

under the benchmark and under the worst case. We denote this average the ‘detection error

probability’.8

In order to calculate the likelihood ratios we must make a decision on how to initialize

the simulations and how to treat the t = 0 period in the likelihood evaluations. We will

draw the initial state for each T -long simulation from the relevant unconditional distribution

(or an approximation thereof, if necessary). We choose not to incorporate the unconditional

likelihood of the time zero observation into the likelihoods used for the DEP calculations, as

7If we were interpreting preferences from the Epstein-Zin perspective we could appeal to Arrow-Pratt
intuition for the calibration of θ, but that is not applicable here.

8Clearly this number is subject to sampling variability so one must use many draws of sequences of length
T to obtain a reliable measure of detectability.

11



is consistent with Hansen and Sargent (2008), Chapter 9. If we were to allow the agent to

use the time zero observation then it would implicitly be as if we were allowing the agent far

longer hypothetical samples than length T to distinguish the two models. Further details of

our DEP calculations are included in A.11 and B.6.

If two models have similar properties, it will be be difficult to determine which model

generated a sample of data using sample sizes that are typically available for analysis and

which implicitly might have been used to obtain the benchmark model. In this case the

DEP will be close to 0.5, indicating that the models are almost indistinguishable. Thus, it is

plausible that the worst case model, or one like it, might be the true generating process and

it is therefore reasonable to seek robustness against such models. In contrast, if the models

are easily distinguished (a DEP of close to 0) then this suggests an implausible timidity on

the part of the agent in that she is seeking robustness against unreasonable models with

dramatically counterfactual implications - models that only a very limited amount of data

(such as the sample that implicitly led to the selection of the benchmark model) would suggest

could not plausibly be the truth.

The larger is θ, the closer the benchmark will be to the worst case, due to the more

rapid offsetting effect of the entropy penalty in the minimization problem (see (2) and (6)).

Consequently, the higher will be the detection error probabilities. It is this connection between

θ and the detection error probabilities, together with an intuitive sense of a reasonable DEP,

that will allow us to interpret our calibration of the agent’s robustness.

3 Model solution

We will guess and verify an exponentially affine solution for the scaled utility function, ut ≡ Ut
Ct

ut = exp {F0 + F1xt + F2vt + F3ht}

Given this solution we can obtain an expression for the stochastic discount factor that

makes clear the distinction between the influence of the standard, expected utility elements

of the agent’s preferences, and those that reflect her preference for robustness

log Λt+1 = log Λr
t+1 + log Λu

t+1

log Λr
t+1 = kt + λrg,twg,t+1 + λrz,twz,t+1

log Λu
t+1 ≡ ξt + λug,twg,t+1 + λux,twx,t+1 + λuv,twv,t+1

+λuz,twz,t+1 + λuh,twh,t+1

where the ‘risk’ prices, λri,t, ‘uncertainty’ prices, λui,t , kt and ξt are functions of deep param-

12



eters, the solution for the value function and, potentially, the current level of volatility and

jump intensity. They are described in the appendices.9

3.1 Characterizing the worst case

The worst case distribution is an important object beyond simply being an artifact of a

decision problem since it is suggestive of the nature of other plausible and damaging models

that might concern the agent. It can therefore play a diagnostic and revelatory role where

introspection may not be sufficient to intuit a worrisome structural misspecification. By

examining the properties of the worst case one can identify classes of structural models that

are worth guarding against and researching further. Indeed, much of this paper deals with

suggesting structural interpretations for moments implied by the worst case distribution over

sequences.

Since the worst case distribution over sequences can be built up from the worst case

conditional distributions of innovations, combined with the law of motion, we will spend time

deriving the properties of these innovation distributions. To do this we will make use of

cumulant generating functions and Monte Carlo techniques.

3.1.1 Cumulant generating functions

Under the benchmark model, innovation wi,t+1 has conditional cumulant generating function

kit (u) = logEt [exp {uwi,t+1}]

The jth cumulant is obtained by evaluating the jth derivative of the CGF at 0 with the first

and second cumulants being the mean and variance respectively. Moments can be derived

given knowledge of the cumulants.

For i ∈ {d, g, x, v} we use the standard Normal CGF

kit (u) =
u2

2

The Poisson-Normal mixture, wz,t+1 has CGF

kwzt (u) = ht

(
euθ+

(uδ)2

2 − 1

)
9Remaining endogenous variables can typically be calculated in a similar way, utilizing exponential affine

approximations to the true equilibrium objects. In the case of equity returns we utilize the approximation
discussed in Campbell and Shiller (1989) and, where necessary, an approximation based on the zero-coupon
term structure of equity, advocated by Lettau and Wachter (2011).
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and the innovation to the ARG process, wh,t+1 has CGF

kwht (u) = uϕh

(
1

1− sch
− 1

)
ht − δh (sch + log (1− sch))

To obtain analogous CGFs under the worst case, denoted k̃it, we apply the worst case

change in measure captured in Λu
t+1. Note that given the linearity of log Λu

t+1 in the innova-

tions and their independence under the benchmark, they are also conditionally independent

under the worst case. As shown in the appendix (available on request),

k̃i,t (s) ≡ log Ẽt [exp {s wi,t}]

≡ logEt
[
exp

{(
s+ λui,t

)
wi,t
}]

+ tis

≡ ki,t
(
s+ λui,t

)
+ tis

where tis represents terms independent of s. Thus, the uncertainty prices λit shift the origin

of the worst case CGFs, relative to the benchmark.

3.1.2 Monte Carlo Methods

Making use of the worst case CGFs, we observe that the standard Normal innovations remain

Normal with unit standard deviation under the worst case, but have their means pessimisti-

cally shifted by an amount equal to their uncertainty prices. We also show in B.5.1 that

wz,t+1 retains its Poisson-Normal structure under the worst case, but with a pessimistically

distorted arrival rate of the Poisson jump and, conditional on a jump, a negatively distorted

mean of the Normal component. Thus, we do not only have the ability to calculate any given

moment of these innovations under the worst case, but we actually know the innovations

belong to a familiar class of random variables and can thus be easily characterized and drawn

from.

We do not retain such clarity in the case of wh,t+1. While we can calculate any of its

cumulants under the worst case, its distribution does not belong to any recognized class.

More generally, had we used a different solution or approximation method other than the

exponential-affine approach we have adopted here, we would have confronted similar problems

for the other innovations. However, we can still characterize and draw from these distributions

if we can evaluate an approximation to the worst case density p̃w (wt+1|st). This requires

simply that we can obtain an approximation to the value function because since we can then

construct the minimizing Martingale increment and use it to pre-multiply the benchmark

density.

If we can evaluate the worst case density, we can draw from it using a variety of Monte
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Carlo methods. For example, we can employ Sampling Importance Resampling (SIR) al-

gorithm of Rubin (1987) and Smith and Gelfand (1992) for drawing from the worst case

distribution. This entails obtaining draws from pw (wt+1|st), computing associated impor-

tance weights (given by the minimizing Martingale increment) and then resampling with

replacement according to those weights. This yields approximate draws from p̃w(wt+1|st)
which we can use to construct draws from p̃(st+1|st). Thus, by using these methods one can

apply robust control analysis to a broad class of discrete time non-linear models, assuming

one is able to obtain a reasonable approximation to the value function.

4 Results: A robust perspective on long-run risk

In this section we will address a particular case of the general model discussed in section

2 and show that concerns for model misspecification, representable by fears of additional

persistence, can substitute for more extreme calibrations of this phenomenon in the actual

data generating process.

We abstract from the the presence of wz,t and focus on the heteroscedastic Gaussian

system given below

log gt+1 = G0 + xt + v0.5
t wg,t+1

log gd,t+1 = Gd,0 + φxt + ϕdv
0.5
t wd,t+1 + τdv

0.5
t wg,t+1

xt+1 = ρxt + ϕxv
0.5
t wx,t+1

vt+1 = (1− ϕv) v̄ + ϕvvt + σvwv,t+1

Due to the analytic expressions obtained for the worst case innovations and the fact that

they remain within convenient classes of distributions, the worst case can be defined explicitly

in terms of a system much like that above.10 The mean shifts under the worst case are simply

the uncertainty prices, λui,t. Thus, one can re-express wi,t+1 = εi,t+1 +λui,t with εi,t+1 v N(0, 1)

and then incorporate the λui,t term into the conditional mean dynamics of the system. As

shown in equation (21) in A, these prices may depend on v0.5
t (in the case of wx,t and wg,t)

or are simply constant (wv,t). Thus we can obtain the following convenient representation of

the worst case11

10The analytic expressions for the distorted innovation means are included in A.10 in equation (22).
11Similar derivations are used in Drechsler and Yaron (2011) where they interpret dynamics under the risk

neutral measure.
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log gt+1 = G0 + xt + χg,vvt + v0.5
t εg,t+1

log gd,t+1 = Gd,0 + φxt + χgd,vvt + ϕdv
0.5
t εd,t+1

xt+1 = ρxt + χx,vvt + ϕxv
0.5
t εx,t+1

vt+1 = (1− ϕv) ṽ + ϕvvt + σvεv,t+1

εi,t+1 v N (0, 1) for i ∈ {g, x, v, d}

where ṽ ≡ v̄ + σvλuv
1−ϕv . Notable are the additional terms in vt in the cash-flow equations. Con-

sumption growth, dividend growth and the Long-run Risk component acquire contributions

to their conditional means that depend on the level of volatility. Since ṽ > v̄ the average

level of volatility will also be higher.

We can also derive a useful approximate homoscedastic VAR representation of both the

benchmark and worst case models. This representation is derived by substituting v̄ or ṽ for all

terms in v0.5
t but leaving terms linear in vt unchanged. Thus, in this representation, we have

homoscedastic systems but with the vt term solely acting like a component that influences

the conditional mean.

Under these approximations we have two first order vector autoregressive (VAR) repre-

sentations for a state ŝt+1 ≡ [xt, vt, εd,t+1, εg,t+1, εx,t+1, εv,t+1]. These VARs preserve the ‘first

moment’ conditional dynamics of the underlying heteroscedastic systems (benchmark and

worst case) and also the unconditional second moments.

4.1 A simple illustrative example

We begin our quantitative analysis by estimating a simple model for consumption growth

using quarterly per capita nondurable plus services consumption data for the U.S. from

1948:Q2 to 2013:Q4. The estimated model abstracts from the Long-run Risk component

and so asserts that consumption growth is heteroscedastic white noise. We use the posterior

means from our Bayesian estimation for our parameterization of the endowment process since

this example is simply meant to be illustrative. The parameterization is given in table 1 and

implies substantial variation in volatility over time.

We calibrate β and θ, to attain an annual risk free rate target of 2.59% and various values

of the unconditional quarterly market price of risk.12 The values for the market price of risk

12The market price of risk is taken as the ratio of the unconditional standard deviation of the stochastic
discount factor to its unconditional mean. The targeted value of the risk free rate is equal to the median of
the short sample simulations carried out by Beeler and Campbell (2012) under the Bansal and Yaron (2004)
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that we consider are 0.25, 0.375 and 0.5.

As is well known, being able to attain an elevated market price of risk without an ex-

cessive risk free rate is essentially impossible if one uses standard, time separable expected

utility. Under Epstein-Zin preferences, however, breaking the equivalence of the elasticity of

substitution (EIS) and the inverse of the coefficient of relative risk aversion allows these two

goals to be satisfied simultaneously. As noted in Tallarini (2000) and Barillas, Hansen, and

Sargent (2009), this allows greater success in approaching the Hansen-Jaggannathan bounds

as one increases the coefficient of risk aversion.

Thus, in fixing θ we implicitly fix an associated coefficient of relative risk aversion under

the alternative, Epstein-Zin interpretation of our preferences. In table 2 we list our prefer-

ence parameterizations associated with the unconditional market prices of risk considered.

For interpretability, we also list detection error probabilities and (although not the natural

interpretation in this paper) the associated risk aversion coefficient.

The DEPs are listed for two lengths of short sample simulations. Recall that to calculate

DEPs one repeatedly simulates short samples under the benchmark and worst case and

applies likelihood ratio tests between the two. Clearly, the longer is the ‘short’ sample, the

more detectable the models will be and the lower will be the DEP.

It is not clear how to choose the sample length or, indeed, how to interpret detection

error probabilities. With regard to sample lengths, we report detection error probabilities

associated with two reasonably long sample sizes of 100 and 250 quarters, meant to be

illustrative of the sort of sample lengths commonly employed in macro-finance applications.

One guide to selecting these lengths is to align it with the sample we used to estimate the

benchmark - which would favor the longer of our two samples - since implicitly in our analysis

our agent might have used such a sample in arriving at her benchmark. Nevertheless, one

might wish to envisage an agent who has used post-war data to estimate a model but fears

that there may have been a structural break in more recent times. One need only look at the

recent Japanese experience or the active debate in the U.S. over secular stagnation to note

that fears of model misspecification might be associated with a concern that historical data

may be rendered unreliable. In this case, one might want to consider model comparisons over

shorter periods than those used to estimate the benchmark.

Anderson, Hansen, and Sargent (2003) suggest that detection error probabilities of approx-

imately 0.1 might be thought to convey a plausible degree of ambiguity aversion.13 However,

there is no fixed consensus in this regard and there are no easily interpretable thought exper-

calibration. As in Beeler and Campbell (2012) we calculate the annual risk free rate by rolling over the
one-period risk free rate, in this case from a quarterly frequency.

13Anderson, Hansen, and Sargent (2003) envisage a data set of length 200 quarters in their exercises.
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iments such as the Arrow-Pratt gamble experiments to guide us, as they do for interpretation

of risk aversion coefficients.

As one can see from table 2 one would require an extremely implausible degree of risk

aversion to attain the desired prices of risk. In comparison, the detection error probabilities

seem perhaps more reasonable, especially for a MPR of 0.25. This is the essence of the story

told in Barillas, Hansen, and Sargent (2009) who argue that a little robustness can substitute

for a lot of risk aversion. Nevertheless, the detection error probabilities in this simple example

are rather low and suggestive of an extreme degree of robustness, even if it is less extreme

than the implied risk aversion. Despite this we will analyze the properties of the worst case

under these calibrations as they provide useful qualitative insight.

Taking high, medium and low values of vt to be the theoretical (not allowing for censoring)

20th, 50th and 80th unconditional percentiles under the benchmark, we can calculate the worst

case innovation distributions. Given Normality and independence, together with the fact

that the standard deviations are undistorted relative to the benchmark, these distributions

are characterized by their means.

The mean of the endowment innovation is distorted downwards, while the mean of the

volatility innovation is distorted upwards. These patterns are to be expected given the unde-

sirability of low consumption growth and high volatility. The pessimistic shift to the mean of

wg,t+1 is more intense, the higher is volatility, as listed in table 3. Intuitively, as the agent is

more exposed to misspecifications in her model for growth (because wg,t+1 is pre-multiplied

by a larger volatility term) she envisages greater distortions to the benchmark model as an

artifact of her robust decision problem.

In low volatility times, the robust agent is informed by a conditional distribution very

much like that of the benchmark and, in this sense, is close to an expected utility agent.

Although the agent doubts her model at all times, the manifestation of these doubts varies.

This is perhaps a partial response to oft-expressed concerns that models of ambiguity are

counterfactual in their prediction of pessimistic behavior. The argument often is that in the

real world people do not typically appear pessimistic. However, we see here that robustness

is quite capable of generating variations in apparent pessimism and, as in the real world,

pessimism can be quite extreme in occasional periods of unusually high volatility.

Associated with fluctuations in the worst case conditional distributions are, naturally,

fluctuations in the conditional market price of risk. In table 4 we list the conditional MPR

and the corresponding object in the absence of robustness. Both the level and variability

of the conditional MPR derive almost entirely from the ‘uncertainty component’, Λu
t+1, of

the stochastic discount factor.14 The remaining columns correspond to our aforementioned

14Thus, as noted by Barillas, Hansen, and Sargent (2009), the term ‘Market Price of Risk’ is something of
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calibrations to hit certain unconditional market prices of risk.

Intuitively, in high volatility periods the worst case conditional distribution changes: in

addition to the increased volatility, the relative likelihood of a low consumption realization

increases and the mean of the consumption growth series falls, pushing up the conditional

market price of risk, evaluated under the benchmark measure.

4.2 Fears of Long-run Risk and ‘Disasters’

The properties of the worst case conditional distribution discussed above are interesting but

also, at least qualitatively, to be expected. Less obvious, however, are the implications of our

model for the worst case distribution over sequences, induced by iterating on these distorted

conditional distributions and the law of motion for the economy. It is these distributions that

can give us insight into the sort of data generating processes that would concern an agent

fearful of model misspecification in an ambiguous environment.

In table 5 we show various unconditional moments of the log consumption growth process

at yearly aggregation (with the observation intervals at yearly intervals, also). As expected,

the worst case features lower growth and elevated volatility on average. Skewness in con-

sumption growth is enhanced, implying a greater concern for ‘disasters’. Note, however, that

this concept of disasters is unconditional, whereas our conditional distributions at the raw

simulation frequency are Gaussian and thus symmetric.15 It is arguably in a conditional

sense that people typically think of disasters, and we will address this in section 5 below, by

restoring Poisson-mixture Normal components to our analysis.

We also calculate autocorrelations at annual frequencies, listed in table 6. These illustrate

additional persistence under the worst case, which indicates the agent’s aversion to models

with a small but persistent long run component in consumption growth - the hallmark of the

canonical Long-run Risk framework. In fact, the worst case model at quarterly frequency

inherits an autoregressive root equal to the persistence of the volatility process. The worst

case quarterly autocorrelations are small but due to their persistence, they result in non-trivial

autocorrelations at yearly intervals and substantially increased power at low frequencies.16

The volatility component vt is persistent and, thus, the conditional mean of consumption

a misnomer in this context, with ‘Market Price of Uncertainty’ perhaps more appropriate term.
15The aggregated annual series will exhibit some negative skewness as will consumption growth over any

horizon greater than one quarter.
16Note that the number of lags correspond to quarters or years, depending on the column considered. Note

also that the yearly moments are based not only on aggregating up from a quarterly model, but also from
implicitly switching to yearly observation, rather than quarterly observation of year on year growth rates.
Hence, given the white noise nature of the benchmark at quarterly frequency, the yearly autocorrelations
are also zero. If we had used year on year growth rates at quarterly frequency, we would have had non-zero
autocorrelations.
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growth inherits this persistence under the worst case. This is transparent in the worst case

system, which makes clear that a scaled version of vt is essentially acting as a Long-run Risk

component. In this sense the agent prices assets as if there is Long-run Risk, even though

there is none in the true model. The manner in which the persistent component enters the

model (via the concerns of the agent) is highly restricted however, since the persistence of the

component is pinned down by the volatility process and its size by the degree of ambiguity

aversion.

The worst case system also makes clear the nature of the unconditional skewness in

consumption growth under the worst case. vt+1 drives the conditional mean and conditional

volatility. Thus, on average, periods of low growth will be associated with higher volatility

that raises the probability of consumption growth being thrown even further into the left tail,

even while conditional skewness in t+ 1, given information in t, remains zero.

We note that the magnitude of the autocorrelations and skew are small and, beyond em-

phasizing the qualitative insights, we also offer an extension of this basic model that enhances

this autocorrelation, by introducing ‘vol-in-vol’. Campbell, Giglio, Polk, and Turley (2012)

have emphasized the importance of allowing for fluctuations in the volatility of volatility and

we introduce it by amending our volatility law of motion under the benchmark to become

vt+1 = (1− ϕv) v̄ + ϕvvt + σvv
0.5
t wv,t+1

where we set σv = σoldv
v̄0.5

where σoldv is from the constant vol-of-vol parameterization.

As shown in C, this will again imply a worst case system in which vt enters as a persistent

conditional mean component in consumption growth and the LRR equations. The uncondi-

tional mean of vt is, as before, elevated. However, the worst case also features a vt component

that retains an AR(1) structure but with a larger autoregressive coefficient, ϕ̃v > ϕv. Thus,

the agent will not only behave as if there is a long run component in the cashflow growth

variables but that the volatility component undergoes more persistent swings.

vt+1 = (1− ϕv) ṽ + ϕ̃vvt + σvv
0.5
t εt+1

In table 6, we include results and calibration of the vol-in-vol case. Generally the dis-

tortions are more exaggerated then before so that, not only are our results robust to the

presence of vol-in-vol, but are enhanced. Indeed, it seems an interesting avenue for further

exploration of how providing more structure to the benchmark allows the agent to explore

her vulnerabilities in more complicated ways.
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4.3 Introducing (some) Long-Run Risk in the benchmark

In the previous section we illustrated the essential intuition behind our results in a highly

restricted framework with white noise consumption growth. We now relax the specification

of the benchmark along several directions. First we introduce elements of the Bansal and

Yaron (2004) and Bansal, Kiku, and Yaron (2012) frameworks. This is because we do not

want to argue that there is no Long-run Risk in reality. Instead we suggest there may be less

than under the standard LRR specifications and that one can trade off LRR in the mind of

a robust agent, against a more moderate parameterization of LRR under the benchmark.17

Bansal and Yaron set {ρ, ϕx} = {0.979, 0.044}. This parameterization implies short lag

autocorrelations reasonably close to those observed in the data, but it has been argued that

the model exaggerates persistence, as captured by variance ratios at longer lags (Beeler and

Campbell (2012)) and other transformations of autocorrelations. Pursuing this further, Dew-

Becker (2013) has argued that an important measure of risk in the long run is what is typically

termed the long run standard deviation (LRSD) of consumption growth:

LRSD ≡ σ

(
∆Et+1

∞∑
j=0

log gt+1+j

)

=

√√√√ ∞∑
j=−∞

γj

γj ≡ Cov (log gt, log gt−j)

The LRSD is equal to the square root of the sum of all autocovariances and thus is

the square root of the spectral density of consumption growth at frequency 0.18 Beyond

this intuitive connection to the long run, and the fact that it encodes all autocovariances,

rather than an arbitrarily selected subset, Dew-Becker also shows that this object features

prominently in determining the maximal Sharpe ratio in standard calibrations of Epstein-

Zin preferences. Thus, we take the LRSD as an index of Long-run Risk in our analysis.

Where relevant we will scale the LRSD by the unconditional standard deviation (USD) of

consumption, so as to focus on persistence and retain comparability as the USD varies, as it

does when comparing benchmark and worst case, for example.

Estimates of the LRSD tend to fall substantially below those implied by the BY calibra-

17See Schorfheide, Song, and Yaron (2014) for recent work that adopts a more elaborate mixed-frequency
approach to estimating LRR systems which find evidence in favor of a long run component when using only
cashflows in estimation - although the evidence appears stronger when incorporating asset pricing data.

18The spectral density at angular frequency ω is defined as f (ω) ≡
∞∑

j=−∞
γj cos (ωj).
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tion. In figure 1 we plot the LRSD for different values of ρ, while adjusting ϕx to maintain

the unconditional variance of xt. On this plot, which is in terms of annualized percent, we

also overlay horizontal lines at the BY-implied value, Dew-Becker’s point estimate and his

90% and 95% confidence intervals.19 We choose to set ρ equal to the 90% boundary, which

is 0.929 rather than the 0.979 chosen by Bansal and Yaron.20 The half-lives of shocks to the

LRR component in these two cases are approximately 23
4

years in the BY case and 3
4

of a year

in our adjusted case, so the reduction of Long-run Risk in the benchmark is economically

significant.

Under the worst case we observe somewhat higher autocorrelations at short lags, relative

to the benchmark. However, again, the most important aspect of their behavior is that they

remain small but positive for a large number of lags - dying out at a rate approximately

equal to the persistence of volatility. In contrast, the autocorrelations under the benchmark

go to zero much more quickly. This, and the fact that the unconditional standard deviation

is also inflated under the worst case, implies a substantially higher LRSD than the under

benchmark, as shown in table 11, in annualized percent. Indeed, the LRSD is in line with

the original BY benchmark, even after scaling by the unconditional standard deviation.

We adjust Bansal and Yaron’s parameterization of the volatility process, inspired by their

most recent work in Bansal, Kiku, and Yaron (2012), which increases the persistence of

volatility, ϕv, substantially. This focuses our analysis on the source of worst case persistence

in our model, which is the interaction of stochastic volatility with ambiguity. Nevertheless,

to discipline our approach, we maintain the same unconditional variance of vt as in Bansal

and Yaron (2004), by reducing the standard deviation of its innovations, σv.

Our parameterization is listed in tables 8 and 9. We set α and β to calibrate according

to the risk free rate and unconditional market prices of risk, as before. We use φ and ϕd

to set the equity premium and volatility of dividends. A collection of baseline moments are

listed in table 10, where we compare to numbers reported in Beeler and Campbell (2012),

calculated from real world data and from the Bansal and Yaron (2004) model.21 We have

chosen a parameterization yielding numbers that are broadly comparable to those of Bansal

and Yaron (2004). Like them, our equity premium is somewhat low, relative to the data and

the volatility of dividend growth is also counterfactually low. The implied detection error

19These are from looped small sample analysis of a novel estimator proposed in Dew-Becker (2013), though
other estimators based on fitting low order ARMAs imply typically even lower point estimates and tighter
intervals.

20Note that we cannot reach Dew-Becker’s point estimate by varying ρ while maintaining the unconditional
variance of the long run component.

21The targeted risk free rate and MPR values were unconditional ‘ergodic’ moments. Note that this is in
contrast to table 10 where we report medians of looped short sample moments. There is a very small gap
between the median risk free rate and the unconditional ergodic mean.
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probabilities using 100 and 250 period-long samples are 10.2% and 2.4% respectively for a

MPR of 0.25 and 2.6% and 0.1% for a MPR of 0.375.

Inspired by Beeler and Campbell (2012) we report additional moments that they iden-

tify as important checks on the LRR model. In tables 12 and 13 we report variance ratios

for consumption and dividend growth and R2 from predictability regressions of excess re-

turns, consumption growth and dividend growth on the price-dividend ratio. Reflecting the

excessive persistence of the baseline Bansal and Yaron (2004) model the variance ratios of

consumption growth at longer horizons are counterfactually high under their calibration and

increase dramatically, relative to shorter horizons. Unsurprisingly, with our adjusted ρ our

model performs better along this dimension, even if the problem is not entirely solved. We

are less successful in terms of dividend growth.

Turning to the predictability evidence, like the LRR model, we do poorly in terms of

the predictability of excess returns. This is despite the fact that, qualitatively, the model

will generate predictability arising from the additional cashflow persistence under the worst

case model. We naturally do better in terms of predictability of consumption and dividend

growth, relative to the LRR model - bringing the degree of predictability down towards

observed moments. As to the predictability of volatility, we appear to improve somewhat on

BY in some dimensions and do worse in others. Both models struggle substantially with the

predictability of consumption volatility.

As shown in table 14 we have a downward sloping real term structure, as in the baseline

LRR model. The slope becomes more severe and more comparable to Bansal and Yaron

(2004) for the higher MPR calibration considered. This is a direct implication of the positive

autocorrelation in consumption growth under the benchmark, which is exaggerated in the

mind of the agent. While there is some debate regarding the slope of the real term structure

(see Swanson (2014), for example) this appears to be counterfactual - especially to the degree

seen in the high MPR calibration of our model. Nevertheless, it is no worse than the baseline

LRR model.

Interestingly, our model performs better than the baseline LRR setup in terms of ‘EIS

regressions’ of the sort discussed in Hall (1988), Campbell and Mankiw (1989) and Beeler

and Campbell (2012). Table 15 reports implied estimates of the elasticity of intertemporal

substitution (EIS) from regressions of the risk free rate on consumption growth (and vice

versa). Although the estimates are still notably above those obtained from similar regressions

on real-world data, we obtain substantially lower estimates than those estimated from data

generated by the LRR model. The intuition for this is clearest in the case of using the

risk free rate to predict consumption growth. The exaggerated persistence of the worst case

model leads agents to behave as if they overextrapolate shocks to consumption growth. Given
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the consumption smoothing motive and log utility of the agent the risk free rate will vary

in equilibrium to a greater degree than it otherwise would. However, under the maintained

assumption that the true data generating process is the benchmark the additional movements

in the interest rate do not reflect additional predictability, so regressions of consumption

growth on the riskless rate will yield a lower coefficient.22

These results suggest that worst case fears of higher volatility and greater persistence in

the mind of an agent can substitute for those properties in the actual data generating process.

Failing to allow for this additional Long-run Risk in the mind of the agent, while relying on

prices and behavior, could conceivably lead an econometrician astray as these properties are

encoded in how agents’ evaluate risky payoffs even if they are not present in reality. In

addition, trading off LRR in the economy against worst case fears of LRR in the mind of the

agent can help improve the model’s ability to match certain important moments where the

baseline LRR model gives counterfactual predictions.

4.4 Discussion: Comparison with existing literature

It is worth contrasting the nature of the time variation in our agent’s ‘pessimism’ with that

discussed in Drechsler (2013).23 In our framework it is not the case that as volatility (vt)

varies over time our agent’s uncertainty varies. Although we are working with a recursive

formulation of the robust problem, the sequence problem (2) makes clear that the agent is

uncertain about the worst case distribution over sequences implied by her benchmark and that

this degree of uncertainty is fixed. Since we are representing the worst case distribution over

sequences in terms of worst case conditional distributions (combined with the law of motion

(1)), the manifestation of this uncertainty in terms of distorted conditional means varies over

time with vt. However, this variation is implicit in a fixed worst case joint distribution over

sequences.

In Drechsler (2013), ‘uncertainty’ is allowed to vary over time with volatility in the sense

that the penalty for distortions to benchmark conditional distributions is linked to the level of

volatility - when volatility is high, the marginal penalization for entropic deviation is reduced

in addition to the agent’s exposure to misspecification being greater. Although it seems very

plausible that times of high volatility are somehow associated with higher uncertainty, this

connection must be modeled carefully if one is to claim a fully structural interpretation of

22Bidder and Dew-Becker (2014) generate low EIS estimates using a similar mechanism but a different
concept of ambiguity aversion.

23See also Kleshchelski and Vincent (2008) and Xu, Wu, and Li (2010) who analyze the effects of stochastic
volatility in consumption on asset prices in a continuous time setting with a robust agent. Our model is
entirely in discrete time. The tools we present can be used in many discrete time representative agent
frameworks, a standard workhorse of modern macroeconomics.
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the separate influence of these two factors. Indeed, the ambiguity literature is in some sense

defined by the explicitly separate treatment of ‘risk’ and ‘uncertainty’.

Although Drechsler (2013) likely is a reduced form for a model where volatility and un-

certainty are mutually dependent but distinct, we prefer to keep them explicitly separate and

independent in this work. The restriction that uncertainty be fixed implies that, as will be

discussed below, it is more difficult to attain empirical success, for which Drechsler (2013)

is notable. Beyond that, Drechsler adds further structure to the worst case distribution in

partitioning components of the state into elements whose dynamics are uncertain and those

whose dynamics are fully trusted. Some additional restrictions are also placed on the na-

ture of the jump perturbations. In contrast, we only have one parameter, θ that controls

the nature of the worst case in relation to the benchmark. Once one allows the agent to

envisage (absolutely continuous) distributions that deviate from the benchmark, penalizing

the entropic distance according to θ, our control over the the worst case is gone - θ has been

‘used up’.24

It is also useful to compare our work with that of Barillas, Hansen, and Sargent (2009)

and Hansen and Sargent (2010b). We extend Barillas, Hansen, and Sargent (2009) in terms

of methodology (our algorithms for drawing from the worst case) and in terms of introducing

stochastic volatility. In their model the homoscedasticity they assume for innovations under

the benchmark leads to a very restricted worst case - an unconditional mean shift in the

innovation distributions. It is perhaps undesirable that omitting a fairly uncontroversial

phenomenon like stochastic volatility can have such an important impact on the qualitative

properties of the worst case, given that robustness is largely about doubting the specification

of the benchmark model. The heteroscedastic setup we use shows how a robust agent will

distort conditional variances if given the opportunity.

Hansen and Sargent (2010) set up a model in which the agent focuses on two possible

models - an iid consumption growth model and a LRR consumption growth model - and her

fears of misspecification are represented with distorted filtered probabilities of which (latent)

model is the truth and, assuming a given model as a benchmark, how its dynamics might be

misspecified. We do not consider latency or robust filtering in our paper. It is important that

in our baseline heteroscedastic white noise framework we do not actually posit LRR as part

of the benchmark as Hansen and Sargent do. It emerges purely in the mind of the agent, as

24Of course, the additional restrictions that Drecshler imposes do not invalidate his approach - they are
both conceptually reasonable and helpful empirically - but for our purposes we wish to remain entirely with
the tightly parameterized unstructured uncertainty of Hansen and Sargent (2008). For alternative approaches
to how additional restrictions can be added to robust control problems, see Hansen and Sargent (2010b) where
two entropic distances are used to envisage separate uncertainty attitudes towards filtering and dynamics or
Petersen, James, and Dupuis (2000) where one asserts moment conditions that the worst case must satisfy.

25



captured in the autocorrelation of consumption growth under the worst case.

4.5 Discussion: Pricing of risk and uncertainty

It is illustrative to examine the approximate solution for the scaled (by consumption) value

function. The coefficients on the constant, xt and vt in the exponentially affine approximation

are given by

F0 ≡
β

1− β

(
G0 + F2 (1− ϕv) +

α

2
F 2

2 σ
2
v

)
F1 ≡

β

1− βρ

F2 ≡
α

2

β

1− βϕv
(
1 + F 2

1ϕ
2
x

)
Thus, there is no concern for time variation in vt per se in the absence of robustness (α = 0).

That is, an agent who fully trusts her model and therefore has time separable expected utility

with a log period payoff, regards her welfare as unaffected by fluctuations in the volatility

state around its unconditional mean, v̄.

In the presence of robustness the influence of the stochastic nature of vt is manifested in

F0 and F2. Even if vt featured no persistence (ϕv = 0) the value function would still load on

vt. This is because recursive representation of the worst case entails a conditional mean shift

in wg,t+1 and, thus, vt is a relevant state given the fact that it pre-multiplies wg,t+1 and thus

transmits the pessimistic mean distortion to (worst case) expected consumption growth. The

relevance of vt is clearly greater if it features persistence (ϕv > 0) and if the process to which

it applies itself features persistence under the benchmark (as when ϕx > 0).25

Intuitively, the presence of vt as a welfare-relevant state reflects how, from the perspective

of the time-0 sequence problem, certain path realizations expose the agent to more painful

misspecifications and, therefore, feature more twisting by the minimizing Martingale. Thus

vt is vital in enabling a recursive representation. Once the agent has reached a ‘node’ (or his-

tory) featuring high volatility it signifies that the worst case joint distribution over sequences

requires substantial distortions to the conditional distributions stemming from that node.

Now, considering the stochastic discount factor we see that, even within a fully trusted

model, vt controls compensation for exposure to wg,t+1 via λrg,t. However, there are additional

effects in our case because vt enhances exposure to misspecifications represented by mean

shifts to wg,t+1 (λug,t ≡ αv0.5
t ).26 Furthermore, recalling the presence of vt in the value function

25In addition to the time varying influence of vt on the agent’s welfare we also observe an influence on the
steady state via the third term in the parentheses in the definition of F0.

26Similar intuition applies to mean shifts in wx,t+1 if there is a non-degenerate LRR component under the
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discussed above, wv,t+1 has the appearance of a ‘risk’ being priced (λuv ≡ αF2σv) because the

innovation to vt+1 will determine how pessimistic a change in measure the agent will be

operating under from the next period forwards.

From this perspective, the algebraic equivalence between an Epstein-Zin agent and the

robust agent is natural. The Epstein-Zin agent wants to hedge against shocks to future

lifetime utility. The robust agent wants to hedge exposure to realizations that make her

particularly vulnerable to misspecifications that are damaging for future lifetime utility.

Assuming that the data generating process is the benchmark model a ‘wedge’ is introduced

that lowers the prices of assets whose payoffs depend on wg,t and vt (positively and negatively,

respectively), relative to the prices that would prevail in the absence of model uncertainty.

‘Risks’ that are not priced by an expected log utility agent will appear to be priced by the

robust agent, as in the case of wv,t+1, because they are serving a different purpose and are

not risks in the same sense as under the Epstein-Zin interpretation, but are reflecting a fear

of misspecification.

4.6 Discussion: Relationship with Epstein-Zin

Given our decision to assert that the benchmark is the true data generating process, the

likelihood function of the robustness model is the same as that of the associated reinterpreted

Epstein-Zin/unity EIS model. Thus, our approach is nested by a model in which the EIS of the

Epstein-Zin agent is unrestricted, as in Bansal and Yaron (2004). Thus, a larger set of moment

restrictions can be satisfied by the Epstein-Zin model with unrestricted EIS than by our

model. Indeed, if one were to estimate the unrestricted model on data from our benchmark,

featuring robust agents, it should theoretically recover the log utility parameterization of

preferences.

Nevertheless, if one imposes parameter restrictions on the economic environment there is

scope for our more restricted model to outperform along dimensions of interest. Most relevant

in our case are restrictions implying the degree of Long-run Risk chosen by Bansal and Yaron

(2004). Our story is that this degree of Long-run Risk seems excessively high relative to what

consumption data alone would imply, as argued powerfully in Beeler and Campbell (2012). A

model featuring robustness is preferable in asserting a smaller degree of Long-run Risk while

generating elevated and varying prices of risk via Long-run Risk in the mind of the agent.

The unity EIS restriction is required for homotheticity of multiplier preferences, which

in turn allows us to obtain a stationary scaled solution for the value function (and other

objects) in an environment of non-stationary consumption. An interesting avenue would be

to somehow relax this restriction but this would be well beyond the scope of this paper (see

benchmark.
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Meyer-Gohde (2015) for work in this direction). We believe that our intuition of a concern

for persistent components in consumption growth would be preserved in such a generalized

framework as it is natural that long run aspects of models are particularly prone to ambiguity

as well as having important implications for welfare (see, also, Bidder and Dew-Becker (2014)

and Hansen and Sargent (2010b) on these points).

5 Results: A robust perspective on rare disasters

In section 4.2 we showed that our agent was informed by a worst case model that implied un-

conditional skewness in consumption growth rates. We interpreted this as a fear of disasters.

In this section we pursue a more natural interpretation of disasters, such that the benchmark

model features conditional skewness in the form of a ‘jump’. In the language of section 2, we

reintroduce wz,t+1, the Poisson-mixture of Normals.

Much as we developed our robust perspective of Long-Run Risk around a benchmark

that borrowed from Bansal and Yaron (2004), we will here draw upon the framework laid out

in Wachter (2013).27 We will abstract from the presence of stochastic volatility and Long-

Run Risk. We omit wd,t and, following Wachter, take dividends to be levered consumption

(Dt = Cφ
t ). We will allow for both constant and time varying intensity, ht. Thus, our

benchmark model is again a special case of system (1), given by

log gt+1 = G0 + wz,t+1 + v̄0.5wg,t+1

log gd,t+1 = φ log gt+1

ht+1 = (1− ϕh)h̄+ ϕhht + wh,t+1

We set h̄ to imply a steady state expected number of jumps in 100 years to be 2.5, informed

by the calibration used by Wachter (2013). The persistence parameter, ϕh is also based on

Wachter’s parameterization.28 We choose δh and ch to ensure the aforementioned steady state

jump intensity while also allowing substantial volatility in equity returns, as we will discuss

below.29 The mean of wz,t+1 given a single jump, θ, is set to −0.3 and δ is set to 0.1. This

parameterization was used in Backus, Chernov, and Zin (2014) as an approximation to the

multinomial distribution for consumption declines in the case of disasters, used by Wachter

27Wachter’s model is in fact deeply connected to ours in that she asserts an EIS of unity within an Epstein-
Zin framework. Thus, we provide an interesting robustness reinterpretation of her setup.

28ϕh = 1− κ/12 where κ is the persistence parameters in Wachter’s continuous time intensity process.
29Backus, Chernov, and Zin (2014) map Wachter’s calibration into an approximate discrete time version

using an AR process for intensity but dramatically reduce the volatility and persistence of the intensity
process to avoid unacceptably high probability of the process going negative. Given our ARG specification
of ht we can handle a more volatile intensity process.
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(2013) and Barro and Ursua (2008).

The remaining consumption growth parameters are listed in table 16. In the absence

of disasters, the trend growth and volatility of the Gaussian innovation are calibrated to

yield mean and standard deviation of annual consumption growth of 1.80% and 1.99% re-

spectively.30 In addition, as in Wachter (2013) we allow for a 40% probability of default on

government debt in the case of a disaster, in which case the proportional reduction in the

promised face payoff is equal to the realized disaster size, wz,t.
31

Table 18 lists our calibration in the constant intensity case, where we choose α and β again

to hit unconditional MPR targets as well as a desired expected return on government debt.

We ensure an average return of 1.36% conditional on no disasters occurring and approximately

1.06% unconditionally, similarly to Wachter (2013).

Referring to table 18 we note that the detection error probabilities are dramatically higher

than in our Long-run Risk frameworks. Even for an MPR of 0.5, the detection error probabil-

ity of approximately 9% after 250 quarters is not wildly implausible. Intuitively, this captures

the fact that rare disasters are a powerful phenomenon to interact with ambiguity. Under

the benchmark the expected number of jumps in a century is 2.5 while for an MPR of 0.50

the number is approximately 10, as shown in the table. This would be highly undesirable for

the agent given the likely drop in consumption in the case of a disaster, but the frequency is

not so much higher that she can distinguish confidently between the benchmark and worst

case if, say, she observes two jumps in 25 years (corresponding to our shorter DEP sample

period).

The worst case distribution concentrates the damage of a misspecification in a way that is

efficient, in the sense of trading the pain of the distortion relative to the benchmark against the

offsetting entropy penalty. Rare events are ideal for this since they are sufficiently infrequent

to be difficult to characterize, as well as being very painful. Since the presence of jumps allows

us to generate a high MPR with far lower α than in the purely Gaussian cases considered

above, there is a concomitant reduction in the distortion to the Gaussian shock (the mean

shift to wg,t+1 is αv̄0.5). In our LRR setups above the DEPs were rather low because the

worst case represented the agent’s fear of misspecification by large mean shifts to shocks

observed period after period, thereby substantially reducing average growth over any short

span of time. This rendered the benchmark and worst case easily distinguishable even in

30We also use a parameterization that targets a standard deviation of 1.04 as in our earlier heteroscedastic
white noise example. Hence the two values of v̄ in table 16 and the two columns in tables 17 and 18. In
addition, we consider a value of the average return on government debt equal to 2.59% as in our earlier
discussion of the LRR setups, with results listed in table 17. For neither of these alternative calibrations are
there qualitatively different implications and the quantitative differences are also minor. For the ARG case
we only report for one baseline calibration, for comparability with Wachter (2013).

31In appendix B.4 we derive expressions for the face and average returns on one period government debt.
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small samples. In the case of jumps, there is a much smaller trend growth reduction - the

worst case instead emphasizes dramatic but occasional declines.

Finally, in table 19 we list details of our calibration in the time varying intensity case,

where we have chosen α and β to hit an unconditional (allowing for disaster realizations)

MPR target of 0.25 and the same targeted value of the mean return on government debt

(conditional on no disasters) of 1.36% as in the constant intensity case. Detection error

probabilities for 100 and 250 quarters are 10.0% and 4.1%, respectively, which are reasonable.

When evaluated at the worst case unconditional mean of ht the ‘steady state’ expected number

of jumps in 100 years is 11.3 (again in comparison with 2.5 under the benchmark).

We report asset pricing moments, unconditionally and conditioning on the non-occurrence

of disasters, which Wachter (2013) emphasizes for comparability with the post-war experience

in which there have been no episodes of the sort of disaster described by Barro (2006). We

employ a higher degree of leverage than Wachter (2013) and, like her, our model implies an

equity premium somewhat on the high side, with an elevated Sharpe ratio. In addition, we

obtain qualitatively similar results to Wachter in terms of predictability of excess returns,

reported in table 19, although we also note the caveats associated with the calculation of R2

values in this context of persistent regressors.

As in Wachter (2013), our equity returns are volatile and we can provide insight into the

reasons for the volatility of returns by appealing to the worst case in the mind of the agent.

In B.5.2 we show that under the worst case, ht follows a process of the form

ht+1 = (1− ϕ̃h) h̃+ ϕ̃hht + w̃h,t+1

ϕ̃h ≡ ϕh + ah

=
ϕh

(1− λuhch)
2

h̃ ≡ δhch + a0

1− ϕ̃h

where w̃h,t+1 is a Martingale difference sequence. Importantly, h̃ > h̄ and 1 > ϕ̃h > ϕh

so that, as before, the jump arrival rate is pessimistically distorted upwards but also, now

that it is allowed to vary, is more persistent than under the benchmark. Indeed, under our

calibration, the half life of a shock to ht is approximately 30 years under the worst case, in

comparison with 8 years under the benchmark (see B.5.2 for the derivation).32

Again, we show in B.5.1 that wz,t+1 is distributed under the worst case as a Poisson-

mixture of normals with inflated arrival rate ĥt ≡ hte
λuz θ+

(λuz δ)
2

2 and inflated mean on arrival,

32By half life we mean the j required for the effect on the expectation in t+ j to decline to half of the effect
on the expectation at the first horizon.
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θ̃ > θ. Consequently, when innovations to the intensity process strike, they are exaggerated

and over-extrapolated (relative to the true model) when projected into the future under

the worst case. Therefore, the agent acts as if facing a very volatile news-flow for future

consumption and, thus, dividend growth. Figure 2 captures this by plotting the effect on

expectations of future consumption growth (in annualized percentage terms) following an

innovation to wh,t, under the benchmark and worst case models.33

This extrapolative behavior leads to excess sensitivity and underpins volatility in returns

and, apparently, much of the predictability evidence as well. In the mind of the agent, shocks

to expected cashflows are substantial at long horizons. Thus, following a negative (positive)

shock to ht she will be prepared to pay more (less) for the claim and, in equilibrium, the

price dividend ratio should rise (fall). Nevertheless, since we assert the true model is the

benchmark, an econometrician would attribute a measure of the variation in worst case

cashflow expectations to variation in expected returns as the source of the volatility and

predictability of returns as there is not as much predictability in cashflows as implied under

the worst case.34

6 Conclusion

Attributing a desire for robustness to Knightian uncertainty leads a robust agent to act as if

guided by a worst case distribution. We suggest novel methods of characterizing and drawing

from this distribution and show that it will feature a small persistent component when the

agent faces persistent heteroscedasticity and exaggerated jumps (in terms of frequency and

size) if the agent perceives the true data generating process to exhibit some degree of jump

risk. This allows the model to match important asset pricing facts without taking a firm

stance on whether LRR exists or whether extant disaster calibrations are correct.

33As ht−1 approaches zero, the ARG nature of the process implies that the standard deviation of wh,t
declines - and higher moments also change - leading to the differences between the three panels of the figure.

34This is similar to the phenomena discussed in Bidder and Dew-Becker (2014) where what would appear
to be extrapolative behavior and predictability in returns arises from an ambiguity averse Epstein-Zin agent
using a worst case model for dynamics of cashflows. The concept of ambiguity aversion in Bidder and Dew-
Becker (2014) differs from the Hansen-Sargent multiplier preferences approach adopted here, however.
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Tables

Table 1: Parameterization of endowment process - simple heteroscedastic white
noise example

Parameter Value

G0 4.66× 10−3

ϕv 0.91
v̄ 2.69× 10−5

σv 5.45× 10−6

Table 2: Parameterization of preferences - simple heteroscedastic white noise ex-
ample

MPR = 0.25 MPR = 0.375 MPR = 0.5

α −44.7 −63.9 −80.1
β 0.9970 0.9965 0.9959

DEP (T = 100) 10.8 3.1 0.7
DEP (T = 250) 2.6 0.2 0.0

CRRA 45.7 64.9 81.1

Table 3: Worst case innovation means - simple heteroscedastic white noise example

wg,t+1 wv,t+1

20th%ile vt 50th%ile vt 80th%ile vt ∀vt

MPR = 0.25 −0.18 −0.23 −0.28 0.06
MPR = 0.375 −0.25 −0.33 −0.39 0.12
MPR = 0.50 −0.32 −0.42 −0.49 0.19
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Table 4: Conditional market price of risk by vt - simple heteroscedastic white noise
example

vt No Robustness MPR = 0.25 MPR = 0.375 MPR = 0.5

High 0.01 0.29 0.44 0.58
Medium 0.01 0.25 0.37 0.49
Low 0.00 0.19 0.29 0.39

Table 5: Unconditional moments of log gt - simple heteroscedastic white noise ex-
ample

Benchmark MPR = 0.25 MPR = 0.375 MPR = 0.5

Mean(%Ann.) 1.86 1.31 0.99 0.62
St.Dev.(%Ann.) 1.03 1.13 1.21 1.30

Skew. 0.00 −0.22 −0.27 −0.28
LRSD/St.Dev. 1.00 1.09 1.16 1.21

Table 6: Unconditional autocorrelations of annual log gt - simple heteroscedastic
white noise example

Lag Benchmark MPR = 0.25 MPR = 0.375 MPR = 0.5

2 0.00 0.03 0.05 0.07
3 0.00 0.02 0.04 0.05
4 0.00 0.01 0.03 0.04
5 0.00 0.01 0.02 0.02
6 0.00 0.01 0.01 0.02
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Table 7: Robustness check: vol-in-vol heteroscedastic white noise example

Benchmark MPR = 0.25 MPR = 0.375 MPR = 0.5

α - −44.7 −62.8 −77.3
β - 0.9970 0.9965 0.9961

DEP (T = 100) - 10.8 3.0 0.5
DEP (T = 250) - 2.6 0.1 0.0

Skew. 0.00 −0.31 −0.47 −0.64
LRSD/St.Dev. 1.00 1.14 1.38 1.94
vt half-life 1.86 2.19 2.74 4.14
Acorr. lag

2 0.00 0.04 0.10 0.21
3 0.00 0.03 0.08 0.18
4 0.00 0.02 0.06 0.15
5 0.00 0.02 0.05 0.13
6 0.00 0.01 0.04 0.11

Table 8: Parameterization of endowment process - adjusted LRR model

Parameter Value

G0 0.0015
Gd,0 0.0015
φ 4.368

ϕd (MPR = 0.25/0.375) 3.053/3.579
v̄ 0.00782

ϕv 0.999
σv 6.3983× 10−07

ρ 0.9289
ϕx 0.0799

Table 9: Parameterization of preferences - adjusted LRR model

MPR = 0.25 MPR = 0.375

α −11.3 −16.42
β 0.9986 0.9983

DEP (T = 100) 10.2 2.6
DEP (T = 250) 2.4 0.1

CRRA 12.3 17.42
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Table 10: Baseline moments - adjusted LRR model
Medians of moments obtained from 50000 looped samples of length 756 months.

BS (MPR = 0.25) BS (MPR = 0.375) BY Data

E [log gt] 1.80 1.80 1.80 2.01
σ (log gt) 2.45 2.45 2.44 1.02

AC1 (log gt) 0.30 0.30 0.31 0.26
E [log gd,t] 2.00 2.00 1.82 2.29
σ (log gd,t) 9.06 9.06 10.53 27.61

AC1 (log gd,t) 0.34 0.34 0.26 −0.58
E [rt] 5.21 6.70 6.75 6.36
σ (rt) 13.02 13.90 16.54 16.52

AC1 (rt) −0.00 0.05 0.01 0.08
E [rf,t] 2.61 2.61 2.59 0.89
σ (rf,t) 1.89 1.90 1.23 1.82

AC1 (rf,t) 0.85 0.85 0.94 0.84
E [pt − dt] 3.38 3.02 3.01 3.46
σ (pt − dt) 0.12 0.12 0.18 0.43

AC1 (pt − dt) 0.85 0.84 0.89 0.98

Table 11: Raw and scaled long run standard deviation of annualized consumption
growth - adjusted LRR model

Benchmark W.C. (MPR = 0.25) W.C. (MPR = 0.375) BY

LRSD 4.06 7.39 9.74 6.28
LRSD/σ

(
log gAnnt

)
1.26 1.92 2.26 2.27

Table 12: Variance ratios - adjusted LRR model
The variance ratio for consumption growth is defined V (K) ≡ V ar(log gt+1+...+log gt+K)

K V ar(log gt+1)

Variance ratios

Consumption Dividends
Years 2 4 6 Years 2 4 6

BS 1.37 1.60 1.63 BS 1.41 1.69 1.73
BY 1.46 1.96 2.22 BY 1.36 1.66 1.79

Data 1.27 1.29 1.29 Data 1.32 1.45 1.32
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Table 13: Predictability regressions R2 - adjusted LRR model
For zt ∈ {rt, log gt,∆dt} we estimate

∑J
j=1 zt+j = α + β (pt − dt) + εt+j

Predictability

Excess Returns Consumption
Quarters 4 12 20 Quarters 4 12 20

BS (MPR = 0.25) 0.007 0.015 0.022 BS (MPR = 0.25) 0.157 0.090 0.049
BS (MPR = 0.375) 0.007 0.016 0.022 BS (MPR = 0.375) 0.143 0.083 0.046

BY 0.008 0.022 0.033 BY 0.237 0.269 0.213
Data 0.090 0.187 0.257 Data 0.000 0.001 0.002

Dividends
Quarters 4 12 20

BS (MPR = 0.25) 0.275 0.131 0.065
BS (MPR = 0.375) 0.221 0.107 0.05

BY 0.159 0.180 0.147
Data 0.000 −0.002 −0.003

Predictability of volatility

Excess Returns Consumption
Quarters 4 12 20 Quarters 4 12 20

BS (MPR = 0.25) 0.008 0.016 0.021 BS (MPR = 0.25) 0.007 0.016 0.021
BS (MPR = 0.375) 0.008 0.017 0.022 BS (MPR = 0.375) 0.007 0.017 0.022

BY 0.009 0.022 0.030 BY 0.008 0.021 0.030
Data 0.002 0.033 0.061 Data 0.226 0.437 0.462

Dividends
Quarters 4 12 20

BS (MPR = 0.25) 0.007 0.016 0.021
BS (MPR = 0.375) 0.007 0.016 0.021

BY 0.009 0.021 0.030
Data 0.049 0.027 0.019

Table 14: Term structure of real riskless bonds - adjusted LRR model

Maturity 3m 1y 5y 10y 20y 30y

BS (MPR = 0.25) 2.53 2.28 1.76 1.61 1.50 1.44
BS (MPR = 0.375) 2.50 2.12 1.37 1.13 0.93 0.79

BY 2.55 2.38 1.74 1.30 0.91 0.75
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Table 15: Elasticity of intertemporal substitution regressions - adjusted LRR
model
We estimate the coefficients on log gt+1 and rf,t+1 in rf,t+1 = a +

(
1
ψ

)
log gt+1 + εt+1 and

log gt+1 = a + ψrf,t+1 + εt+1 and report the median over many small sample loops of the
implied estimated ψ.

log gt+1 on rf,t+1 rf,t+1 on log gt+1

BS (MPR = 0.25) 1.071 1.186
BS (MPR = 0.375) 1.065 1.185

BY 1.495 1.613
Data 0.306 0.504

Table 16: Parameterization - rare disasters model

Parameter Constant h ARG h

G0 1.5× 10−3 1.5× 10−3

v̄ 0.90× 10−5 or 3.30× 10−5 3.30× 10−5

h̄ 2.08× 10−3 2.08× 10−3

δ 0.1 0.1
θ −0.3 −0.3
q 0.4 0.4
φ − 3.8
ϕh − 0.993
δh − 1.788
ch − 7.77× 10−6

Table 17: Calibration - rare disaster model (constant intensity) - E [rB] = 2.59%

MPR=0.25 MPR=0.375 MPR=0.5
Low v̄ High v̄ Low v̄ High v̄ Low v̄ High v̄

E
[
rB
]

2.28 2.26 2.27 2.27 2.28 2.28
E
[
rB|ND

]
2.59 2.59 2.59 2.59 2.59 2.59

θ̃ −0.33 −0.33 −0.34 −0.34 −0.34 −0.34

Ẽ [#jumps/cent.] 6.4 6.3 8.2 8.2 9.9 9.7
α −2.99 −2.96 −3.74 −3.72 −4.27 −4.22
β 0.99823 0.99816 0.99788 0.99779 0.99755 0.99748

DEP (T = 100) 31.2 30.1 24.9 23.8 20.6 20.5
DEP (T = 250) 21.3 20.9 13.6 13.1 9.4 9.4

CRRA 3.99 3.96 4.74 4.72 5.27 5.22
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Table 18: Calibration - rare disaster model (constant intensity) - E [rB] = 1.36%

MPR=0.25 MPR=0.375 MPR=0.5
Low v̄ High v̄ Low v̄ High v̄ Low v̄ High v̄

E
[
rB
]

1.07 1.07 1.05 1.04 1.05 1.05
E
[
rB|ND

]
1.36 1.36 1.36 1.36 1.36 1.36

θ̃ −0.33 −0.33 −0.34 −0.34 −0.34 −0.34

Ẽ [#jumps/cent.] 6.4 6.3 8.2 8.2 9.9 9.7
α −2.99 −2.96 −3.74 −3.71 −4.27 −4.22
β 0.99923 0.99916 0.99888 0.99879 0.99856 0.99848

DEP (T = 100) 30.8 30.6 25.3 24.5 20.3 20.5
DEP (T = 250) 21.1 20.6 13.8 13.2 9.7 9.9

CRRA 3.99 3.96 4.74 4.71 5.27 5.22

Table 19: Calibration - rare disaster model (ARG intensity)
We obtain the return series from aggregating monthly returns and then construct the excess
return by comparing the annualized gross returns. The moments are based on data from
approximately 100, 000 periods of simulations. We drop observations for periods including a
jump, when calculating the ‘conditional’ regressions. We have α = −2.97, β = 0.99921 and
DEP for 100 and 250 quarters of 10.0 and 4.1, respectively.

Unconditional Conditional Wachter (2013) Conditional

E[rB] 1.06 1.36 1.36
σ(rb) 3.31 0.96 2.00

E[re − rb] 8.29 9.61 8.85
σ(re) 20.25 17.19 17.66
Sharpe 0.43 0.55 0.49
σ(log(gt)) 5.16 1.98 1.99
σ(log(gd,t)) 19.59 7.51 5.16
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Table 20: Predictability - rare disaster model (ARG intensity)
We estimate the long horizon regression

∑k
j=0 log(Re

t+j) − log(Rb
t+j) = β0 + β1(pt − dt) + εt

where we obtain the return series from aggregating monthly returns and then construct the
excess return by comparing the annualized gross returns. pt − dt is the log price dividend
ratio, where the dividend is identified with the theoretical object in the model - rather than
using a trailing sum of dividends in the denominator. We estimate the regressions on data
from approximately 100, 000 periods of simulations. We drop observations where the long
horizon for returns includes a jump, when calculating the ‘conditional’ regressions.

Horizon in Years
1 2 4 6 8 10

Panel A: Model - Unconditional Moments

β1 −0.09 −0.17 −0.32 −0.46 −0.56 −0.64
R2 0.02 0.04 0.06 0.09 0.10 0.11

Panel B: Model - No disasters

β1 −0.13 −0.26 −0.48 −0.68 −0.83 −0.95
R2 0.09 0.16 0.28 0.38 0.43 0.47

Panel C: Wachter (2013) - No disasters

β1 −0.16 −0.30 −0.56 −0.77 −0.95 −1.10
R2 0.13 0.24 0.41 0.52 0.59 0.63
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Figures

Figure 1: Long run standard deviation - varying ρ maintaining var(∆ct)
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Figure 2: News to expected growth rate (annualized percent) following a 1 S.D. innovation
to wh,t - conditional on ht−1 percentiles.
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