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Abstract 

 The effects of weather on the economy, outside of agriculture, have been surprisingly 

understudied. This paper exploits vast granular local data on employment and weather – with over 10 

million county-industry-month observations – to estimate dynamic panel data (DPD) models of 

weather’s short-run effects. The estimates from this model provide an in-depth understanding of 

exactly how weather affects the economy at the local level. Temperature (by season), precipitation, 

snowfall, and the frequency of very hot and very cold days within a month are found to have 

significant effects on local employment growth. The effects vary substantially across industries and 

regions. An additional examination of the medium-run dynamic effects reveal that weather shocks 

can have long-lasting effects, at least two years ahead. The fitted county DPD model then is used to 

generate estimates of the total weather effect on national employment growth. I evaluate the in-sample 

and out-of-sample explanatory power of these estimates, compared with estimates from a national 

time-series model. While the estimated weather effects from the national time-series model yield a 

better in-sample fit, the estimated effects from the nationally-aggregated county DPD model provide 

a better out-of-sample fit. 
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I. Introduction 

 It is readily apparent that weather can have large short-run effects on economic activity, and 

in some industries more than others. Indeed, unusual weather across the nation is often cited as a 

factor in explaining unexpected fluctuations in macroeconomic data. Yet, the existing literature 

provides a surprisingly sparse understanding of weather’s short-run impact on the economy. With a 

few exceptions, prior research has tended to focus on either the long-run economic effects of climate 

change1 or the short-run effects of weather on the agricultural sector.2 

 By contrast, this paper exploits the availability of vast granular local data on employment and 

weather both to provide a more in-depth understanding of weather’s local economic effects and to 

use this understanding to assess how much national economic fluctuations can be explained by 

abnormal weather across the country. Specifically, I combine monthly administrative-record data 

(from the BLS Census of Employment and Wages (CEW)) from January 1990 to December 2015 on 

employment growth by county (3,140 counties) and industry (10 NAICS private-sector broad 

industries) with daily weather-station data (from NOAA). County weather measures are constructed 

using spatial interpolation based on inverse-distance from points within the county to nearby weather 

stations. The resulting county-month-industry panel data set on employment and weather consists of 

roughly 10 million observations.  

 I use these data to estimate dynamic panel data (DPD) models of weather’s local employment 

effects, which also can be aggregated to measure national weather effects. This builds on recent work 

by Bloesch and Gourio (2015), who estimate a state level DPD model of employment growth (and 

                                                 
1 For example, Dell, Jones, and Olken (2012) estimate the effects of climate change on national incomes and economic 
growth. Similarly, Deryugina and Hsiang (2014) investigate the effect of temperature on annual income, but at the U.S. 
county level. See Severin, Costello, and Deschenes (2016) for an assessment of the effects of climate change on 
agricultural land values. See Dell, Jones, and Olken (2014) for a survey of the literature on the economic effects of 
climate change. 
2 See, for example, Deschenes and Greenstone (2007). There is also a large literature on the impacts of weather or 
climate on non-economic outcomes such as crime (e.g., Ranson 2013) and mortality (e.g., Deschenes and Moretti 
(2009) or Deschenes and Greenstone (2011)). See also Graff Zivin and Neidell (2014), which studies the effects of 
temperature on time use using county panel data. 
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other economic outcomes) in winter months as a function of temperature and snowfall, and Boldin 

and Wright, who estimate a national dynamic time series model of employment growth as a function 

of temperature, snowfall, and precipitation.3 It also builds on the work by Deschenes and Greenstone 

(2011) and Severin, Costello, and Deschenes (2016), which use county-level data to study the effects 

of weather on agricultural production and farm land values at an annual frequency (in addition to 

considering the effects of projected climate change on these outcomes).  

 The combination of high-frequency and finely geographically-disaggregated data used in this 

paper offers considerable advantages. First, one can estimate weather effects far more precisely than 

has been done previously. Second, one can estimate quite rich specifications. In particular, one can 

allow for numerous weather variables; for lagged effects (to assess mean reversion and the 

permanence of weather effects); for heterogeneity in weather effects across key dimensions such as 

region, season, and industry; and for nonlinear effects.  

 The vastness of the data set also allows one to control for high-dimensional fixed effects. The 

models estimated in the paper are estimated separately by industry and include fixed effects for 

county*calendar-month*decade (to control for county-by-industry-by-decade seasonal patterns in 

employment growth) and time (sample-month) fixed effects (to control for industry-specific national 

common factors such as business cycles, oil price shocks, etc.). 

 The estimates from these models reveal a number of interesting, and in some cases surprising, 

findings. First, I find that local monthly employment growth in the U.S. is increasing in the average 

temperature for the month. This contemporaneous boost from temperature occurs in all seasons, but 

it is especially strong in the spring. The initial employment boost from temperature, however, is 

largely transitory: negative effects of lagged temperature lead to zero, or even slightly negative, 

cumulative effects over a four month period. Interestingly, this pattern for local employment growth 

                                                 
3 See also Colacito, Hoffmann, and Phan (2014), which estimates an annual state panel model of the contemporaneous 
relationship between GDP growth and temperature by season. Similarly, Lazo, et al. (2011) uses an annual state panel 
model to estimate the contemporaneous effects of temperature and precipitation on GDP growth. 
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within the U.S. concords with cross-country evidence from Dell, el al. (2014) that finds a near-zero 

effect of temperature on economic growth at an annual frequency for richer countries, though they 

find a negative and significant effect among poorer countries.4 

 Second, precipitation and snowfall have clear negative contemporaneous effects. But 

precipitation’s effect is offset by higher growth in the subsequent three months, while snowfall’s four-

month cumulative effect remains negative. Third, I find that the frequency of very hot days 

(temperatures over 90°F or 32.2°C) in a month, holding average temperature fixed, has a negative 

contemporaneous and cumulative effect on employment growth.  

 I find that the effects of weather differ considerably across industries and regions. The most 

weather-sensitive industries generally are Construction; Natural Resources and Mining; Leisure and 

Hospitality; and to a less extent Trade, Transportation and Utilities. The results across regions often 

are consistent the notion that regions accustomed to certain inclement weather conditions are less 

sensitive to deviations in those weather variables. For instance, negative effect per centimeter of 

snowfall is largest in the South Atlantic and East South Central – two of the three regions with the 

lowest average snowfall. 

 I then perform several additional exercises to more fully explore the economic effects of 

weather.  First, I estimate the effects of major storms, as measured by storm property damages. Storm 

damages negatively affect employment growth, both in the initial month and cumulatively over at 

least four months. This is consistent with other research on the economic effects of natural disasters, 

which has found negative effects at an annual frequency (e.g., Strobl 2011 and Noy 2009). 

Interestingly, however, I find storm damages have the opposite effect on Construction employment 

growth, presumably because damages induce demand for reconstruction and repair work.  

                                                 
4 See also Burke, Hsiang, and Miguel (2015) which finds that countries’ per capita income falls with temperature at an 
annual frequency. 
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 Second, I investigate the stability of weather’s effects over time. In general, weather’s effects 

have been stable over time, except that the effects of temperature on spring employment growth and 

the effects of snowfall have increased over time.  

Third, the extent to which weather in other counties has spillover effects on employment 

growth in a given focal county is investigated using spatial lag models. In general, I find that weather 

in nearby counties has effects on the focal county’s employment growth of the same sign but smaller 

magnitude as the effects of own-county weather. However, weather in far-away counties tends to 

have opposite effects from those of own-county weather, suggesting perhaps that local economies 

compete to some extent with distant local economies, with unfavorable weather putting local 

economies at least temporarily at a disadvantage. 

Fourth, I take a more in-depth look at weather’s impacts on the construction sector, given the 

earlier finding that construction employment is especially sensitive to weather.  I look at the 

heterogeneous effects of weather on construction employment across regions.  The effects turn out to 

vary substantially across regions.  I also compare these effects to the estimated effects of weather on 

local building permits, data for which is also available at the county-by-month level. In general, the 

effects of weather on building permits are very similar to the effects on construction employment 

growth. 

Next, I consider whether current weather shocks have longer-run employment effects beyond 

the short-run effects estimated in the baseline DPD model. Specifically, I use the Jorda (2005) local 

projections approach to estimate the response of employment to weather shocks over the medium-

run, up to two years ahead. The estimated impulse response functions are consistent with the short-

run (0 to 3 months) effects found in the baseline DPD model but additionally reveal interesting 

medium-run dynamics.  For instance, shocks to precipitation and winter temperature appear to cause 

intertemporal shifting, with lower (higher) economic activity in the short-run offset by higher (lower) 

activity roughly six to twelve months later.  I also find that spring and fall temperatures have positive 
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effects on employment at least two years ahead, while a shock to the number of very hot days in a 

month has negative effects on employment at least two years ahead.  Snowfall is also found to have 

a long-lasting negative effect. 

 In the final part of the paper, motivated by recent work at the national and state levels by 

Boldin and Wright (2015) and Bloesch and Gourio (2015), I use the estimated county DPD model to 

(1) calculate the total weather effect on employment growth by county, month, and industry and (2) 

aggregate these effects to the national level.5 I then evaluate the in-sample and out-of-sample 

explanatory power of these national weather effects for explaining national employment growth – 

both from the BLS payroll survey (Current Employment Statistics, CES) series and the BLS QCEW 

series – as well as several other national labor market outcomes. I find that these monthly national 

weather effects estimates have better out-of-sample explanatory power for national CES employment 

growth than do estimates from a national time series model estimated on the CES data. In addition, I 

find that the county DPD model’s predicted national weather effects are useful in predicting other 

national labor market outcomes such as the vacancy rate, hires rate, and quits rate. 

 Lastly, given that weather data is available from NOAA in nearly real-time (with about a one-

day lag), in the conclusion I discuss how these national weather effects can be used to provide real-

time estimates of the national weather effect on employment growth. 

 

                                                 
5 Boldin and Wright (2015) estimate a mixed-frequency time series model of weather’s effects on national employment 
growth, simultaneously estimating seasonal factors. They use the monthly BLS Current Employment Statistics data 
along with daily national measures of temperature, precipitation, heating degree days (HDD) and the Regional Snowfall 
Index (RSI). (See description of RSI in Section II below.) National measures of temperature, precipitation, and HDD are 
obtained by averaging the readings from weather stations in the 50 largest MSAs and then calculating the deviation of 
that weather variable from its calendar-day average over the prior 30 years. Bloesch and Gourio (2015) constructs 
similar measures of weather deviations, but at the state-level, and estimates a state dynamic panel data model for 
employment growth and other economic outcomes, focusing just on winter months. Both papers use their estimated 
models to weather-adjust national employment data using a similar methodology to that described in Section VII. 
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II. Data 

A. Employment and Other Outcomes 

 Data on employment by county, industry, and month are available from the Quarterly Census 

of Employment and Wages (QCEW).6 As of the time of this writing, the QCEW data for NAICS 

industries are available from January 1990 through December 2015. Data for SIC industries is 

available from January 1975 through December 2000. The QCEW is compiled by the Bureau of Labor 

Statistics based on state Unemployment Insurance administrative records. Nearly all private 

employers in the U.S. are required to report monthly employment counts and quarterly total wages of 

their employees to their state’s Unemployment Insurance agency. Employment covers “all full- and 

part-time workers who worked during or received pay (subject to Unemployment Insurance wages) 

for the pay period which includes the 12th day of the month.”7 Note that this is the same definition 

of employment used in the payroll survey underlying the widely-followed national monthly 

employment report (i.e., the BLS Current Employment Statistics (CES) report).8 

 

B. Weather 

 Measures of monthly weather at the county level were constructed from the Global Historical 

Climatology Network Daily (GHCN-Daily) data set following the methodology in Ranson (2014). 

The GHCN-Daily is provided by the U.S. National Climatic Data Center (part of the National Oceanic 

and Atmospheric Administration (NOAA)) and contains daily weather measurements from weather 

stations throughout the United States and around the world.9 The number of weather stations varies 

over time, averaging around 1,200. Appendix Figure 1 shows the location of the weather stations 

                                                 
6 http://www.bls.gov/cew/datatoc.htm.  
7 http://www.bls.gov/cew/cewproper.htm.  
8 http://www.bls.gov/web/empsit/cesfaq.htm#qc2. 
9 http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/. 

http://www.bls.gov/cew/datatoc.htm
http://www.bls.gov/cew/cewproper.htm
http://www.bls.gov/web/empsit/cesfaq.htm#qc2
http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/
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operating as of January 1, 2006. The spatial distribution of weather stations is highly correlated with 

the spatial distribution of population.  

 Following Ranson (2014), these records from individual weather stations are used to estimate 

county-level weather using an inverse-distance weighting procedure. First, the surface of the 

conterminous United States is divided into a 5-mile by 5-mile grid. Second, weather values for each 

grid point are estimated using inverse-distance-weighted averages of the weather values from weather 

stations within 50 miles of the grid point. As an illustration, Appendix Figure 2 shows the 50-mile 

radius around the center of Atlanta, Georgia. The green dots show the location of weather stations. 

While there are no weather stations in the county (Fulton) containing Atlanta, there are nine stations 

within 50 miles. For each weather variable, this procedure measures weather for the center of Atlanta 

using a weighted average of the weather values from these nine stations, weighting stations by the 

inverse of their distance from the center.  

 Grid point weather values are then aggregated to the county level. Finally, these county level 

daily weather measures are used to construct the following monthly weather variables: mean daily 

high temperature, number of days in the month in which the maximum temperature was above 90˚ 

Fahrenheit (F), number of days in which the minimum temperature was below 30˚ F, mean daily 

precipitation, and mean daily snowfall. 

 I augment these weather-station based data with data from NOAA “Storm Events Database.” 

This database contains information on severe weather-related events by month and county. I extracted 

data from January 1980 to March 2016. The data cover only Tornado, Thunderstorm Wind, and Hail 

events up to December 1995. From January 1996 on, the data cover 48 different event types. For each 

event, NOAA provides an estimate of monetary damages (crop and property damages) as well as the 

number of injuries and fatalities caused by the event in each affected county. NOAA also indicates 

the type of event – flood, heat/fire, tornado, snowstorm, thunderstorm, etc. – but I focus simply on 

total storm damages because, as mentioned above, only a subset of event types are identified prior to 
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1996 and also because a given dollar amount of monetary damages is likely to affect employment 

growth similarly regardless of storm type.10 Total storm damages by county and month are 

constructed by aggregating damages within the county over all events occurring during that month. 

 These measures of weather over calendar month are the primary weather variables used in this 

paper. However, I also construct measures of weather over the first 12 days of the month and over the 

30 days ending with the 12th of the month because similar measures have been used in prior work, 

notably Boldin and Wright (2015). The logic of using pre-12th weather stems from the fact that BLS 

employment data (both CES payroll survey and QCEW counts) are meant to measure the number of 

individuals on employer payrolls as of the pay period containing the 12th of the month. Consequently, 

weather during pay periods that start after the 12th of the month should be irrelevant to measured 

employment in that month. In particular, for employees paid on a semimonthly frequency, which 

means their pay periods are the first half of the month and the second half of the month, only weather 

in the first half of the month should matter.  

 However, according to the BLS (Burgess 2014), only 20% of private businesses have 

semimonthly pay periods and this percentage goes down sharply with size class, so that far less than 

20% of employment is covered by semimonthly pay periods. The most common (35% of businesses 

and a much higher share of employment) frequency of pay is biweekly, where the two-week period 

containing the 12th can range from the 14 days ending with the 12th to the 14 days starting with the 

12th to any 14-day interval in between. Thus, it is not clear that weather during just the first 12 days 

of the month is more relevant, and it could well be less relevant, for measured monthly employment 

growth than weather for the full calendar month. Nonetheless, I also have estimated the baseline 

models described below using weather measured either over the first 12 days of the month or over 

                                                 
10 The NOAA database covers a smaller set of event types between 1990 and 1995 than it does from 1996 onward. The 
data are available at http://www.ncdc.noaa.gov/stormevents/ftp.jsp. 

http://www.ncdc.noaa.gov/stormevents/ftp.jsp
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the 30 days prior to the 12th of the month in order to assess the sensitivity of the baseline results to 

this timing. The results are similar using these alternative measures. 

 

III. Estimating Local Weather Effects -- Methodology 

A. Specification 

 I estimate weather’s economic effects using the following dynamic panel data (DPD) model 

(and variants of it): 

 (1) 

where  is the change in log non-seasonally-adjusted nonfarm employment in county c, industry 

s, and month t.  is an industry-specific time (month of sample) fixed effect, which absorbs all 

industry-specific national common factors such as business cycles, oil price shocks, foreign economic 

shocks, monetary policy changes, and federal fiscal or regulatory policy changes.   is a 

county- and industry-specific calendar-month*decade fixed effect. The inclusion of this fixed effect 

has the effect of seasonally adjusting employment growth, where seasonal patterns are specific to 

each county-industry pair and are allowed to vary by decade. This type of seasonal adjustment via 

calendar-month fixed effects (for each county-industry-decade) is done partly because the BLS does 

not provide seasonally-adjusted QCEW data at the county level. However, even if they did, there is a 

statistical advantage to estimating this seasonality jointly with the weather effects: As demonstrated 

in Boldin and Wright (2015), seasonal adjustment factors may be biased if they are estimated in a 

model that does not account for weather because of the correlation between seasonality and weather. 

 The  are the key parameters to be estimated. They capture the effect of each weather 

variable, by industry, by season, and by region, on employment growth in the current month and up 

to three months ahead.  is an indicator equal to 1 if county  is in region ;  is an 
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indicator variable equal to 1 if month  is in season ;  is a set of 10 indicator variables for 

industries; and  is one of K weather variables for the month . Seasons are defined as follows: 

Winter = December, January, and February; Spring = March, April, and May; Summer = June, July, 

and August; and Fall = September, October, and December. The regions are the nine Census Bureau 

regions, which are shown in Appendix Figure 3. I consider six (monthly) weather variables: average 

daily precipitation (millimeters), average snowfall (centimeters), average daily high temperature 

(degrees Farhenheit), the number of days in which the low temperature is below 30°F (-1.1°C), the 

number of days in which the high temperature is above 90°F (32.2°C), and storm property damages 

(dollars per capita).  

 Weather is likely to have quite heterogeneous effects across industries. For instance, below-

freezing days are likely to have adverse effects on the construction industry, but positive effects on 

utilities. Thus, I allow for full heterogeneity across industries by estimating the model separately for 

each major industry and for private all-industry.11 The industries are defined by the QCEW 

supersector classifications, which are aggregates of NAICS two-digit industries.12  

 The model is estimated using weighted OLS, where the weights are log county employment. 

The weighting is done to mitigate the influence of sparsely populated counties. Measurement error in 

the weather data is likely to be inversely proportional to population given that less populous counties 

generally have fewer or no weather stations and thus the weather data for these counties relies more 

heavily on spatial interpolation. In addition, to mitigate the influence of measurement error and 

outliers in the dependent variable, I winsorize employment growth at the 1st and 99th percentiles (i.e., 

values below the 1st and above the 99th percentiles are replaced with the 1st and 99th percentile values, 

respectively). Lastly, employment is not reported for some industry*county*month cells due to BLS 

                                                 
11 Pooling data across industries would allow for seemingly unrelated regression, which would increase efficiency. 
However, the pooled estimation is computational intensive; hence, thus far, I have estimated the model separately for 
each industry. 
12 See http://www.bls.gov/cew/supersector.htm for QCEW supersector classifications. 

http://www.bls.gov/cew/supersector.htm


12 

disclosure restrictions; this generally occurs only for narrow industries in sparsely populated counties. 

For each industry, I restrict the sample of counties to those with a complete time series on 

employment. 

 

B. Constraints 

 Without constraints imposed, the above model yields 7,200  parameter estimates.13 To 

reduce this number while retaining the economically important sources of heterogeneity in weather 

effects, I consider imposing some reasonable constraints. First, as noted above, I allow for full 

heterogeneity across industries by estimating the DPD model separately by industry. However, for 

the purposes of illustrating other sources of heterogeneity, I also estimate the model on total (all-

industry) private-sector employment growth, which in effect imposes a constraint of no industry 

heterogeneity.  

  Second, note that there is already in equation (1) a constraint imposed by the number of lags 

included in the model. The model assumes that lags beyond 3 months have no effect, which is 

supported by a Wald test involving comparing the baseline model to a model with 4 lags. However, 

there are no constraints imposed on the lag structure within that lag length. This allows for the 

possibility of permanent (or at least persistent) weather effects and transitory (mean-reverting) 

weather effects. 

 Third, I consider constraints on season heterogeneity. Temperature seems likely to have 

different effects in the summer – when, for example, hotter temperatures may have adverse effects on 

retail and leisure activity – than in the winter – when warmer days may well boost retail and leisure. 

Yet, a reasonable (and testable) constraint on the model might be to assume the other weather 

variables – snow, number of days below 30°F, number of days above 90°F, and precipitation – have 

                                                 
13 5 weather variables X 9 regions X 4 seasons X 10 industries X 4 lags. 
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approximately the same marginal effects on employment growth throughout the year.14 Hence, I 

impose this joint constraint and test the constraint via a Wald test. 

 A priori, regional heterogeneity in weather effects seems important and it is largely absent 

from previous studies.15 Weather is inherently a local phenomenon and its primary economic impacts 

are felt locally; national average effects may be of limited value. On the other hand, allowing for full 

regional heterogeneity complicates the ability to succinctly characterize the effects of weather and 

could also lead to overfitting. Hence, I estimate two versions of the DPD model: one version with full 

regional heterogeneity, as in equation (1), and one version without regional heterogeneity – that is, 

with each  assumed to be equal across regions ( ). The much more parsimonious no-

regional-heterogeneity model is especially useful for characterizing the patterns of industry 

heterogeneity and for testing alternative specifications such as those considered in Section V. 

 

IV. Estimating Local Weather Effects – Baseline Results 

A. Model Without Regional Heterogeneity 

 Even with the constraints on season heterogeneity, the model in equation (1) still yields several 

thousand estimates of weather effects. In this subsection, I present the key parameter estimates and 

their statistical significance in a variety of tables and figures. Statistical significance is based on 

                                                 
14 Note that this constraint on marginal effects ( ) does not preclude these weather variables from having different 
predicted total effects ( ) across seasons. For instance, though the effects of one centimeter of snowfall is 
assumed to be the same in all seasons, snowfall will typically be zero in summer months for most counties and hence 
will typically have no predicted effect on employment growth in those county-months while its predicted effect in 
winter months will typically be non-zero due to positive snowfall.  
15 Neither Boldin and Wright (2015) nor Bloesch and Gourio (2014) explicitly allow for regional heterogeneity in 
weather effects, however they do measure aggregate weather based on deviations-from-normal-weather at the city 
(Boldin and Wright) or state (Bloesch and Gourio) levels. Thus, the underlying assumption is not that all places respond 
the same to an inch of snow or an extra degree of temperature, but that all places respond the same to an inch of snow 
above their average or an extra degree of temperature above their average. It should also be noted that Boldin and 
Wright, in some specifications, include the Regional Snowfall Index (RSI) provided by the National Centers for 
Environmental Information (NCEI)(see Squires et al. 2014), which incorporates some regional heterogeneity in 
snowfall effects. The RSI rates snowstorms based on their “societal impact,” where the latter is based on the severity of 
the storm, its spatial extent, and its nexus with population centers. However, the index only covers storms in the eastern 
two-thirds of the United States and only covers the subset of storms NCEI considers “major” (roughly 5 per year). 
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standard errors that are robust to heteroskedasticity and allow for two-way clustering of the residuals. 

The first cluster group is county. Clustering by county allows for any form of within-county serial 

correlation. The second cluster group is state*sample-month, which allows for cross-sectional spatial 

correlation across counties within a state.16 

 Each weather regressor is normalized by its full-sample standard deviation so that the 

coefficient magnitudes can be compared across the different weather measures. Each coefficient 

represents the effect on local employment growth of a one standard deviation change in that weather 

measure. These standard deviations are shown in Table 1, which also shows the means, minimum 

values, and maximum values for all variables used in the analysis. The top panel shows these 

summary statistics for the full sample, while the lower four panels show them by season (Winter, 

Spring, Summer, and Fall). 

 The regression results are presented in a manner so as to illustrate the key sources of 

heterogeneity in weather effects: across weather variables, across time lags, across regions, across 

seasons, and across industries. To most succinctly characterize the effects across the first four of these 

five dimensions, I start by presenting estimates from the model where the dependent variable is 

private-sector all-industry employment growth – that is, a model without industry heterogeneity. 

Furthermore, to illustrate the average dynamic patterns of weather effects, I start with the version of 

the model without regional heterogeneity (i.e., constraining coefficients to be the same across 

regions).  

 The coefficients and standard errors from estimating equation (1) for private all-industry 

employment growth without regional heterogeneity are shown in Table 2. Recall that the standard 

errors are robust to heteroskedasticity and two-way clustering by county and by state*sample-month. 

The regression uses a balanced panel of 960,372 observations from 3,108 counties. The panel covers 

                                                 
16 Recall that the regressions are estimated separately by industry, so in effect the cluster groups are really 
county*industry and state*sample-month*industry. 
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309 months from January 1990 to December 2015.17 The first column of the table shows the estimated 

coefficients (and their standard errors) on the contemporaneous values of the weather variables. The 

second, third, and fourth columns show the coefficients and standard errors for the one-, two-, and 

three-month lagged values, respectively. The implied four-month cumulative effect is provided in the 

final column. These results are also presented graphically in Figure 1, where each bar represents a 

coefficient estimate. The eight weather variables (with temperature separated by season) are indicated 

on the horizontal axis. The number of months by which the variable is lagged is indicated on the depth 

axis. 

 I find that higher temperatures have a positive and statistically significant contemporaneous 

effect on employment growth in all four seasons. The effects are economically significant as well. 

For instance, in spring months, a one standard deviation increase in temperature is associated with 

0.14 percentage point higher employment growth in the same month. Note that average monthly 

employment growth in the sample is 0.08 percentage point (see Table 1), so this spring temperature 

effect represents a more than doubling relative to baseline employment growth.18 Temperature has 

much larger contemporaneous effects on employment growth in the spring than in other months, with 

an effect twice as large as the effects in the summer or winter and nearly five times the effect in the 

fall. Precipitation and snowfall have modest negative contemporaneous effects; both are significant 

at below the 1% level. The number of days in the month in which the high temperature exceeded 90°F 

and the number of days in which the low temperature fell below 30°F, holding constant the average 

daily high temperature over the month, each have negative point estimates, though the effect of days 

below 30°F is not statistically significant. 

                                                 
17 The results are similar using a longer sample from January 1980 to December 2015. I present results here using the 
1990+ sample so that (1) the all-industry results can be compared to the industry-specific results and (2) the results 
without damages included in the model can be compared to those with damages included.  Employment data by NAICS 
industries and comprehensive data on damages are not available before 1990. 
18 Note that 0.14p.p. of monthly employment growth is equivalent to 1.69p.p. at an annual rate.  
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 The lagged effects tend to be of opposite sign to the contemporaneous effect and largest for 

the first two lags.19 Over the course of four months, the implied cumulative effects of weather are 

generally close to zero and statistically insignificant. However, there are three noteworthy exceptions. 

First, there is a negative cumulative effect of temperature on employment growth in the summer. Note 

that this is the effect of current and prior months of weather on employment growth in a summer 

month. Hence, depending on the calendar month in question, the prior months could be either earlier 

in the summer or in the spring. The pattern of lagged effects here could thus reflect that unusual 

warmth in the spring or early summer pulls forward economic activity that normally would take place 

in the summer (or later in the summer). Moreover, having unusually high temperatures over a four-

month period has a permanent, or at least persistent, negative effect on summer employment growth. 

Second, I find there is little if any rebound in employment growth following snowfall’s significant 

contemporaneous effect, so that snowfall has a negative cumulative effect. Third, I find that the 

number of days above 90°F has a negative effect on employment growth in the current month and up 

to 3 months later, leading to a sizable negative cumulative effect. Though it is difficult to know the 

mechanisms underlying such effects, one possible explanation for this last effect is that very hot days 

increase business operating costs (e.g., air conditioning) which, if persistent over several months, can 

significantly dampen employment growth. 

 To illustrate the industry heterogeneity in weather effects, I estimate this same model (again 

constraining coefficients to be constant across regions) separately for each industry (QCEW 

supersector). The full set of results for each industry are shown in Appendix Tables 1-10. To 

summarize these results, I plot the contemporaneous weather coefficients across industries in the 

heatmap shown in Figure 2. The implied four-month cumulative effects are shown in Figure 3. In 

each heatmap, positive coefficients are depicted by blue circles while negative coefficients are 

                                                 
19 This result is consistent with Bloesch and Gourio (2015), who estimate a state-level DPD model for winter 
employment growth and similarly find that, first, temperature has a positive contemporaneous effect but negative lagged 
effects and, second, that snowfall has a negative contemporaneous effect but positive lagged effects. 
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depicted by red circles, with darker shading for larger absolute values. The statistical significance of 

the coefficients is indicated by stars, with one, two, and three stars indicating significance at the 10%, 

5%, and 1% levels, respectively. 

 Figure 2 shows that the most weather-sensitive industries generally are Construction; Natural 

Resources and Mining; Leisure and Hospitality; and to a less extent Trade, Transportation and 

Utilities. In terms of temperature, the positive contemporaneous effect of temperature (mean daily 

high) found above for all-industry employment growth is especially strong for employment growth 

in these industries as well as in Professional and Business Services and in Other Services. However, 

the strength of the temperature effect in each industry varies by season. For most industries, Spring 

temperature appears to be particularly important, consistent with the all-industry results. For 

Construction, while temperature is found to have significant effects on employment growth 

throughout the year, the coefficients on contemporaneous temperature are much larger for the Winter 

and Spring. I return to the Construction sector in more depth in Section V.  

 Precipitation and snowfall have negative and significant contemporaneous effects in many 

industries, but have positive effects in Trade, Transportation, and Utilities and in Manufacturing. The 

number of very hot days and the number of very cold days do have significant effects in most 

industries, but both have highly statistically significant negative effects on employment growth in the 

Leisure and Hospitality industry. This effect is of course quite sensible given that much of the Leisure 

and Hospitality industry involves vacationing and outdoor recreational activities, the demand for 

which is greatly reduced by extreme temperatures. It is also consistent with the results of Graff Zivin 

and Neidell (2014). They use county panel data on temperatures and time use and find, inter alia, that 

temperature increases at the lower end of the temperature range lead to more outdoor recreation. 

 Figure 3 shows an analogous heatmap for the four-month cumulative effects of each weather 

variable on each industry’s employment growth. The cumulative effect of each weather variable is 

calculated by summing the coefficients on the contemporaneous and lagged values of that variable. 
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Relative to the contemporaneous effects, the cumulative effects tend to be smaller in magnitude and 

less statistically significant, suggesting that in general lagged weather effects – “bouncebacks” or 

“paybacks” – tend to offset contemporaneous weather effects. There are some notable exceptions. As 

we found for all-industry employment growth, temperature has a large negative cumulative effect on 

summer employment growth in Natural Resources and Mining and in Construction, though it has a 

modest positive cumulative effect in the Information industry. I also find that the negative cumulative 

effect of the frequency of very hot days appears to be quite broad-based across industries. Again, this 

is consistent with the possibility that very hot days add to business operating costs in all industries. 

Similarly, snowfall tends to have a negative cumulative effect, but it is only (weakly) statistically 

significant in Construction and Natural Resources and Mining. The number of very cold days also 

has a significant negative cumulative effect in these two industries. Lastly, precipitation is found to 

have a positive cumulative effect in Construction but a negative cumulative effect in Manufacturing. 

 

B. Model With Regional Heterogeneity 

 To illustrate the heterogeneity of weather effects across regions, I return to the estimates of 

the model allowing for regional heterogeneity (equation (1)) and produce similar heatmaps depicting 

the effects of each weather variable on all-industry employment growth in each of the nine Census 

Bureau regions. Figure 4 shows the heatmap for the contemporaneous effects, while Figure 5 shows 

the heatmap for the four-month cumulative effects. 

 Starting with Figure 4, the positive and significant contemporaneous temperature effects in 

the spring and winter found earlier are found to be broad-based across regions, though they tend to 

be largest in the Pacific region. Interestingly, the contemporaneous effect of the number of very hot 

days, which is negative, also is found to be largest in the Pacific region. The contemporaneous effect 

of precipitation is fairly broad-based, though the effect is largest in New England and the East North 
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Central. Lastly, snowfall’s negative effect appears to be most pronounced in the South Atlantic and 

East South Central – two of the three regions with the lowest average snowfall.. 

 Consistent with the earlier findings, the cumulative effects of weather are generally close to 

zero in all regions, as seen in Figure 5. Notable exceptions are that higher temperatures in New 

England have persistent negative effects on employment growth in both the summer and the winter, 

and higher temperatures in the Pacific region have persistent positive effects on spring employment 

growth. Precipitation also has a cumulative negative effect in New England. The number of very cold 

days have negative cumulative effects in a few regions, especially in New England and the Mountain 

region. Lastly, I find that the number of very hot days has negative cumulative effects in several 

regions and especially in the Pacific region (consistent with the negative contemporaneous effect in 

that region). 

 

V. Estimating Local Weather Effects – Extensions 

 In this section, I explore a number of additional dimensions of weather that could potentially 

affect local employment growth and economic activity. First, I assess the nonlinearity of weather’s 

effects. Second, the effects of extreme weather events are investigated using data on storm damages. 

Third, I test whether the effects of weather have changed over time. Fourth, I consider whether the 

effects of weather are different in recessions than in expansions. Fifth, I take a closer look at the 

construction sector given the above findings that construction employment appears to be particularly 

sensitive to weather. Specifically, using monthly county-level data on building permits, I estimate the 

effects of weather on new construction activity and compare the results to those for construction 

employment. Lastly, using spatial lag models, I explore whether there are spatial spillovers from 

weather in one county on employment growth in other counties. 

 

A. Nonlinearities 
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 For the sake of (some) parsimony, the baseline specification allowed for only linear weather 

effects, though it does allow for the frequency of very cold and very hot days to affect employment 

separately from the linear effects of temperature. Here I assess the possible nonlinearity of weather 

effects by adding quadratic terms (for both contemporaneous and lagged variables) to the 

specification underlying Table 2. For this exercise, I drop the number of very hot days and the number 

of very cold days to ease interpretation of the estimated quadratic temperature effects. 

 The implied contemporaneous quadratic effect of each weather variable on employment 

growth is shown in Figure 6. Panel A shows the quadratic effect of monthly temperature (average 

daily high), by season, on monthly employment growth relative to average monthly employment 

growth in that season: , where  is temperature in season  and  is average monthly 

employment growth in season . For each season, the implied quadratic temperature effects are shown 

over the range of temperature values observed in the sample for that season, with the exception of the 

summer for which values above 110°F are not shown. (The distribution of summer temperature values 

has a long but very thin far right tail; 110 is the 99.99th percentile.) Panel B shows the implied 

estimated quadratic effect of (i) average daily precipitation and (ii) average daily snowfall on monthly 

employment growth relative to average monthly employment growth in the full sample: 

, where  is either precipitation or snowfall and  is average monthly employment 

growth in the sample. Implied effects are shown for values from the sample minimum, which is 0.0 

for both weather variables, to their sample 99.9th percentile, which is 13.34mm for average daily 

precipitation and 5.27cm for average daily snowfall. 

 Overall, there is very little evidence of statistically and economically significant nonlinear 

effects. Specifically, only spring temperature and snowfall have statistically significant (at at least the 

10% level) squared terms. And, as shown in Figure 6, in neither case is the nonlinearity economically 

meaningful.  
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B. Extreme Weather Events 

 I investigate the effects of extreme weather events using county-by-month data from NOAA 

on storm damages per capita. As mentioned in Section II, the data measure crop and property 

monetary damages for a wide variety of storm types. I aggregate across storm types and divide by 

county population (by year) to obtain a measure of total storm damages per capita by county and 

month. I augment the county DPD model in equation (1) by including its contemporaneous value and 

three lags. I do this for both the model with and without regional heterogeneity. 

 Table 3 shows the results of estimating the model without regional heterogeneity for private 

all-industry employment growth. First, notice that the estimated effects on the other variables are 

virtually unaffected, as can be seen by comparing their coefficients and standard errors to those in 

Table 2. This is because, while the absolute level of damages is correlated with some of the weather 

variables (particularly precipitation), the per capita level of damages is not. Hence, there is essentially 

no omitted variable bias in Table 2 from having excluded damages per capita. Second, regarding the 

direct impact of storm damages, I find that storms negatively affect contemporaneous employment 

growth. Moreover, the detriment to employment growth appears to be persistent, even increasing over 

subsequent months, as shown by the fact that the cumulative effect is more negative than the 

contemporaneous effect.  

 The quantitative effect of storm damages can be large. First, note that the contemporaneous 

coefficient of -0.0028 implies that a one standard deviation increase in storm damages per capita – 

which equals $1,517 (see Table 1) – in a given county*month is associated with a 4.2 percentage 

point (p.p.) reduction in employment growth in that month, which is close to the 95th percentile of 

monthly employment growth in the sample. However, the distribution of storm damages per capita is 

highly skewed. 85% of county*month observations have zero damages. Among non-zero 

observations, the mean is $75 while the median is just $0.44. Thus, the effect of an “average storm” 

– meaning a storm whose damages per capita equals the mean of non-zero observations ($75) – is to 



22 

reduce contemporaneous employment growth by 0.21 p.p., which is large relative to baseline (mean) 

employment growth of 0.08 p.p.. The effect of a median storm, on the other hand, is very small, less 

than one basis point. 

 Appendix Figures 4 and 5 show the contemporaneous and cumulative effects of damages per 

capita, along with the other weather variables, by industry. Storm damages have a detrimental effect 

on both contemporaneous and cumulative employment growth in most industries, with statistically 

significant negative effects in Natural Resources and Mining, Education and Health Services, and 

Leisure and Hospitality. Interestingly, though, storm damages have a positive and highly significant 

effect on employment growth in the Construction industry. The obvious interpretation is that storm 

damages induce demand for building reconstruction and repair.  

 

C. Have Weather Effects Changed Over Time? 

 A natural question is whether the impacts of weather have changed over time, especially given 

some previous research suggesting that climate change over recent decades has resulted in some 

adaptation on the part of businesses, government, and society at large. For instance, Barreca, et al. 

(2013) find that, historically, higher temperatures have been associated with higher mortality risk in 

the U.S., but that this effect has been shrinking over time, again suggesting some societal adaptation 

to high temperatures. On the other hand, Deryugina and Hsiang (2014) find no evidence of any change 

over time in the effect of temperature on annual income at the county level. 

 One simple way to test whether the effects of weather have changed over recent decades is to 

split the sample in half – 1990m1 to 2002m12 versus 2003m1 to 2015m12 – and test whether the 

coefficients on weather in the second half of the sample are statistically significantly different from 

their corresponding coefficients from the first half. To implement this, I start with the baseline no-

regional-heterogeneity model for all-industry employment growth and add an interaction between 

each weather variable (and each of its lags) and a dummy variable equaling one if the observation is 
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in the second half of the sample (and 0 otherwise). If the coefficient on this interaction term is found 

to be close to zero, then there was no change over time in the impact of that weather variable. 

 The results of this regression are shown in Table 4. As expected, the baseline (non-interacted) 

weather effects, shown in Panel A, are similar to those in Table 2. The second half of the sample 

interaction effects are shown in Panel B. For most weather variables, there is little if any evidence of 

time-varying economic effects. However, there are a couple important exceptions. First, the 

contemporaneous boost to employment growth from higher temperatures in the spring has grown 

significantly over time. The “payback” in the subsequent month – that is, the negative effect on 

employment growth in the spring from higher temperatures one month prior found in Panel A – is 

also larger (in absolute value) in the second half of the sample. Second, snowfall’s detrimental 

contemporaneous effect on employment growth is much stronger in the first half of the sample, with 

a coefficient of -0.0424, than in the second half, with an implied effect of -0.0158 (-0.0424 + 0.0266) 

which is not statistically significantly different from zero. The “bounceback” in the subsequent month 

– that is, the positive effect of one-month lagged snowfall in Panel A – also is much stronger in the 

first half of the sample. Indeed, the implied one-month lagged snowfall effect in the second half of 

the sample is near zero (0.0310 – 0.0358 = -0.0048). 

 In sum, there is evidence that the all-industry employment growth has been less sensitive over 

time to snowfall but more sensitive to temperature in the spring. The increased sensitivity to 

temperature in the spring, and the lack of any change over time in the sensitivity to temperature in 

other seasons, could suggest that the economy has not, at least over the past quarter century, adapted 

technologically or otherwise to become less sensitive to temperature fluctuations (consistent with 

Deryugina and Hsiang’s (2014) finding regarding county annual income). However, it is also possible 

that structural changes in the economy, such as increased employment shares in temperature-sensitive 

sectors, could have offset such adaptations. 
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D. A Closer Look at Weather’s Effect on Construction Activity 

 A priori, one might expect the Construction sector to be particularly weather-sensitive, and 

the results in the previous section strongly confirmed that prior. Construction employment growth 

was found to be positively affected in the near-term by temperature, especially in the spring and 

winter, and negatively affected by the frequency of very cold days, by snowfall, and by precipitation. 

Indeed, by comparing the results for Construction in Appendix Table 2 with those for all-industry in 

Table 2, one can see that the magnitude of each weather variable’s contemporaneous effect is several 

times larger for Construction. A few weather variables also were found to have significant cumulative 

effects on employment. In addition, I showed above that, unlike other industries, Construction 

employment growth is positively affected by storm damages. Thus, in this subsection, I take a closer 

look at the impacts of weather on Construction activity. First, I explore weather’s effects on 

Construction employment growth by region. Second, I estimate the effects of weather on new building 

permits and compare the results to those for Construction employment growth.  

 The heatmaps in Appendix Figures 6 and 7 graph the contemporaneous and cumulative 

effects, respectively, of weather on Construction employment growth by region. Starting with the 

contemporaneous effects, we see a number of clear patterns. First, the strong contemporaneous boost 

from temperature in the spring and winter is apparent in all regions. However, the contemporaneous 

impacts of temperature in the summer and fall – which tend to be modest – vary by region. In these 

seasons, warmer temperatures – relative to local seasonal norms which are captured by the 

county*calendar-month*decade fixed effects – are detrimental to immediate construction 

employment growth in New England. In other regions, warmer temperatures in these two seasons 

have either no effect or a positive effect. Second, the negative effects of precipitation and snowfall 

on construction employment are broad-based across regions. Third, the impact of very hot days varies 

considerably across regions. For instance, it is negative and significant in the West North Central and 

the Pacific region – regions less accustomed to days above 90°F – while it is positive and significant 
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in the West South Central, where such days are not uncommon. Lastly, the contemporaneous positive 

effect of storm damages on construction employment growth is found to be broad-based, though it is 

only statistically significant in the New England, Mountain, and Pacific regions. 

 Appendix Figure 7 shows that, despite the positive effect in general of warmer temperatures 

on contemporaneous employment growth, warmer temperatures in many cases have negative 

cumulative effects. The converse is true for precipitation, which has negative contemporaneous 

effects in general, but positive cumulative effects except in New England. The number of very hot 

days has no significant cumulative effect, but the number of very cold days has a negative cumulative 

effect in New England and in the Mountain region. It is possible that these regions, which tend to 

have long, cold winters, generally have relatively narrow seasonal windows for doing construction 

work. So if very cold days stretch over two to four months, construction firms may miss this window 

for starting and completing projects, leading to persistently, if not permanently, lower employment. 

Lastly, we see that storm damages positively affect Construction employment growth, both 

contemporaneously and over four months, in a number of regions, particularly the New England, 

Mountain, and Pacific regions. 

 Next, I estimate the local effects of weather on new building permits. Specifically, using 

Census Bureau data on building permits by county-by-month for the same sample period as used for 

employment growth, namely January 1990 through December 2015, I estimate the same county DPD 

model with regional heterogeneity, as in equation (1), but replacing the monthly log change in 

employment with the monthly log change in permits. The results provide something of a cross-check 

on the validity of the construction employment results, as well as providing more of a focus on new 

construction.  

 The data measure permit issuances by local jurisdictions for new privately-owned residential 

buildings (both single- and multi-unit) and are derived from the Census Bureau’s Residential Permit 

Use Survey (SUP). Unfortunately, data on residential construction starts are not available at the 
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county level. However, according to the Census Bureau, the average time between permits and starts 

for single-unit buildings, which are nearly 90% of residential buildings in the permits data, is a little 

under one month.20 (The average interval for multi-unit buildings is about two months.)  

 The results are shown graphically in Appendix Figures 8 and 9. As expected, the results are 

generally similar to those for construction employment growth in Appendix Figures 6 and 7. 

However, there are a couple of interesting differences. First, unlike for employment, the 

contemporaneous impact of temperature on permits is much stronger in the winter than in the spring. 

This could be related to the distinction between new and ongoing construction activity. Warmer 

winter temperatures may facilitate both new and ongoing construction projects, while warmer 

temperatures in the spring could facilitate ongoing projects (which do not require new permits) more 

so than the initiation of new projects. Note that for both permits and construction employment, 

warmer temperatures tend to have negative cumulative effects on activity in the spring. This may 

reflect that warmer temperatures during the winter pull forward construction activity from the spring.  

 Second, while I found earlier that storm damages per capita have strong positive 

contemporaneous and cumulative effects on construction employment, they have negative effects on 

new building permits in the near-term and essentially no effect over four months. This is somewhat 

revealing. It may well reflect that reconstruction and repair work following major storms do require 

construction employment but do not require permits for new construction. An exception would be 

rare catastrophic storms requiring new buildings to replace demolished old buildings, but even in 

these cases it would likely take many months before permits for the new buildings are applied for. 

Indeed, such delayed demand for new permits after major storms could explain the positive 

cumulative effect of damages on permits in a couple regions found in Appendix Figure 9. 

 

                                                 
20 See https://www.census.gov/construction/nrc/pdf/avg_authtostart.pdf. 

https://www.census.gov/construction/nrc/pdf/avg_authtostart.pdf
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E. Spatial Spillovers 

 As a final extension, I explore whether there are spatial spillovers from weather in one county 

to employment growth in other counties. To do so, I extend the county DPD model without regional 

heterogeneity by adding spatial lag terms. That is, I construct a spatial lag for each weather variable 

and include its contemporaneous value and three lags in the same model as that underlying Table 2. 

The spatial lag of a variable in a given county and month is a weighted average of the values for that 

variable in other counties for the same month, where the weights reflect some concept of spatial 

linkage between each of those other counties and the given county. I construct two different spatial 

lag measures, one focusing on nearby counties and one focusing on far-away counties. The first uses 

inverse-distance as weights, where distance is measured between county population centroids and is 

provided by the Census Bureau. The second uses an equal-weighted average of counties 1,000 or 

more miles away from the focal county (again based on distance between centroids). 

 Table 5 shows the results from a model with the inverse-distance spatial lags added to the 

baseline model. Compared with the results in Table 2, the own-county effects are in general 

qualitatively similar but quantitatively somewhat smaller and less likely to be statistically significant. 

The spatial lag effects – that is the effects of weather in nearby counties – are often large, though 

estimated somewhat imprecisely, and generally are in the same direction as the own-county effects. 

For instance, the own-county effect of temperature in the spring is positive contemporaneously but 

generally negative in subsequent months. Precipitation in the own county has a negative 

contemporaneous own-county effect but a positive lagged effect. For both of these weather variables, 

the effects of weather in other nearby counties goes in the same direction. An exception to this pattern 

occurs with temperature’s effect on winter employment growth. Winter employment growth in the 

focal county is boosted by warmer contemporaneous temperatures in that county but negatively 

affected by warmer temperatures in other nearby counties. I also find that snowfall in nearby counties 

negatively affects employment growth. This could reflect that snowfall in counties from which 
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workers commute to the focal county could hamper hiring and temporary employment in the focal 

county. 

 Next, I estimate this model replacing the inverse-distance spatial lags with the 1000-plus 

distance spatial lags. The results are shown in Table 6. The own-county effects (Panel A) are now 

very similar to those in Table 2. The spatial lag effects are shown in Panel B. Interestingly, they are 

quite different than the spatial lag effects from nearby counties. In general, unfavorable weather in 

far-away counties tends to boost employment growth at home. For instance, far-away snowfall boosts 

near-term employment growth. Similarly, the frequency of very hot days in far-away counties boost 

employment growth in the focal county, though the effect is delayed a few months. (The same pattern 

is true for very cold days, but it is not estimated with sufficient precision to be statistically significant.) 

Also, colder temperatures in the summer in far-away places tends to boost own-county employment 

growth. One possible explanation for this could be that colder temperatures (holding fixed the number 

of very hot days) in far-away counties could make the focal county relatively more competitive as a 

location for summer vacation and recreation. An exception to this general pattern is the positive 

contemporaneous effect in the winter of temperature in far-away counties. 

 

VI.  Medium-Run Effects of Weather 

 The county DPD models estimated in the previous section focused on the short-run dynamics 

of weather’s employment effects, considering up to three months of lagged effects. To explore 

medium-run dynamics, such as the effects of a weather shock up to one or more years ahead, I turn 

to local projections approach (Jorda 2005) to estimate impulses response functions (IRFs).  Local 

projections is a more flexible and robust alternative for estimating IRFs compared with calculating 

IRFs from estimating a vector autoregression (VAR) model. The approach has been extended to panel 

data contexts in a number of recent papers (see, for example, Auerbach and Gorodnichenko (2013) 
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and Leduc and Wilson (2013)). It is also far less computationally intensive than a panel VAR in 

applications involving large N, as is the case here.   

Local projections involves estimating each point (horizon) of the impulse response function 

from a separate regression of the outcome at that point in the future, t + h, on a shock in the variable 

of interest observed in the current period, t. The shock is identified by conditioning on a sufficient 

number of lags of the outcome variable, the variable itself, and potentially other covariates. I 

implement this approach here by simultaneously estimating the impulse response function of log 

employment with respect to shocks in each of the weather variables considered in the previous 

section.  Specifically, I estimate the following specification for each horizon, h, from 0 to 24 months:   

 (2) 

where  is log private all-industry employment and the other variables are as defined in the 

previous section.  As in the DPD model, I condition on time fixed effects to absorb national aggregate 

factors and on county*decade*calendar-month fixed effects to adjust for county-specific seasonality. 

Observations are weighted by log employment, as in the previous section. Also as in the DPD model 

above, standard errors are clustered by county and state*year. To maximize the time dimension of the 

data for estimating this model, I use data from January 1980 to December 2015. (As noted previously, 

elsewhere in the paper I use data starting in January 1990 because data on employment by NAICS 

industries and comprehensive data on damages are unavailable before 1990.) 

The responses of future employment to current weather shocks are given by the estimated 

coefficients on current weather, . The specification includes six lags of log employment to ensure 

that current weather shocks are orthogonal to pre-trends in employment. It includes three lags of all 

weather variables to ensure that current weather shocks are orthogonal to recent/short-run trends in 

weather, given that some weather variables tend to be serially correlated. I also include 12- and 24-

month lagged values of weather to account for the possibility weather may be serially correlated 
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within the calendar month over a slightly longer frequency.  For instance, an abnormally hot July 

(abnormal relative to the county- and decade-specific fixed effect for July) one year may imply that 

the next July will be abnormally hot.  

It should also be noted that, because equation (2) is estimated simultaneously for all weather 

variables (for each h), the weather shock for each variable is orthogonal to the other weather shocks.  

For instance, a shock to the number of very hot days in the current month is holding fixed the average 

temperature for the month. I note below how this affects the interpretation of some of the IRFs. 

Figure 7 shows the estimated IRFs of log employment for shocks in each weather variable.21  

I first note that the short-run – 0 to 3 month – employment responses to weather shocks are consistent 

with those found by the baseline DPD model in Table 2.  As we found there, temperatures in the 

summer, snowfall, and the number of very hot days all have negative cumulative effects on 

employment as of three months later.  For the other weather variables, employment levels are 

essentially back to where they started (indicated by the zero line in Figure 7) by three months after 

the shock.   

However, thanks to this medium-run analysis, we see that these short-run dynamics are not 

the end of the story.  Indeed, the analysis reveals that weather shocks can have rich and long-lasting 

dynamic effects on employment.  For instance, temperature in the spring leads to an initial boost in 

employment; this boost fades away after about three months, but then employment rises again several 

months later and is permanently (and statistically significantly) higher as of two years after the initial 

shock.  In terms of magnitudes, this IRF estimate implies that a one standard deviation increase in 

monthly temperature in the spring causes local employment to be 0.16 percent higher in that month 

and 0.25 percent higher after two years.  Note that the average monthly employment growth in the 

                                                 
21 I do not include damages in the regressions underlying Figure 7.  However, I have estimated the model separately 
with damages (available upon request).  The results for the other weather variables are essentially unchanged from the 
IRFs shown in Figure 7.  The IRF for damages shows a negative contemporaneous effect and negative cumulative effect 
after four month, consistent with Table 3.  The longer-run effects are statistically insignificantly different from zero, 
though they are estimated rather imprecisely.  
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sample is about 0.08 percent and average annual growth is about 1.0 percent, this medium-run effect 

after two years is fairly modest, though it is precisely estimated. 

Summer temperature has a temporary positive effect employment but no longer-run effects.  

The response of employment to fall temperature is initially very small but it gradually grows over 

time.  Two years after a shock to fall temperature, employment is a little over 0.4 percent higher.  The 

response to winter temperatures is positive initially but turns negative after several months.  Yet, by 

the end of the horizon window, employment is back to where it started.  This is consistent with the 

notion that unseasonably warm winter temperatures pull forward some economic activity from 

subsequent months without having any permanent effect, a simple case of intertemporal shifting.    

The employment response to a shock in precipitation is also consistent with intertemporal 

shifting.  Precipitation has a negative initial impact but a positive effect on employment about one 

year later and no effect after two years. For snowfall, we see that the negative cumulative short-run 

effect found in Table 2 persists far longer, at least up to 18 months after the initial shock.  (The point 

estimates of the IRF remain negative after 18 months but are no longer significant at the 95% level.)  

In other words, it appears that local economic activity that is lost due to snowfall disruptions is never 

fully recovered. This could be because production shortfalls caused by snow disruptions in an affected 

county are filled in by increased production elsewhere in the country or the world, leading to a 

permanent (albeit small) loss in production and employment locally. 

Holding average temperature fixed, a shock to the frequency of days above 90°F is found to 

have little effect in the short-run but a persistent negative effect over the medium-run.22  This long-

lasting effect is somewhat surprising. It is possible, similar to the conjecture above for snowfall, that 

disruptions caused by very hot days such as reduced tourism and retail, higher costs of cooling, crop 

damage and even reduced worker productivity (as suggested by Deryugina and Hsiang 2014) could 

                                                 
22 I have also estimated this IRF in a model in which average daily temperature and the other weather variables are 
excluded as covariates. The resulting IRF shows a positive contemporaneous effect but then a gradual and long-lasting 
decline in employment very similar to that shown in Figure 7. 
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lead to permanent (albeit small) shifts in production and employment away from the affected county.  

By contrast, I find that the frequency of very cold days, holding average daily temperature constant, 

has little if any effect on employment over the medium term.23 

 

VII. Estimating National Weather Effects, Historically and in Real-Time 

 In addition to providing an in-depth understanding of how weather affects economic activity 

at the local level, the county panel model(s) estimated above can potentially be useful in estimating 

the effects of weather on national economic activity, historically and in real-time. In this section, I 

show how these estimated county panel models can be used to obtain estimates of the overall weather 

effect on any given month’s employment growth at the county level, which can then be aggregated 

to the national level. I then use this methodology to estimate national weather effects, and I evaluate 

the extent to which these weather effects can explain national payroll employment growth as well as 

other national economic variables. 

 

A. Methodology 

 The first step in obtaining the estimated overall weather effect for a given county, industry, 

and month is to obtain the fitted values of employment growth from estimating the county DPD model 

(equation (1)):

 

where  is the vector of weather variables, . Thus,  is predicted local employment 

growth as a function of national factors (captured by the industry-specific time fixed effect), seasonal 

                                                 
23 If I do not control for average daily temperature or other weather variables, a shock to the frequency of very cold days 
in the month leads to a sharp contemporaneous decline in employment, but employment recovers by three months out 
and remains there for the remainder of the 24-month horizon window. 
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factors (captured by the county*calendar-month*decade fixed effect), and actual weather in the 

current and past three months.  

 The second step is to obtain counterfactual estimates of employment growth had weather that 

month been equal to its historical average for that county, calendar month, and decade: 

, where  is the vector of weather variables where each is set equal to 

their county*calendar-month*decade mean. The difference between predicted employment growth 

given actual weather and predicted employment growth given average weather, 

, is an estimate of the overall weather effect for that county, 

industry, and month.  

 One can then sum these local effects, using employment weights (as in the regressions), to get 

an estimate of the national weather effect for a given month and industry: 

  , 

where . 

 Because weather data is collected and made public by NOAA in nearly real-time, such 

estimates of national weather effects can be produced both historically and concurrently with, or even 

a few days in advance of, the BLS’ monthly release of national payroll employment growth, which 

leads the release of QCEW data (locally or nationally) by about six months. Such estimates can be 

very useful for policymakers in attempting to discern the extent to which movements in the 

macroeconomy are due to weather effects versus changes in the underlying strength of the economy. 

Indeed, other recent research efforts, most notably Boldin and Wright (2015) and Bloesch and Gourio 

(2014), have sought to similarly estimate the real-time effects of weather on the national payroll 

employment growth. However, as noted above, the empirical models underlying their estimated 

national effects are much more parsimonious and less precisely estimated than the county DPD model. 
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B. In-Sample and Out-of-Sample Fit for National Employment Growth 

 Policymakers and others often want to know the effect of weather in a given (typically the 

latest) month on national employment growth and other macroeconomic outcomes. A common 

approach is to estimate the historical relationship between weather, measured using national (cross-

sectional) averages, and the national outcome in question using a time series regression, and then 

obtain weather effect estimates using a methodology similar to that described above. The rich 

heterogeneity of weather effects in the county DPD model and the precision of its estimates based on 

large degrees of freedom offer the potential of better explaining national weather effects.  

 However, there are two potential disadvantages. First, the county model is estimated using the 

QCEW data on employment. While the QCEW, being a census from administrative records rather 

than a survey, is likely a more accurate measure of employment than that from the CES payroll survey, 

the QCEW data are released with a several-month lag while the payroll survey’s employment data is 

available in nearly real-time and hence is followed closely by policymakers and the public. Thus, 

estimates of the national weather effect based on the county DPD model using QCEW data may not 

be able to explain national CES employment growth as well as a simple national time series model 

based on CES data.24 Second, though one can attempt to capture spatial spillover effects via spatial 

lags in the county model, the true nature of spatial spillovers is unobserved. If these spillovers are 

quantitatively important and not fully captured by any spatial lags included in the county model, then 

the national effects obtained by aggregating across counties will be mismeasured. 

 To assess whether the advantages outweigh the disadvantages or vice-versa, I evaluate the in-

sample and out-of-sample explanatory power of the nationally weather effect estimates derived from 

the county DPD model compared to estimates derived from a national time series model. The latter 

                                                 
24 Note that the historical CES employment levels are annually benchmarked to the QCEW employment levels. 
However, the two series vary independently within the year. Also, the published CES data are seasonally adjusted using 
the Census X13 algorithm which is a different technique for seasonal adjustment than that which underlies our county-
DPD/QCEW estimates of weather effects. The latter relies on seasonal adjustment within the county DPD regressions 
via county*calendar-month*decade fixed effects. 
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estimates are based on the same methodology as in the previous subsection – predicted values using 

actual weather minus predicted values using average weather – but using the following time series 

regression to obtain the fitted model: 

  (3) 

where  is seasonally-adjusted payroll employment growth from the official BLS Current 

Employment Situation (CES) series. This is the payroll employment series commonly reported on in 

the media each month and that is closely tracked by policymakers and the public.  The regressor, 

, for each weather variable k, is the national employment-weighted average of the county-level 

deviation of that variable from its county*calendar-month*decade average.  That is, the regressor 

captures the extent to which weather across the county deviated from local seasonal norms in that 

month.  is a season fixed effect (see text after equation (1) for season definitions), which is included 

to account for potential residual seasonality not captured by the BLS seasonal adjustment of 

employment. 

 This national model is estimated using the same sample period as that used for the county 

DPD model, 1980m1 – 2015m12. The estimated coefficients and standard errors are shown in Table 

7. The effects of weather from the national time series regression are considerably different, and 

estimated much more imprecisely, than those obtained from the analogous county DPD model 

without regional heterogeneity, the results of which are shown in Table 2. In fact, none of the 

contemporaneous weather variables is statistically significant, though several have economically 

significant coefficients. For instance, the number of days in the month with below-30°F temperature 

is estimated to have a large negative effect on employment growth, both contemporaneously and 

cumulatively, though only the cumulative effect is statistically significant. 



36 

 In addition to the estimated national weather effects based on the fitted national model shown 

in Table 7, I calculate national weather effects based on three alternative versions of the county DPD 

model. The first is the county DPD model with regional heterogeneity (“RH”); the second is the 

county model without regional heterogeneity (“no-RH”), as in Table 2; and the third is same model 

but including inverse-distance-based spatial lag terms, as in Table 5 (“SL”).  

 To assess the in-sample and out-of-sample explanatory power of each model’s estimated 

national weather effects for explaining/predicting national payroll employment growth, I regress 

private nonfarm employment growth (from the CES payroll survey) on that model’s national weather-

effect series. For in-sample evaluations, the county and national models are estimated using the 

1980m1 – 2015m12 sample, as in Tables 2 and 7. For out-of-sample evaluations, I estimate the 

models underlying the weather effect estimates using the sample from 1980m1 to 2005m12 and then 

calculate out-of-sample predicted values using weather data through 2015m12.  

 The results from regressing payroll employment growth on each model’s implied weather 

effects are shown in Table 8, Panel A. Specifically, the table reports that estimated slope coefficient 

from each of these bivariate time series regressions – i.e., the coefficient on the weather effect – and 

its p-value, as well as the root mean square error (RMSE) for the regression. In sample, the national 

model yields the best fit (lowest RMSE). Moreover, the implied weather effect from that model is 

highly statistically significant. The in-sample RMSE is considerably higher for the county models, 

with the county spatial lag model having the worst fit, and their implied weather effects are 

statistically insignificant. Note that for the national model, this regression is in essence equivalent to 

the regression in Table 7, since that regression uses the same dependent variable and the same sample 

period, and the regressor in Table 8 is just the predicted values from the regression in Table 7.  Hence, 

the fact that the national model’s implied weather effects gives the best in-sample fit is not surprising; 

after all, that model is fitted to minimize the squared errors (via OLS). 
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 The more relevant question is which model yields the best out-of-sample fit. A model with 

good out-of-sample properties could be useful to policymakers attempting to gauge the employment 

implications of weather in the current or most recent month. The second row of Table 8, Panel A 

shows the out-of-sample results. The best out-of-sample fit is obtained by the weather effects implied 

by the county model with no regional heterogeneity. The weather effects from the county model with 

regional heterogeneity yields the next best fit, followed by those from the national model. The county 

spatial lag model yields the worst fit. Only the weather effects from the county no-RH are found to 

be statistically significant at below the 10% level. 

 Panel B repeats these in-sample and out-of-sample bivariate time series regressions but only 

using the winter months of the sample (December, January, and March) to see if the results are 

different for this portion of the sample given that weather effects likely matter most to employment 

growth in winter months. Again, the national model yields the best in-sample fit but not the best out-

of-sample fit. However, in contrast to the full-sample results, the best out-of-sample fit is obtained 

from the county model with regional heterogeneity rather than the county model without regional 

heterogeneity.   

 In sum, the county RH and no-RH models, despite being estimated using QCEW employment 

data instead of CES data and being estimated at the local rather than national level, yield national 

weather effect estimates with better out-of-sample explanatory power for national CES employment 

growth than does a national time series model using national CES employment growth. It is 

particularly interesting that the county model with no regional heterogeneity, which is exactly the 

same specification as the national model aside from fixed effects, yields a better out-of-sample fit 

than the national model. This suggests the advantage afforded by the large degrees of freedom in the 

county DPD regression, in terms of reduced finite-sample bias, outweigh the disadvantage of having 

to rely on a different employment data source at the local level. 
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C. Impact of National Weather Effects on Other National Labor Market Outcomes 

 Above I found that the national overall weather effects implied by the estimated county DPD 

model can help predict national payroll employment growth out-of-sample. Here I consider whether 

these weather effects estimates can also help predict other national labor market outcomes. As I did 

for payroll employment growth in Table 9, Panel A (out-of-sample), for each of several national labor 

market variables I regress that variable on the national weather effects from the county DPD model 

or the national model. For this exercise, I use the county DPD model without regional heterogeneity. 

The results are shown in Table 9. The results from Table 8, Panel A for national CES employment 

growth are repeated in the first row for comparison. I find that the county DPD model weather effects 

have a statistically significant impact on national CES employment growth, national QCEW 

employment growth, the vacancy rate, the hires rate, and the quits rate. Weather effects from the 

national model are statistically insignificant in all cases. Furthermore, the RMSE is lower using the 

county DPD model’s weather effects in every case. 

 

VIII. Conclusion 

 Prior economic research on the effects of weather generally have focused on the agricultural 

sector, on health and mortality, on crime, and on longer-run macroeconomic growth.  The results 

presented in this paper show that weather also has important short-run effects on the overall economy, 

both at the local and national levels. Using a county-level dynamic panel data (DPD) model, estimated 

with monthly data from January 1980 to December 2015, I estimated the effects of temperature (by 

season), precipitation, snowfall, the frequency of very hot days, the frequency of very cold days, and 

storm property damages on private nonfarm employment growth. The short-run effects of weather 

vary considerably across sectors, with the most pronounced effects in Construction, Natural 

Resources and Mining, and Leisure and Hospitality. The effects also vary by region, with some 

evidence that regions less accustomed to certain types of weather, such as Southern regions when it 
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comes to snowfall, are affected most by abnormal occurrences of that type of weather. Extreme 

weather events, as measured by storm property damages, have detrimental short-run effects on the 

overall economy, but, interestingly, have positive effects on the Construction sector. Weather’s 

effects appear to be fairly stable over time, though the economy’s sensitivity to snowfall has lessened 

somewhat. 

 Using the local projections approach to estimate the response of employment up to 24 months 

ahead to weather shocks, I uncover a number of interesting medium-run dynamic patterns. Shocks to 

precipitation and winter temperature appear to cause intertemporal shifting, with lower (higher) 

economic activity in the short-run offset by higher (lower) activity roughly six to twelve months later.  

Shocks to spring and fall temperatures are found to have long-lasting positive effects on employment 

while shocks to snowfall and the number of very hot days in a month have long-lasting negative 

effects.  

 Using spatial lag models, I also considered the extent to which weather in other counties has 

spillover effects on employment growth in a given focal county. In general, I find that weather in 

nearby counties has effects on the focal county’s employment growth of the same sign but smaller 

magnitude as the effects of own-county weather. Weather in far-away counties, on the other hand, 

tends to have opposite effects from those of own-county weather, suggesting perhaps that local 

economies compete to some extent with distant local economies, with unfavorable weather putting 

local economies at least temporarily at a disadvantage. 

 The paper also demonstrated how this county DPD model can be used to obtain local weather 

effects estimates that can be aggregated to the national level. These monthly national weather effects 

estimates were shown to have better out-of-sample explanatory power for the BLS’s closely-

following national payroll employment growth series than a national time series model fitted on that 

same employment growth data. In addition, the county DPD model’s predicted national weather 



40 

effects were also found to be useful in predicting other national labor market outcomes such as the 

vacancy rate, hires rate, and quits rate. 

 Finally, it should be noted that given NOAA weather station data is released daily in nearly 

real-time (with about a one-day lag), one can use the fitted county DPD model to obtain county- and 

national-level estimates of monthly employment weather effects in nearly real-time. That is, this 

methodology can be used to obtain estimates of the effect of weather on a given month’s employment 

within a few days of the end of that month. This is done, for example, in van der List and Wilson 

(2016), which use the county DPD model estimated in this paper, and the methodology presented in 

the previous section, to measure national weather-adjusted employment changes through August 

2016. They find that weather had only minor impacts on employment during the summer of 2016, but 

played a large role in employment fluctuations during the spring.  
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Table 1. Summary Statistics

Panel A. Full Sample (All Months)

Mean Standard Deviation Minimum Maximum
Employment (All-Industry) 32,965 122,062 0 3,813,833
Employment growth rate (%) 0.081 2.959 -11.296 10.892
Avg. daily high temp 66.64 18.12 1.18 121.13
Precipitation (mm) 2.73 1.94 0 76.20
Snowfall (cm) 0.18 0.51 0 27.90
# days high temp >90F 2.96 6.53 0 31
# days low temp <30F 7.37 10.13 0 31
Damages ($) per capita 10.86 1516.77 0 1,057,956

Panel B. Winter Months (Dec., Jan., Feb.)

Mean Standard Deviation Minimum Maximum
Employment (All-Industry) 32,538 121,301 0 3,813,833
Employment growth rate (%) -1.032 2.946 -11.296 10.892
Avg. daily high temp 45.69 12.53 1.18 84.26
Precipitation (mm) 2.31 1.92 0 76.20
Snowfall (cm) 0.50 0.77 0 23.50
# days high temp >90F 0.01 0.14 0 9
# days low temp <30F 19.34 9.40 0 31
Damages ($) per capita 7.39 1799.41 0 879,333

Panel C. Spring Months (Mar., Apr., May)

Mean Standard Deviation Minimum Maximum
Employment (All-Industry) 32,717 121,383 0 3,776,796
Employment growth rate (%) 1.429 2.574 -11.296 10.892
Avg. daily high temp 66.44 11.95 21.33 106.80
Precipitation (mm) 2.88 1.87 0 49.30
Snowfall (cm) 0.15 0.43 0 19.10
# days high temp >90F 0.71 2.57 0 31
# days low temp <30F 5.59 7.98 0 31
Damages ($) per capita 12.94 2204.63 0 1,057,956



Panel D. Summer Months (Jun., Jul., Aug.)

Mean Standard Deviation Minimum Maximum
Employment (All-Industry) 33,336 122,536 0 3,790,450
Employment growth rate (%) 0.634 2.767 -11.296 10.892
Avg. daily high temp 85.92 5.95 59.68 121.13
Precipitation (mm) 3.13 1.97 0 67.30
Snowfall (cm) 0.00 0.02 0 6.77
# days high temp >90F 9.59 9.38 0 31
# days low temp <30F 0.00 0.11 0 15
Damages ($) per capita 14.97 702.86 0 146,469

Panel E. Fall Months (Sep., Oct., Nov.)

Mean Standard Deviation Minimum Maximum
Employment (All-Industry) 33,269 123,017 0 3,784,326
Employment growth rate (%) -0.720 2.843 -11.296 10.892
Avg. daily high temp 68.49 12.80 20.36 111.12
Precipitation (mm) 2.58 1.91 0 55.10
Snowfall (cm) 0.08 0.35 0 27.90
# days high temp >90F 1.54 4.03 0 30
# days low temp <30F 4.56 7.06 0 30
Damages ($) per capita 8.14 781.05 0 264,842



Table 2. Contemporaneous and Lagged Weather Effects on Employment Growth
Industry: All Private Industries

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.140∗∗∗ -0.050∗∗∗ -0.060∗∗∗ -0.032∗∗∗ -0.001
(0.011) (0.010) (0.010) (0.010) (0.015)

Avg. daily high temp - Summer 0.066∗∗∗ -0.047∗∗∗ -0.045∗∗∗ -0.013 -0.039∗∗

(0.015) (0.013) (0.012) (0.010) (0.019)
Avg. daily high temp - Fall 0.028∗∗∗ -0.007 -0.043∗∗∗ 0.010 -0.011

(0.011) (0.013) (0.014) (0.015) (0.021)
Avg. daily high temp - Winter 0.070∗∗∗ -0.026∗∗ -0.040∗∗∗ -0.022∗ -0.018

(0.010) (0.010) (0.012) (0.012) (0.018)
Precipitation (mm) -0.027∗∗∗ 0.019∗∗∗ 0.009∗∗ 0.002 0.004

(0.004) (0.004) (0.004) (0.004) (0.007)
Snowfall (cm) -0.022∗∗∗ 0.003 0.007∗ -0.003 -0.014∗∗

(0.004) (0.004) (0.004) (0.003) (0.006)
# days high temp >90F -0.019∗∗ -0.007 -0.005 -0.029∗∗∗ -0.060∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.014)
# days low temp <30F -0.014 -0.038∗∗∗ 0.010 0.006 -0.036

(0.014) (0.014) (0.014) (0.013) (0.022)
N 960372
Counties 3108
Months 309
R2 0.630

***p<0.01, **p<0.05, *p<0.10

Table 3. Contemporaneous and Lagged Weather Effects on Employment Growth
Industry: All Private Industries

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.140∗∗∗ -0.050∗∗∗ -0.060∗∗∗ -0.032∗∗∗ -0.001
(0.011) (0.010) (0.010) (0.010) (0.015)

Avg. daily high temp - Summer 0.066∗∗∗ -0.047∗∗∗ -0.045∗∗∗ -0.013 -0.038∗∗

(0.015) (0.013) (0.012) (0.010) (0.019)
Avg. daily high temp - Fall 0.028∗∗∗ -0.007 -0.042∗∗∗ 0.010 -0.011

(0.011) (0.013) (0.014) (0.015) (0.021)
Avg. daily high temp - Winter 0.070∗∗∗ -0.025∗∗ -0.041∗∗∗ -0.022∗ -0.018

(0.010) (0.010) (0.012) (0.012) (0.018)
Precipitation (mm) -0.027∗∗∗ 0.019∗∗∗ 0.009∗∗ 0.002 0.004

(0.004) (0.004) (0.004) (0.004) (0.007)
Snowfall (cm) -0.022∗∗∗ 0.003 0.007∗ -0.003 -0.014∗∗

(0.004) (0.004) (0.004) (0.003) (0.006)
# days high temp >90F -0.019∗∗ -0.007 -0.005 -0.029∗∗∗ -0.059∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.014)
# days low temp <30F -0.015 -0.038∗∗∗ 0.010 0.006 -0.036

(0.014) (0.014) (0.014) (0.013) (0.022)
Damages ($) per capita -0.003∗∗ 0.001 -0.000 -0.003∗∗∗ -0.005∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.002)
N 960003
Counties 3108
Months 309
R2 0.6297

***p<0.01, **p<0.05, *p<0.10



Table 4: Interaction with Second-Half-of-Sample Dummy

Panel A: Non-Interacted Effects

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.113∗∗∗ -0.031∗∗ -0.061∗∗∗ -0.024∗ -0.002
(0.013) (0.014) (0.013) (0.013) (0.016)

Avg. daily high temp - Summer 0.076∗∗∗ -0.035∗ -0.059∗∗∗ -0.005 -0.024
(0.021) (0.019) (0.018) (0.013) (0.022)

Avg. daily high temp - Fall 0.015 0.013 -0.084∗∗∗ 0.034 -0.022
(0.015) (0.021) (0.022) (0.021) (0.025)

Avg. daily high temp - Winter 0.055∗∗∗ -0.013 -0.039∗∗ -0.030∗ -0.027
(0.014) (0.017) (0.019) (0.017) (0.020)

Precipitation (mm) -0.027∗∗∗ 0.018∗∗∗ 0.003 0.012∗∗ 0.006
(0.006) (0.006) (0.006) (0.006) (0.010)

Snowfall (cm) -0.042∗∗∗ 0.031∗∗∗ 0.003 0.005 -0.003
(0.010) (0.009) (0.008) (0.008) (0.013)

# days high temp >90F -0.023∗ -0.010 0.011 -0.048∗∗∗ -0.069∗∗∗

(0.013) (0.014) (0.014) (0.013) (0.018)
# days low temp <30F -0.011 -0.038∗ -0.003 0.002 -0.050∗

(0.019) (0.020) (0.020) (0.018) (0.029)

Panel B: Interacted Effects

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.053∗∗∗ -0.035∗ 0.002 -0.010 0.009
(0.018) (0.019) (0.018) (0.017) (0.012)

Avg. daily high temp - Summer -0.023 -0.024 0.028 -0.008 -0.028
(0.026) (0.025) (0.022) (0.017) (0.020)

Avg. daily high temp - Fall 0.018 -0.034 0.082∗∗∗ -0.046∗ 0.020
(0.018) (0.025) (0.027) (0.025) (0.021)

Avg. daily high temp - Winter 0.022 -0.019 -0.005 0.017 0.015
(0.018) (0.021) (0.022) (0.020) (0.015)

Precipitation (mm) 0.002 0.001 0.013∗ -0.019∗∗∗ -0.003
(0.007) (0.008) (0.007) (0.007) (0.012)

Snowfall (cm) 0.027∗∗ -0.036∗∗∗ 0.005 -0.009 -0.014
(0.011) (0.010) (0.009) (0.009) (0.014)

# days high temp >90F 0.009 0.003 -0.030∗ 0.037∗∗ 0.019
(0.016) (0.016) (0.017) (0.016) (0.021)

# days low temp <30F -0.003 -0.005 0.025 0.007 0.023
(0.023) (0.025) (0.025) (0.023) (0.031)

N 960372
Counties 3108
Months 309
R2 0.630

***p<0.01, **p<0.05, *p<0.10



Table 5: Model Including Spatial Lags (Inverse-Distance)

Panel A: Own-County Effects

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.064∗∗∗ -0.029∗ 0.015 -0.028∗ 0.021
(0.019) (0.018) (0.017) (0.015) (0.023)

Avg. daily high temp - Summer 0.005 -0.029 -0.040∗ 0.005 -0.059∗∗

(0.024) (0.022) (0.022) (0.017) (0.029)
Avg. daily high temp - Fall 0.005 -0.007 -0.007 -0.034 -0.043

(0.019) (0.022) (0.023) (0.023) (0.030)
Avg. daily high temp - Winter 0.077∗∗∗ -0.020 -0.079∗∗∗ 0.020 -0.002

(0.018) (0.020) (0.021) (0.021) (0.030)
Precipitation (mm) -0.008∗ 0.008∗ 0.013∗∗∗ 0.005 0.017∗∗

(0.005) (0.005) (0.005) (0.005) (0.008)
Snowfall (cm) 0.001 -0.005 0.003 -0.004 -0.005

(0.004) (0.004) (0.004) (0.004) (0.007)
# days high temp >90F -0.008 0.008 0.006 -0.001 0.004

(0.011) (0.011) (0.011) (0.011) (0.017)
# days low temp <30F -0.002 -0.022 -0.003 0.000 -0.026

(0.018) (0.018) (0.017) (0.016) (0.028)

Panel B: Spatial Lag Effects

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.182∗∗∗ -0.049 -0.227∗∗∗ -0.015 -0.108
(0.057) (0.056) (0.052) (0.048) (0.081)

Avg. daily high temp - Summer 0.217∗∗ -0.051 -0.002 -0.071 0.093
(0.087) (0.073) (0.070) (0.055) (0.094)

Avg. daily high temp - Fall 0.046 0.022 -0.114 0.235∗∗∗ 0.189∗

(0.058) (0.068) (0.081) (0.085) (0.111)
Avg. daily high temp - Winter -0.105∗ -0.006 0.128∗∗ -0.132∗∗ -0.115

(0.054) (0.060) (0.064) (0.066) (0.103)
Precipitation (mm) -0.048∗∗∗ 0.027∗∗ -0.009 -0.013 -0.042∗∗

(0.011) (0.011) (0.011) (0.011) (0.021)
Snowfall (cm) -0.131∗∗∗ 0.047∗∗ 0.015 0.008 -0.061∗

(0.019) (0.020) (0.018) (0.017) (0.034)
# days high temp >90F -0.040 -0.058 -0.039 -0.129∗∗∗ -0.267∗∗∗

(0.042) (0.040) (0.042) (0.041) (0.061)
# days low temp <30F -0.059 -0.060 0.052 -0.029 -0.096

(0.076) (0.080) (0.076) (0.074) (0.135)
N 960372
Counties 3108
Months 309
R2 0.630

***p<0.01, **p<0.05, *p<0.10



Table 6: Model Including Spatial Lags (Donut 1000+ mi.)

Panel A: Own-County Effects

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.123∗∗∗ -0.042∗∗∗ -0.033∗∗∗ -0.029∗∗ 0.019
(0.013) (0.013) (0.012) (0.011) (0.018)

Avg. daily high temp - Summer 0.043∗∗ -0.043∗∗∗ -0.051∗∗∗ -0.011 -0.062∗∗∗

(0.017) (0.015) (0.014) (0.012) (0.022)
Avg. daily high temp - Fall 0.031∗∗ -0.017 -0.031∗ -0.004 -0.020

(0.014) (0.016) (0.017) (0.017) (0.025)
Avg. daily high temp - Winter 0.095∗∗∗ -0.033∗∗ -0.066∗∗∗ -0.027∗ -0.032

(0.013) (0.014) (0.015) (0.015) (0.022)
Precipitation (mm) -0.025∗∗∗ 0.018∗∗∗ 0.010∗∗∗ 0.001 0.004

(0.004) (0.004) (0.004) (0.004) (0.007)
Snowfall (cm) -0.020∗∗∗ 0.003 0.008∗∗ -0.004 -0.013∗∗

(0.004) (0.004) (0.004) (0.003) (0.006)
# days high temp >90F -0.012 -0.001 -0.004 -0.018∗ -0.036∗∗

(0.009) (0.010) (0.009) (0.009) (0.015)
# days low temp <30F -0.014 -0.033∗∗ 0.016 0.007 -0.023

(0.015) (0.014) (0.015) (0.013) (0.023)

Panel B: Spatial Lag Effects

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring -0.021 0.030 0.082∗∗∗ 0.001 0.092∗∗

(0.026) (0.028) (0.025) (0.024) (0.043)
Avg. daily high temp - Summer -0.097∗∗ 0.002 -0.020 -0.003 -0.118∗∗

(0.045) (0.033) (0.030) (0.024) (0.049)
Avg. daily high temp - Fall 0.018 -0.039 0.043 -0.119∗∗∗ -0.097

(0.026) (0.033) (0.041) (0.043) (0.061)
Avg. daily high temp - Winter 0.088∗∗∗ -0.017 -0.058∗∗ -0.029 -0.015

(0.027) (0.028) (0.029) (0.029) (0.048)
Precipitation (mm) 0.009 -0.000 0.001 0.000 0.010

(0.007) (0.008) (0.008) (0.008) (0.014)
Snowfall (cm) 0.035∗∗∗ -0.017 0.018 -0.026∗∗ 0.011

(0.013) (0.015) (0.014) (0.012) (0.023)
# days high temp >90F 0.039 0.034 -0.006 0.083∗∗∗ 0.150∗∗∗

(0.027) (0.023) (0.027) (0.027) (0.043)
# days low temp <30F 0.033 0.044 0.014 0.022 0.114

(0.047) (0.050) (0.047) (0.045) (0.081)
N 960372
Counties 3108
Months 309
R2 0.630

***p<0.01, **p<0.05, *p<0.10



Table 7. Contemporaneous and Lagged Weather Effects on Nonfarm Payrolls

National Time Series Model

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.004 0.003 -0.033 -0.049 -0.076
(0.064) (0.061) (0.057) (0.052) (0.104)

Avg. daily high temp - Summer 0.067 -0.051 -0.086 -0.049 -0.119
(0.132) (0.088) (0.071) (0.062) (0.168)

Avg. daily high temp - Fall -0.062 0.085 -0.081 -0.089 -0.148
(0.066) (0.086) (0.128) (0.132) (0.187)

Avg. daily high temp - Winter -0.008 -0.014 -0.120∗ -0.038 -0.180∗

(0.055) (0.059) (0.062) (0.069) (0.103)
Precipitation (mm) -0.056 0.049 -0.047 -0.022 -0.076

(0.049) (0.049) (0.050) (0.050) (0.101)
Snowfall (cm) 0.010 0.065 0.126∗∗ 0.068 0.270∗∗∗

(0.058) (0.057) (0.058) (0.057) (0.103)
# days high temp >90F -0.004 0.059 0.174 0.103 0.332

(0.121) (0.099) (0.118) (0.119) (0.205)
# days low temp <30F -0.208 -0.148 -0.382∗∗ -0.305∗∗ -1.043∗∗∗

(0.147) (0.154) (0.153) (0.146) (0.294)
N 429
R2 0.281
RMSE 0.219

***p<0.01, **p<0.05, *p<0.10

Table 8. In-Sample and Out-of-Sample Explanatory Power of Weather Effects for National Payroll Employment Growth

Panel A. All Seasons

County Model RH RMSE County Model no RH RMSE County Model SL RMSE National Model RMSE
In Sample 0.266 0.219 0.249 0.219 0.057 0.219 0.990 0.209

[0.255] [0.237] [0.417] [0.000]
Out of Sample 0.668 0.221 0.703 0.221 0.131 0.224 0.255 0.222

[0.126] [0.067] [0.213] [0.148]

Panel B. Winter Months Only

County Model RH RMSE County Model no RH RMSE County Model SL RMSE National Model RMSE
In Sample 0.836 0.216 0.517 0.217 -0.094 0.218 1.226 0.203

[0.122] [0.225] [0.501] [0.000]
Out of Sample 1.749 0.250 1.424 0.253 0.226 0.261 0.344 0.264

[0.060] [0.088] [0.309] [0.553]

Notes: Values in brackets are p values. Employment Growth is private nonfarm employment growth from the BLS CEW payroll survey. For
in-sample, model estimation and fit evaluation are over Jan 1980 to Dec 2005. For Out-of-Sample, model is estimated over Jan 1980 to Dec
2005. Fit is evaluated over Jan 2006 to Dec 2015.



Table 9a. Out-of-Sample Explanatory Power of Weather Effects for Various National Labor Market Outcomes

All Seasons

County Model no RH RMSE National Model RMSE
Employment Growth, Private Nonfarm, Payroll Survey 0.703 0.221 0.255 0.222

[0.067] [0.148]
Employment Growth, less than 50 employees 0.935 0.261 0.248 0.264

[0.154] [0.513]
Employment Growth, 50 to 499 employees 1.099 0.330 0.484 0.332

[0.185] [0.311]
Employment Growth, 500 or more employees 0.811 0.267 0.287 0.269

[0.226] [0.458]
Employment Growth, Private Nonfarm, QCEW (SA) 0.935 0.270 0.204 0.273

[0.060] [0.356]
Employment Growth, QCEW, less than 50 employees 0.935 0.261 0.248 0.264

[0.154] [0.513]
Employment Growth, QCEW, 50 to 499 employees 1.099 0.330 0.484 0.332

[0.185] [0.311]
Employment Growth, QCEW, 500 or more employees 0.811 0.267 0.287 0.269

[0.226] [0.458]
Vacancy Rate 0.541 0.158 0.064 0.160

[0.050] [0.616]
Hires Rate 0.502 0.143 -0.058 0.145

[0.044] [0.615]
Quits Rate 0.332 0.107 -0.064 0.108

[0.074] [0.453]

Table 9b: County Weather Effects Compared to National Weather Effects

Winter Months Only

County Model no RH RMSE National Model RMSE
Employment Growth, Private Nonfarm, Payroll Survey 1.424 0.253 0.344 0.264

[0.088] [0.553]
Employment Growth, less than 50 employees 1.897 0.349 0.056 0.367

[0.232] [0.955]
Employment Growth, 50 to 499 employees 1.213 0.405 -0.305 0.411

[0.503] [0.780]
Employment Growth, 500 or more employees 0.499 0.290 -0.401 0.289

[0.700] [0.603]
Employment Growth, Private Nonfarm, QCEW (SA) 1.671 0.306 0.047 0.321

[0.105] [0.947]
Employment Growth, QCEW, less than 50 employees 1.897 0.349 0.056 0.367

[0.232] [0.955]
Employment Growth, QCEW, 50 to 499 employees 1.213 0.405 -0.305 0.411

[0.503] [0.780]
Employment Growth, QCEW, 500 or more employees 0.499 0.290 -0.401 0.289

[0.700] [0.603]
Vacancy Rate 0.490 0.136 0.349 0.136

[0.268] [0.246]
Hires Rate 0.537 0.138 0.098 0.141

[0.232] [0.752]
Quits Rate 0.473 0.102 0.072 0.105

[0.157] [0.755]

Notes: Values in brackets are p values. Weather models are estimated over Jan 1980 - Dec 2005; fit is evaluated over Jan 2006-Dec 2015.
QCEW employment growth is seasonally adjusted by including a set of calendar-month dummies in the regression.
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Figure 6. Estimated Quadratic Relationship Between Contemporaneous Weather and Employment Growth
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Notes: Top panel shows the estimated implied quadratic effect of temperature (average daily high per month), by season, on monthly employment

growth relative to average monthly employment growth in that season: β̂Ts + γ̂T 2
s − ȳs, where Ts is temperature in season s and ȳs is average

monthly employment growth in season s. For each season, the implied quadratic temperature effects are shown over the range of temperature
values observed in the sample for that season, though monthly temperature values above 110 degrees are not shown because they are very rare and
cause the range of the graph to expand greatly. The bottom panel shows the implied estimated quadratic effect of (i) average daily precipitation

and (ii) average daily snowfall on monthly employment growth relative to average monthly employment growth in the full sample: β̂X + γ̂X2 − ȳ,
where X is either precipitation or snowfall and ȳ is average monthly employment growth in the sample. Implied effects are shown for values from
the sample minimum, which is 0.0 for both weather variables, to their sample 99.9th percentile, which is 13.34mm for average daily precipitation
and 5.27cm for average daily snowfall.



Figure 7. Employment Response to a Weather Shock
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Notes: Dashed lines show 95% confidence interval. Each panel plots estimated impulse response function (IRF) of log employment with respect
to a shock in the indicated weather variable. Weather variables are normalized by the standard deviation. Thus, combined with the fact that
employment is measured in logs (and scaled by 100), the IRF shows the percentage effect on employment from a one standard deviation shock to
the indicated weather variable. See text for details on IRF estimation methodology.



Appendix Table 1. Contemporaneous and Lagged Weather Effects on Employment Growth
Industry: Nat. Res. and Mine.

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.621∗∗∗ -0.292∗∗∗ -0.222∗∗∗ -0.058 0.049
(0.056) (0.050) (0.050) (0.043) (0.071)

Avg. daily high temp - Summer 0.167∗∗ -0.207∗∗∗ -0.271∗∗∗ -0.131∗∗∗ -0.441∗∗∗

(0.075) (0.074) (0.064) (0.050) (0.097)
Avg. daily high temp - Fall 0.133∗∗ -0.087 -0.081 -0.104 -0.139

(0.054) (0.067) (0.071) (0.073) (0.104)
Avg. daily high temp - Winter 0.180∗∗∗ -0.101∗∗ -0.171∗∗∗ 0.050 -0.043

(0.044) (0.052) (0.055) (0.060) (0.084)
Precipitation (mm) -0.155∗∗∗ 0.097∗∗∗ 0.054∗∗∗ 0.001 -0.003

(0.019) (0.020) (0.020) (0.019) (0.033)
Snowfall (cm) -0.074∗∗∗ -0.009 0.033∗∗ -0.013 -0.062∗∗

(0.017) (0.018) (0.016) (0.015) (0.025)
# days high temp >90F -0.034 -0.001 -0.023 -0.072 -0.130∗∗

(0.045) (0.047) (0.045) (0.044) (0.065)
# days low temp <30F -0.093 -0.260∗∗∗ 0.032 0.137∗∗ -0.184∗

(0.069) (0.068) (0.066) (0.063) (0.104)
N 960372
Counties 3108
Months 309
R2 0.597

***p<0.01, **p<0.05, *p<0.10



Appendix Table 2. Contemporaneous and Lagged Weather Effects on Employment Growth
Industry: Construction

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.618∗∗∗ -0.232∗∗∗ -0.307∗∗∗ -0.178∗∗∗ -0.099
(0.043) (0.042) (0.040) (0.037) (0.062)

Avg. daily high temp - Summer 0.167∗∗∗ -0.139∗∗∗ -0.143∗∗∗ -0.128∗∗∗ -0.243∗∗∗

(0.045) (0.041) (0.038) (0.030) (0.058)
Avg. daily high temp - Fall 0.164∗∗∗ -0.083∗∗ 0.000 -0.039 0.042

(0.033) (0.041) (0.045) (0.045) (0.067)
Avg. daily high temp - Winter 0.543∗∗∗ -0.236∗∗∗ -0.262∗∗∗ -0.139∗∗∗ -0.093

(0.036) (0.040) (0.044) (0.047) (0.068)
Precipitation (mm) -0.081∗∗∗ 0.127∗∗∗ 0.080∗∗∗ 0.031∗∗ 0.156∗∗∗

(0.013) (0.014) (0.014) (0.013) (0.024)
Snowfall (cm) -0.117∗∗∗ 0.001 0.068∗∗∗ 0.003 -0.045∗

(0.016) (0.016) (0.015) (0.014) (0.023)
# days high temp >90F -0.032 0.038 0.007 -0.006 0.007

(0.028) (0.028) (0.027) (0.029) (0.044)
# days low temp <30F -0.110∗∗ -0.176∗∗∗ 0.087 0.025 -0.174∗∗

(0.051) (0.055) (0.055) (0.051) (0.087)
N 960372
Counties 3108
Months 309
R2 0.479

***p<0.01, **p<0.05, *p<0.10



Appendix Table 3. Contemporaneous and Lagged Weather Effects on Employment Growth
Industry: Manufacturing

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.060∗∗∗ -0.019 -0.055∗∗∗ 0.015 0.001
(0.014) (0.013) (0.014) (0.013) (0.019)

Avg. daily high temp - Summer 0.011 -0.004 0.027 0.004 0.039
(0.024) (0.020) (0.018) (0.016) (0.029)

Avg. daily high temp - Fall 0.031∗ -0.013 -0.013 0.010 0.016
(0.016) (0.019) (0.022) (0.022) (0.031)

Avg. daily high temp - Winter 0.052∗∗∗ -0.011 -0.006 -0.011 0.023
(0.016) (0.016) (0.018) (0.018) (0.028)

Precipitation (mm) -0.018∗∗∗ -0.006 -0.007 0.003 -0.029∗∗∗

(0.005) (0.006) (0.006) (0.006) (0.010)
Snowfall (cm) -0.011∗ 0.000 0.006 -0.002 -0.007

(0.006) (0.006) (0.006) (0.006) (0.010)
# days high temp >90F -0.024∗ -0.008 -0.002 -0.042∗∗∗ -0.076∗∗∗

(0.014) (0.014) (0.014) (0.014) (0.022)
# days low temp <30F -0.009 -0.063∗∗∗ 0.004 0.005 -0.063∗

(0.021) (0.022) (0.021) (0.020) (0.035)
N 960372
Counties 3108
Months 309
R2 0.294

***p<0.01, **p<0.05, *p<0.10



Appendix Table 4. Contemporaneous and Lagged Weather Effects on Employment Growth
Industry: Trade, Trans., and Util.

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.114∗∗∗ -0.043∗∗∗ -0.040∗∗∗ -0.044∗∗∗ -0.013
(0.010) (0.010) (0.010) (0.010) (0.014)

Avg. daily high temp - Summer 0.048∗∗∗ 0.004 -0.046∗∗∗ 0.003 0.008
(0.016) (0.014) (0.013) (0.011) (0.019)

Avg. daily high temp - Fall -0.002 0.011 -0.042∗∗∗ 0.013 -0.021
(0.012) (0.014) (0.016) (0.017) (0.023)

Avg. daily high temp - Winter 0.032∗∗∗ -0.013 -0.039∗∗∗ -0.003 -0.023
(0.010) (0.011) (0.012) (0.013) (0.018)

Precipitation (mm) -0.015∗∗∗ 0.009∗∗ 0.011∗∗∗ 0.000 0.007
(0.004) (0.004) (0.004) (0.004) (0.008)

Snowfall (cm) -0.014∗∗∗ 0.008∗∗ 0.007∗ -0.006 -0.005
(0.004) (0.004) (0.004) (0.004) (0.006)

# days high temp >90F -0.014 -0.010 -0.006 -0.010 -0.041∗∗∗

(0.010) (0.010) (0.010) (0.010) (0.015)
# days low temp <30F -0.018 -0.030∗∗ 0.019 -0.005 -0.033

(0.015) (0.015) (0.015) (0.014) (0.023)
N 960372
Counties 3108
Months 309
R2 0.473

***p<0.01, **p<0.05, *p<0.10



Appendix Table 5. Contemporaneous and Lagged Weather Effects on Employment Growth
Industry: Information

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring -0.007 -0.003 -0.008 0.020 0.002
(0.020) (0.020) (0.019) (0.017) (0.026)

Avg. daily high temp - Summer 0.104∗∗∗ 0.037 -0.002 0.019 0.157∗∗∗

(0.040) (0.028) (0.028) (0.020) (0.046)
Avg. daily high temp - Fall -0.024 -0.072∗∗ -0.072∗∗ 0.066∗ -0.101∗

(0.024) (0.034) (0.035) (0.035) (0.059)
Avg. daily high temp - Winter 0.038 -0.025 -0.032 0.009 -0.010

(0.024) (0.027) (0.029) (0.029) (0.041)
Precipitation (mm) 0.006 0.023∗∗ 0.010 -0.007 0.032∗

(0.010) (0.010) (0.009) (0.010) (0.017)
Snowfall (cm) -0.008 -0.015∗ 0.011 -0.003 -0.016

(0.009) (0.009) (0.008) (0.008) (0.013)
# days high temp >90F 0.002 -0.055∗∗∗ 0.020 -0.028 -0.061∗

(0.022) (0.021) (0.023) (0.022) (0.034)
# days low temp <30F -0.009 0.048 0.046 0.030 0.116∗∗

(0.033) (0.036) (0.033) (0.029) (0.053)
N 960372
Counties 3108
Months 309
R2 0.206

***p<0.01, **p<0.05, *p<0.10



Appendix Table 6. Contemporaneous and Lagged Weather Effects on Employment Growth
Industry: Financial Activities

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.044∗∗∗ 0.017 -0.004 -0.028∗∗ 0.029∗

(0.013) (0.012) (0.012) (0.011) (0.015)
Avg. daily high temp - Summer 0.036∗ -0.022 0.002 0.019 0.034

(0.019) (0.017) (0.017) (0.013) (0.024)
Avg. daily high temp - Fall 0.002 -0.026 0.036∗∗ -0.005 0.008

(0.014) (0.018) (0.019) (0.018) (0.026)
Avg. daily high temp - Winter 0.015 -0.004 -0.006 -0.008 -0.003

(0.014) (0.015) (0.017) (0.017) (0.025)
Precipitation (mm) -0.001 0.012∗∗ 0.006 -0.006 0.011

(0.005) (0.005) (0.005) (0.005) (0.009)
Snowfall (cm) 0.001 -0.001 0.003 0.003 0.006

(0.005) (0.005) (0.005) (0.005) (0.007)
# days high temp >90F -0.018 0.003 -0.018 -0.011 -0.044∗∗

(0.012) (0.012) (0.012) (0.011) (0.018)
# days low temp <30F 0.009 0.021 0.013 -0.002 0.042

(0.019) (0.020) (0.019) (0.017) (0.030)
N 960372
Counties 3108
Months 309
R2 0.275

***p<0.01, **p<0.05, *p<0.10



Appendix Table 7. Contemporaneous and Lagged Weather Effects on Employment Growth
Industry: Prof. and Bus. Serv.

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.149∗∗∗ -0.068∗∗∗ -0.057∗∗ -0.049∗∗ -0.025
(0.023) (0.024) (0.022) (0.021) (0.033)

Avg. daily high temp - Summer 0.024 -0.029 -0.039 -0.023 -0.066
(0.036) (0.030) (0.027) (0.023) (0.042)

Avg. daily high temp - Fall -0.047∗ 0.055∗ -0.011 0.071∗∗ 0.068
(0.025) (0.032) (0.034) (0.035) (0.049)

Avg. daily high temp - Winter 0.064∗∗ -0.040 -0.057∗ -0.062∗ -0.095∗

(0.029) (0.030) (0.034) (0.035) (0.051)
Precipitation (mm) -0.020∗∗ 0.020∗ 0.017∗ 0.005 0.022

(0.010) (0.010) (0.009) (0.010) (0.018)
Snowfall (cm) -0.039∗∗∗ 0.014 0.013 -0.005 -0.016

(0.009) (0.010) (0.009) (0.009) (0.015)
# days high temp >90F 0.022 -0.034 -0.001 -0.034 -0.047

(0.022) (0.022) (0.023) (0.023) (0.034)
# days low temp <30F -0.052 -0.029 0.005 0.003 -0.073

(0.038) (0.041) (0.039) (0.034) (0.064)
N 960372
Counties 3108
Months 309
R2 0.281

***p<0.01, **p<0.05, *p<0.10



Appendix Table 8. Contemporaneous and Lagged Weather Effects on Employment Growth
Industry: Edu. and Health Serv.

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.017 -0.002 -0.004 -0.011 0.001
(0.011) (0.011) (0.010) (0.010) (0.014)

Avg. daily high temp - Summer 0.035∗ -0.018 -0.003 0.016 0.030
(0.020) (0.017) (0.016) (0.013) (0.021)

Avg. daily high temp - Fall -0.014 -0.006 0.011 0.019 0.010
(0.012) (0.015) (0.018) (0.017) (0.025)

Avg. daily high temp - Winter 0.004 0.005 0.006 0.007 0.022
(0.015) (0.015) (0.017) (0.017) (0.025)

Precipitation (mm) -0.005 0.006 0.001 0.005 0.008
(0.005) (0.005) (0.005) (0.005) (0.009)

Snowfall (cm) -0.022∗∗∗ 0.011∗ 0.014∗∗∗ -0.003 -0.001
(0.005) (0.006) (0.004) (0.004) (0.007)

# days high temp >90F -0.001 -0.013 0.005 -0.019∗ -0.028
(0.012) (0.012) (0.012) (0.011) (0.019)

# days low temp <30F 0.030 -0.004 -0.007 0.013 0.031
(0.022) (0.018) (0.018) (0.017) (0.028)

N 960372
Counties 3108
Months 309
R2 0.277

***p<0.01, **p<0.05, *p<0.10



Appendix Table 9. Contemporaneous and Lagged Weather Effects on Employment Growth
Industry: Leisure and Hosp.

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.183∗∗∗ -0.040∗ -0.057∗∗∗ -0.064∗∗∗ 0.022
(0.020) (0.021) (0.020) (0.020) (0.029)

Avg. daily high temp - Summer 0.169∗∗∗ -0.086∗∗∗ -0.056∗∗ 0.042∗∗ 0.070∗∗

(0.028) (0.024) (0.023) (0.020) (0.035)
Avg. daily high temp - Fall 0.048∗∗ -0.014 -0.037 0.002 -0.001

(0.021) (0.028) (0.029) (0.030) (0.040)
Avg. daily high temp - Winter 0.100∗∗∗ 0.011 -0.052∗∗ -0.033 0.025

(0.020) (0.023) (0.024) (0.026) (0.034)
Precipitation (mm) -0.027∗∗∗ 0.029∗∗∗ 0.012 -0.001 0.014

(0.008) (0.008) (0.008) (0.008) (0.014)
Snowfall (cm) -0.026∗∗∗ 0.010 0.001 -0.001 -0.016

(0.008) (0.009) (0.008) (0.007) (0.010)
# days high temp >90F -0.051∗∗∗ 0.006 -0.038∗∗ 0.012 -0.072∗∗∗

(0.018) (0.020) (0.019) (0.018) (0.028)
# days low temp <30F -0.105∗∗∗ -0.039 0.068∗∗ 0.048∗ -0.028

(0.030) (0.030) (0.029) (0.028) (0.044)
N 960372
Counties 3108
Months 309
R2 0.615

***p<0.01, **p<0.05, *p<0.10



Appendix Table 10. Contemporaneous and Lagged Weather Effects on Employment Growth
Industry: Other Serv.

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.076∗∗∗ -0.054∗∗ -0.022 -0.022 -0.022
(0.027) (0.025) (0.025) (0.023) (0.035)

Avg. daily high temp - Summer 0.074∗∗ -0.054∗ -0.015 0.002 0.008
(0.036) (0.031) (0.029) (0.023) (0.042)

Avg. daily high temp - Fall 0.015 0.004 -0.044 0.099∗∗ 0.074
(0.028) (0.034) (0.036) (0.039) (0.050)

Avg. daily high temp - Winter 0.102∗∗∗ -0.064∗ -0.053 -0.054 -0.069
(0.035) (0.036) (0.043) (0.042) (0.060)

Precipitation (mm) 0.003 0.012 -0.002 0.001 0.015
(0.011) (0.011) (0.011) (0.010) (0.018)

Snowfall (cm) -0.006 -0.010 -0.003 0.020∗∗ 0.000
(0.010) (0.011) (0.009) (0.010) (0.014)

# days high temp >90F -0.001 -0.009 -0.031 -0.037 -0.077∗∗

(0.022) (0.022) (0.022) (0.023) (0.033)
# days low temp <30F -0.072 0.078∗ 0.016 -0.036 -0.014

(0.049) (0.042) (0.041) (0.036) (0.068)
N 960372
Counties 3108
Months 309
R2 0.299

***p<0.01, **p<0.05, *p<0.10
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Appendix Figure 1  
Map of Locations of U.S. GHCN-Daily Weather Stations as of January 1, 2006 

 

 
Source: https://gis.ncdc.noaa.gov/maps/ncei/summaries/daily. 

  

https://gis.ncdc.noaa.gov/maps/ncei/summaries/daily


 

Appendix Figure 2 
Map of Locations of GHCN-Daily Weather Stations near Atlanta, GA as of January 1, 2006 

 
Source: https://gis.ncdc.noaa.gov/maps/ncei/summaries/daily. 
 

  

https://gis.ncdc.noaa.gov/maps/ncei/summaries/daily


 

Appendix Figure 3  
Map of Census Divisions 
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