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Abstract

We find that covariance matrix forecasts for an international interest rate portfolio generated by a

model that incorporates interest-rate level volatility effects perform best with respect to statistical

loss functions. However, within a value-at-risk (VaR) framework, the relative performance of the

covariance matrix forecasts depends greatly on the VaR distributional assumption. Simple forecasts

based just on weighted averages of past observations perform best using a VaR framework. In fact,

we find that portfolio variance forecasts that ignore the individual assets in the portfolio generate

the lowest regulatory capital charge, a key economic decision variable for commercial banks. Our

results provide empirical support for the commonly-used VaR models based on simple covariance

matrix forecasts and distributional assumptions.

JEL classification: C52; C53; G12; E43

Keywords: Interest rates; Covariance models; GARCH; Forecasting; Risk Management, Value-at-
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1 Introduction

The short-term interest rate is one of the most important and fundamental variables in financial

markets. In particular, interest rate volatility and its forecasts are important to a wide variety

of economic agents. For example, portfolio managers require such volatility forecasts for asset

allocation decisions; option traders require them to price and hedge interest rate derivatives; and

risk managers use them to compute measures of portfolio market risk, such as value-at-risk (VaR).

In fact, since the late 1990s, financial regulators have been using VaR methods and their underlying

volatility forecasts to supervise and monitor the trading portfolios and interest rate exposures of

financial institutions.

Forecasts of interest rate volatility are available from two general sources. The market-based

approach uses option market data to infer implied volatility, which is interpreted to be the market’s

best estimate of future volatility conditional on an option pricing model. Since these forecasts

incorporate the expectations of market participants, they are said to be forward-looking measures.

The model-based approach forecasts volatility from time series data, generating what are usually

called historical forecasts. The empirical evidence in Day and Lewis (1992), Amin and Ng (1997),

and others suggests that implied volatility can forecast future volatility. However, there is also

some consensus that implied volatility is an upward biased forecast of future volatility and that

historical volatility forecasts contain additional information. Moreover, the scope of implied second

moments is limited due to options contracts availability, especially with respect to covariances.1

Most of the work on the model-based approach to forecasting second moments has focused on

univariate time-varying variance models. For examples, see Glosten, Jagannathan, and Runkle

(1993) and Engle and Ng (1993). Most studies evaluate the performance of such volatility models

in-sample analysis, although some have examined their out-of-sample performance using statistical

loss functions; see for example, Pagan and Schwert (1990), West and Cho (1995), and Figlewski

(1997).

Out-of-sample evaluation of forecasts provides an alternative and potentially more useful com-
1Campa and Chang (1998) and Walter and Lopez (2000) find that implied correlations from foreign exchange

options tend to be more accurate forecasts of realized correlation than the ones based on historical prices. However,
implied correlations do not fully incorporate the information in historical data because bivariate GARCH models of
correlation are able to improve forecast accuracy.
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parison of the alternative models, due to the possibility of overfitting.2 Moreover, the ability to

produce useful out-of-sample forecasts is the clear test of model performance because it only uses

the same information set available to agents at each point in time. Previous studies across a wide

variety of markets have compared the out-of-sample forecasting ability of several GARCH type

models with that of simple variance measures and found that there is no clear winner using sta-

tistical loss functions.3 Results in Figlewski (1997) show that GARCH models fitted to daily data

may be quite useful in forecasting the volatility in stock markets both for short and long horizons,

but they are much less useful in making out-of-sample forecasts in other markets beyond short

horizons4. In particular, using 3-month US Treasury bill yields, sample variances generate more ac-

curate forecasts than GARCH model. Ederington and Guan (1999) also find that sample variances

dominate GARCH models in the 3-month Eurodollar market.

In contrast, relatively little work has been done on modeling and forecasting second moments

using multivariate time-varying covariance models. Kroner and Ng (1998) propose a general family

of multivariate GARCH models, called General Dynamic Covariance (GDC) model, to estimate the

variance-covariance matrix of a portfolio of large and small US stocks. Ferreira (2001) presents a new

multivariate model for interest rates, called the mixed GDC and levels (GDC-Levels) model, which

includes both level effects and conditional heteroskedasticity effects in the volatility dynamics.5

He finds that the interest rate variance-covariance matrix is best forecasted out-of-sample using a

VECH model with a level effect. In addition, simple models using either equally or exponentially-

weighted moving averages of past observations perform as well under statistical loss functions as

the best multivariate model in terms of both variance and covariance. Overall, his out-of-sample

results present evidence that model features often required to obtain a good in-sample fit do not

contribute to out-of-sample forecasting power.

Given the wide variety of volatility models available and their mixed out-of-sample performance
2Lopez (2001) finds in the foreign exchange markets that out-of-sample analysis of volatility forecasts is useful

because the best set of forecasts varies not only among foreign exchange rates but also from in-sample to out-of-sample
evaluation. Ederington and Guan (1999) also find evidence supporting that in-sample results may not be confirmed
out-of-sample.

3See Andersen and Bollerslev (1998) for further discussion of this point.
4This sensitivity of results to the forecast horizon can also be found in West and Cho (1995) with the GARCH model

having a slight advantage for short forecast horizons in foreign exchange markets, but this advantage disappearing
for longer horizons.

5The sensitivity of interest rate volatility to the interest rate level was first documented by Chan, Karolyi, Longstaff,
and Sanders (1992).
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with respect to statistical loss functions, a key question is how to choose among them. A relatively

informative method of model selection is to compare their out-of-sample performance in terms

of a particular economic application and results may vary according to the selected economic loss

function; see for example Lopez (2001). However, there has been relatively little work on comparing

the out-of-sample performance of alternative models in terms of economic loss functions, especially

in a multivariate framework.

To date, such economic evaluations of out-of-sample volatility forecasts has been in the areas of

hedging performance, asset allocation decisions and options pricing. Regarding hedging strategies,

Cecchetti, Cumby, and Figlewski (1988) find that a time-varying covariance matrix is necessary to

construct an optimal hedge ratio between Treasury bonds and bond futures, while Kroner and Ng

(1998) find that the choice of the multivariate specification can result in very different estimates

of the optimal hedge ratio for stock portfolios. With respect to asset allocation, volatility model

selection is also important as shown by Kroner and Ng (1998) in the context of a portfolio of

small and large stocks. Poomimars, Cadle, and Theobald (2001) also find that for the purposes of

allocating assets across national stock markets, simpler models of the covariance matrix are more

appropriate when optimizing across asset universes that include less stable national markets and

environments. For options pricing, Engle, Kane, and Noh (1997) and Gibson and Boyer (1998) find

that standard time-series models produce better correlation forecasts than simple moving average

models for the purpose of stock-index option pricing and trading. Christoffersen and Jacobs (2002)

also evaluate alternative GARCH covariance forecasts in terms of option pricing and finds out-of-

sample evidence in favor of a relatively parsimonious model.

In this paper, we consider economic loss functions related to financial risk management, which

places emphasis on value-at-risk (VaR) measures that generally indicate the amount of portfolio

value that could be lost over a given time horizon with a specified probability. Hendricks (1996)

provides the most extensive evaluation of alternative VaR models using a portfolio of foreign ex-

change rates, although he does not examine covariance matrix forecasts. Other papers — Dave and

Stahl (1996), Alexander and Leigh (1997), and Jackson, Maude, and Perraudin (1997) — examine

VaR measures for different asset portfolios using multivariate models. We extend this literature by

evaluating the forecast performance of multivariate volatility models within a VaR framework and

using interest rate data, as per Lopez and Walter (2001) and Vlaar (2000), respectively.
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The performance of VaR for interest rate portfolios, one of the most important financial prices

and of particular relevance in banks’ trading portfolios6, has only been studied using univariate

models. Vlaar (2000) examines the out-of-sample forecast accuracy of several univariate volatility

models (equally and exponentially sample averages as well as GARCH models) for portfolios of

Dutch bonds with different maturities. In addition, he examines the impact of alternative VaR

distributional assumptions. The analysis shows that the percentage of exceedances for the sim-

ple models is basically equal to that for the GARCH models. The distributional assumption is

important with the normal performing much better than the t-distribution.

In this paper, we analyze an equally-weighted portfolio of short-term fixed income positions in

the US dollar, German deutschemark and Japanese yen. The portfolio returns are calculated from

the perspective of a US-based investor using daily interest rate and foreign exchange data from

1979 to 2000. We examine VaR estimates for this portfolio from a wider variety of multivariate

volatility models, ranging from simple sample averages to standard time-series models. We compare

the out-of-sample forecasting performance of these alternative variance-covariance structures and

their economic implications within the VaR framework used by Lopez and Walter (2001). The

question of interest is whether more complex covariance models provide improved out-of-sample

VaR forecasts.

The VaR framework we use consists of three sets of evaluation techniques. The first set focuses

on the statistical properties of VaR estimates derived from alternative covariance matrix forecasts

and VaR distributional assumptions. Specifically, the binomial test of correct unconditional and

conditional coverage, which is implicitly incorporated into the aforementioned bank capital require-

ments, is used to examine 1%, 5%, 10% and 25% VaR estimates.

The second set of techniques focus on the magnitude of the losses experienced when VaR

estimates are exceeded, clearly an issue of interest to financial institutions and their regulators. To

determine whether the magnitudes of observed exceptions are in keeping with the model generating

the VaR estimates, we use the hypothesis test based on the truncated normal distribution proposed

by Berkowitz (2001).

Finally, to examine the performance of the competing covariance matrix forecasts with respect
6Berkowitz and O’Brien (2002) report that the poor performance of banks trading portfolios during the 1998-2000

period is mainly due to interest rate positions.
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to regulatory capital requirements, we use the regulatory loss function implied by the U.S. imple-

mentation of the market risk amendment to the Basel Capital Accord. This loss function penalizes

a VaR model for poor performance by using a capital charge multiplier based on the number of

VaR exceptions; see Lopez (1999b) for further discussion.

Our findings are roughly in line with those of Lopez and Walter (2001), which were based on a

simple portfolio of foreign exchange positions. As per Ferreira (2001), we confirm that covariance

matrix forecasts generated from models that incorporate interest-rate level effect perform best under

statistical loss functions. However, within a VaR framework, we find that the relative performance

of covariance matrix forecasts depends greatly on the VaR models’ distributional assumptions. Of

the VaR forecasts examined, simple specifications, such as exponentially-weighted moving averages

of past observations, perform best with regard to the magnitude of VaR exceptions and regula-

tory capital requirements. Our results provide further empirical support for the commonly-used

VaR models based on simple covariance matrix forecasts and distributional assumptions, such as

the normal and the nonparametric distributions. Moreover, simple variance forecasts based only

on the portfolio returns (i.e., ignoring the portfolio’s component assets) perform as well as the

best covariance forecasts of individual portfolio assets’ and, in fact, generate the minimum capital

requirements in our exercise.

These findings are also mainly consistent with the evidence in Berkowitz and O’Brien (2002),

who analyzed the daily trading revenues and VaR estimates of six US commercial banks. They

conclude that these VaR estimates are too high, but that losses do significantly exceed the VaR

estimates at times within their sample period. They also find that a GARCH model of portfolio

returns that ignores the component assets, when combined with a normal distributional assumption,

provides VaR estimates and regulatory capital requirements that are comparable to other models

and does not produce such large VaR exceptions. Our results based on fixed portfolio weights

provide evidence that the Berkowitz and O’Brien (2002) finding is not explained by an offset

between the static portfolio weights (i.e., current portfolio weights overestimate future portfolio

weights if traders react to changes in volatility by adjusting their portfolio holdings in order to

minimize risk) and the neglected leptokurtosis of the portfolio return distribution.

The paper is structured as follows. Section 2 describes the issue of forecasting variances and

covariances and presents the alternative time-varying covariance specifications. We also compare
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the models in terms of out-of-sample forecasting power for variances and covariances. Section 3

describes the VaR models analyzed. Section 4 presents the results for the hypothesis tests that

make up the VaR evaluation framework. Section 5 concludes.

2 Time-Varying Covariance Models

In this paper, we study an equally-weighted US dollar-denominated portfolio of three month US

dollar (US$), Deutschemark (DM) and Japanese yen (JY) interest rates. We take the view of a US-

based investor, who is unhedged with respect to exchange rate risk. Thus, we need to estimate the

(5x5) variance-covariance matrix between the three interest rates as well as DM/US$ and JY/US$

exchange rates.

2.1 Forecasting Variances and Covariances

The empirical model for the short-term interest rates rit is given by, for i =US$,DM,JP,

rit − rit−1 = µi + κirit−1 + εit, (1)

and for the foreign exchange rate sit, for i =DM/US$,JY/US$,

ln

µ
sit
sit−1

¶
= εit, (2)

with E [εit|Ft−1] = 0 and where Ft−1 is the information set up to time t− 1. The conditional mean
function for the interest rate in (1) is given by a first order autoregressive process and we assume

a zero conditional mean for the continuously compounded foreign exchange rate of return in (2).

The conditional variance-covariance matrix Ht is (5× 5) with elements [hijt] . The conditional
covariance can be expressed as

hijt = E [εitεjt|Ft−1] , (3)

and the conditional correlation is given by
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ρijt =
E [εitεjt|Ft−1]p

E [εit|Ft−1]E [εjt|Ft−1]
=

hijtp
hiithjjt

. (4)

The first category of forecasts is based on sample variances-covariances using past data. Many

sample estimators have been proposed for the variance and covariance. The most popular is the

equally-weighted sample covariance, over the R week historical period,

bhijt = 1

R

R−1X
s=0

εit−sεjt−s. (5)

where εit−s is the return i on week t − s. The equally-weighted sample variance is a special case
of the previous expression when i = j. This forecast requires the selection of the amount of data

in computing the sample covariance. This is usually done using a fixed amount of data (up to the

estimation time t) and the resulting forecast is named of rolling sample covariance forecast. The

sample covariance estimator weights equally each past observation included in the estimate. We

consider two alternatives sample averages: the last 250 days (E250)7 and all past observations (Eall).

However, a common feature with financial data is that recent observations are more meaningful

than older ones. A way to incorporate this feature is to weight observations in inverse relation to

their age.

The exponentially-weighted sample covariance (EWMA) assigns more weight to recent observa-

tions relative to more distant observations. Let w be the weight factor (decay rate) with 0 < w ≤ 1.
The forecast formulated at time t is obtained using all available observations up to the estimation

time t,

bhijt = Pt−1
s=0w

sεit−sεjt−sPt−1
s=0w

s
. (6)

The exponentially-weighted sample variance is a special case of the previous expression8. In the

limit, the forecasts given by equation (6) include an infinite number of past observations, but with

those from a more distant past having assigned infinitesimally small weights. The magnitude of the

weight factor determines the degree to which more recent data is weighted. This is equivalent to the
7This window corresponds to the minimum amount of data allowed to formulate VaR forecasts for regulatory

capital purposes.
8The exponentially-weighted sample variance forecast is equivalent to a GARCH(1,1) model with β0 = 0, β1 = w

and β2 = 1−w, i.e. corresponds to an IGARCH model with zero constant.
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exponential smoother proposed in the Riskmetrics. The exponentially-weighted forecast requires

the estimation of the weight factor w. We assume a weight factor w = 0.94, which it is identical to

the one commonly used in practice (e.g. Riskmetrics).

We also consider forecasts based directly on the portfolio returns, which ignore the covariance

matrix specification completely. This approach significantly reduces the computational time (and

estimation errors) and presents comparable performance in terms of VaR as reported in Lopez

and Walter (2001) and Berkowitz and O’Brien (2002). In particular, we examine the equally-

weighted (with 250 and all past observations) and exponentially-weighted (with a decay factor of

0.94) sample variance of portfolio returns and denote them of E250 Portfolio, Eall Portfolio, and

EWMA Portfolio, respectively. We also consider a GARCH(1,1) variance model of portfolio return,

denoted GARCH Portfolio.

Multivariate GARCH models are a natural extension of the previous methods and are among

the most widely used time-varying covariance models. In the basic multivariate GARCH model, the

components of the conditional variance-covariance matrix Ht vary through time as functions of the

lagged values of Ht and of the squared innovations, εt is (5×1) vector of innovations. We model the
US$, DM and JP short-term interest rates as well as DM/US$ and JY/US$ foreign exchange rates

using a multivariate GARCH(1,1) structure because this process is able to successfully represent

most financial time series. We implement several (but not all) multivariate GARCH specifications

that have been suggested in the literature as we will discuss below.9

2.1.1 VECH Model

The VECH model of Bollerslev, Engle, and Wooldridge (1988) is a parsimonious version of the

most general multivariate GARCH model, and is given by, for i, j = 1, 2, ..., 5,

hijt = ωij + βijhijt−1 + αijεit−1εjt−1, (7)

where ωij , βij and αij are parameters. The VECH model is simply an ARMA process for εitεjt.

The covariance is estimated using geometrically declining weighted averages of past cross products

of innovations to the interest rate process. An implementation problem is that the model may not
9A notable exception is the recently proposed DCC model by Engle (2002).
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yield a positive definite covariance matrix. The VECH model does not allow for volatility spillover

effects, i.e. the conditional variance of a given variable is not a function of other variable shocks

and past variance.

2.1.2 Constant Correlation (CCORR) Model

In the CCORR model of Bollerslev (1990), the conditional covariance is proportional to the product

of the conditional standard deviations. Consequently, the conditional correlation is constant across

time. The model is described by the following equations, for i, j = 1, 2, ..., 5,

hiit = ωii + βiihiit−1 + αiiε
2
it−1, hijt = ρij

p
hiit−1

p
hjjt−1, for all i 6= j. (8)

The conditional covariance matrix of the CCORR model is positive definite if and only if the

correlation matrix is positive definite. Like in the VECH model there is no volatility spillover

effects across series.

2.1.3 BEKK Model

The BEKK model of Engle and Kroner (1995) addresses the problem of the estimated conditional

covariance matrix being positive definite. The model is given by:

Ht = Ω+B
0Ht−1B +A0εt−1ε0t−1A, (9)

where Ω, A, and B are (5× 5) matrices, with Ω symmetric. In the BEKK model, the conditional
covariance matrix is determined by the outer product matrices of the vector of past innovations.

As long as Ω is positive definite, the conditional covariance matrix is also positive definite because

the other terms in (9) are expressed in quadratic form.

2.1.4 General Dynamic Covariance (GDC) Model

The GDCmodel proposed by Kroner and Ng (1998) nests many of the existing multivariate GARCH

models. The conditional covariance specification is given by:

Ht = DtRDt +Φ ◦Θt, (10)

9



where ◦ is the Hadamard product operator (element-by-element matrix multiplication), Dt is a
diagonal matrix with elements

√
θiit, R =

£
ρij
¤
is the correlation matrix, Φ =

£
φij
¤
is a matrix of

parameters with φii = 0 for all i, Θt = [θijt],

θijt = ωij + b
0
iHt−1bj + a

0
iεt−1ε

0
t−1aj , for all i, j (11)

ai, bi, i = 1, 2, ..., 5 are (5 × 1) vectors of parameters, and ωij are scalars with Ω ≡ [ωij ] being a
diagonal positive definite (5× 5) matrix.

This model combines the constant correlation model with the BEKK model. The first term in

(10) is like the constant correlation model but with variance functions given by the BEKK model.

The second term in (10) has zero diagonal elements with the off-diagonal elements given by the

BEKK model covariance functions scaled by the φij parameters. Thus, the GDC model structure

can be written as follows:

hiit = θiit (12)

hijt = ρij
p
θiit
p
θjjt + φijθijt for all i 6= j.

The GDC model nests the other multivariate GARCH models discussed above10. The VECH model

assumes that ρij = 0 for all i 6= j.11 The BEKK model has the restrictions ρij = 0 for all i 6= j and
φij = 1 for all i 6= j. The CCORR model considers φij = 0 for all i 6= j.

2.1.5 GDC-Levels (GDC-L) Model

One of the most important features of the short-term interest rate volatility is the level effect, i.e.

volatility is a function of the interest rate level. Chan et al. (1992) was the first paper to document

this effect considering a conditional variance specification where the interest rate level solely drive

the evolution of the interest rate volatility. They found a volatility sensitivity to the interest rate

level very high in excess of the unity. However, subsequent work by Brenner, Harjes, and Kroner
10See proposition 1 in Kroner and Ng (1998).
11The GDC model does not nest exactly the VECH model but a restricted version of it with restrictions βij = βiiβjj

and αij = αiiαjj .
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(1996) show that the level effect exists but it is considerably smaller (consistent with a square root

process) by incorporating in the variance function both level and conditionally heteroskedasticity

effect (news effect) in a GARCH framework. Bali (2003) also finds that incorporating both GARCH

and level effects in the interest rate volatility specifications improves the pricing performance of

the models. Here, we consider a multivariate version of the Brenner et al. (1996) model combining

a multivariate GARCH model with the level effec.

The GDC model of Kroner and Ng (1998) can be extended to incorporate level effect in the

variance-covariance function for the interest rates (not for the exchange rates),

θijt = ω∗ij + b
0
iH

∗
t−1bj + a

0
iε
∗
t−1ε

∗0
t−1aj , for i, j = 1, 2, 3 (13)

where ω∗ii = ωii/r
2γi
it−1, the diagonal elements of the matrix H

∗
t−1 are multiplied by the factor

(rit−1/rit−2)2γi for all i, and the elements of the vector ε∗t−1 are divided by r
γi
it−1 for all i. The GDC-

Levels model nests the other multivariate GARCH models combined with level effect. The exact

form of conditional variance in the VECH model with level effect (VECH-Levels model, VECH-L)

for the interest rates is given by:

hiit =
³
ωii + βiihiit−1r

−2γi
it−2 + αiiε

2
it−1

´
r
2γi
it−1. (14)

The CCORR model with level effect (CCORR-Levels, CCORR-L) will also have a variance function

given by the equation (14) and the covariance function is defined as before. Similarly, we also

incorporate level effect within the BEKK specification (BEKK-Levels model, BEKK-L).

2.2 Models Estimation

2.2.1 Data Description

The interest rate data consists of US dollar (US$), Deutschemark (DM) and Japanese yen (JY) Lon-

don interbank money market three-month interest rates (middle rate) obtained from Datastream

(codes ECUSD3M, ECWGM3M and ECJAP3M, respectively).12 The interest rates are given in

percentage and in annualized form. These interest rates are taken as proxies for the instantaneous
12The only exception is the JY interest rate in the period from January 1995 to December 2000 in which we use

the three-month offered rate (code JPIBK3M).
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riskless interest rate (i.e., the short rate). We also require foreign exchange rates to compute U.S.

dollar investor rates of return. The exchange rate market data includes JY per US$ (denoted

JY/US$) and DM per US$ (denoted DM/US$) spot exchange rates in the London market also

from Datastream.13

The frequency is daily and covers the period from January 12, 1979 to December 29, 2000,

providing 5731 observations in total. Table 1 presents summary statistics for the interest and

exchange rates. The daily mean interest rate changes are close to zero. The daily interest rate

changes standard deviation differ considerably across countries with the US dollar interest rate

having an annualized standard deviation of 2.8% compared with 1.8% and 1.4% for the Japanese

and German interest rates, respectively. Foreign exchange rates present a much higher degree of

variation with an annualized standard deviation of about 11% for both series. Table 1 also presents

summary statistics for an equally-weighted portfolio of the US$, DM and JY interest rates with

returns calculated in US$ (see section 3 for a detailed portfolio definition). The mean portfolio

return is close to zero with an annualized standard deviation of 19.6%. The portfolio return

presents leptokurtosis, though less severe that most individual components series, with exception

of the DM/US$ exchange rate return.

As in most of the literature, we focus on nominal interest rates because defining real interest

rates, especially at high frequencies, is subject to serious measurement errors. The use of daily

frequency minimizes the discretization bias resulting from estimating a continuous-time process

using discrete periods between observations. On the other hand, the use of a three-month rate

maturity proxy for the instantaneous interest rate is unlikely to create a significant proxy bias as

shown in Chapman, Long, and Pearson (1999). Finally, we use interbank interest rates instead

of Treasury bill yields because of the low liquidity of the Treasury bill secondary market in both

Germany and Japan, in sharp contrast with the high liquidity of the interbank money market. The

concern regarding the existence of a default premium in the interbank money market should not

be severe since these interest rates result from trades among high-grade banks that are considered

almost default-free.
13For earlier years of the sample, the direct per US$ quotes are not available, but we construct the series from

British pound (BP) exchange rates quoted by WM/Reuters (US$ per BP, DM per BP and JY per BP rates).
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2.2.2 Forecasting Performance

We estimate the multivariate models parameters using the period from January 12, 1977 to Decem-

ber 29, 1989 (2861 daily observations) to calculate the models’ one-step-ahead variance-covariance

forecasts over the out-of-sample period from January 1, 1990 and December 29, 2000 (2870 obser-

vations). We use a fixed scheme to estimate the multivariate models’ parameters, i.e. we do not

reestimate the parameters as we move forward in the out-of-sample period.

Following standard practices, we estimate the models by maximizing the likelihood function

under the assumption of independent and identically distributed (i.i.d.) innovations. In addition, we

assume that the conditional density function of the innovations is given by the normal distribution.

Conditional normality of the innovations is often difficult to justify in many empirical applications

that use leptokurtic financial data. However, the maximum likelihood estimator based on the

normal density has a valid quasi-maximum likelihood (QML) interpretation as shown by Bollerslev

and Wooldridge (1992).14

Tables 2 and 3 presents models’ out-of-sample forecasting performance in terms of root mean

squared prediction error (RMPSE). Table 2 reports RMSPE for the variances of the five component

assets and the overall portfolio, and Table 3 reports RMSPE for ten relevant covariances. We also

report the Diebold and Mariano (1995) test statistic comparing the models’ forecasting accuracy

relative to the one with the minimum RMSPE.

Overall, the best performing interest rate volatility models are the VECH and CCORR models

with a level effect; note that including volatility spillover effects is not important. The null hypoth-

esis that the VECH-Levels and CCORR-Levels models perform similarly to the best forecast is only

rejected at the 5% level in 3 and 2 cases out of 15 cases (i.e., five variances and ten covariances),

respectively. The VECH-Levels and CCORR-Levels model are among the two best performing

models in 6 and 4 cases, respectively.

A simple model using equally-weighted moving averages of past 250 observations (E250) per-

forms similarly to the best multivariate models, especially in terms of covariance. Also, the

exponentially-weighted moving average (EWMA) forecast also performs quite well for variances,

though for covariances presents low accuracy in some cases. The null hypothesis of equality between
14Model parameters are not presented here in order to conserve space, but they are available from the authors

upon request.

13



this forecast and the minimizing forecast is only rejected at the 5% level in 3 cases and it is one of

the two RMSPE minimizing forecasts in 8 cases out of 15 cases.

The worst performing models are the GDC and GDC-Levels models, which are the most general

specifications and indicate that they tend to overfit the data in-sample. The GDC-Levels model

is rejected in 9 cases at the 5% level and in 3 cases (out of 15) at the 10% level in terms of

generating forecasts with similar performance to the best model. Among the simple models, the

equally-weighted moving average of all past observations (Eall) presents the worst performance

being rejected at the 5% level in 13 cases out of 15 cases.

The model selection is more important for forecasting interest rates variance, especially for the

US, than for forecasting exchange rates volatility. Also, the performance of covariance forecasts are

more sensitive to model selection than the performance of variance forecasts.

With respect to the portfolio variance, it is best forecast by the VECH-Levels model confirming

the models forecasting performance in terms of individual variances and covariances. The null

hypothesis of equal forecasting power relative to the best model is not rejected for the portfolio

variance forecasts that are based directly on the portfolio returns (GARCH Portfolio and EWMA

Portfolio). This result indicates that simple portfolio variance forecasts are useful, but that forecasts

based on covariance matrix specifications generally perform as well or better. Surprisingly, the

equally-weighted moving averages of past 250 observations forecast (E250) is rejected in terms of

forecasting portfolio variance, in contrast with its good performance for individual variances and

covariances.

In summary, statistical loss functions provide a useful, although incomplete, analysis of indi-

vidual assets’ variance and covariance as well as portfolio variance forecasts. Our results indicate

that the second moment forecasts from simple models and time-varying covariance models present

similar out-of-sample forecasting performance. In addition, the most complex time-varying covari-

ance models tend to overfit the data. Our findings are generally consistent with those of Ferreira

(2001) for interest rates, and West and Cho (1995) and Lopez (2001) for exchange rates. However,

economic loss functions that explicitly incorporate the costs faced by volatility forecast users pro-

vide the most meaningful forecast evaluations. In the next section, we examine the performance of

the covariance matrix forecasts within a value-at-risk framework.
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3 Value-at-Risk Framework

3.1 Portfolio Definition

Assume that we have a US fixed-income investor managing positions in US$, DM, and JY zero-

coupon bonds15 in terms of dollar-denominated returns16. The value of a zero-coupon bond with

unit face value and a three-month maturity at time t+ 1 is given by

PUS$t+1 = e
− 1
4
rUS$t+1 , (15)

where rUS$t+1 is the continuously compounded three-month interest rate (annualized). Define the

value of a US$ investment tomorrow to be

YUS$t+1 = YUS$te
RUS$t+1 , (16)

where RUS$t+1 denotes the day t+1 geometric rate of return on the three-month zero-coupon bond

investment. In the US case, YUS$t+1 = PUS$t+1, hence

RUS$t+1 = −
1

4
(rUS$t+1 − rUS$t) . (17)

The value of the DM zero-coupon bond in US$ tomorrow is given by:

YDMt+1 =
¡
YDMtsDM/US$t

¢
eRDM it+1sUS$/DMt+1, (18)

where sUS$/DMt is the exchange rate between US$ and DM. Thus, the day t+ 1 geometric rate of

return on the DM three-month zero-coupon bond investment given by:

ln (YDMt+1)− ln (YDMt) = RDMt+1 −∆ ln
¡
sDM/US$t+1

¢
, (19)

15We use bond returns implied by interbank money market rates (LIBOR) instead of bond returns. This is common
to other studies such as Duffie and Singleton (1997) and presents several advantages. First, the interbank money
market is more liquid than the Treasury bill market in most countries. Second, most interest rate derivatives are
priced using interbank interest rates. Third, credit risk minimally affects these rates as they are subject to special
contractual netting features and correspond to trades among high-grade banks.
16We take the perspective of a US-based investor, who is unhedged with respect to exchange rate risk.
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where RDMt+1 = −14 (rDMt+1 − rDMt) is the local-currency rate of return on the fixed income
investment and ∆ ln

¡
sDM/US$t+1

¢
=
£
ln
¡
sDM/US$t+1

¢− ln ¡sDM/US$t¢¤ is the foreign exchange rate
of return. The analysis for the JY fixed income position is the same as for the DM fixed income,

with the geometric rate of return on the JY three-month zero-coupon bond investment given by

ln (YJYt+1)− ln (YJYt) = RJYt+1 −∆ ln
¡
sJY/US$t+1

¢
, (20)

where RJYt+1 = −14 (rJYt+1 − rJYt) and ∆ ln
¡
sJY/US$t+1

¢
=
£
ln
¡
sJY/US$t+1

¢− ln ¡sJY/US$t¢¤ .
For simplicity, we will assume that the portfolio at time t is evenly divided between the three

fixed-income positions (equally-weighted portfolio). Thus, the investor’s market risk exposure is to

the sum of the three investment returns. That is,

Rpt+1 =

·
RUS$t+1 RDMt+1 ∆ ln

¡
sDM/US$t+1

¢
RJYt+1 ∆ ln

¡
sJY/US$t+1

¢ ¸
w0, (21)

where w =
·
1 1 −1 1 −1

¸
is the portfolio weight vector.

3.2 VaR Models and Exceptions

We examine the accuracy of several VaR models based on different covariance matrix specifications

and conditional densities. A VaR estimate on day t is a specified quantile of the forecasted return

distribution ft+k over a given holding period k. The VaR estimate at time t derived from model

m for a k-period-ahead return, denoted VaRmt(k,α), is the critical value that corresponds to the

lower α percent tail of the distribution,

VaRmt(k,α) = F−1mt+k(α) (22)

where F−1mt+k is the inverse of the cumulative distribution function to fmt+k. A VaRmodelm consists

of two items: a covariance matrix model and a univariate distributional assumption. Following

Lopez and Walter (2001), we separately specify the portfolio variance dynamics

hmpt+1 = w
0Hmt+1w, (23)
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and the distribution form of fmt+k.17 In terms of portfolio variance dynamics we consider eight

multivariate covariance model forecasts, three sample variance forecast and four portfolio variance

forecasts, in a total of 15. In terms of distributions we consider four alternative assumptions:

normal, t-student, generalized t-student, and nonparametric distribution. This gives a total of

60 VaR models. The last distributional form is the unsmoothed distribution of the standardized

portfolio returns residuals, which is the distribution used in the so-called “historical simulation”

approach for generating VaR estimates.

The t-distribution assumption requires an estimate of the number of degrees of freedom, which

affects the tail thickness of the distribution. This parameter is estimated using the in-sample stan-

dardized residuals generated by the 15 model specifications. The estimated number of degrees

of freedom ranges from 8 and 11, which correspond to some fat taildness, and the implied 1%

quantiles range from -2.9 to -2.7 compared with -2.33 for the normal distribution. The generalized

t-distribution assumption requires estimates of two parameters that control the tail thickness and

width of the center of the distribution, named n and q. The parameters n and q are also estimated

using the in-sample standardized residuals and are found to be approximately to 2.5 and 1, respec-

tively. These estimates imply considerable more fat taildness than the normal distribution at the

1% quantile (-3.27), but the reverse is true at the higher quantiles.

The nonparametric distribution quantiles are estimated using the unsmoothed distribution of

the standardized portfolio return residuals arising from each of the 15 models. The estimated

nonparametric critical values generally present more fat-taildness at the 1% and 5% quantiles than

the normal distribution, but the opposite is true at the higher quantiles.

The one-day-ahead VaR estimates from model m for the portfolio at the α quantile on day t is

VaRmt (α) =
p
hmpt+1F

−1
m (α) , (24)

where we drop the subscript t from the portfolio distribution because we assume that it is constant

across time. We then compare VaRmt (α) to the actual portfolio return on day t + 1, denoted
17The intuition for specifying a VaR model as a separate portfolio variance (whether based on a modeled covariance

matrix or portfolio variance) and a distributional assumption arises from the two-step procedure proposed by Engle
and Gonzalez-Rivera (1991). Note that an alternative approach is to estimate the parameters of a multivariate
volatility model using a distributional form other than the multivariate normal. However, such distributional forms
are difficult to specify and use in estimation.
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as Rpt+1. If Rpt+1 <VaRmt (α), then we have an exception. For testing purposes, we define the

exception indicator variable as

Imt+1 =

 1 if Rpt+1 < VaRmt (α)

0 if Rpt+1 ≥ VaRmt (α)
. (25)

3.3 VaR Evaluation Tests

3.3.1 Unconditional and Conditional Coverage Tests

Assuming that a set of VaR estimates and their underlying model are accurate, exceptions occur

when Rpt+1 <VaRmt (α) , and they can be modeled as independent draws from a binomial distrib-

ution with a probability of occurrence equal to α percent. Accurate VaR estimates should exhibit

the property that their unconditional coverage bα = x/T equals α percent, where x is the number
of exceptions and T the number of observations. The likelihood ratio statistic for testing whether

bα = α is

LRuc = 2
h
log
³bαx (1− bα)T−x´− log³αx (1− α)T−x

´i
, (26)

which has an asymptotic χ2 (1) distribution.18

The LRuc test is an unconditional test of the coverage of VaR estimates since it simply counts

exceptions over the entire period without reference to the information available at each point in

time. However, if the underlying portfolio returns exhibit time-dependent heteroskedasticity, the

conditional accuracy of VaR estimates is probably a more important issue. In such cases, VaR

models that ignore such variance dynamics will generate VaR estimates that may have correct

unconditional coverage, but at any given time, will have incorrect conditional coverage.

To address this issue, Christoffersen (1998) proposed conditional tests of VaR estimates based

on interval forecasts. VaR estimates are essentially interval forecasts of the lower 1% tail of fmt+1,
18The finite sample distribution of the LRuc statistic as well as the others in this study are of interest in actual

practice; see Lopez (1999a) and Lopez (1999b). For example, with respect to size, the finite sample distribution of
LRuc for specified (α, T ) values may be sufficiently different from a χ2(1) distribution that the asymptotic critical
values may be inappropriate. As for the power of this test, Kupiec (1995) shows how this test has a limited ability
to distinguish among alternative hypotheses and thus has low power in the typical samples of size 250 used for risk
management purposes. However, since 2,870 out-of-sample observations are used in this exercise, the asymptotic
distributions for all of the test statistics are used.
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the one-step-ahead return distribution. The LRcc test used here is a test of correct conditional

coverage. Since accurate VaR estimates have correct conditional coverage, the Imt+1 variable must

exhibit both correct unconditional coverage and serial independence. The LRcc test is a joint test

of these properties, and the relevant test statistic is LRcc = LRuc+LRind, which is asymptotically

distributed χ2 (2).

The LRind statistic is the likelihood ratio statistic for the null hypothesis of serial independence

against the alternative of first-order Markov dependence.19 The likelihood function under this

alternative hypothesis is

LA = (1− π01)
T00 πT0101 (1− π11)

T10 πT1111 , (27)

where the Tij notation denotes the number of observations in state j after having been in state i in

the previous period, π01 = T01/ (T00 + T01) and π11 = T11/ (T10 + T11) . Under the null hypothesis

of independence, π01 = π11 = π, and the likelihood function is

L0 = (1− π)T00+T01 πT01+T11 , (28)

where π = (T01 + T11) /T. The test statistic

LRind = 2 [logLA − logL0] , (29)

has an asymptotic χ2 (1) distribution.

3.3.2 Dynamic Quantile Test

We also use the Dynamic Quantile (DQ) test proposed by Engle and Manganelli (1999), which is

a Wald test of the hypothesis that all coefficients as well as the intercept are zero in a regression of

the exception indicator variable on its past values (we use 5 lags) and on current VaR, i.e.

Imt+1 = δ0 +
5X
k=1

δkImt−k+1 + δ6V aRmt + ²t+1 (30)

19As discussed in Christoffersen (1998), several other forms of dependence, such as second-order Markov dependence,
can be specified. For the purposes of this paper, only first-order Markov dependence is used.
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We estimate the regression model by OLS, and a good model should produce a sequence of unbiased

and uncorrelated Imt+1 variable, so that the explanatory power of this regression should be zero.

3.3.3 Distribution Forecast Test

Since VaR models are generally characterized by their distribution forecasts of portfolio returns,

several authors have suggested that evaluations should be based directly on these forecasts. Such

an evaluation would use all of the information available in the forecasts. The object of interest in

these evaluation methods is the observed quantile qmt+1, which is the quantile under the distribution

forecast fmt+1 in which the observed portfolio return Rpt+1 actually falls; i.e.,

qmt+1 (Rpt+1) =

Rpt+1Z
−∞

fmt+1 (Rp) dRp. (31)

If the underlying VaR model is accurate, then its qmt+1 series should be independent and uniformly

distributed over the unit interval.

Several hypothesis tests have been proposed for testing these two properties. Here, we use the

likelihood ratio test proposed by Berkowitz (2001)20. To examine whether the qmt+1 series exhibits

these properties, the zmt+1 series is generated by transforming the qmt+1 series with the inverse

of the standard normal cumulative distribution function; i.e. zmt+1 = Φ−1 (qmt+1) . If the VaR

model is correctly specified, the zmt+1 series should be independent and identically distributed as

standard normals. This hypothesis can be tested against alternative specifications, such as

zmt+1 − µm = ρm (zmt − µm) + ηt+1, (32)

where the parameters (µm, ρm) are respectively the conditional mean and AR(1) coefficient corre-

sponding to the zmt+1 series and ηt+1 is a normal random variable with mean zero and variance

σ2m. Under the null hypothesis that both properties are present,
¡
µm, ρm,σ

2
m

¢
= (0, 0, 1) . The

appropriate LR statistic is

LRdist = 2
£
L
¡
µm, ρm,σ

2
m

¢− L (0, 0, 1)¤ , (33)
20Crnkovic and Drachman (1996) suggest that these two properties be examined separately and thus propose two

separate hypothesis tests. Diebold, Gunther, and Tay (1998) propose the use of CUSUM statistic to test for these
properties simultaneously. Christoffersen and Pelletier (2003) propose duration-based tests.
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where L
¡
µm, ρm,σ

2
m

¢
= −12 log

³
2πσ2m
1−ρ2m

´
−
³
zmt+1− µm

1−ρm

´2
2σ2m/(1−ρ2m) −

(T−1) log(2πσ2m)
2 −PT−1

t=1
(zmt+1−µm−ρmzmt)2

2σ2m
.

The LRdist statistic is asymptotically distributed χ2(3).

3.3.4 Exception Magnitudes

The evaluation of VaR models, both in practice and in the literature, has generally focused on the

frequency of exceptions and thus has disregarded information on their magnitudes. However, as

discussed by Hendricks (1996) and Berkowitz (2001), the magnitudes of exceptions should be of

primary interest to the various users of VaR models.

We use an evaluation method that focuses on the magnitude of the losses experienced when

VaR estimates are exceeded. Berkowitz (2001) proposes a hypothesis test for determining whether

the magnitude of observed VaR exceptions are consistent with the underlying VaR model. The

key intuition is that VaR exceptions are treated as continuous random variables and not converted

into the binary Imt+1 variable used for the binomial tests. For this test, we focus on the exceptions

by treating non-exceptions as censored random variables. In essence, this test provides a middle

ground between the full distribution approach of the LRdist test and the frequency approach of the

LRuc and LRcc tests.

As with the LRdist test, the empirical quantile series is transformed into standard normal zmt+1

series. However, the zmt+1 values are treated as censored normal random variables, where the

censoring is tied to the desired coverage level of the VaR estimates. Thus, zmt+1 is transformed

into γmt+1 as follows:

γmt+1 =

 zmt+1 if zmt+1 < Φ−1 (α)

0 if zmt+1 ≥ Φ−1 (α)
, (34)

where Φ is the standard normal cumulative distribution function. The conditional likelihood func-

tion for the right-censored observations of γmt+1 = 0 (i.e., for non-exceptions) is

f
¡
γmt+1|zmt+1 ≥ Φ−1 (α)

¢
= 1−Φ

µ
Φ−1 (α)− µm

σm

¶
, (35)

where µm and σm are respectively the unconditional mean and standard deviation of the zmt+1
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series.21 The conditional likelihood function for γmt+1 = zmt+1 is that of a truncated normal

distribution,

f
¡
γmt+1|zmt+1 < Φ−1 (α)

¢
=

φ
¡
γmt+1

¢
Φ
³
Φ−1(α)−µm

σm

´ . (36)

where φ is the standard normal density function. Thus, the unconstrained conditional log-likelihood

is

Lmag (µm,σm) =
X

γmt+1=0

log

·
1− Φ

µ
Φ−1 (α)− µm

σm

¶¸
(37)

+
X

γmt+1 6=0
−1
2
log
¡
2πσ2m

¢− ¡γmt+1 − µm¢2
2σ2m

− log
·
Φ

µ
Φ−1 (α)− µm

σm

¶¸
.

If the VaR model generating the empirical quantiles is correct, the γmt+1 series should be identically

distributed, and (µm,σm) should equal (0, 1). Thus, the relevant test statistic is

LRmag = 2 [Lmag (µm,σm)− Lmag (0, 1)]

which is asymptotically distributed χ2(2).

3.3.5 Regulatory Loss Function

Under the 1996 Market Risk Amendment (MRA) to the Basel Capital Accord, regulatory capital for

the trading positions (e.g. interest rate and foreign exchange positions) of commercial banks is set

according to the banks’ own internal VaR estimates. Given its actual use by market participants, the

regulatory loss function implied in the MRA is a natural way to evaluate the relative performance

of VaR estimates within an economic framework; see Lopez (1999b) for further discussion.
21Note that this test does not examine the autocorrelation coefficient ρm discussed before, since the transformation

zmt+1 into the censored random variable γmt+1 disrupts the time sequence of the series. Thus, we only examine the
two unconditional moments of the zmt+1 series.
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The portfolio return in US dollars can expressed as

Rpt+1 = ln(YUS$t+1)− ln(YUS$t) + ln(YDMt+1)− ln(YDMt) + ln(YJYt+1)− ln(YJYt) (38)

= ln(YUS$t+1YDMt+1YJYt+1)− ln(YUS$tYDMtYJYt),

and the portfolio value in US dollar terms is,

Ypt+1 = Ypte
Rpt+1 (39)

= YUS$t+1YDMt+1YJYt+1.

Replacing Rpt+1 with the desired VaR estimate, VaRmt (α), we generate what the portfolio value

is expected to be at the lower α tail of the portfolio return distribution. Hence, to express the VaR

estimate in dollar terms, we have

VaR$mt (α) = Ypt
³
1− eV aRmt(α)

´
. (40)

In basic operational terms, we need to choose a starting portfolio value and track it over the sample

period in order to carry out this calculation. Note that we cannot standardize the portfolio values

over time by simply dividing by the initial value. The path dependence of the portfolio value cannot

be removed and must be accounted for in the calculations. The market-risk capital loss function is

specified as

MRCmt =
√
10max

·
VaR$mt (1%) ,

Smt
60

59P
k=0

V aR$mt−k (1%)
¸
+ SRmt, (41)

where Smt is the MRA’s multiplication factor (i.e., from 3 to 4 depending on the number of excep-

tions over the past 250 days) and SRmt is a specific risk charge that does not have to do with the

VaR modeling.

Under the current framework, Smt ≥ 3, and it is a step function that depends on the number
of exceptions observed over the previous 250 trading days.22 The possible number of exceptions
22Note that the portfolio returns reported to the regulators, commonly referred to as the profit & loss numbers,

will usually not directly correspond to Rpt+1. The profit & loss numbers are usually polluted by the presence of
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is divided into three zones. Within the green zone of four or fewer exceptions, a VaR model is

deemed “acceptably accurate” to the regulators, and Smt remains at its minimum value of three.

Within the yellow zone of five to nine exceptions, Smt increases incrementally with the number

of exceptions23. Within the red zone of ten or more exceptions, the VaR model is deemed to

be “inaccurate” for regulatory purposes, and Smt increases to its maximum value of four. The

institution must also explicitly take steps to improve its risk management system. Thus, banks

look to minimize exceptions (in order to minimize the multiplier) without reporting VaR estimates

that are too large and raise the average term in the loss function.

4 VaR Evaluation Results

This section presents the forecast evaluation results of our VaR models. Tables 4 and 5 report,

respectively, mean VaR estimates and the percentage of exceptions observed for each of the 60 VaR

models for the 1%, 5%, 10% and 25% quantiles over the entire out-of-sample period. These summary

statistics are key components of the VaR evaluation results reported in Tables 6-13. Both the tables

and the discussion below are framed with respect to the distributional assumption first and then

with respect to the relative performance of the 15 models’ second-moment specifications. Note

that eleven of the models specify the multivariate dynamics of the conditional variance-covariance

matrix and that four models only specify the dynamics of the portfolio’s conditional variance.

Table 4 show the mean VaR estimates for our alternative models. The most striking feature

is that the mean VaR estimates depends mainly on the VaR distributional assumption, rather

than on the covariance matrix forecast. The average 1% VaR estimates for the t- and generalized

t-distributions lies outside the first percentile of the portfolio return distribution; see Table 1. In

contrast, the average 1% VaR estimates under the normal distribution is greater than the first

percentile of the portfolio return. The nonparametric mean VaR estimate at the 1% quantile is

quite close the first percentile of the portfolio return for most covariance forecasts.

The observed frequency of exceptions reported in Table 5 confirms that the VaR normal esti-

mates at the 1% quantile are too low, with the observed frequency of exceptions above 1% for all

covariance matrix forecasts. However, at higher quantiles, the normal distribution tend to over-

customer fees and intraday trade results, which are not captured in standard VaR models.
23 In the yellow zone, the multiplier values for five through nine exceptions are 3.4, 3.5, 3.75 and 3.85, respectively.
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estimate the VaR estimates. While the t-distribution VaR estimates are too conservative at all

quantiles, the generalized t-distribution VaR estimates do not provide a clear pattern. The non-

parametric distribution assumption VaR estimates perform reasonable well at all quantiles, but

they show a tendency to generate VaR estimates that are too conservative.

4.1 Unconditional and Conditional Coverage Tests

Tables 6 and 7 report results for the unconditional (LRuc) and conditional coverage (LRcc) tests,

respectively. Note that the LRuc and LRcc test results are qualitatively similar. VaR models based

on the standard normal distributional assumption perform relatively well at the 1% quantile, in

that only a few sets of VaR estimates fail the LRuc and LRcc tests at the 5% significance level.

However, almost all fail at the higher quantiles (5%, 10% and 25%). It is interesting to find that

the standard normal distribution generates VaR estimates that perform well at such a low quantile,

especially since portfolio returns are commonly found to be distributed non-normally, in particular

with fatter tails. This result appears to be in line with those of Lucas (2000), who found that the

upward bias in the estimated dispersion measure under such models appears to partially offset the

neglected leptokurtosis.

VaR models based on the t-distribution assumption perform only modestly well for the 1%

quantile, i.e. only about a third of the covariance matrix specifications do not reject the null

hypotheses of the LRuc and LRcc tests. All specifications reject the null hypotheses at the higher

quantiles. Similarly, the results for the VaR models based on the generalized t-distribution, indicate

that most of the covariance matrix specifications fail at the lowest quantile, although they have

some very limited success at the higher quantiles. This result suggests that the tail thickness of

these distributional assumptions probably limits their use to just the lowest VaR coverage levels.

The nonparametric distributional results coverage test results provide evidence that these VaR

estimates do relatively well across all four quantiles. For the 1% quantile, all the specifications do not

reject the null hypotheses of correct unconditional and conditional coverage. While the performance

for the 5% quantiles is relatively poor and similar to alternative distributional assumptions, the

performance for the 10% and 25% quantiles is quite reasonable with non-rejections of the null

hypotheses in about 50% and 60% of the cases, respectively.

Although we can conclude that the standard normal and the nonparametric distributional
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assumptions produce the best VaR estimates, inference regarding the relative forecast accuracy of

the 11 covariance matrix specifications and 4 portfolio variance specifications is limited. As shown

in Tables 6 and 7, no strong conclusions can be drawn across the forecasts using the normal or

nonparametric distributional assumptions, specially at the 1% quantile. In addition, under the t-

distribution and generalized t-distribution little inference is possible, though a little bit more than

under the two alternative distributional assumptions.

The clearest result is that the best specification among the multivariate models seems to be

the BEKK model, while the worst performers are the CCORR model and the GDC model, which

is the most general one. There is no clear evidence that the level effect is important for VaR

model performance. The simple covariance forecasts seem to present similar performance to the

best multivariate models, in particular the exponentially- and equally-weighted using past 250 ob-

servations. Furthermore, univariate portfolio variance specifications that abstract from covariance

matrix forecasts indicate that one can reasonably simplify the generation of VaR estimates in this

way without sacrificing the accuracy of unconditional and conditional coverage.

In summary, these results indicate that the dominant factor in determining the relative accuracy

of VaR estimates with respect to coverage is the distributional assumption, which it is consistent

with the Lopez and Walter (2001) findings. The specifications of the portfolio variance, whether

based on covariance matrix forecasts or univariate forecasts, appear to be of second-order impor-

tance. These results provide support for the common industry practice of using the simple portfolio

variance specifications in generating VaR estimates. However, it does not completely explain why

practitioners have generally settled on the standard normal distributional assumption. Although

it did perform well for the lower coverage levels that are usually of interest, the nonparametric

distribution did better across the four quantiles examined.

4.2 Dynamic Quantile Test

Table 8 presents the results of the VaR estimates evaluation using the Dynamic Quantile test

proposed by Engle and Manganelli (1999). The results are mainly consistent with the ones using

the unconditional and conditional coverage tests. In fact, VaR models based on the standard normal

and nonparametric distributional assumption perform relatively well at the 1% quantile. Under the

non-parametric distributional assumption, all the specifications do not reject the null hypotheses
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of correct 1% VaR estimates, and the number of rejections under the standard normal is just two.

Furthermore, the nonparametric distribution presents the best performance at higher quantiles.

The VaR models based on the t-distribution and generalized t-distribution perform slightly better

for the 1% VaR estimates than in the unconditional and conditional coverage tests, even though

the performance is still clearly worse than for the alternative distributional assumptions.

4.3 Distribution Forecast Test

Table 9 contains the LRdist test results for the 60 VaR models. These results again show that the

standard normal and the nonparametric distributional assumptions generate VaR estimates that

perform relatively well. The null hypothesis of correct conditional distributional form is not rejected

in about half of the cases. For the entire distribution, the generalized-t distributional assumption

performs equally well, suggesting that these models’ quantiles closer to the median perform better

than their tail quantiles. The t-distributional assumption again performs poorly.

These results provide further evidence that the distributional assumption appears to drive

the VaR forecast evaluation results and that the portfolio variance specification is of secondary

importance. Once again, inference on the relative performance of these models is possible, but

limited. The clearest result is that the CCORR and GDC specifications are found to reject the

null hypothesis in all cases. The BEKK and VECH specifications present the best performance

among the multivariate models, but the level effect can again be dropped without affecting model

accuracy. Furthermore, the basically equivalent performance of the multivariate covariance matrix

specifications and the simple univariate forecasts, regardless of considering the individual portfolio

components, confirms that one may simplify the VaR calculations without being penalized in terms

of performance.

4.4 Exception Magnitudes

The previous tests do not take into account the magnitude of the exceptions, but only their fre-

quency. In this section, we analyze model performance by considering the size of the loss when an

exception occurs. Table 10 reports the mean exception; i.e., the average loss in excess of the VaR

estimate conditional on the portfolio return being less than the VaR estimate. The mean exception

is approximately 50% of the portfolio return standard deviation beyond the VaR estimate. As
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expected, the models based on the t-student distribution generate the lowest mean exceptions, but

only at the 1% quantile. The models based on the normal distribution seem to have the largest

mean exceptions at the 1% quantile, but at the 5% and higher quantiles, they have similar mean

exceptions. The distributional assumption does not seem to play such a dominant role in terms of

exception magnitude, as it did in terms of exception frequency.

The results of the LRmag tests for the four sets of VaR estimates using alternative distributional

assumptions are reported in Table 11. Since this is a joint null hypothesis regarding the frequency

of exceptions and their magnitudes, we expect that it would be rejected for the cases in which the

VaR estimates rejected the binomial null hypothesis alone. This result occurs in about 96% of the

cases (153 out of 160), but the bulk of the unexpected non-rejections of the joint null hypothesis

(4 out of 7) occur for the 1% VaR estimates, where the power of the binomial test is at its lowest.

Overall, the two sets of test results were in agreement in 74% of the cases (178 out of 240), and the

joint null hypothesis was rejected after the binomial null hypothesis was not rejected in another

23% of cases (55 of 240). Thus, the LRmag results are consistent with the LRuc results in 97% of

the cases, which is quite a reasonable rate of cross-test correspondence.

The vast majority of the VaR estimates reject the null hypothesis that the magnitude of their

VaR exceptions are consistent with the model, suggesting that the models are misspecified. In

90% of the cases (217 out of 240), the null hypothesis is rejected. Of the 23 cases in which the

null hypothesis is not rejected, about 60% of the cases (14 out of 23) are based on the 1% VaR

estimates.

Focusing first on the distributional assumptions underlying the VaR models, as before, the t-

distributional assumption performs poorly, and in all of its 60 cases, the null hypothesis is rejected.

The VaR estimates based on the other distributional assumptions perform equally well, although

all of the cases using the standard normal distribution that perform well are for the 1% quantile.

Focusing on the different specifications of the portfolio variance forecasts, more inference across

specifications using the LRmag test is possible because relatively few cases do not reject the null hy-

pothesis. For the standard normal distribution, inference on specifications is the most difficult since

half of the cases are found to be adequately specified. However, under the other two distributions,

more inference is possible.

Under the generalized t-distribution, the BEKK, VECH and VECH-L specifications perform
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well, although the VECH and VECH-L specification does so at only the 1% quantile. However,

the simple multivariate EWMA specification performs equally well at the 1% quantile. None of

the other univariate specifications pass the LRmag hypothesis test. If we combine the results of the

LRuc and the LRmag tests, only the BEKK, VECH and VECH-L specifications perform well.

However, the clearest inference on the portfolio variance specification is possible under the

nonparametric distribution. Of the multivariate specifications, only the BEKK-L and the E250

specifications perform reasonably well. Of the univariate specifications, the only one to perform

well is the EWMA Portfolio specification, which does not reject the null hypothesis of correct

specification for all quantiles. These results are not affected by combining the results of the LRuc

and the LRmag tests since they pass both of them at the 5% significance level. Thus, under the

LRmag test, the VaR estimates based on the least complex model specification perform best. That

is, the VaR estimates based on the simplest portfolio variance specification, the EWMA Portfolio

model, and the simplest distributional assumption, the nonparametric distribution, do not reject

the null hypothesis of correct model specification for all four quantiles of interest.

In summary, distributional assumptions also play an important role in the results of the LRmag

test, as in the other hypothesis tests. However, these results allow more inference across the

portfolio variance specifications, and the results indicate that the simplest VaR estimates perform

best. The VaR estimates based on the EWMA Portfolio specification, which ignores the portfolio’s

components, and the nonparametric distribution, which has no simple closed form expression,

performs best across the four quantiles of interest. This outcome presents further support and

validation for the current use of these simple VaR estimates by financial institutions, if only because

of the lower cost of generating these simple VaR estimates.

4.5 Regulatory Loss Function

As currently specified, the regulatory loss function is based on ten-day VaR estimates. However,

since we are examining one-step-ahead portfolio variance forecasts, we evaluate one-day VaR es-

timates using this loss function as it is common practice in backtesting procedures. As this loss

function does not correspond to a well-defined statistical test, we need to select a benchmark model

against which we compare the others. Given the common use of the EWMA-Normal model in prac-

tice, we choose its capital charges to be the benchmark against which the other models’ capital
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charges are compared.

Table 12 presents the percentage of the 2870 out-of-sample trading days for which the MRCmt+1

capital charges for the EWMA-Normal model are less than those of the other 59 VaR models. This

model clearly has lower capital requirements than all of the portfolio variance specifications under

the t-distribution and generalized-t distribution with the EWMA-Normal performing better than

these alternatives more than 75% of the time. The only VaR estimates that generates smaller

capital charges than those of the EWMA-Normal model for more than 50% of the trading days

are those of the EWMA Portfolio model under the normal distribution (EWMA Portfolio-Normal).

Note that the EWMA Portfolio model completely ignores the covariance matrix dynamics of the

portfolios’ component securities.

To more carefully examine these regulatory loss function results, we examine the differences

between the capital charges for the EWMA-Normal model and the other models using the Diebold-

Mariano test statistic. The null hypothesis that we investigate is whether the mean difference

between the two sets of capital charges is equal to zero. If we do not reject the null hypothesis,

then the alternative model does not perform worse than the EWMA-Normal model. If we reject

the null hypothesis and the mean difference is negative, then the EWMA-Normal model and its

VaR estimates perform better because they generate lower capital charges on average. If we reject

the null hypothesis and the mean difference is positive, then the alternative model and its VaR

estimates perform better.

Table 12 also present the p-values for the Diebold-Mariano statistics. In about 80% of the

cases (47 of 59 cases), we reject the null hypothesis in favor of the EWMA-Normal model. We

reject all the alternative VaR models based on the t-distribution and generalized-t distributional

assumption. For the nonparametric distribution, we do not reject the null hypothesis for only

the BEKK-L specification. For the normal distribution, 11 portfolio variance specifications do not

reject the null hypothesis, indicating that they perform as well as the EWMA-Normal model under

this regulatory loss function.

The most noteworthy case is the EWMA Portfolio-Normal distribution with a p-value of almost

100%, which implies that the capital charges from this model are, on average, significantly lower

than those for the benchmark model. In fact, when the EWMA Portfolio-Normal model is treated

as the benchmark as shown in Table 13, we reject the null hypothesis in all but four cases: BEKK-L,
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E250, Eall and E250 Portfolio, all cases under the normal distribution. This implies that these VaR

models perform as well as the EWMA Portfolio-Normal model under the regulatory loss function,

but they generate higher capital charges in more than 60% of the trading days. However, the

EWMA Portfolio-Normal model is much easier to estimate than the other models. Hence, under

this loss function, we can clearly state that this simple practitioner model that ignores the covariance

matrix dynamics of the portfolio’s component securities and the fat-tailed nature of the portfolio

returns is the best performing model to use when the objective is to minimize the regulatory capital

requirements.

5 Conclusion

We examine VaR estimates for an international interest rate portfolio using a variety of multivariate

volatility models, ranging from naive averages to standard time-series models. The question of

interest is whether the most complex covariance models provide improved out-of-sample forecasts

for use in VaR analysis in the case of an international interest rate portfolio.

We find that covariance matrix forecasts generated from models that incorporate interest-rate

level effect perform best under statistical loss functions, such as mean-squared error. Within a

VaR framework, the relative performance of covariance matrix forecasts depends greatly on the

VaR models’ distributional assumptions. Of the forecasts examined, simple specifications, such

as exponentially-weighted moving averages of past observations, perform best with regard to the

magnitude of VaR exceptions and regulatory capital requirements. Our results provide empirical

support for the commonly-used VaR models based on simple covariance matrix forecasts and distri-

butional assumptions, such as the standard normal. Moreover, portfolio variance forecasts directly

based on the portfolio returns, i.e. that ignore the covariance matrix dynamics of the portfolio’s

component securities, the fat-tailed nature of the portfolio returns and the current portfolio com-

position, present the best performance when the objective is to minimize the regulatory capital

requirements.

Overall, our results are consistent with those of Lopez and Walter (2001) and Berkowitz and

O’Brien (2002) for foreign-exchange rate portfolios and US commercial bank trading portfolios,

respectively. Also, note that this result closely parallels that of Beltratti and Morana (1999), who
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found that volatility forecasts from more complex models are fairly similar to those of simpler

GARCH models. They conclude that there is validity in the use of computationally simple models

for forecasting volatility. Similarly, Christoffersen and Jacobs (2002) found that in contrast to

inference based on stock returns, an objective function based on pricing stock options favors a

relatively parsimonious model. Hence, our results are in line with recent other findings that for

economic purposes, as expressed via economic loss functions associated with option pricing and risk

management, volatility forecasts from simpler models are found to outperform the forecasts from

more complex models.

The reasons for these findings range from the issue of parameter uncertainty, as per Skintzi,

Skiadopoulos, and Refenes (2003), to overfitting the data in-sample to the sensitivity (i.e., the first

derivative) of relevant economic loss functions to the volatility forecast inputs. An interesting paper

that addresses this question more directly is Lucas (2000), who finds that VaR models based on

simple measures of portfolio variance and the normal distribution generate smaller discrepancies

between actual and postulated VaR estimates than more sophisticated VaR models. He argues

that this outcome is based on offsetting biases in the variance and VaR estimates of simple models

that cannot be captured by more sophisticated models that attempt to capture the actual (but

unknown) degree of leptokurtosis in the portfolio returns. The reasons for these parallel results are

worth further study.
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Table 1: Summary Statistics of Interest and Exchange Rates
US$ DM JY DM/US$ JY/US$ Portfolio

Interest Rate Interest Rate Interest Rate FX Rate FX Rate Return
Panel A: εt

Mean -0.001 0.000 0.000 0.002 -0.010 0.008
Standard Deviation 0.173 0.085 0.114 0.670 0.695 1.213
Skewness -0.207 0.320 0.352 -0.261 -0.664 0.418
Kurtosis 28.85 18.53 48.91 2.770 5.055 3.109
Minimum -2.375 -1.000 -1.813 -5.785 -5.835 -6.046
1-th Percentile -0.031 -0.016 -0.004 -0.349 -0.334 -0.661
Median 0.000 0.000 0.000 0.000 0.000 -0.004
99-th Percentile 0.034 0.031 0.004 0.364 0.360 0.639
Maximum 2.500 1.125 1.625 3.037 3.385 10.725
Q(10) 489.6

[0.000]
31.73
[0.000]

65.16
[0.000]

13.17
[0.214]

18.63
[0.045]

13.48
[0.198]

Q(30) 1146.4
[0.000]

88.58
[0.000]

217.6
[0.000]

50.37
[0.011]

48.62
[0.017]

39.09
[0.124]

Q(50) 1789.1
[0.000]

125.1
[0.000]

332.0
[0.000]

74.81
[0.013]

63.97
[0.089]

56.91
[0.233]

Panel B: ε2t
Mean 0.030 0.007 0.013 0.449 0.483 1.472
Standard Deviation 0.166 0.032 0.093 0.980 1.285 3.330
Skewness 19.79 20.24 19.23 9.893 10.79 10.70
Kurtosis 605.0 619.6 494.4 241.6 195.3 262.1
Minimum 0.000 0.000 0.000 0.000 0.000 0.000
1-th Percentile 0.000 0.000 0.000 0.024 0.020 0.078
Median 0.001 0.001 0.000 0.128 0.122 0.426
99-th Percentile 0.004 0.004 0.004 0.469 0.449 1.506
Maximum 6.250 1.266 3.285 33.47 34.05 14.16
Q(10) 1851.2

[0.000]
2417.5
[0.000]

2773.2
[0.000]

266.33
[0.000]

415.89
[0.000]

153.1
[0.000]

Q(30) 4700.5
[0.000]

2889.9
[0.000]

4958.3
[0.000]

519.5
[0.000]

663.0
[0.000]

283.4
[0.000]

Q(50) 6458.3
[0.000]

3221.2
[0.000]

6684.1
[0.000]

590.8
[0.000]

715.8
[0.000]

313.9
[0.000]

This table reports summary statistics on daily interest rates changes and foreign exchage rates geometric
returns. Q(k) is the Ljung-Box test statistics of order k with p-values in brackets.
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Table 2: Out-of-Sample RMSPE for Variances Forecasts
Interest Rate Variance FX Rate Variance Portfolio

US$ DM JY DM/US$ JY/US$ Variance(×102)
BEKK 0.01467∗∗ 0.01392 0.01009∗ 0.85397 1.34429 0.02876
BEKK-L 0.01462 0.01534∗∗∗ 0.00991 0.85370 1.34335 0.02873
CCORR 0.01477∗∗∗ 0.01385 0.01019∗ 0.85635 1.33941 0.02883
CCORR-L 0.01453 0.01369 0.01005 0.85636 1.33942 0.02883
GDC 0.01480∗∗∗ 0.01368 0.01049∗∗ 0.85714∗∗ 1.34031 0.02874
GDC-L 0.01467∗∗∗ 0.01379 0.01037∗∗ 0.85626∗∗ 1.34042 0.02875
VECH 0.01475∗∗∗ 0.01381 0.01017∗ 0.85568 1.34138 0.02868
VECH-L 0.01455∗∗∗ 0.01368 0.01002 0.85572 1.34139 0.02868
E250 0.01476 0.01423 0.00980 0.86828∗∗∗ 1.37766∗∗ 0.02930∗∗∗

Eall 0.04049∗∗∗ 0.01519∗∗∗ 0.01893∗∗∗ 0.87222∗∗∗ 1.38265∗ 0.02918∗∗∗

EWMA 0.01461∗∗∗ 0.01395 0.00987 0.85694∗ 1.34830 0.02880
E250 Port - - - - - 0.02930∗∗∗

Eall Port - - - - - 0.02921∗∗∗

EWMA Port - - - - - 0.02869
GARCH Port - - - - - 0.02881

This table presents RMSPE for the daily interest rate changes variance and foreign exchange rate geometric
returns variance using alternative model specifications. The minimum value in each column is in bold and
underlined, and the second smallest value is just in bold. ∗∗∗ denotes significance at the 1% level, ∗∗ at
the 5% level and ∗ at the 10% level of the Diebold-Mariano test statistic, which test the null hypothesis of
equal loss functions values between the forecast and the minimizing forescat.
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Table 3: Out-of-Sample RMSPE for Covariances Forecasts
Interest Rates Covariance Covariances between Interest Rates and FX Rates FX Rates

Covariance
US$ US$ DM US$ US$ DM DM JY JY DM/US$
DM JY JY DM/US$ JY/US$ DM/US$ JY/US$ DM/US$ JY/US$ JY/US$

BEKK 0.00762∗ 0.00356∗∗∗ 0.00391∗∗∗ 0.05401∗∗ 0.04159∗∗∗ 0.05799∗ 0.04487∗∗ 0.03500∗∗∗ 0.03802∗∗ 0.64996
BEKK-L 0.00750 0.00345∗∗∗ 0.00395∗∗∗ 0.05332 0.04078 0.05645 0.04469∗ 0.03486∗∗∗ 0.03796∗∗∗ 0.65004
CCORR 0.00754 0.00343∗∗ 0.00379∗∗ 0.05344 0.04095 0.05756∗ 0.04473 0.03424∗∗ 0.03750∗∗∗ 0.66641∗∗∗

CCORR-L 0.00751 0.00342∗ 0.00379∗∗ 0.05340 0.04087 0.05764∗ 0.04472 0.03422 0.03745 0.66641∗∗∗

GDC 0.00759∗ 0.00346∗∗∗ 0.00381∗∗∗ 0.05324 0.04130∗∗ 0.05771∗ 0.04476 0.03453∗∗∗ 0.03759∗∗∗ 0.65609∗∗∗

GDC-L 0.00759∗ 0.00345∗∗∗ 0.00382∗∗∗ 0.05334 0.04117∗∗ 0.05787∗ 0.04487∗ 0.03455∗∗∗ 0.03759∗∗∗ 0.65486∗∗∗

VECH 0.00753 0.00343∗∗∗ 0.00378∗∗ 0.05323 0.04084 0.05593 0.04461∗∗ 0.03425 0.03752 0.65365∗

VECH-L 0.00751 0.00340 0.00378∗∗∗ 0.05324 0.04082 0.05598 0.04460∗∗ 0.03426 0.03752 0.65377∗

E250 0.00750 0.00339 0.00376 0.05356 0.04080 0.05579 0.04434 0.03428 0.03746 0.65753∗∗∗

Eall 0.00846∗∗∗ 0.00388∗∗∗ 0.00402∗∗∗ 0.06050∗∗∗ 0.04476∗∗∗ 0.05666 0.04488∗∗∗ 0.03439∗∗∗ 0.03802∗∗∗ 0.66157∗∗∗

EWMA 0.00754 0.00343∗∗ 0.00382∗∗∗ 0.05355 0.04111∗∗ 0.05507 0.04500∗∗ 0.03474∗∗∗ 0.03788∗ 0.65214

This table presents RMSPE for the daily interest rate changes and foreign exchange rate geometric returns covariances using alternative model
specifications. The minimum value in each column is in bold and underlined, and the second smallest value is just in bold. ∗∗∗ denotes significance
at the 1% level, ∗∗ at the 5% level and ∗ at the 10% level of the Diebold-Mariano test statistic, which test the null hypothesis of equal loss functions
values between the forecast and the minimizing forescat.
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Table 4: Mean Value-at-Risk
Normal distribution t-distribution Generalized t-distribution Nonparametric distribution

1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25%
BEKK -2.704 -1.915 -1.494 -0.790 -3.158 -2.090 -1.589 -0.817 -3.257 -1.568 -1.090 -0.527 -2.952 -1.888 -1.390 -0.681
BEKK-L -2.721 -1.928 -1.505 -0.799 -3.177 -2.104 -1.601 -0.826 -3.015 -1.461 -1.025 -0.509 -2.802 -1.882 -1.393 -0.688
CCORR -2.879 -2.040 -1.592 -0.844 -3.419 -2.246 -1.703 -0.875 -4.047 -1.444 -1.395 -0.683 -3.244 -2.092 -1.530 -0.759
CCORR-L -2.880 -2.040 -1.592 -0.843 -3.419 -2.246 -1.703 -0.874 -4.398 -2.216 -1.539 -0.738 -3.227 -2.091 -1.525 -0.758
GDC -2.827 -2.000 -1.559 -0.822 -3.358 -2.203 -1.669 -0.853 -3.406 -1.637 -1.135 -0.546 -3.164 -2.022 -1.484 -0.734
GDC-L -2.806 -1.988 -1.552 -0.823 -3.332 -2.190 -1.661 -0.854 -3.379 -1.629 -1.133 -0.550 -3.139 -2.034 -1.498 -0.738
VECH -2.761 -1.955 -1.526 -0.808 -3.224 -2.134 -1.623 -0.836 -3.059 -1.480 -1.038 -0.514 -3.040 -1.956 -1.406 -0.697
VECH-L -2.768 -1.961 -1.530 -0.811 -3.232 -2.140 -1.627 -0.838 -3.067 -1.484 -1.041 -0.516 -3.048 -1.961 -1.412 -0.699
E250 -2.718 -1.922 -1.497 -0.788 -3.296 -2.142 -1.616 -0.821 -4.157 -2.089 -1.447 -0.689 -2.906 -1.967 -1.430 -0.683
Eall -2.793 -1.975 -1.538 -0.810 -3.477 -2.232 -1.677 -0.848 -4.663 -2.431 -1.681 -0.795 -3.141 -2.040 -1.488 -0.681
EWMA -2.618 -1.851 -1.442 -0.759 -3.259 -2.092 -1.572 -0.795 -4.371 -2.279 -1.576 -0.746 -3.155 -1.950 -1.400 -0.626
E250 Port -2.724 -1.926 -1.500 -0.790 -3.182 -2.103 -1.596 -0.817 -3.019 -1.455 -1.017 -0.498 -2.868 -1.911 -1.378 -0.653
Eall Port -2.869 -2.028 -1.580 -0.832 -3.408 -2.235 -1.692 -0.863 -4.387 -2.205 -1.527 -0.727 -3.130 -2.027 -1.493 -0.719
EWMA Port -2.622 -1.854 -1.444 -0.760 -3.180 -2.066 -1.559 -0.792 -4.009 -2.015 -1.396 -0.665 -3.030 -1.900 -1.388 -0.665
GARCH Port -2.800 -1.979 -1.542 -0.812 -3.226 -2.145 -1.632 -0.837 -3.104 -1.496 -1.045 -0.512 -3.002 -1.986 -1.440 -0.708

This table shows mean VaR estimates in percentage for the alternative VaR models under the 1%, 5%, 10% and 25% significance levels.
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Table 5: Observed Frequency of Exceptions
Normal distribution t-distribution Generalized t-distribution Nonparametric distrib.

1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25%
BEKK 1.29 4.25 7.94 21.56 0.70 3.10 6.58 20.77 0.59 6.93 14.04 29.69 0.87 4.39 9.02 24.39
BEKK-L 1.18 4.18 7.87 21.25 0.66 3.07 6.59 20.59 0.77 8.22 15.44 30.28 0.98 4.49 8.95 24.29
CCORR 1.21 3.45 6.76 20.21 0.49 2.47 5.75 19.37 0.17 8.57 9.30 24.91 0.66 3.17 7.70 22.26
CCORR-L 1.22 3.45 6.76 20.21 0.49 2.47 5.75 19.37 0.10 2.65 7.53 22.96 0.70 3.17 7.74 22.37
GDC 1.08 3.66 7.28 20.77 0.42 2.72 5.92 20.07 0.38 6.20 13.45 29.09 0.66 3.55 8.12 23.17
GDC-L 1.08 3.73 7.28 20.73 0.49 2.79 6.03 20.03 0.42 6.24 13.48 28.71 0.70 3.41 8.01 22.96
VECH 1.15 4.08 7.63 21.01 0.59 3.10 6.59 20.45 0.77 8.15 15.33 30.45 0.80 4.08 9.02 24.36
VECH-L 1.15 4.01 7.60 20.94 0.59 3.07 6.59 20.34 0.77 8.12 15.26 30.21 0.77 4.01 8.89 24.29
E250 1.57 4.36 8.36 21.01 0.66 3.27 7.18 20.24 0.14 3.48 9.02 24.29 1.32 4.22 9.16 24.56
Eall 1.36 4.04 7.70 20.59 0.52 2.72 5.99 19.79 0.07 2.09 5.99 20.98 0.73 3.55 8.22 23.83
EWMA 1.71 5.02 8.85 22.86 0.63 3.52 7.49 21.32 0.10 2.75 7.49 23.55 0.73 4.32 9.34 26.69
E250 Port 1.53 4.36 8.26 20.98 0.84 3.38 7.39 20.35 1.15 8.89 16.03 30.38 1.36 4.34 9.79 25.54
Eall Port 1.25 3.69 7.04 20.03 0.56 2.72 5.75 19.48 0.10 2.96 7.77 22.40 0.77 3.69 8.08 22.61
EWMA Port 1.57 5.09 8.95 22.89 0.77 3.69 7.80 21.50 0.21 3.97 9.51 25.68 0.84 4.60 9.51 25.64
GARCH Port 1.11 3.83 7.35 20.87 0.59 2.86 6.27 20.14 0.70 7.94 14.98 30.00 0.87 3.83 8.50 23.69

This table shows the observed frequency in percentage of exceptions for the alternative VaR models under 1%, 5%, 10% and 25% signficance levels.
An exception is defined by the indicator variable Imt+1 for whether an exception occurrence is constructed as 1 if Rpt+1 < V aRmt (α) , where Rpt+1
is the portfolio return on day t + 1 and V aRmt (α) is the Value-at-Risk calculated on the previous business day with significance level α and using
covariance specification m.
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Table 6: Unconditional Coverage Test Results
Normal distribution t-distribution Generalized t-distribution Nonparametric distribution

1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25%
BEKK 0.136 0.059 0.000 0.000 0.084 0.000 0.000 0.000 0.018 0.054 0.000 0.000 0.478 0.126 0.077 0.449
BEKK-L 0.334 0.039 0.000 0.000 0.053 0.000 0.000 0.000 0.190 0.000 0.000 0.000 0.895 0.207 0.058 0.375
CCORR 0.253 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.209 0.914 0.053 0.000 0.000 0.001
CCORR-L 0.253 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.084 0.000 0.000 0.001
GDC 0.670 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.053 0.000 0.000 0.023
GDC-L 0.670 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.084 0.000 0.000 0.011
VECH 0.431 0.019 0.000 0.000 0.018 0.000 0.000 0.000 0.190 0.000 0.000 0.000 0.268 0.019 0.077 0.424
VECH-L 0.431 0.012 0.000 0.000 0.018 0.000 0.000 0.000 0.190 0.000 0.000 0.000 0.190 0.012 0.043 0.375
E250 0.005 0.106 0.003 0.000 0.053 0.000 0.000 0.000 0.000 0.000 0.077 0.375 0.097 0.048 0.130 0.589
Eall 0.067 0.012 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.129 0.000 0.001 0.147
EWMA 0.000 0.966 0.037 0.007 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.072 0.129 0.088 0.232 0.038
E250 Port 0.008 0.106 0.001 0.000 0.364 0.000 0.000 0.000 0.431 0.000 0.000 0.000 0.067 0.106 0.708 0.505
Eall Port 0.188 0.001 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.190 0.001 0.000 0.003
EWMA Port 0.005 0.831 0.058 0.008 0.190 0.001 0.000 0.000 0.000 0.009 0.380 0.402 0.365 0.318 0.380 0.427
GARCH Port 0.543 0.003 0.000 0.000 0.018 0.000 0.000 0.000 0.084 0.000 0.000 0.000 0.478 0.003 0.007 0.104

This table shows the p-value for the LRuc statistics for the alternative VaR models under 1%, 5%, 10% and 25% significance levels. The LRuc
statistics are asymptotically distributed X 2(1). The cells in bold font indicate rejection of the null hypothesis of correct VaR estimates at the 5%
significance level.
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Table 7: Conditional Coverage Test Results
Normal distribution t-distribution Generalized t-distribution nonparametric distribution

1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25%
BEKK 0.203 0.082 0.000 0.000 0.196 0.000 0.000 0.000 0.054 0.000 0.000 0.000 0.625 0.183 0.074 0.692
BEKK-L 0.416 0.081 0.000 0.000 0.135 0.000 0.000 0.000 0.358 0.000 0.000 0.000 0.753 0.300 0.051 0.609
CCORR 0.337 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.142 0.992 0.135 0.000 0.000 0.003
CCORR-L 0.337 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.196 0.000 0.000 0.004
GDC 0.650 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.135 0.000 0.000 0.075
GDC-L 0.650 0.002 0.000 0.000 0.009 0.000 0.000 0.000 0.002 0.002 0.000 0.000 0.196 0.000 0.000 0.040
VECH 0.499 0.040 0.000 0.000 0.054 0.000 0.000 0.000 0.358 0.000 0.000 0.000 0.450 0.040 0.074 0.732
VECH-L 0.499 0.023 0.000 0.000 0.054 0.000 0.000 0.000 0.358 0.000 0.000 0.000 0.358 0.023 0.048 0.681
E250 0.008 0.010 0.000 0.000 0.135 0.000 0.000 0.000 0.000 0.000 0.015 0.528 0.206 0.008 0.022 0.735
Eall 0.109 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.272 0.000 0.001 0.338
EWMA 0.001 0.384 0.053 0.028 0.088 0.000 0.000 0.000 0.000 0.000 0.000 0.201 0.272 0.125 0.279 0.110
E250 Port 0.027 0.010 0.000 0.000 0.542 0.000 0.000 0.000 0.511 0.000 0.000 0.000 0.157 0.010 0.065 0.784
Eall Port 0.265 0.000 0.000 0.000 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.359 0.000 0.000 0.012
EWMA Port 0.018 0.421 0.091 0.032 0.358 0.002 0.000 0.000 0.000 0.010 0.389 0.688 0.542 0.186 0.389 0.706
GARCH Port 0.579 0.005 0.000 0.000 0.054 0.000 0.000 0.000 0.196 0.000 0.000 0.000 0.625 0.005 0.006 0.266

This table shows the p-value for the LRcc statistics for the alternative VaR models under 1%, 5%, 10% and 25% significance levels. The LRcc statistics
are asymptotically distributed X 2(2). The cells in bold font indicate rejection of the null hypothesis of correct VaR estimates at the 5% significance
level.
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Table 8: Dynamic Quantile Test Results
Normal distribution t-distribution Generalized t-distribution Nonparametric distribution

1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25%
BEKK 0.707 0.090 0.000 0.001 0.522 0.000 0.000 0.000 0.159 0.001 0.000 0.000 0.956 0.111 0.097 0.311
BEKK-L 0.877 0.090 0.000 0.000 0.435 0.000 0.000 0.000 0.786 0.000 0.000 0.000 0.959 0.194 0.083 0.323
CCORR 0.813 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.515 0.347 0.365 0.000 0.000 0.014
CCORR-L 0.813 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.090 0.485 0.000 0.000 0.020
GDC 0.962 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.033 0.000 0.000 0.425 0.000 0.002 0.171
GDC-L 0.960 0.004 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.038 0.000 0.000 0.573 0.000 0.001 0.097
VECH 0.938 0.067 0.000 0.000 0.154 0.000 0.000 0.000 0.793 0.000 0.000 0.000 0.841 0.067 0.201 0.498
VECH-L 0.938 0.068 0.000 0.000 0.153 0.000 0.000 0.000 0.792 0.000 0.000 0.000 0.792 0.068 0.144 0.468
E250 0.017 0.000 0.000 0.000 0.145 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.438 0.000 0.000 0.014
Eall 0.213 0.000 0.000 0.000 0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.383 0.000 0.000 0.333
EWMA 0.043 0.104 0.018 0.021 0.173 0.000 0.000 0.000 0.000 0.000 0.000 0.132 0.516 0.013 0.035 0.024
E250 Port 0.035 0.000 0.000 0.000 0.832 0.000 0.000 0.000 0.314 0.000 0.000 0.000 0.367 0.000 0.001 0.042
Eall Port 0.140 0.000 0.000 0.000 0.066 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.486 0.000 0.000 0.059
EWMA Port 0.053 0.120 0.023 0.023 0.528 0.000 0.000 0.000 0.000 0.000 0.044 0.168 0.772 0.019 0.044 0.135
GARCH Port 0.950 0.015 0.000 0.000 0.162 0.000 0.000 0.000 0.572 0.000 0.000 0.000 0.939 0.015 0.039 0.225

This table shows the p-value for the DQ statistic for the alternative VaR models under 1%, 5%, 10% and 25% signficance levels. The DQ statistics
are asymptotically distributed X 2(7). The cells in bold font indicate rejection of the null hypothesis of correct VaR estimates at the 5% significance
level.
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Table 9: Distribution Forecast Test Results
Normal t-distribution Generalized Nonparametric

distribution t-distribution distribution
BEKK 0.433 0.000 0.520 0.265
BEKK-L 0.329 0.000 0.475 0.381
CCORR 0.000 0.000 0.000 0.000
CCORR-L 0.000 0.000 0.000 0.000
GDC 0.001 0.000 0.016 0.000
GDC-L 0.011 0.000 0.041 0.000
VECH 0.204 0.000 0.510 0.090
VECH-L 0.162 0.000 0.507 0.119
E250 0.298 0.000 0.142 0.536
Eall 0.160 0.000 0.000 0.000
EWMA 0.000 0.000 0.231 0.135
E250 Port 0.360 0.000 0.570 0.012
Eall Port 0.001 0.000 0.002 0.000
EWMA Port 0.000 0.000 0.188 0.804
GARCH Port 0.003 0.000 0.035 0.004

This table shows the p-value for the LRdist statistics for the alternative VaR models under 1%, 5%, 10%
and 25% quantiles. The LRdist statistic is asymptotically distributed X 2(3). The cells in bold font indicate
rejection of the null hypothesis of correct VaR estimates at the 5% significance level.
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Table 10: Mean Exception
Normal distribution t-distribution Generalized t-distribution Nonparametric distribution

1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25%
BEKK -0.579 -0.633 -0.646 -0.686 -0.483 -0.655 -0.673 -0.685 -0.458 -0.660 -0.675 -0.724 -0.563 -0.640 -0.667 -0.709
BEKK-L -0.602 -0.630 -0.641 -0.688 -0.483 -0.648 -0.661 -0.682 -0.567 -0.658 -0.677 -0.727 -0.643 -0.631 -0.669 -0.706
CCORR -0.551 -0.671 -0.667 -0.681 -0.524 -0.691 -0.663 -0.678 -0.598 -0.658 -0.651 -0.696 -0.537 -0.676 -0.642 -0.698
CCORR-L -0.551 -0.671 -0.667 -0.681 -0.524 -0.690 -0.663 -0.679 -0.477 -0.674 -0.648 -0.697 -0.527 -0.677 -0.644 -0.696
GDC -0.603 -0.651 -0.640 -0.681 -0.612 -0.638 -0.666 -0.673 -0.619 -0.668 -0.660 -0.720 -0.528 -0.648 -0.645 -0.693
GDC-L -0.620 -0.650 -0.646 -0.681 -0.547 -0.635 -0.662 -0.674 -0.589 -0.671 -0.660 -0.725 -0.526 -0.661 -0.639 -0.695
VECH -0.634 -0.623 -0.648 -0.687 -0.556 -0.615 -0.646 -0.678 -0.573 -0.649 -0.671 -0.718 -0.567 -0.622 -0.655 -0.696
VECH-L -0.627 -0.628 -0.646 -0.686 -0.549 -0.616 -0.642 -0.679 -0.566 -0.648 -0.671 -0.722 -0.584 -0.628 -0.659 -0.695
E250 -0.614 -0.698 -0.668 -0.724 -0.531 -0.681 -0.654 -0.718 -0.593 -0.689 -0.666 -0.717 -0.533 -0.676 -0.672 -0.714
Eall -0.650 -0.700 -0.675 -0.713 -0.569 -0.718 -0.713 -0.703 -0.761 -0.707 -0.708 -0.715 -0.684 -0.719 -0.681 -0.736
EWMA -0.510 -0.601 -0.638 -0.677 -0.498 -0.586 -0.618 -0.689 -0.366 -0.552 -0.614 -0.670 -0.514 -0.598 -0.643 -0.701
E250 Port -0.622 -0.694 -0.674 -0.723 -0.513 -0.697 -0.655 -0.719 -0.499 -0.668 -0.691 -0.742 -0.556 -0.708 -0.678 -0.716
Eall Port -0.621 -0.703 -0.695 -0.711 -0.593 -0.713 -0.726 -0.700 -0.759 -0.684 -0.680 -0.735 -0.659 -0.704 -0.687 -0.737
EWMA Port -0.556 -0.590 -0.630 -0.676 -0.470 -0.583 -0.607 -0.687 -0.374 -0.587 -0.638 -0.691 -0.558 -0.608 -0.645 -0.691
GARCH Port -0.610 -0.640 -0.652 -0.689 -0.545 -0.663 -0.668 -0.688 -0.573 -0.649 -0.679 -0.731 -0.554 -0.633 -0.660 -0.704

This table shows mean exception in excess of the VaR conditional on the portfolio return being lower than the VaR estimate in each day. Mean
exception is shown in percentage for the alternative VaR models under the 1%, 5%, 10% and 25% significance levels.
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Table 11: Normal Transform Test Results
Normal distribution t-distribution Generalized t-distribution Nonparametric distribution

1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25%
BEKK 0.208 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.635 0.789 0.072 0.000 0.035 0.000 0.000 0.001
BEKK-L 0.097 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.000 0.000 0.000 0.120 0.006 0.007 0.828
CCORR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CCORR-L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GDC 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.142 0.000 0.000 0.000 0.000
GDC-L 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000
VECH 0.076 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.094 0.000 0.000 0.000 0.023 0.000 0.000 0.017
VECH-L 0.053 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.132 0.000 0.000 0.000 0.031 0.000 0.000 0.035
E250 0.078 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.000 0.000 0.000 0.320 0.227 0.386 0.001
Eall 0.054 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000
EWMA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.000 0.000 0.000 0.015 0.000 0.000 0.000
E250 Port 0.100 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Eall Port 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EWMA Port 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.785 0.479 0.350 0.243
GARCH Port 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000

This table shows the p-value for the LRmag test statistic for the alternative VaR models under 1%, 5%, 10% and 25% significance levels. The LRmag
statistic is asymptotically distributed X 2(2). The cells in bold font indicate rejection of the null hypothesis of correct VaR estimates at the 5%
significance level.
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Table 12: Capital Charge Relative to Benchmark Model - EWMA-Normal
Normal distrib. t-distribution Generalized t-distrib. Nonparametric distrib.

% trading p-value % trading p-value % trading p-value % trading p-value
BEKK 57.11 0.539 87.14 0.000 89.66 0.000 70.43 0.010
BEKK-L 55.40 0.696 87.33 0.000 78.14 0.000 58.34 0.246
CCORR 67.45 0.010 92.52 0.000 98.89 0.000 87.29 0.000
CCORR-L 67.45 0.010 92.56 0.000 100.00 0.000 87.03 0.000
GDC 60.70 0.072 93.78 0.000 93.82 0.000 83.29 0.000
GDC-L 60.02 0.140 92.98 0.000 93.86 0.000 81.34 0.000
VECH 61.92 0.221 90.11 0.000 80.20 0.000 77.34 0.000
VECH-L 63.37 0.168 90.35 0.000 81.19 0.000 78.79 0.000
E250 58.64 0.256 79.55 0.000 97.48 0.000 67.65 0.028
Eall 65.01 0.211 84.74 0.000 97.60 0.000 71.96 0.010
EWMA - - 99.35 0.000 100.00 0.000 92.56 0.000
E250 Port 57.76 0.240 77.45 0.000 70.89 0.000 65.82 0.050
Eall Port 68.45 0.123 83.94 0.000 94.35 0.000 71.92 0.012
EWMA Port 36.28 0.996 93.02 0.000 100.00 0.000 82.07 0.000
GARCH Port 61.92 0.165 86.91 0.000 80.24 0.000 77.30 0.000

This table shows the percentage of trading days for which the benchmark VaR model (EWMA-Normal)
has lower capital charge than the one given by the each model. The cells in bold font indicate rejection
of the null hypothesis of equal capital charges at the 5% significance level using the Diebold-Mariano test
statistic.
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Table 13: Capital Charge Relative to Benchmark Model - EWMA Portfolio-Normal
Normal distrib. t-distrib. Generalized t-distrib. Nonparametric distrib.

% trading p-value % trading p-value % trading p-value % trading p-value
BEKK 66.34 0.039 96.49 0.000 96.22 0.000 76.50 0.000
BEKK-L 63.56 0.087 94.20 0.000 86.99 0.000 69.29 0.003
CCORR 75.93 0.000 95.23 0.000 100.00 0.000 95.77 0.000
CCORR-L 75.96 0.000 95.23 0.000 100.00 0.000 95.42 0.000
GDC 73.03 0.000 96.11 0.000 96.30 0.000 90.92 0.000
GDC-L 71.96 0.001 96.07 0.000 96.22 0.000 90.23 0.000
VECH 71.30 0.001 95.80 0.000 90.42 0.000 87.52 0.000
VECH-L 72.15 0.001 95.84 0.000 91.11 0.000 88.33 0.000
E250 63.41 0.074 82.49 0.000 98.55 0.000 71.65 0.003
Eall 68.49 0.054 88.36 0.000 99.73 0.000 75.43 0.001
EWMA 63.72 0.004 100.00 0.000 100.00 0.000 99.85 0.000
E250 Port 62.99 0.066 80.69 0.000 74.21 0.000 70.16 0.007
Eall Port 71.69 0.025 86.88 0.000 96.80 0.000 75.39 0.001
EWMA Port - - 99.85 0.000 100.00 0.000 93.82 0.000
GARCH Port 70.89 0.003 92.60 0.000 86.53 0.000 84.59 0.000

This table shows the percentage of trading days for which the benchmark VaR model (EWMA—
PortfolioNormal) has lower capital charge than the one given by the each model. The cells in bold font
indicate rejection of the null hypothesis of equal capital charges at the 5% significance level using the
Diebold-Mariano test statistic.
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