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Abstract

We introduce an arbitrage-free term structure model of nominal and real yields that

accounts for liquidity risk in Treasury inflation-protected securities (TIPS). The novel

feature of our model is to identify liquidity risk from individual TIPS prices by account-

ing for the tendency that TIPS, like most fixed-income securities, go into buy-and-hold

investors’ portfolios as time passes. We find a sizable and countercyclical TIPS liquidity

premium, which helps our model to match TIPS prices. Accounting for liquidity risk also

improves the model’s ability to forecast inflation and match surveys of inflation expecta-

tions, although these series are not included in the estimation.

JEL Classification: E43, E47, G12, G13

Keywords: term structure modeling, liquidity risk, financial market frictions

We thank participants at the 9th Annual SoFiE Conference, the Financial Econometrics and Empirical
Asset Pricing Conference in Lancaster, the 2016 NBER Summer Institute, the Vienna-Copenhagen Conference
on Financial Econometrics, the 2017 IBEFA Summer Meeting, the 11th Annual Federal Reserve “Day Ahead”
Conference on Financial Markets and Institutions, the 21st Annual Conference of the Swiss Society for Financial
Market Research, and the 2019 Annual Meeting of the European Finance Association, including our discussants
Azamat Abdymomunov, Nikolay Gospodinov, Paul Whelan, and Anders Trolle, for helpful comments. We also
thank seminar participants at the National Bank of Belgium, the Debt Management Office of the U.S. Treasury
Department, the Federal Reserve Board, the Office of Financial Research, CREATES at Aarhus University,
the Bank of Canada, the Federal Reserve Bank of San Francisco, the IMF, Copenhagen Business School, and
the Swiss National Bank for helpful comments. Furthermore, we are grateful to Jean-Sébastien Fontaine, Jose
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1 Introduction

The U.S. Treasury started in 1997 to issue inflation-indexed bonds, which are now commonly

known as Treasury inflation-protected securities (TIPS). The market for TIPS has steadily

expanded since then and has a total outstanding notional amount of $1,506 billion at the end

of 2019, equivalent to nine percent of all marketable debt issued by the Treasury.

Despite the large size of the TIPS market, an overwhelming amount of research suggests

that TIPS are less liquid than Treasury securities without inflation indexation—commonly

referred to simply as Treasuries. Fleming and Krishnan (2012) report market characteristics of

TIPS that indicate smaller trading volume, longer turnaround time, and wider bid-ask spreads

than observed in Treasuries (see also Sack and Elsasser (2004), Campbell et al. (2009), Dudley

et al. (2009), and Gürkaynak et al. (2010), among many others). These factors are likely

to raise the implied yields from TIPS because investors generally require compensation for

carrying liquidity risk. However, the size of this TIPS liquidity premium remains a topic of

debate because it cannot be directly observed.

At least three identification schemes have been proposed in the literature to estimate

the TIPS liquidity premium. The work of Fleckenstein et al. (2014) uses market prices on

TIPS and inflation swaps to document systematic mispricing of TIPS relative to Treasuries,

which may be interpreted as a liquidity premium in TIPS. Their approach relies on a liquid

market for inflation swaps, but this assumption is debatable, given that U.S. inflation swaps

have low trading volumes and wide bid-ask spreads (see Fleming and Sporn (2013)). The

second identification scheme uses time series dynamics of CPI inflation and especially its

expected future level from surveys to identity liquidity risk (e.g., D’Amico et al. (2018,

henceforth DKW)). But inflation expectations from surveys are unavailable in real time and

may easily differ from the expectations of the marginal investor in the TIPS market. The

final identification scheme relies on a set of observable characteristics for the TIPS market

(e.g., market volume) as noisy proxies for liquidity risk (see, e.g., Abrahams et al. (2016,

henceforth AACMY) and Pflueger and Viceira (2016, henceforth PV)). The accuracy of this

approach is clearly dependent on having good proxies for liquidity risk, which in general is

hard to ensure.

The present paper introduces a new identification scheme for the TIPS liquidity premium

within an affine term structure model (ATSM) for nominal and real yields. The model iden-

tifies liquidity risk directly from individual TIPS prices by accounting for the typical market

phenomenon that many TIPS go into buy-and-hold investors’ portfolios as time passes. This

in turn limits the amount of each security available for trading and hence increases the liq-

uidity risk. We formally account for this effect by pricing each TIPS using a stochastic

discount factor with a unique bond-specific term that reflects the added compensation in-

vestors demand for buying a bond with low expected future liquidity. A key implication of

the proposed model is that liquidity risk is identified from the implied price differential of
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otherwise identical principal and coupon payments. Individual TIPS prices are therefore suf-

ficient to estimate the TIPS liquidity premium within our model, meaning that we avoid the

limitations associated with the existing identification schemes in the literature. The proposed

identification scheme is thus related to the approach taken in Fontaine and Garcia (2012),

as they also exploit the relative price differences of very similar coupon bonds to estimate

a liquidity premium in Treasuries, although our model and its application differ along other

dimensions from the analysis in Fontaine and Garcia (2012).

The proposed model is estimated using individual TIPS prices and a standard sample of

nominal Treasury yields from Gürkaynak et al. (2007). To get a clean read of the liquidity

factor, we account for the deflation protection option embedded in TIPS during the estimation

using formulas provided in Christensen et al. (2012). Our main analysis uses TIPS prices

and Treasury yields within the commonly considered ten-year maturity spectrum, where we

restrict the sample to end in December 2013 for comparability with the existing literature.

We highligh the following results. First, the average liquidity premium for TIPS is sizable

and fairly volatile, with a mean of 34 basis points and a standard deviation of 30 basis

points. Second, to support the proposed identification scheme, we show that the estimated

liquidity premium is highly correlated with well-known observable proxies for liquidity risk

such as the VIX options-implied volatility index, the on-the-run spread on Treasuries, and the

fitting errors in Gürkaynak et al. (2010) from estimating zero-coupon real yields from TIPS

prices. The estimated liquidity premium also matches remarkably well a noisy but model-free

measure of the TIPS liquidity premium, which is given by the difference between inflation

swap rates and break-even inflation, i.e., the difference between nominal and real yields of

the same maturity. Third, we find a large improvement in the ability of our ATSM to fit

individual TIPS prices by accounting for liquidity risk. The root mean-squared error of the

fitted TIPS prices converted into yields to maturity falls from 14.6 basis points to just 4.9

basis points when the liquidity factor is included, meaning that TIPS pricing errors are at

the same low level as found for nominal yields. Fourth, by accounting for liquidity risk, the

proposed model avoids the well-known positive bias in real yields, and hence the negative

bias in breakeven inflation. This implies that the proposed model does not predict spells of

deflation fears during our sample, contrary to the results obtained when ignoring liquidity

risk. Fifth, the model-implied forecasts of one-year CPI inflation are greatly improved by

correcting for liquidity risk in TIPS, and so is the ability of the model to match inflation

expectations from surveys. We emphasize that the improved ability of the proposed model

to forecast inflation and match inflation surveys is obtained without including any of these

series in the estimation. Finally, the liquidity-adjusted real yield curve is shown to be upward

sloping as the unconditional mean of the ten-year over two-year real yield spread is 121 basis

points. This is a stylized fact that can be used to validate theoretical asset pricing models.

The remainder of the paper is structured as follows. Section 2 provides reduced-form
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evidence on liquidity risk in TIPS, while Section 3 presents our new ATSM. This model is

estimated in Section 4, while Section 5 studies the estimated TIPS liquidity premium. Its

robustness is explored in Section 6, while Section 7 studies the liquidity-adjusted real yield

curve and the implied inflation forecasts from the proposed model. Concluding comments

are provided in Section 8. Additional technical details are provided in supplementary online

appendices.

2 The Dynamics of TIPS Liquidity Risk

Building on the work of Amihud and Mendelson (1986), we define liquidity risk as the cost of

immediate execution. That is, if a bond holder is forced to liquidate his position prematurely

at a disadvantageous price compared with the mid-market quote, then this price differential

reflects the liquidity cost.

A commonly used observable proxy for liquidity risk is the implied yield spread from the

bid and ask prices. These spreads are reported in Figure 1 for each of the four TIPS categories

issued in the U.S. The spreads from Bloomberg appear unreliable before the spring of 2011,

and we therefore restrict our analysis in this section to a weekly sample from May 2011 to

December 2016. The top row in Figure 1 reports the bid-ask spreads for the most recently

issued (on-the-run) five- and ten-year TIPS and for the corresponding most seasoned TIPS

with at least two years to maturity. We highlight two results from these charts. First, the

bid-ask spreads for seasoned five- and ten-year TIPS are systematically above those of newly

issued TIPS. Second, the bid-ask spreads on seasoned TIPS are around 4 basis points and

hence of economic significance. In comparison, the bid-ask spreads for the ten-year Treasuries

issued between 2011 and 2016 have an average of only 0.4 basis points, i.e., a factor ten smaller

than the corresponding spread in the TIPS market.1 The bottom part of Figure 1 reveals

that we generally see the same pattern for twenty- and thirty-year TIPS, although the bid-ask

spreads for newly issued securities here are somewhat noisy due to the few traded bonds in

this part of the maturity spectrum.

We next test for the statistical significance of the positive relationship between liquidity

risk and the age of a bond. The considered panel regression is given by

Spreadit = τt + αi + β1Notionalit + β2Age
i
t + εit, (1)

where the bid-ask spread for the ith TIPS in period t is denoted Spreadit. To control for

unobserved heterogeneity, we allow for both time fixed effects τt and bond-specific fixed

effects αi in equation (1). As argued by Garbade and Silber (1976), securities with large

outstanding notional amounts often have greater trading volumes, and we therefore also

1The average bid-ask spreads for the individual ten-year Treasury notes issued in January of 2011, 2012,
2013, 2014, 2015, and 2016 are 0.52, 0.42, 0.38, 0.28, 0.26, and 0.21 basis points, respectively.
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Figure 1: TIPS Bid-Ask Spreads

For the five- and ten-year TIPS, the bid-ask spreads are computed using the most recently issued TIPS

and the corresponding most seasoned TIPS with at least two years to maturity. For the twenty-year

TIPS, the series are obtained by tracking the bid-ask spreads of the same two twenty-year TIPS over

the period due to the few issuances at this maturity. For the thirty-year TIPS, the bid-ask spread

for the most seasoned TIPS is that of the first thirty-year TIPS issued back in 1998, while the most

recently issued series tracks the bid-ask spread of the newest thirty-year TIPS. All series (measured in

basis points) are weekly covering the period from May 31, 2011, to December 30, 2016, and smoothed

by a four-week moving average to facilitate the plotting.

include the notional value of each security Notionalit, which for TIPS grows over time with

CPI inflation. Finally, Ageit measures the time since issuance of the ith TIPS and εit is a

zero-mean error term. Using all available securities, we then estimate the panel regression

in equation (1) by OLS separately within each of the four TIPS categories. Table 1 shows
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nTIPS N Notionalit × 1, 000 Ageit No. of parameters adj R2

5-year TIPS 9 1, 140 −0.042∗∗
(0.0037)

3.125∗∗
(0.259)

296 0.77

10-year TIPS 28 5, 111 −0.020∗∗
(0.0025)

0.997∗∗
(0.046)

315 0.70

20-year TIPS 5 1, 435 −0.308∗∗
(0.053)

1.933∗∗
(0.264)

292 0.74

30-year TIPS 10 2, 149 −0.0053∗
(0.0022)

0.194∗∗
(0.008)

297 0.75

Table 1: Panel Regression: The Bid-Ask Spread in the TIPS Market

This table reports the results of separately estimating equation (1) by OLS for each of the four

categories of TIPS. The estimated loadings for the time and bond-specific fixed effects are not provided.

The variable Notionalit is measured in millions of dollars and Ageit in years since issuance. White’s

heteroscedastic standard errors are reported in parentheses. Asterisks * and ** indicate significance at

the 5 percent and 1 percent levels, respectively. The adjusted R2 is computed based on the demeaned

variation in dependent variable. The data used are weekly covering the period from May 31, 2011, to

December 30, 2016.

that TIPS with a larger outstanding notional value have significantly lower bid-ask spreads

and, more importantly, that the age of a security has a significant positive effect on the

bid-ask spread, as also suggested by Figure 1. The latter result is obviously very similar

to the well-known finding in Treasuries, where newly issued securities also are more liquid

than existing bonds (see, for instance, Krishnamurthy (2002), Gurkaynak et al. (2007), and

Fontaine and Garcia (2012), among many others). However, these spreads are much wider

for TIPS compared with Treasuries, and it is therefore important to account for this dynamic

pattern in TIPS liquidity to fully understand the price dynamics in the TIPS market.

We draw two conclusions from these reduced-form regressions. First, current liquidity

in the TIPS market exhibit notable variation over time, and liquidity therefore represents a

risk factor to bond investors in this market, as also emphasized by Gürkaynak et al. (2010),

Fleming and Krishnan (2012), and Fleckenstein et al. (2014) among others. Second, seasoned

TIPS are less liquid than more recently issued securities within the same maturity category.

Although equation (1) does not provide an explanation for this dynamic pattern in liquidity,

anecdotal evidence suggests that it most likely arises because many securities get locked up

in buy-and-hold investors’ portfolios as time passes and become unavailable for trading.2 The

objective in the present paper is not to provide a more detailed explanation for this dynamic

pattern in liquidity but instead to examine its asset pricing implications. The effect we want

to explore is based on the assumption that rational and forward-looking investors are aware

of this dynamic pattern in liquidity and therefore demand compensation for holding bonds

with low future liquidity. The ATSM we propose in the next section formalizes this effect and

quantifies how current TIPS prices are affected by expected future TIPS liquidity.

2See, for instance, the evidence provided in Sack and Elsasser (2004), which indicates that the primary
participants in the TIPS market are large institutional investors (e.g., pension funds and insurance companies)
with long-term real liability risks that they want to hedge.
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3 An ATSM of Nominal and Real Yields with Liquidity Risk

This section introduces a general ATSM to price nominal and real bonds while accounting for

liquidity risk. We formally present the model in Section 3.1 and describe a Gaussian version

of it in Section 3.2. The proposed identification strategy of liquidity risk is then compared

with the existing literature in Section 3.3.

3.1 A Canonical ATSM with Liquidity Risk

As commonly assumed, the instantaneous nominal short rate rNt is given by

rNt = ρN0 +
(
ρNx
)′
Xt,

where ρN0 is a scalar and ρNx is an N × 1 vector. The dynamics of the N pricing factors in Xt

with dimension N × 1 evolve as

dXt = KQ
x

(

θQx −Xt

)

dt+Σx

√

Sx,tdW̄
Q
t , (2)

where W̄Q
t is a standard Wiener process in RN under the risk-neutral measure Q and Sx,t

is an N -dimensional diagonal matrix. Its elements are given by [Sx,t]k,k = [δ0]k + δ′x,kXt for

k = 1, 2, ..., N , where [δ0]k denotes the kth entry of δ0 with dimension N × 1. Hence, θQ and

δx,k are N × 1 vectors, whereas KQ
x and Σx have dimensions N × N . Absence of arbitrage

implies that the price of a nominal zero-coupon bond maturing at time t+ τ is given by

PN
t (τ) = exp

{
AN (τ) +BN (τ)′Xt

}
, (3)

where the functions AN (τ) and BN (τ) satisfy well-known ordinary differential equations

(ODEs) (see, for instance, Dai and Singleton (2000)).

The price of bonds with payments indexed to inflation (i.e., real bonds) may in principle

be obtained in a similar manner by letting the instantaneous real short rate be affine in the

pricing factors, as done in Adrian and Wu (2010) and Joyce et al. (2010) among others.

An implicit assumption within this classic asset pricing framework is that bonds are trading

in a frictionless market without any supply- or demand-related constraints. This is often a

reasonable assumption for Treasuries due to the large size of this market and its low bid-ask

spreads. However, this assumption is much more debatable for TIPS, as seen from the wide

bid-ask spreads reported in Section 2.

The main innovation of the present paper is to relax the assumption of a frictionless

market for real bonds in ATSMs and explicitly account for the dynamic pattern in TIPS

liquidity documented in Section 2. Inspired by the work of Amihud and Mendelson (1986),

our contribution is to price TIPS by a real rate that accounts for liquidation costs, which

we specify for the ith TIPS as h (t− t0; i)X
liq
t . The first term h (t− t0; i) is a deterministic
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function of time since issuance t − t0 of the ith TIPS and serves to capture the empirical

regularity from Section 2 that liquidation costs (i.e. the bid-ask spread) increase as the bond

ages. Here, we initially only assume that h (t− t0; i) is bounded, nonnegative, and increasing

in t − t0. The second term in our specification of liquidation costs is a latent factor X liq
t ,

which is included to capture the cyclical variation in these costs, as is evident from the bid-

ask spreads in Figure 1. Hence, we suggest to account for liquidity risk by discounting future

cash flows from the ith TIPS using a liquidity-adjusted real short rate of the form

rR,i
t = ρR0 +

(
ρRx
)′
Xt

︸ ︷︷ ︸

frictionless real rate

+ h (t− t0; i)X
liq
t

︸ ︷︷ ︸
,

liquidity adjustment

(4)

where ρR0 is a scalar and ρRx is an N × 1 vector. The first term in rR,i
t is the traditional affine

specification for the frictionless part of the real rate, which is common to all TIPS, whereas

the liquidity adjustment varies across securities. The latter implies that we will price TIPS

using a bond-specific real short rate or, equivalently, a bond-specific stochastic discount factor

when combining equation (4) with a distribution for the market prices of risk.

Letting Zt ≡
[

X ′
t X liq

t

]′
, the dynamics of this extended state vector is assumed to be

dZt = KQ
z

(

θQz − Zt

)

dt+Σz

√

Sz,tdW
Q
t , (5)

whereWQ
t is a standard Wiener process in RN+1. Similarly, KQ

z , θ
Q
z , Sz,t, and Σz are appropri-

ate extensions of the corresponding matrices related to equation (2). Thus, our specification

in equation (5) accommodates the case where the liquidity factor is restricted to only attain

nonnegative values, as assumed in AACMY, by letting X liq
t follow a square-root process that

enters in Sz,t to determine the conditional volatility in Zt. Another and less restrictive spec-

ification is to omit X liq
t in Sz,t and allow the liquidity factor to occasionally attain negative

values and hence episodes with negative liquidity risk.3 For this second specification, the

estimated time series of X liq
t may serve as an indirect test of the model’s ability to capture

liquidity risk, as we predominantly expect X liq
t to be positive.

From the Feynman-Kac theorem and equations (4) and (5), it follows that the price at

time t of a real zero-coupon bond maturing at time T is given by

PR,i (t0, t, T ) = exp
{
AR,i (t0, t, T ) +BR,i (t0, t, T )

′ Zt

}
, (6)

when discounting cash flows related to the ith TIPS. The functionsAR,i (t0, t, T ) andBR,i (t0, t, T )

3This corresponds to periods when an investor pays to hold liquidity risk. This may happen when a bond
helps an investor (e.g., a pension fund) to hedge some of his liabilities.
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with dimensions (N + 1)× 1 satisfy the ODEs

∂AR,i

∂t
(t0, t, T ) = ρR0 −

(
KQ

z θ
Q
z

)′
BR,i (t0, t, T )−

1

2

N+1∑

k=1

[
Σ′

zB
R,i (t0, t, T )

]2

k
δ0,k, (7)

∂BR,i

∂t
(t0, t, T ) =

[

ρRx

h (t− t0; i)

]

+
(
KQ

z

)′
BR,i (t0, t, T )−

1

2

N+1∑

k=1

[
Σ′

zB
R,i (t0, t, T )

]2

k
δz,k (8)

with the terminal conditions AR,i (t0, T, T ) = 0 and BR,i (t0, T, T ) = 0. Here, [a]2k denotes the

squared kth element of vector a and δz ≡
[

δ′x δxliq

]′
with dimensions (N + 1) × 1. Thus,

the price of a real zero-coupon bond is exponentially affine in Zt even when accounting for

liquidity risk by the modified real short rate in equation (4). The implied breakeven inflation

rate from equations (3) and (6) is given by

yNt (τ)−yR,i
t (t0, t, τ) =

AR,i (t0, t, t+ τ)

τ
−AN (τ)

τ
−BN (τ)′

τ
Xt+

BR,i (t0, t, t+ τ)′

τ

[

Xt

X liq
t

]

,

where yNt (τ) ≡ − 1
τ
logPN

t (τ) and yR,i
t (t0, t, τ) ≡ − 1

τ
logPR,i

t (t0, t, t+ τ) denote the yield to

maturity from nominal and real bonds, respectively, with T ≡ t + τ . Hence, X liq
t can also

be viewed as capturing the relative liquidity difference between Treasuries and TIPS. In this

respect, our model is similar to the work of AACMY and DKW, who also use a single factor

to capture the relative liquidity differential of TIPS compared with Treasuries.

We also note that the bond prices in equation (6) depend on the calender time t, which

enters as a state variable in the model to determine the time since issuance t − t0 of a

given security and hence its liquidity adjustment. This property of our model is similar

to the class of calibration-based term structure models dating back to Ho and Lee (1986)

and Hull and White (1990), where the drift is a deterministic function of calendar time and

repeatedly recalibrated to perfectly match the current yield curve. These calibration-based

models are known to be time-inconsistent, as the future drift at t+ τ is repeatedly modified

until reaching time t+ τ . Our model does not suffer from the same shortcoming because we

only use calender time t to determine the liquidity adjustment and not to change any dynamic

model parameters.

The model is closed by adopting the extended affine specification for the market prices of

risk Γt, as described by Cheridito et al. (2007).4

3.2 A Gaussian ATSM with Liquidity Risk

We next analyze a particular Gaussian version of our model with closed-form expressions

for liquidity-adjusted real bond prices. Beyond providing useful intuition on the liquidity

4It is straightforward to verify that the proposed specification to account for liquidity risk can be extended
to nonlinear dynamic term structure models. Section 6.2.2 provides one illustration of such an extension by
incorporating the zero lower bound on nominal interest rates into the model.
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adjustment, this version of our model should be particularly interesting given the well-known

success of Gaussian models in matching yields and risk premia, as also exploited in AACMY

and DKW. To facilitate the interpretation of our Gaussian model, we consider the familiar

case where factor loadings for nominal yields and the frictionless part of real yields represent

level, slope, and curvature components.

Starting with the nominal short rate, it is defined as

rNt = LN
t + St, (9)

where LN
t is the level factor of nominal yields and St is the slope factor. The parameterization

of the liquidity-adjusted real short rate for the ith TIPS is given by

rR,i
t = LR

t + αRSt + βi(1− e−λL,i(t−t0))X liq
t . (10)

The first part LR
t +αRSt constitutes the frictionless real rate using the specification adopted

in Christensen et al. (2010). The variable LR
t represents the level factor of real yields and

is absent in the expression for nominal yields. This specification is consistent with nominal

yields containing a hidden factor that is observable from real yields and inflation expectations

(see Chernov and Mueller (2012)). Note also that the real slope factor is αRSt with αR ∈ R

as in Christensen et al. (2010). The adopted functional form for h (t− t0; i) controlling the

liquidity adjustment is given by βi(1 − e−λL,i(t−t0)), where βi ≥ 0 and λL,i ≥ 0. To provide

some interpretation of βi and λi, it is useful to think of the trading activity in the ith TIPS as

taking place in two phases. The first phase may be characterized by a large supply of bonds

just after bond issuance, but also strong demand pressure from buy-and-hold investors, who

gradually purchase a large fraction of the outstanding securities. The second phase then starts

when buy-and-hold investors have acquired their share of the ith TIPS and the number of

securities available for trading has become relatively scarce. Given this categorization of the

trading cycle, the value of λL,i determines the length of the first phase, where exposure to

X liq
t is fairly low. That is, a low value of λL,i implies that this first phase of bond trading is

fairly long, whereas a high value of λL,i means that this first phase of bond trading is much

shorter.5 The value of βi determines the maximal exposure of the ith TIPS to the liquidity

factor X liq
t in the second phase, which appears when e−λL,i(t−t0) ≈ 0. It is obvious that more

sophisticated specifications of h (t− t0; i) may be considered, as opposed to the one used in

equation (10), although such extensions are not explored in this paper.

5For instance, a short initial trading phase may coincide with the bond ceasing to be the most recently
issued TIPS within its maturity range, and hence, is no longer “on-the-run.”
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Letting Zt ≡
[

LN
t St Ct LR

t X liq
t

]′
, we consider Q dynamics of the form

dZt =

[

KQ
x 04×1

01×4 κQliq

]

︸ ︷︷ ︸

KQ
z










[

θQx

θQliq

]

︸ ︷︷ ︸

θ
Q
z

− Zt










+ΣzdW
Q
t , (11)

where θQx = 04×1 due to the adopted normalization scheme. Following Christensen et al.

(2010), we let
[
KQ

x

]

2,2
=
[
KQ

x

]

3,3
= λ and

[
KQ

x

]

2,3
= −λ for λ > 0, with all remaining elements

of the 4 × 4 matrix KQ
x equal to zero. This ensures that the factor loadings represent level,

slope, and curvature components in the nominal and real yield curves provided
[
KQ

z

]

5,i
= 0

for i = {1, 2, 3, 4}. The next restrictions
[
KQ

z

]

i,5
= 0 for i = {1, 2, 3, 4} imply that X liq

t either

operates as a level or slope factor depending on the value of κQliq, although these restrictions

could be relaxed without altering the interpretation of the four frictionless factors. That is,

our parameterization does not accommodate a curvature structure forX liq
t , which is consistent

with our reduced-form evidence in Section 2 that older TIPS are more affected by liquidity

risk than newly issued securities.

Using equations (9) and (11), the yield at time t for a nominal zero-coupon bond maturing

at t+ τ is easily shown to have the well-known structure from the static model of Nelson and

Siegel (1987)

yNt (τ) = LN
t +

(
1− e−λτ

λτ

)

St +

(
1− e−λτ

λτ
− e−λτ

)

Ct −
AN (τ)

τ
, (12)

where AN (τ) is an additional convexity adjustment provided in Christensen et al. (2011).

The price for the ith real zero-coupon bond maturing at time T is given by equation (6) with

the closed-form expression for AR,i (t0, t, T ) and BR,i (t0, t, T ) provided in the supplementary

online appendix. To facilitate the interpretation of this solution, consider the implied yield

to maturity on the ith real zero-coupon bond, which we write as

yR,i
t (t0, t, τ) = LR

t + αR

(
1− e−λτ

λτ

)

St + αR

(
1− e−λτ

λτ
− e−λτ

)

Ct

︸ ︷︷ ︸

frictionless loadings

(13)

+βi




1− e−κ

Q

liq
τ

κQliqτ
− e−λL,i(t−t0) 1− e−(κ

Q

liq
+λL,i)τ

(

κQliq + λL,i
)

τ



X liq
t

︸ ︷︷ ︸

liquidity adjustment

− AR,i (t0, t, τ)

τ
︸ ︷︷ ︸

,

deterministic adjustment
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where τ = T − t is time to maturity. The first three terms in yR,i
t (t0, t, τ) capture the

frictionless part of real yields, where the factor loadings have the same familiar interpreta-

tion as in equation (12) due to the imposed structure on rR,i
t and its dynamics under Q.

The next term in equation (13) represents an adjustment for liquidity risk. Its first term
(

1− exp
{

−κQliqτ
})

/
(

κQliqτ
)

describes the maximal effect of liquidity risk, which is obtained

when e−λL,i(t−t0) ≈ 0 and the ith bond has full exposure to variation in X liq
t . This upper limit

for liquidity risk clearly operates as a traditional slope factor for κQliq > 0, where the size of

the liquidity adjustment is decreasing in τ and hence increasing in t as the bond approaches

maturity. We have the opposite pattern when κQliq < 0, whereas the upper limit for liquidity

risk is constant in t with κQliq −→ 0, i.e., a level factor. In other words, the Q dynamics of

X liq
t determines the term structure for the maximal effect of liquidity risk.

The second term in the liquidity adjustment in equation (13) serves as a negative correction

to
(

1− exp
{

−κQliqτ
})

/
(

κQliqτ
)

during the initial phase with large trading volume, where

buy-and-hold investors have not acquired a large proportion of the ith bond. The term

βie−λL,i(t−t0) is clearly decreasing in t, whereas the remaining term is similar to the one for

the maximal effect of liquidity risk (except with decay parameter κQliq + λL,i), and hence

typically increasing in t.

As a result, the liquidity adjustment in equation (13) may either increase or decrease in t,

depending on the relative values of κQliq and λL,i. Focusing on the most plausible parameteri-

zation with κQliq > 0, the combined loading on X liq
t is clearly positive, meaning that liquidity

risk increases the real yield whenever X liq
t > 0.6 Hence, our model captures the effect that

forward-looking investors require compensation for carrying the risk that low future liquidity

reduces the bond price if sold before maturity. This in turn reduces the current bond price

or, equivalently, raises the current yield. An effect which is documented empirically for Trea-

suries in Goldreich et al. (2005). On the other hand, liquidity risk is absent if βi = 0 and real

yields in equation (13) simplify to those in the frictionless model of Christensen et al. (2010).

Finally, in this Gaussian model, the extended affine specification for the market prices of

risk reduces to the essential affine parameterization of Duffee (2002). Hence, we have

Γt = Σ−1
z (γ0 + γzZt) , (14)

where γ0 and γz have dimensions (N + 1)× 1 and (N + 1)× (N + 1), respectively.

We refer to this Gaussian version of our model as the GL (5) model. It is the focus of

the remaining part of the present paper and will be compared extensively with the model of

Christensen et al. (2010), denoted the G (4) model, which has the same frictionless dynamic

factor structure but do not account for TIPS liquidity risk.

6It is also straightforward to show that the combined loading on X
liq
t remains positive even if κQ

liq < 0,

provided 0 ≤ λL,i < −κQ

liq .
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3.3 Identification of Liquidity Risk and the Existing Literature

As described above, the proposed model discounts coupon and principal payments from TIPS

using bond-specific real short rates, which only differ in their loadings on the common liq-

uidity factor X liq
t . This implies that liquidity risk in TIPS is identified from the implied

price differential of otherwise identical cash flow payments—or equivalently, the degree of

“mispricing” based on the frictionless part of the model. This is a very direct measure of

liquidity risk that only requires a panel of market prices for TIPS, which is readily available.

The proposed identification scheme based on market prices is therefore closely related to the

one by Fleckenstein et al. (2014), who use market prices on TIPS and inflation swaps to

document systematic mispricing of TIPS relative to Treasuries, which may be interpreted as

reflecting liquidity premiums in TIPS. The approach of Fleckenstein et al. (2014) relies on a

liquid market for inflation swaps, but as argued by AACMY this assumption is debatable for

the U.S. given the low trading volumes and wide bid-ask spreads in the U.S. inflation swap

market (see Fleming and Sporn (2013)). The identification strategy we propose does not

rely on a well-functioning and liquid market for inflation swaps, but instead uses an ATSM

to identify liquidity risk solely from TIPS market prices and a standard panel of Treasury

yields.

Another commonly adopted procedure to identify liquidity risk is to regress breakeven

inflation from TIPS on inflation expectations from surveys and various proxies for liquidity

risk (see Gürkaynak et al. (2010) and PV among others). In contrast to our identification

strategy, such reduced-form estimates do not account for the inflation risk premia in breakeven

inflation, which often is sizable and quite volatile (see for instance AACMY and DKW).

Obviously, the idea of relating liquidity risk to a limited supply of certain bonds is not

unique to our paper. For instance, Amihud and Mendelson (1991) consider the case where an

increasing fraction of Treasury notes are locked away in investors’ portfolios to explain the

yield differential in Treasury notes and bills of the same maturity. Another example is provided

by Keane (1996), who uses a similar explanation for the repo specialness of Treasuries. From

this perspective, our main contributions are to incorporate effects of a limited bond supply in

an arbitrage-free ATSM and to show how this effect may explain the liquidity disadvantage

of TIPS.

Our model is also related to the ATSM of DKW, where real bonds are discounted with a

modified real rate common to all TIPS, contrary to our specification in equation (4) where

each TIPS is priced using its own unique real rate. We also note that the model of DKW

beyond nominal and real zero-coupon yields requires time series dynamics of CPI inflation

and especially its expected future level from surveys to properly match these inflation surveys

and hence identify liquidity risk.7 But inflation expectations from surveys are unavailable in

real time and may differ from the expectations of the marginal investor in the TIPS market.

7See for instance the discussion related to Figure 5 in DKW.
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The identification scheme we propose avoids including additional information about inflation

by solely identifying the TIPS liquidity premium from individual TIPS prices and a standard

panel of Treasury yields.

Another closely related paper is the one by AACMY, which also relies on an ATSM to

estimate liquidity risk in TIPS. They take the liquidity factor to be observed and constructed

from (i) the TIPS mean absolute fitted errors from Gürkaynak et al. (2010) and (ii) a

measure of the relative transaction volume between Treasuries and TIPS. This alternative

and somewhat more indirect approach to identify the TIPS liquidity premium relies heavily

on having good observable proxies for liquidity risk, which in general is hard to ensure. The

identification scheme of AACMY, however, is similar to ours by not relying on CPI inflation

or inflation expectations from surveys to estimate the TIPS liquidity premium.

An important similarity between our approach and the ones considered in AACMY and

DKW is to include trading costs through a liquidity factor, when deriving TIPS prices based

on no-arbitrage conditions. As shown above, this allows us to formalize how current TIPS

prices are affected by expected future TIPS liquidity, and how this expectational channel

depends on bond age and the cyclical variation in liquidation costs through X liq
t .

Overall, our model offers a new and very direct way to identify liquidity risk in ATSMs

without including additional information from inflation swaps, CPI inflation, or inflation

surveys.8

4 Empirical Findings

As mentioned above, the proposed model is constructed for a sample of TIPS market prices

in addition to a standard panel of Treasury yields. Given that ATSMs are rarely estimated

directly on market prices for coupon bonds, we first describe our data set and estimation

procedure in Sections 4.1 and 4.2, respectively, before presenting the results in Section 4.3.

4.1 Data

TIPS have been available in the five- to thirty-year maturity range since 1997, although only

ten-year TIPS have been issued regularly. Panel (a) in Figure 2 shows the remaining time to

maturity of all the available 50 bonds in the TIPS market. For comparability with the results

in AACMY and DKW, we construct our benchmark sample to only include the ten-year

maturity spectrum and to end in December 2013.9 This reduces the considered number of

TIPS to nTIPS = 38. The evolution in the number of outstanding TIPS is shown in Panel (b)

of Figure 2 for all maturities (the red line) and for the ten-year maturity spectrum (the grey

8We stress for completeness that our model and the subsequent estimation approach in Section 4 is suffi-
ciently general to include such additional information if desired.

9These constraints are relaxed in Section 6, where we study the implications of considering the full third-year
maturity spectrum and extending the sample to December 2019.
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Figure 2: Overview of the TIPS Data

Panel (a) shows the maturity distribution in all TIPS issued from 1997 to 2013. The solid grey

rectangle indicates the sample used in our main analysis, where the sample is restricted to start on

July 11, 1997, and limited to TIPS prices with less than ten years to maturity at issuance and more

than two years to maturity after issuance. Panel (b) reports the number of outstanding TIPS at a

given point in time for various samples.

line). Given that TIPS prices near maturity tend to exhibit erratic behavior due to seasonal

variation in CPI inflation, our main analysis excludes TIPS when they have less than two

years to maturity.10 Using this cutoff reduces the number of TIPS in our sample further, as

shown by the grey rectangle in Panel (a) and the solid black line in Panel (b) of Figure 2.

We use the clean mid-market TIPS prices as reported each Friday by Bloomberg if available,

otherwise the price on the last trading day before this Friday is used. Given that our model

has two pricing factors specific to TIPS, reliable identification of these factors requires at least

two TIPS prices. This dictates the start of our weekly sample on July 11, 1997, when the

second ever TIPS (with five years to maturity) becomes available.

Finally, the considered panel of nominal zero-coupon yields are taken from Gürkaynak et

al. (2007), where we include the following ny = 12 maturities: three-month, six-month, one-

year, two-year, . . . , ten-year. This sample represents ’off-the-run’ Treasury yields, meaning

that they do not carry any ’specialness’ in relation to the repo market (see, for instance,

Kristnamurthy (2002)). We adopt a weekly time frequency for this sample of Treasury yields,

which cover the same time period as considered for TIPS.

10A similar procedure is used in Gürkaynak et al. (2010), who omit TIPS with 18 months to maturity and
linearly downweight TIPS with 18 to 24 months to maturity. Section 6.3.1 explores the sensitivity of our
results to gradually including more observations for each TIPS as it approaches maturity.
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4.2 Estimation Methodology

We estimate the GL (5) model using the conventional likelihood-based approach, where the

latent pricing factors are extracted from the observables, which in our case are nominal zero-

coupon yields and TIPS market prices. The functional form for nominal yields is provided in

equation (12), whereas the expression for the clean price of the ith TIPS is more evolved and

given by

P TIPS,i (t0, t, T ) = C(t1 − t) exp
{

−(t1 − t)yR,i
t (t0, t, t1)

}

(15)

+

n∑

k=2

C

2
exp

{

−(tk − t)yR,i
t (t0, t, tk)

}

+exp
{

−(T − t)yR,i
t (t0, t, T )

}

+DOV

[

Zt;T,
Πt

Πt0

]

,

where Πt/Πt0 is the accrued CPI inflation compensation since issuance of the ith TIPS.

That is, at time t we use the liquidity-adjusted real yields in equation (13) to discount the

coupon payments C attached to the ith bond.11 The last term in equation (15) accounts

for the deflation option value (DOV ) embedded in TIPS, meaning that the principal at

maturity is only adjusted for inflation if accumulated inflation since issuance of the bond is

positive. The joint modeling of nominal and real yields in the model allow us to compute

the value of this option as in Christensen et al. (2012), which is not possible when only

analyzing TIPS as in Christensen and Rudebusch (2019).12 Following Joslin et al. (2011), all

nominal yields in equation (12) have independent Gaussian measurement errors εiy,t with zero

mean and a common standard deviation σy, denoted εiy,t ∼ NID
(
0, σ2

y

)
for i = 1, 2, . . . , ny.

We also account for measurement errors in the price of each TIPS through εTIPS,i
t , where

εTIPS,i
t ∼ NID

(
0, σ2

TIPS

)
for i = 1, 2, . . . , nTIPS. To ensure that the TIPS measurement

errors are comparable across maturities and of the same magnitude as the errors for nominal

yields, we use the procedure in Gürkaynak et al. (2007) and scale both empirical and model-

implied TIPS prices by duration to convert the related pricing errors into (approximately) the

same units as zero-coupon yields. Here, we use the standard Macaulay duration, as it allows

us to obtain a model-free measure of duration from TIPS market prices and their implied

yield to maturity, which is also available from Bloomberg.13

Combining equations (11) and (14), the state transition dynamics for Zt under the physical

11The implementation here is greatly simplified by the continuous-time formulation of our model. For
discrete-time models with one period exceeding one day (say, a week or a month), standard interpolation
schemes may be used to price the coupon payments related to the ith bond at time t.

12We do not account for the approximately 2.5 month lag in the CPI indexation of TIPS, given that Gr-
ishchenko and Huang (2013) and DKW find that this adjustment normally is within a few basis points for the
implied yield on TIPS and hence very small.

13Our results are robust to using the yield to maturity for each TIPS in the measurement equation. However,
this alternative implementation is extremely time consuming as the yield to maturity is defined as an implicit
fix-point problem that must be solved numerically for each observation.
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measure P is easily shown to be

dZt = KP
z

(

θPz − Zt

)

dt+ΣzdW
P
t ,

where θPz and KP
z are free parameters with dimensions 5× 1 and 5× 5, respectively.

Due to the nonlinearities in equation (15) with respect to Zt when pricing TIPS, we cannot

apply the standard Kalman filter for the model estimation. Instead, the extended Kalman

filter (EKF) is used to obtain an approximated log-likelihood function LEKF , which serves

as the basis for the well-known quasi-maximum likelihood (QML) approach, as also used in

Duan and Simonato (1999) and Kim and Singleton (2012), among many others. Andreasen et

al. (2019) verify in a simulation study that this estimation approach based on coupon bonds

works well in finite samples of sizes similar to the one considered in this paper.

It is obvious from equation (10) that the level of X liq
t and all the loadings

{
βi
}nTIPS

i=1

are not jointly identified, although the level of rR,i
t and the related TIPS liquidity premium

(defined below in Section 5.1) are identified in the proposed model. The model of Fontaine

and Garcia (2012) displays the same feature and we therefore follow their suggestion and

normalize the loading on a given bond. In our case, the loading on the first bond in our

sample is fixed to one (i.e. β1 = 1), which is the ten-year TIPS issued in January 1997. This

implies that all remaining loadings for liquidity risk are expressed relative to this particular

bond. The value of λL,i is badly identified when it is close to zero or attains large values, and

we therefore impose λL,i ∈ [0.01, 10] for i = 1, 2, . . . , nTIPS, which are without any practical

consequences for our results. To ensure numerical stability of our estimation routine, we also

impose the restrictions βi ∈ [0, 80] for i = 2, 3, . . . , nTIPS, although they are not binding at

the optimum.

4.3 Estimation Results

This section presents our estimation results, where we consider a version of the GL (5) model

with KP
z and Σz being diagonal matrices. As shown in Section 6.2.1, these simplifying restric-

tions have hardly any effects on the estimated liquidity premium for each TIPS, because it

is identified from the model’s Q dynamics, which are independent of KP
z and only display a

weak link to Σz through the small convexity-adjustment in yields.

Given that the GL (5) model includes Treasury yields, it seems natural to first explore

how well it fits nominal yields. Table 2 documents that it provides a very satisfying fit

to all nominal yields, where the overall root mean-squared error (RMSE) is just 4.58 basis

points. The corresponding version of the model without a liquidity factor is denoted the G (4)

model and gives broadly the same fit to nominal yields with an overall RMSE of 4.64 basis

points. Thus, accounting for the liquidity disadvantage of TIPS does not provide any notable

improvement in the ability of our ATSM to match nominal yields.
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Maturity G (4) GL (5)
in months Mean RMSE Mean RMSE

3 -0.97 7.52 -1.15 7.46
6 -0.94 2.67 -0.87 2.70
12 0.82 7.13 1.15 7.04
24 2.48 6.30 2.76 6.20
36 1.36 3.73 1.38 3.66
48 -0.37 2.98 -0.56 2.98
60 -1.61 3.64 -1.88 3.66
72 -2.02 3.83 -2.25 3.81
84 -1.63 3.28 -1.76 3.17
96 -0.61 2.56 -0.60 2.33
108 0.82 3.10 0.98 2.96
120 2.50 5.16 2.77 5.18

All maturities -0.01 4.64 0.00 4.58

Table 2: Pricing Errors of Nominal Yields

This table reports the mean pricing errors (Mean) and the root mean-squared pricing errors (RMSE)

of nominal yields in the G (4) and GL (5) models estimated with a diagonal specification of KP
z and Σz.

All errors are computed using the posterior state estimates in the EKF and reported in basis points.

The impact of accounting for liquidity risk is, however, much more apparent in the TIPS

market. The first two columns in Table 3 show that the TIPS pricing errors produced by the

G (4) model are fairly large, with an overall RMSE of 14.58 basis points. The following two

columns reveal a substantial improvement in the pricing errors when correcting for liquidity

risk, as the GL (5) model has a very low overall RMSE of just 4.93 basis points. Hence,

accounting for liquidity risk leads to a significant improvement in the ability of the model

to explain TIPS prices, with pricing errors of these securities being at the same low level as

found for nominal yields in Table 2.

The final columns of Table 3 report the estimates of the specific parameters attached

to each TIPS. Crucially, all bonds in our sample are exposed to liquidity risk, as all βi are

significantly different from zero at the conventional 5 percent level. An inspection of λL,i in

Table 3 reveals that all five-year TIPS issued before the financial crisis in 2008 have very high

values of λL,i, meaning that the first phase with active buy-and-hold investors is very short

for these bonds. For the remaining TIPS, we generally find somewhat lower values of λL,i

and hence somewhat longer initial trading phases, where these bonds are not fully exposed

to variation in the liquidity factor. As explained in Section 3.2, the impact of liquidity risk

on real yields at various maturities is ambiguous, and Figure 3 therefore plots the liquidity

adjustment in equation (13) as a function of time t for each of the 38 bonds in our sample. For

the five-year TIPS in panel (a), this term structure of liquidity risk displays notable variation

across securities due to the bond-specific estimates of λL,i. The corresponding loadings for

ten-year TIPS are shown in panel (b), where we also find that the liquidity adjustment is
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Pricing errors Estimated parameters
TIPS security G (4) GL (5) GL (5)

Mean RMSE Mean RMSE βi SE λL,i SE
(1) 3.375% 1/15/2007 TIPS -3.33 10.17 2.78 4.97 1 n.a. 0.52 0.11
(2) 3.625% 7/15/2002 TIPS∗ 1.04 10.58 3.48 4.15 0.86 0.09 3.33 0.20
(3) 3.625% 1/15/2008 TIPS -1.33 10.44 2.44 4.64 6.18 0.23 0.03 0.00
(4) 3.875% 1/15/2009 TIPS 1.12 9.40 1.52 2.95 7.17 0.27 0.04 0.00
(5) 4.25% 1/15/2010 TIPS 2.41 9.38 0.98 3.12 2.32 0.20 0.21 0.03
(6) 3.5% 1/15/2011 TIPS 3.50 21.00 -0.18 4.44 2.59 0.14 0.2 0.02
(7) 3.375% 1/15/2012 TIPS 3.79 11.33 -0.06 5.25 2.44 0.10 0.26 0.03
(8) 3% 7/15/2012 TIPS 1.47 10.12 -0.29 5.02 2.38 0.09 0.29 0.04
(9) 1.875% 7/15/2013 TIPS -0.48 14.66 -0.87 6.43 3.27 0.23 0.15 0.02
(10) 2% 1/15/2014 TIPS 5.54 12.25 0.53 3.63 5.76 0.17 0.08 0.00
(11) 2% 7/15/2014 TIPS 3.41 13.80 0.03 4.41 2.53 0.09 0.33 0.04
(12) 0.875% 4/15/2010 TIPS∗ 1.46 9.79 2.48 4.55 2.16 0.08 9.94 n.a.
(13) 1.625% 1/15/2015 TIPS 8.33 14.99 1.07 4.35 3.43 0.22 0.19 0.02
(14) 1.875% 7/15/2015 TIPS 1.66 11.20 0.41 4.61 2.07 0.07 0.99 0.20
(15) 2% 1/15/2016 TIPS 4.27 9.40 1.35 4.94 2.45 0.09 0.41 0.03
(16) 2.375% 4/15/2011 TIPS∗ 15.05 33.31 4.76 11.92 2.03 0.07 4.51 0.31
(17) 2.5% 7/15/2016 TIPS -3.51 10.13 -0.22 5.83 1.83 0.05 9.91 n.a.
(18) 2.375% 1/15/2017 TIPS -0.72 8.21 2.09 4.45 1.85 0.05 9.65 n.a.
(19) 2% 4/15/2012 TIPS∗ 19.46 37.86 5.64 11.23 1.89 0.06 9.99 n.a.
(20) 2.625% 7/15/2017 TIPS -8.43 16.60 0.86 4.01 1.50 0.03 10 n.a.
(21) 1.625% 1/15/2018 TIPS -7.33 18.05 0.80 3.85 1.89 0.07 0.41 0.05
(22) 0.625% 4/15/2013 TIPS∗ -0.14 16.03 0.52 11.28 8.22 0.43 0.09 0.01
(23) 1.375% 7/15/2018 TIPS -15.52 26.57 0.66 4.77 1.27 0.05 0.66 0.13
(24) 2.125% 1/15/2019 TIPS -7.80 20.35 0.17 3.24 28.35 0.18 0.01 n.a.
(25) 1.25% 4/15/2014 TIPS∗ 0.73 10.98 0.35 4.07 50.35 0.19 0.02 0.00
(26) 1.875% 7/15/2019 TIPS -7.96 14.01 0.21 2.45 1.49 0.09 0.4 0.08
(27) 1.375% 1/15/2020 TIPS 0.93 8.14 -0.40 3.61 30.89 0.15 0.01 n.a.
(28) 0.5% 4/15/2015 TIPS∗ 8.73 15.06 0.58 3.26 36.96 0.16 0.02 0.00
(29) 1.25% 7/15/2020 TIPS 0.13 8.27 0.00 2.72 1.91 0.16 0.37 0.09
(30) 1.125% 1/15/2021 TIPS 9.23 11.61 -0.18 3.74 3.06 0.15 0.28 0.03
(31) 0.125% 4/15/2016 TIPS∗ 5.53 8.70 -0.06 3.46 10.66 0.17 0.09 0.00
(32) 0.625% 7/15/2021 TIPS 5.77 8.33 0.24 2.63 2.33 0.10 0.55 0.09
(33) 0.125% 1/15/2022 TIPS 14.26 15.58 0.51 2.37 3.68 0.16 0.33 0.04
(34) 0.125% 4/15/2017 TIPS∗ 1.51 5.20 0.16 2.55 18.94 0.19 0.05 0.00
(35) 0.125% 7/15/2022 TIPS 10.88 11.87 0.65 3.43 2.39 0.05 4.49 0.32
(36) 0.125% 1/15/2023 TIPS 19.59 20.46 0.53 5.29 2.97 0.10 10 n.a.
(37) 0.125% 4/15/2018 TIPS∗ 5.47 6.28 0.00 3.01 3.28 0.32 0.72 0.20
(38) 0.375% 7/15/2023 TIPS 9.80 10.19 0.96 2.75 2.06 0.08 9.95 n.a.
All TIPS yields 1.20 14.58 0.85 4.93 - - - -
Max LEKF 109,593.5 119,014.7 - -

Table 3: Pricing Errors of TIPS and Estimated Parameters for Liquidity Risk

This table reports the mean pricing errors (Mean) and the root mean-squared pricing errors (RMSE)

of TIPS in the G (4) and GL (5) models estimated with a diagonal specification of KP
z and Σz . The

errors are computed as the difference between the TIPS market price expressed as yield to maturity

and the corresponding model-implied yield. All errors are computed using the posterior state estimates

in the EKF and reported in basis points. The asterisk * denotes five-year TIPS. Standard errors (SE)

are not available (n.a.) for the normalized value of β1 or parameters close to their boundary. The

SE are computed by pre- and post-multiplying the variance of the score by the inverse of the Hessian

matrix, which is computed as outlined in Harvey (1989).

increasing in t due to the strong mean-reversion in X liq
t under the Q measure (κQliq = 0.83

according to Table 4). Thus, liquidity risk operates as a traditional slope factor within the

GL (5) model, although its steepness varies across the universe of TIPS.
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(b) Ten-year TIPS

Figure 3: The Term Structure of Liquidity Risk

This figure shows the term structure of liquidity risk, where βi is omitted to facilitate the comparison.

That is,
(1−exp{−κ

Q

liq
(T−t)})

κ
Q

liq
(T−t)

− exp
{
−λL,i (t− t0)

} 1−exp{−(κQ

liq
+λL,i)(T−t)}

(κQ

liq
+λL,i)(T−t)

is reported for the yield

related to the ith TIPS as implied by the estimated version of the GL (5) model with a diagonal

specification of KP
z and Σz.

The remaining estimated model parameters are provided in Table 4, which shows that the

dynamics of the four frictionless factors are very similar across the G (4) and GL (5) models,

both under the P and the Qmeasure. We draw the same conclusion from Figure 4, which plots

the estimated factors in the two models. The only noticeable difference appears for the real

level factor LR
t , which in the G (4) model generally exceeds the real level factor in the GL (5)

model. This difference is most pronounced from 2001 to 2002 following the 9/11 attacks and

around the financial crisis in 2008. The frictionless instantaneous real rate rR,FL
t = LR

t +αRSt

therefore has a higher level in the G (4) model, which in turn implies that this model has a

much lower level for the instantaneous inflation rate rt − rR,FL
t compared with the GL (5)

model (see panel (f) of Figure 4). Finally, panel (e) shows the estimated liquidity factor X liq
t ,

which is unique to the GL (5) model. As expected, this factor attains mostly positive values

and peaks during the same episodes where the real level factor in the G (4) model exceeds

the value of LR
t in the GL (5) model.

Accordingly, when estimating LR
t and the frictionless instantaneous real rate from Trea-

sury yields and TIPS market prices, it is essential to account for the liquidity disadvantage of

TIPS to avoid a positive bias in the estimated instantaneous real rate, which automatically

generates a negative bias in the instantaneous inflation rate – particularly during periods of

market turmoil.
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(b) St: The common slope factor
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(c) Ct: The common curvature factor
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(d) LR
t : The real level factor
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(e) Xliq
t : The liquidity factor
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(f) The instantaneous inflation rate

Figure 4: Estimated State Variables and Instantaneous Inflation

This figure shows the posterior state estimates in the EKF and the instantaneous inflation for the

G (4) and GL (5) models estimated with a diagonal specification of KP
z and Σz .
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G (4) GL (5)
Parameter

Est. SE Est. SE

κP11 0.2796 0.1956 0.2102 0.1761
κP22 0.0976 0.0656 0.0964 0.1416
κP33 0.5156 0.2779 0.4968 0.1826
κP44 0.4407 0.3208 0.3628 0.1522
κP55 - - 0.9567 0.3915
σ11 0.0071 0.0004 0.0060 0.0006
σ22 0.0101 0.0005 0.0099 0.0005
σ33 0.0255 0.0014 0.0250 0.0013
σ44 0.0082 0.0005 0.0070 0.0002
σ55 - - 0.0112 0.0016
θP1 0.0633 0.0051 0.0619 0.0058
θP2 -0.0336 0.0148 -0.0286 0.0140
θP3 -0.0336 0.0122 -0.0315 0.0122
θP4 0.0362 0.0046 0.0331 0.0038
θP5 - - 0.0059 0.0022
λ 0.4228 0.0056 0.4444 0.0054
αR 0.6931 0.0129 0.7606 0.0095

κQliq - - 0.8291 0.0719

θQliq - - 0.0015 0.0002

σy 0.0005 9.34 × 10−6 0.0005 8.76 × 10−6

σTIPS 0.0015 7.37 × 10−5 0.0005 2.32 × 10−5

Table 4: Estimated Dynamic Parameters

The table shows the estimated dynamic parameters in the G (4) and GL (5) models estimated with

a diagonal specification of KP
z and Σz. The reported standard errors (SE) are computed by pre- and

post-multiplying the variance of the score by the inverse of the Hessian matrix, which is computed as

outlined in Harvey (1989).

5 The TIPS Liquidity Premium

This section examines the TIPS liquidity premium from the GL (5) model. Section 5.1 defines

the TIPS liquidity premium and studies its historical evolution. The estimated liquidity

premium is then related to existing measures of liquidity risk in Section 5.2 and 5.3, while

Section 5.4 summarizes our findings on the TIPS liquidity premium.

5.1 The Estimated TIPS Liquidity Premium

To compute the TIPS liquidity premium we first use the estimated parameters and the filtered

states
{
Zt|t

}T

t=1
to calculate the fitted TIPS prices

{

P̂ TIPS,i
t

}T

t=1
for all outstanding securities

in our sample. These bond prices are then converted into yields to maturity
{

ŷc,it

}T

t=1
by
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solving the fixed-point problem

P̂ TIPS,i
t = C(t1 − t) exp

{

−(t1 − t)ŷc,it

}

(16)

+
n∑

k=2

C

2
exp

{

−(tk − t)ŷc,it

}

+exp
{

−(T − t)ŷc,it

}

+DOV

[

Zt|t;T,
Πt

Πt0

]

,

for i = 1, 2, ..., nTIPS , meaning that
{

ŷc,it

}T

t=1
is approximately the real return on the ith

TIPS if held until maturity (see Sack and Elsasser (2004)). To obtain the corresponding yields

without correcting for liquidity risk, a new set of model-implied bond prices are computed

from the estimated GL (5) model but using only its frictionless part, i.e., with the constraints

that X liq

t|t = 0 for all t as well as σ55 = 0 and θQliq = 0. These prices are denoted
{

P̃ TIPS,i
t

}T

t=1

and converted into yields to maturity ỹc,it using equation (16). Thus, ỹc,it is the estimated real

return on the ith TIPS when financial frictions are absent. The liquidity premium for the ith

TIPS is then defined as

Ψi
t ≡ ŷc,it − ỹc,it . (17)

Panel (a) in Figure 5 shows the average liquidity premium Ψ̄t across the outstanding TIPS

at a given point in time. This premium starts at around 25 basis points in July 1997 and falls

steadily to just below zero in the beginning of 2000, when the U.S. economy displays strong

economic growth. Thus, there is only a modest liquidity premium in the ten-year maturity

spectrum of the TIPS market from 1997 to 2000 according to our model. This finding does not

seem too surprising, as the few outstanding TIPS in this period allow the frictionless pricing

factors in the model to explain most of the variation in TIPS prices and thereby reduce

the reliance on the liquidity correction (see Figure 2). The slowdown in economic activity

during 2000 and the following recession coincide with a steady increase in the average liquidity

premium, which peaks at 77 basis points shortly after the 9/11 attacks in 2001. Liquidity

generally improves in 2002 and the following years, meaning that Ψ̄t is close to zero during

much of 2005. The U.S. Treasury’s reaffirmed commitment to the TIPS program in February

2002 has most likely contributed to this downward trend in Ψ̄t, as it seems likely to have

raised expectations about the future supply of TIPS. Two other factors contributing to the

improved liquidity are the increase in the number of outstanding TIPS after 2003 (Dudley et

al. (2009)), and that several dealers expand their TIPS market-making activities around 2003

(Sack and Elsasser (2004)). Liquidity once again deteriorates in 2008 with the bankruptcy of

Lehman Brothers and the financial crisis, where the average liquidity premium peaks at 268

basis points. Market conditions normalize in 2009 and liquidity improves further during the

second round of quantitative easing (QE2) from November 2010 to June 2011 (see Christensen

and Gillan (2019) for a detailed analysis). Figure 5 also shows that the average liquidity
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(a) The average TIPS liquidity premium
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(b) The ten-year on-the-run TIPS liquidity premium

Figure 5: The Estimated TIPS Liquidity Premium

This figure shows the TIPS liquidity premium implied by the estimated version of the GL (5) model

described in Section 4.3.

premium is estimated with great precision, as evident from the tight 95 percent confidence

band for Ψ̄t, which accounts for uncertainty attached to the estimated model parameters and

the latent states.14 These narrow confidence bands for Ψ̄t may at first appear somewhat

surprising. However, this property of the GL (5) model arises from the fact that liquidity risk

is identified from the model’s Q dynamics, which is estimated with great precision given the

large cross-section of Treasury yields and TIPS securities used in the estimation.

The average liquidity premium studied so far is computed from the outstanding TIPS at

each point in time, meaning that its maturity varies with the composition of securities in

14The confidence bands for Ψ̄t are derived by adopting a Bayesian perspective as outlined in Hamilton
(1994). To describe the procedure, let the vector ψ contain all the model parameters. We then draw ψ(s) from
its asymptotic normal distribution and run the EKF at ψ(s) to obtain an approximately Gaussian distribution

for the filtered state estimates, denoted f
(

Zt

(

ψ(s)
))

. States Z
(s)
t

(

ψ(s)
)

are then drawn from f
(

Zt

(

ψ(s)
))

,

and Ψi
t are computed at Z

(s)
t

(

ψ(s)
)

for t = 1, 2, .., T and i = 1, 2, ...nTIPS . By repeating this procedure for

s = 1, 2, ..., S we obtain an estimate of the probability distribution for the estimated TIPS liquidity premiums.
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the market. Some of the variation in Ψ̄t therefore reflects the fact that old and somewhat

illiquid bonds mature and are replaced by new and more liquid securities. Although the

average liquidity premium is of great interest on its own, it may also be useful to examine

the liquidity premium at a fixed maturity. This is done in panel (b) of Figure 5, where

we report the liquidity premium for the most recently issued ten-year TIPS Ψ10y
t , i.e., the

ten-year TIPS which is “on-the-run.”15 We first note that the most recently issued ten-year

TIPS is more liquid than the average security in the TIPS market, although Ψ̄t and Ψ10y
t

are closely correlated (65%). We also find that the mean of Ψ10y
t is 25 basis points and its

standard deviation is 9 basis points, whereas the corresponding figures for Ψ̄t are 34 and 30

basis points, respectively. It is also worth noticing that the liquidity in the ten-year on-the-

run TIPS is less severely affected by the financial crisis in 2008 compared with the average

liquidity premium. This suggests that a large proportion of the elevated level for Ψ̄t during

the financial crisis is due to poor liquidity in the outstanding old securities. We also note that

QE2 hardly affects the liquidity premium in the most recently issued ten-year TIPS, meaning

that the impact of QE2 on TIPS liquidity derives mostly from its effect on the liquidity of

older securities. This finding coincides nicely with the fact that the Federal Reserve’s TIPS

purchases were mainly concentrated in relatively old TIPS, as documented by Christensen

and Gillan (2019).

5.2 Observable Proxies for Liquidity Risk

Having demonstrated the close relationship between the evolution of the U.S. economy and

our model-implied liquidity premium in the TIPS market, we next show that this liquidity

premium is strongly related to several observable proxies for liquidity risk. Given our interest

in understanding the overall evolution in TIPS liquidity, we focus on the average liquidity

premium throughout this section.

The first variable we consider is the VIX options-implied volatility index, which represents

near-term uncertainty in the Standard & Poor’s 500 stock market index. Panel (a) of Figure

6 shows the expected positive correlation (67%) between the VIX and the TIPS liquidity

premium, as high uncertainty tends to increase the risk attached to the future resale price of

any security and therefore also the required liquidity premium.16 Our second observable proxy

for liquidity risk is the measure suggested by Hu et al. (2013), henceforth HPW, based on

deviations in the prices of Treasuries from a fitted yield curve. They argue that this measure

reflects limited availability of arbitrage capital and therefore constitutes an economy-wide

proxy for illiquidity. Panel (b) in Figure 6 shows that the average TIPS liquidity premium

from our model is also closely related to the HPW measure with a positive correlation of 72%.

Our third variable is the yield difference between the seasoned (off-the-run) ten-year Treasury

15See also Christensen et al. (2020), who explore the presence of an “on-the-run” premium in the TIPS
market.

16See also Duffie et al (2007) for a model of the positive relationship between uncertainty and liquidity risk.
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(b) The HPW illiquidity measure
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(c) The on-the-run Treasury par-yield spread
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Figure 6: Variables Explaining the Average TIPS Liquidity Premium

In panel (a) the VIX for the S&P 500 is expressed in percentage, in panel (b) the HPW series is scaled

by ten, in panel (c) the yield spread is the difference between the ten-year off-the-run Treasury par

yield from Gürkaynak et al. (2007) and the ten-year on-the-run Treasury par yield from the H.15 series

at the Board of Governors, and in panel (d) the TIPS mean absolute fitting errors from Gürkaynak

et al. (2010) and the ratio of the weekly average of daily trading volume in the secondary market for

Treasury coupon bonds over the weekly average of daily trading volume in the secondary market for

TIPS, where both series are measured as an eight-week moving average.

as provided by Gürkaynak et al. (2007) and the most recently issued (on-the-run) Treasury

of the same maturity from the H.15 series at the Board of Governors. This spread represents

the on-the-run liquidity premium in Treasuries, which also correlates positively (51%) with

the average TIPS liquidity premium from our model, as seen from panel (c) in Figure 6.

The last two proxies for liquidity risk are taken from AACMY, who use (i) the TIPS mean

absolute fitting errors from Gürkaynak et al. (2010) and (ii) the relative TIPS transaction

volume, which is measured by the ratio of primary dealers’ transaction volume in Treasuries

over the corresponding transaction volume in TIPS. Both of these series are plotted in panel
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Correlations in Percent: Regression:
VIX HPW On-the-run Ratio of GSW Average TIPS

spread trading vol TIPS errors liquidity premium
Constant −2.86

(4.60)
−3.00
(3.68)

VIX 100 75 69 18 55 0.75∗∗
(0.18)

0.70
(0.18)

∗∗

HPW 100 79 16 69 −1.28
(0.92)

−
On-the-run spread 100 57 34 0.56∗∗

(0.24)
0.37
(0.16)

∗∗

Ratio of Trading vol 100 −34 0.01
(0.05)

−
GSW TIPS errors 100 5.24∗∗

(0.41)
4.98
(0.27)

∗∗

Adjusted R2 0.78 0.78

Table 5: Observable Proxies for Liquidity Risk

The first part of the table reports correlations between each of the observable proxies for liquidity

risk, where GSW TIPS errors refers to the mean absolute fitted errors from Gürkaynak et al. (2010).

The second part reports the results of regressing the average TIPS liquidity from the estimated GL (5)

model described in Section 4.3 on these observable proxies for liquidity risk. Standard errors computed

by the Newey-West estimator (with 12 lags) are provided in parentheses. Asterisks * and ** indicate

significance at the 5 percent and 1 percent levels, respectively. The data are weekly covering the period

from January 8, 1999, to December 27, 2013, a total of 782 observations.

(d), which shows a very high correlation of 84% between the average liquidity premium in

our model and the TIPS mean absolute fitted errors from Gürkaynak et al. (2010). On the

other hand, our model-implied liquidity premium is only weakly correlated with the relative

TIPS transaction volume (12%). However, Table 5 reveals that this proxy for liquidity is only

weakly correlated with the VIX (18%) and the HPW measure (16%), and even negatively

correlated (−34%) with the TIPS fitted errors from Gürkaynak et al. (2010). This suggests

that the relative TIPS transaction volume may be an imprecise proxy for liquidity risk in the

TIPS market, and this is likely to explain our finding in panel (d).

The second part of Table 5 reports the results of regressing the average liquidity premium

from our model on the five observable proxies for liquidity risk. We find a significant effect

from the VIX, the on-the-run spread, and the TIPS fitted errors from Gürkaynak et al. (2010),

which all have the expected positive sign. On the other hand, the HPW measure and the

relative TIPS transaction volume are both insignificant at the 5% level and do not affect the

adjusted R2 of 0.78. The lack of significance for the HPW measure is explained by its close

similarity to the off-the-run spread and the TIPS fitted errors from Gürkaynak et al. (2010),

whereas the insignificance of the relative TIPS transaction volume is to be expected given the

imprecise nature of this liquidity proxy.17

17Given that all variables in this regression are very persistent, we have also estimated it in first-differences
as a robustness check. That is, the weekly change in the average liquidity premium is regressed on the weekly
change in the VIX, the on-the-run spread, the TIPS fitted errors from Gürkaynak et al. (2010), and a constant.
The OLS estimates and t-statistics computed using Newey-West standard errors (using three lags) for the first
three regressors are 0.12 (1.73), 0.53 (1.89), and 2.67 (5.20), respectively.
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(a) The five-year on-the-run TIPS liquidity premium
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(b) The ten-year on-the-run TIPS liquidity premium

Figure 7: Model-Free Comparison of Estimated TIPS Liquidity Premiums

Panel (a) and (b) show the estimated liquidity premium for the most recently issued (on-the-run)

five- and ten-year TIPS, respectively, on each observation date implied by the GL (5) model and the

model-free measure of Christensen and Gillian (2017). This model-free measure of TIPS liquidity risk

is constructed by subtracting TIPS BEI in the Gürkaynak et al. (2007, 2010) yield databases from

the corresponding inflation swap rate provided by Bloomberg.

Thus, our model-implied measure of liquidity risk is highly correlated with other commonly

used proxies for liquidity risk, which we interpret as further evidence in support of our new

identification strategy for the TIPS liquidity premium.

5.3 Comparison To Other Estimates of The TIPS Liquidity Premium

This section compares the TIPS liquidity premiums from the GL (5) model to existing es-

timates in the literature. The first alternative we consider is the model-free measure of

Christensen and Gillan (2019) based on the difference between inflation swap rates and TIPS

breakeven inflation (BEI) of the same maturity. This measure captures the joint frictions in

inflation swaps and TIPS, but it should predominantly capture the TIPS liquidity premium

if the inflation swap market is practically free of any liquidity premium, as argued by Fleck-
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Figure 8: Comparison of Ten-Year TIPS Liquidity Premium Estimates

This figure shows the estimated liquidity premium for the most recently issued (on-the-run) ten-year

TIPS on each observation date as implied by the GL (5) model as well as the ten-year TIPS liquidity

premiums from Abrahams et al. (AACMY) (2016), D’Amico et al. (DKW) (2018), and Pflueger and

Viceira (PV) (2016). All series end in December 2013, but their start dates vary with their availability.

enstein et al. (2014). Although the data is available back to the spring of 2004, we follow

Christensen and Gillan (2019) and start the comparison in 2005. Panel (a) in Figure 7 shows

that the on-the-run five-year TIPS liquidity premium from the GL (5) model tracts remark-

ably well the overall level of this model-free measure. At the ten-year maturity shown in

Panel (b) of Figure 7, we see a similar tight overlap between the estimated liquidity premium

from the GL (5) model and the model-free measure of TIPS liquidity risk. These findings

suggest that the GL (5) model implies reliable estimates of TIPS liquidity premiums and this

provides additional support for our proposed identification scheme.

The second set of alternative estimates we consider are provided in Figure 8, which com-

pares the on-the-run ten-year TIPS liquidity premium in the GL (5) model to the estimates

in AACMY, DKW, and PV.18 We first note that the ten-year TIPS liquidity premium in

the GL (5) model and in the model of AACMY are fairly similar for most of the considered

period, although the estimate in AACMY is somewhat higher for the early years of the TIPS

market and during the recent financial crisis. This causes the AACMY estimate to average

slightly higher at 38 basis points versus the GL (5) model average of 25 basis points. The

ten-year TIPS liquidity premium in the model of DKW is also mostly above the estimate

from the GL (5) model, in particular in the early years of the TIPS market and around the

peak of the financial crisis. Over the shown period it averages 61 basis points, which is more

than twice the size of the estimate of the GL (5) model. Furthermore, the liquidity premium

in DKW is notably more volatile than the other estimates shown in Figure 8. Finally, the

18We thank Tobias Adrian and Richard Crump for sharing data related to the work of AACMY. We also
thank Michiel de Pooter for sharing output from the model of DKW, and we thank Carolin Pflueger for
providing the required data related to the work of PV.
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estimated liquidity premium in PV is generally also above the estimate from GL (5) model

and averages 65 basis points.

5.4 Summary

We draw three conclusions from this section. First, the TIPS liquidity premium is sizable and

characterized by clear countercyclical variation. Second, our estimate of the TIPS liquidity

premium displays a high positive correlation with observable proxies for liquidity risk. Third,

the estimated liquidity premiums from the GL (5) model are very close to model-free measures

of priced frictions in the TIPS and inflation swap markets, whereas existing model-based

estimates tend to over-estimate the level of the TIPS liquidity premium.

6 Robustness Analysis

This section examines the robustness of the average liquidity premium reported in Section 5.

Section 6.1 shows that the deflation option in TIPS has a small effect once we account for

liquidity risk. Section 6.2 changes some of the key features of the GL (5) model, while Section

6.3 assesses the effects of changing the sample of TIPS prices used in the estimation. The

overall message from this robustness analysis is that the average liquidity premium in Section

5 is remarkably robust to each of these modifications.

6.1 The Effects of Accounting for the Deflation Option in TIPS

The estimation of the GL (5) model in Section 4 accounts for the deflation option in TIPS to

isolate its effect from the liquidity adjustment. To evaluate the importance of the deflation

option, we next estimate the GL (5) model without correcting for this option effect. We

proceed by first reporting the estimated deflation probabilities to locate episodes when the

deflation option matters. Then we analyze the effect of the deflation option on the TIPS

liquidity premium.

The top row of Figure 9 reports one-year implied deflation probabilities under the P

measure from the GL (5) and the G (4) model, respectively. Panel (a) shows that the option

adjustment hardly has any effect in the GL (5) model, because the model generates very low

P probabilities of deflation during the Russian sovereign debt crisis in late 1998, the bust of

the dot-com bubble in 2001, and the financial crisis from 2008 to 2009. These findings seem

consistent with the view that the Federal Reserve assigned low probabilities to deflation in

the U.S. both in 2001 and during the financial crisis (see, for instance, Bernanke (2002) and

Ezer et al. (2008)). To compare these results to the existing literature such as Grishchenko

et al. (2016) and Fleckenstein et al. (2017), we also report the corresponding P probabilities

from the G (4) model in Panel (b), where we see clear spells of deflation fears around 2001 and

2008, both with and without the deflation option. To understand these differences, recall from

29



1998 2000 2002 2004 2006 2008 2010 2012 2014

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

ba
bi

lit
y

GL (5), with deflation option   
GL (5), without deflation option    

(a) P-probabilities of deflation
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(b) P-probabilities of deflation
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(c) Q-probabilities of deflation
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(d) Q-probabilities of deflation

Figure 9: Estimated One-Year Deflation Probabilities

Panels (a) and (b) show the one-year deflation probabilities under the objective probability measure P

from the GL (5) and G (4) models estimated with and without the deflation option adjustment. Panels

(c) and (d) show the corresponding estimated one-year deflation probabilities under the risk-neutral

probability measure Q. All models are estimated with a diagonal specification of KP
z and Σz.

Section 4.3 that the inability of the G (4) model to account for liquidity risk in TIPS generates

a downward bias in its instantaneous inflation rate compared with the GL (5) model. This in

turn shifts the entire inflation probability distribution under the P measure downwards and

makes episodes of deflation much more likely in the G (4) model compared with the GL (5)

model.

The bottom row in Figure 9 shows that the results under the P measure carries over to

the corresponding Q probabilities, which are used to evaluate the deflation option in TIPS.

Thus, the probability of the deflation option being in-the-money within the GL (5) model is

very small, and the effect of the deflation option on the average TIPS liquidity premium is

therefore hardly visible in Figure 10.19 Based on this finding and the large computational

19When expressing the size of the deflation option in terms of the yield spread, unreported results reveal
that the deflation option in the GL (5) model is typically between 5 and 10 basis points for newly issued TIPS,
except for a few securities around 1999 and 2008 where the effect is around 20 basis points for a brief period.
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Figure 10: The Average TIPS Liquidity Premium: The Deflation Option

This figure shows the average TIPS liquidity premium from the estimated version of the GL (5) model

described in Section 4.3 and from a re-estimated version of the GL (5) model without the deflation

option. Both versions of the GL (5) model are estimated with a diagonal specification of KP
z and Σz .

costs required to include the deflation option in the estimation, we will not account for it in

the remaining robustness analysis.

6.2 Model Dynamics

The next series of robustness checks explore the effects of altering key features of the GL (5)

model. Section 6.2.1 considers a fully flexible specification for the factor dynamics under the

P measure, Section 6.2.2 modifies the GL (5) model to accommodate the zero lower bound

(ZLB) for nominal yields, Section 6.2.3 changes the GL (5) model to allow for stochastic

volatility in the frictionless level factors, and Section 6.2.4 presents a more flexible form for

frictionless real yields than considered in the GL (5) model.

6.2.1 Fully Flexible Factor Dynamics under the Physical Measure

In the interest of simplicity, we have so far studied a restricted version of the GL (5) model

where KP
z and Σz are diagonal matrices. To explore the impact of these restrictions for

the estimated liquidity premium, we momentarily consider the GL (5) model with a fully

flexible specification of KP
z and Σz. Figure 11 shows that the average liquidity premium

in this more flexible version of the GL (5) model only occasionally exceeds the benchmark

estimate by 5 to 10 basis points from 1997 to 2002. That is, the P dynamics have hardly any

effect on the average liquidity premium, as claimed in Section 4.3. This may at first appear

somewhat surprising, but this result arises because the liquidity premium is identified from

the Q dynamics in the GL (5) model, which are independent of KP
z and only display a weak
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Figure 11: The Average TIPS Liquidity Premium: Fully Flexible P Dynamics

This figure shows the average TIPS liquidity premium from the estimated version of the GL (5) model

described in Section 4.3 with a diagonal specification of KP
z and Σz and a version of the GL (5) model

with a fully flexible specification of KP
z and Σz . Both versions of the GL (5) model are estimated

without accounting for the deflation option.

link to Σz through the small adjustment term in the yield function in equation (13).

6.2.2 Accounting for the Zero Lower Bound in Nominal Yields

We have so far adopted the standard affine specification for the nominal short rate, which does

not enforce the ZLB. However, a large fraction of our sample (from January 2009 to December

2013) is at the ZLB, and we therefore briefly explore whether our estimated liquidity premium

is robust to accounting for the ZLB. We adopt an approach inspired by Black (1995) and

replace rNt in equation (9) by rNt = max
(
LN
t + St, 0

)
and solve for nominal yields using the

approximation in Christensen and Rudebusch (2015), but the model is otherwise identical

to the one presented in Section 3.2. Figure 12 shows that the liquidity premium from this

shadow rate extension of our model, denoted the B-GL (5) model, is almost identical to our

benchmark estimate from the GL (5) model. Thus, the presence of the ZLB does not affect

the extracted liquidity premium in the GL (5) model.

6.2.3 Allowing for Stochastic Volatility

The GL(5) model imposes the standard assumption of constant conditional variances in the

factor dynamics. We briefly relax this assumption by introducing stochastic volatility in the
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Figure 12: The Average TIPS Liquidity Premium: Accounting for the ZLB

This figure shows the average TIPS liquidity premium from the estimated version of the GL (5) model

described in Section 4.3 with a diagonal specification of KP
z and Σz and the corresponding shadow rate

extension, denoted the B-GL (5) model, which respects the zero lower bound for nominal yields. Both

models are estimated without accounting for the deflation option.

Q-dynamics by letting

dZt =












κQ
LN 0 0 0 0

0 λ −λ 0 0
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
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
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t

St

Ct

LR
t

X liq
t























dt (18)

+












σ11 0 0 0 0

0 σ22 0 0 0

0 0 σ33 0 0
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
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
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



.

The instantaneous nominal and real short rates remain described as in equations (9) and (10).

This implies that the nominal zero-coupon yield is given by

yNt (τ) = gN
(

κQ
LN

)

LN
t +

(
1− e−λτ

λτ

)

St +

(
1− e−λτ

λτ
− e−λτ

)

Ct −
AN
(
τ ;κQ

LN

)

τ
.

The function gN
(

κQ
LN

)

modifies the loading on the nominal level factor and the yield-

adjustment term AN
(
τ ;κQ

LN

)
/τ differs from the one in (12), whereas the slope and the

curvature factors are unaffected by including stochastic volatility. The expression for the
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Figure 13: The Average TIPS Liquidity Premium: Allowing for Stochastic Volatil-

ity

This figure shows the average TIPS liquidity premium from the estimated version of the GL (5) model

described in Section 4.3 with a diagonal specification of KP
z and Σz and the corresponding premium

from the SV L (5) model with a diagonal specification of KP
z and Σz . Both models are estimated

without accounting for the deflation option.

real yield linked to the ith TIPS reads

yR,i
t (t0, t, τ) = gR

(

κQ
LR

)

LR
t + αR

(
1− e−λτ

λτ

)

St + αR

(
1− e−λτ

λτ
− e−λτ

)

Ct

+βi




1− e−κ

Q

liq
τ

κQliqτ
− e−λL,i(t−t0) 1− e−(κ

Q

liq
+λL,i)τ

(

κQliq + λL,i
)

τ



X liq
t −

ÃR,i
(

t0, t, τ ;κ
Q

LR

)

τ
,

where ÃR,i
(

t0, t, τ ;κ
Q

LR

)

is a yield-adjustment term.20 To link the risk-neutral and physical

dynamics of the state variables, we follow Christensen et al. (2016) and use the extended

affine specification for the market prices of risk as introduced by Cheridito et al. (2007). To

be consistent with the previous results, we focus on the parsimonious setting where KP
z and

Σz are diagonal matrices.21 To keep the model arbitrage-free, the two level factors must be

prevented from hitting the zero boundary. This positivity requirement is ensured by imposing

the following Feller conditions under both probability measures:

κP11θ
P
1 >

1

2
σ2
11, 10−7 · θQ

LN >
1

2
σ2
11, κP44θ

P
4 >

1

2
σ2
44, and 10−7 · θQ

LR >
1

2
σ2
44.

We refer to this model as the SV L (5) model.

Figure 13 shows that the average TIPS liquidity premium from the SV L (5) model is

20Analytical formulas for gN
(

κQ

LN

)

, gR
(

κQ

LR

)

, AN
(

τ ;κQ

LN

)

, and ÃR,i
(

t0, t, τ ;κ
Q

LR

)

are provided in Chris-

tensen et al. (2016).
21In our implementation, we fix κQ

LN = κQ

LR = 10−7 to get a close approximation to the uniform level factor

loadings in the GL (5) model.
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very similar to the one from the GL (5) model, except for minor differences in the level of

the liquidity premium at the start of the sample. We therefore conclude that the standard

assumption of constant conditional variances for the factors have a relatively small impact on

the TIPS liquidity premium.

6.2.4 The Frictionless Real Yield Curve

All the models considered so far explain TIPS prices using a real level factor LR
t and a

liquidity factor X liq, in addition to a common slope and curvature factor for Treasuries and

TIPS. Given that the liquidity factor X liq mostly operates as a real slope factor according to

Figure 3, it seems obvious to explore whether X liq mainly captures insufficient variability in

the real slope factor αRSt due to its tight link to the nominal slope factor St in the GL (5)

model. We therefore briefly replace equation (10) with

rR,i
t = LR

t + SR
t + βi(1− e−λL,i(t−t0))X liq

t ,

where SR
t is a separate real slope factor. Letting Z̃t ≡

[

LN
t SN

t CN
t LR

t SR
t X liq

t

]′
,

the considered Q dynamics has the form

dZ̃t =







KQ
x 04×1 04×1

01×4 λR 0

01×4 0 κQliq



















04×1

0

θQliq






− Z̃t







+Σz̃dW
Q
t ,

where λR ≥ 0. Nominal yields remain given by equation (12), whereas the expression for the

real yield linked to the ith TIPS now reads

yR,i
t (t0, t, τ) = LR

t +

(

1− e−λRτ

λRτ

)

SR
t

+βi




1− e−κ

Q

liq
τ

κQliqτ
− e−λL,i(t−t0) 1− e−(κ

Q

liq
+λL,i)τ

(

κQliq + λL,i
)

τ



X liq
t − ÃR,i (t0, t, τ)

τ
,

where ÃR,i (t0, t, τ) is a yield-adjustment term. This version of our model has three factors

for Treasury yields, two frictionless factors for TIPS yields, and one liquidity factor, making

the number of factors similar to the specification adopted in AACMY. An affine specification

for the market prices of risk implies that the P dynamics are given by

dZ̃t = KP
z̃

(

θPz̃ − Z̃t

)

dt+Σz̃dW
P
t ,

where KP
z̃ and θPz̃ are free parameters. For comparability with the GL (5) model, we let both

KP
z̃ and Σz̃ be diagonal matrices.

Panel (a) in Figure 14 shows that this six-factor GL (6) model gives a somewhat lower
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(a) The average TIPS liquidity premium
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(b) The real slope factor

Figure 14: A Separate Real Slope Factor

This figure reports the average estimated TIPS liquidity premium in the GL (5) and GL (6) models,

where both models are estimated with a diagonal specification of KP
m and Σm for m = {z, z̃} and

without the deflation option.

average TIPS liquidity premium before 2005 compared with the GL (5) model, but that

the liquidity premium in the two models largely coincides after 2005 when more TIPS are

available. From panel (b) in Figure 14 we also note that the real slope factor SR
t in the

GL (6) model is somewhat more noisy than the real slope factor αRSt in the GL (5) model,

but that the two factors otherwise are very similar with a correlation of 85.2%. These findings

suggest that the link between the nominal and real slope factor imposed in the GL (5) model

is supported by the data, and that this restriction does not materially alter the extracted

TIPS liquidity premium.

6.3 Sample Choices

The final series of robustness checks explore the effects of altering our sample of TIPS prices.

Section 6.3.1 changes the cutoff criterion for maturing bonds, Section 6.3.2 alters the data
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(a) Truncation lowered to 1.5 years
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(b) Truncation lowered to 1 year
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(c) Truncation lowered to 0.5 year
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(d) No truncation

Figure 15: The Average TIPS Liquidity Premium: The Cutoff Criterion

This figure reports the average TIPS liquidity premium from the GL (5) model when re-estimated with

various cutoff values for excluding maturing TIPS. All reported models are estimated with a diagonal

specification of KP
z and Σz and without the deflation option.

frequency, Section 6.3.3 extends the sample to the full thirty-year maturity spectrum, Section

6.3.4 varies the sample start date, and Section 6.3.5 varies the sample end date.

6.3.1 The Cutoff Criterion for Maturing TIPS

The analysis in Sections 4 and 5 exclude TIPS with less than two years to maturity from our

sample to avoid the erratic behavior in their market prices from seasonal variation in CPI

inflation when they are close to maturity. We next examine the effects of this cutoff criterion

by re-estimating the GL (5) model while gradually reducing this cutoff point. The top row

in Figure 15 shows that the average TIPS liquidity premium is nearly unaffected by lowering

the cutoff to one year, whereas Ψ̄t becomes somewhat more volatile around our benchmark

estimate when we include TIPS with less than one year to maturity (see the bottom row of

Figure 15). Thus, our estimated liquidity premium is fully robust to lowering the cutoff point

to one year but becomes more noisy when we reduce the cutoff point to as low as 26 or even
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Figure 16: The Average TIPS Liquidity Premium: Data Frequency

This figure shows the average TIPS liquidity premium from the GL (5) model in Section 4.3 and a

re-estimated version of the GL (5) model using TIPS and nominal yields covering the full thirty-year

maturity spectrum. Both versions of the GL (5) model are estimated with a diagonal specification of

KP
z and Σz and without accounting for the deflation option.

13 weeks to maturity.

6.3.2 Data Frequency

We next re-estimate the GL (5) model using daily and monthly data instead of the weekly

frequency considered throughout the paper. The results in Figure 16 reveal that the average

TIPS liquidity premium is basically unaffected by altering the data frequency. Thus, the

proposed identification scheme may also be applied to get daily estimates of TIPS liquidity,

which may be useful for policy makers and investors that closely monitor the TIPS market.

6.3.3 Extending the Analysis to the Thirty-Year Maturity Range

Our analysis has so far been restricted to the ten-year maturity range for Treasury yields and

TIPS prices. We next study the implications of extending the analysis to the full thirty-year

maturity spectrum for Treasury yields and TIPS. That is, we now include twenty- and thirty-

year TIPS whenever present and apply the same two-year cutoff criterion for maturing TIPS

as in Section 4. To adequately represent the full thirty-year Treasury yield curve, we also

expand our panel of nominal yields with the 11-year, 12-year, . . . , 30-year maturities from

Gürkaynak et al. (2007). Figure 17 shows that the average liquidity premium during the late

1990s increases from about 25 basis points to around 50 basis points when we include the

full thirty-year maturity range. During this early phase of the TIPS market, this corresponds

to adding two thirty-year TIPS to our existing sample, consisting only of two ten-year and

one five-year TIPS (see Figure 2). This sizable effect on the average liquidity premium of

including the two thirty-year TIPS indicates a considerable degree of mispricing based on the
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Figure 17: The Average TIPS Liquidity Premium: The Full Thirty-Year Maturity

Range

This figure shows the average TIPS liquidity premium from the GL (5) model and a re-estimated

version of the GL (5) model using TIPS and nominal yields covering the full thirty-year maturity

spectrum. Both versions of the GL (5) model are estimated with a diagonal specification of KP
z and

Σz and without accounting for the deflation option.

frictionless part of our model. In comparison, the three bonds in the ten-year maturity range

contain only a low liquidity premium, and hence low mispricing based on the frictionless part

of the model. These findings therefore suggest that the two thirty-year TIPS were somewhat

detached from the remaining market in the late 1990s. The effect of including the twenty-

and thirty-year TIPS diminishes from 2000 to 2002, but increases again from 2003 to 2006,

possibly due to the introduction of the three twenty-year TIPS in this period (see Figure

2). From 2006 onwards, we see generally small effects of including the twenty- and thirty-

year TIPS, which may indicate that the TIPS market at the end of our sample is much less

segmented than in the late 1990s.

Overall, the mean of the average TIPS liquidity premium increases from 34 to 55 ba-

sis points when extending the analysis to the thirty-year maturity spectrum, whereas the

standard deviation falls from 30 to 27 basis points.

6.3.4 Sensitivity to Sample Start Date

With only a few TIPS trading in the late 1990s and the early 2000s we may have less confidence

in the results for this part of the sample. To assess whether this could affect the results for

the remaining part of our sample, we gradually increase the sample start date in one-year

increments from January 1998 to January 2003. Figure 18 shows the average TIPS liquidity

premium from each of these six estimations of the GL (5) model and compares them to our

benchmark estimate that uses the full sample starting in July 1997. The results show that

the TIPS liquidity premium is basically unaffected by the chosen sample start date. This is
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Figure 18: The Average TIPS Liquidity Premium: Sample Start Date

This figure shows the average TIPS liquidity premium from the GL (5) model in Section 4.3 and a re-

estimated version of the GL (5) model with increasingly later sample start dates. It all cases the model

estimated is the GL (5) model with a diagonal specification of KP
z and Σz and without accounting for

the deflation option.

because the TIPS liquidity premium is mainly extracted from the cross sectional variation at

each point in time and therefore largely uncorrelated with the sample length.

6.3.5 Sensitivity to Sample End Date

This section explores the effects of varying the end date of our sample. We therefore extend

our sample until December 2019 and re-estimate the GL (5) model using samples ending in

2015, 2017, and 2019. Hence, this exercise also allows us to provide an updated estimate

of TIPS liquidity relative to our benchmark sample that ends in December 2013. Figure 19

reports the average TIPS liquidity premium based on the longer samples. The results show

that the TIPS liquidity premium before 2014 is largely unaffected by extending the sample,

except for a minor change in the level of the premium. We also note that TIPS liquidity has

remained fairly stable from 2014 to the end of 2019, suggesting that our benchmark sample

contains the most relevant period for analyzing distortions in the TIPS market.

7 Economic Applications

This section provides two economic applications of the proposed model. First, we compute a

liquidity-adjusted real yield curve and analyze some of its properties in Section 7.1. Second,

we explore the ability of the proposed model to forecast inflation in Section 7.2 and study the

credibility of the current U.S. monetary policy regime based on the model-implied inflation

expectations.
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Figure 19: The TIPS Liquidity Premium: Sample End Date

This figure shows the average TIPS liquidity premium from the GL (5) model in Section 4.3 and a

re-estimated version of the GL (5) model with increasingly later sample end dates. For all samples,

the GL (5) model is estimated with a diagonal specification of KP
z and Σz and without accounting for

the deflation option.

7.1 A Liquidity-Adjusted U.S. Real Yield Curve

One of the main motivations for introducing the TIPS market in the late 1990s was to provide

assets that allow investors to eliminate inflation risk and hence lock in a real return (Sack

and Elsasser (2004)). These assets also allow for the construction of a real yield curve in the

U.S., similar to what has been available in the U.K. since the early 1980s (Evans (1998)).

However, the TIPS market contains a non-negligible liquidity risk premium as shown above,

and the implied real yield curve from TIPS therefore overstates the level of real rates in the

U.S. Much caution is therefore needed when using these real yields, for instance to evaluate if

consumption-based asset pricing models should generate an upward or downward sloping real

yield curve (see Piazzesi and Schneider (2007), Beeler and Campbell (2012), and Swanson

(2016), among many others).

The ATSM we introduce allows us to address this problem by stripping out the liquidity

premium from real yields. Because it is based on the GL (5) model, we can easily obtain a

liquidity-adjusted real yield curve from equation (13) with X liq

t|t = 0 for all t and a corre-

sponding modification of the deterministic adjustment term to reflect this constraint.22 Table

6 reports means and standard deviations for some of the commonly considered real yields

in the ten-year maturity spectrum. We compare these moments with those from the “unad-

justed” real yield curves of Gürkaynak et al. (2010), which are only reliable for maturities

22That is, the deterministic adjustment term equals the one from the G (4) model but we evaluate it using the
estimated parameters from the GL (5) model. Note that the adopted procedure to compute liquidity-adjusted
real yields also removes any effects related to the deflation option in TIPS, although this effect is fairly small
within our sample (see Section 6.1).
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GL (5) GSW
Mean Std Mean Std

1-week 0.336 1.899 - -
4-week 0.335 1.898 - -
12-week 0.337 1.895 - -
1-year 0.395 1.868 - -
2-year 0.549 1.810 0.869 1.749
3-year 0.739 1.737 1.121 1.689
4-year 0.935 1.659 1.321 1.642
5-year 1.120 1.584 1.485 1.587
6-year 1.288 1.517 1.622 1.525
7-year 1.434 1.457 1.739 1.461
8-year 1.560 1.407 1.839 1.399
9-year 1.686 1.357 1.924 1.341
10-year 1.758 1.328 1.998 1.287

Table 6: Moments for the U.S. Real Yield Curve

This table reports mean and standard deviations from liquidity-adjusted real yields based on the

benchmark GL (5) model and real yields from Gürkaynak et al. (2010), denoted GSW. All moments

are computed from January 8, 1999, to December 27, 2013, as the yields from Gürkaynak et al. (2010)

are unavailable prior to this date. All numbers are measured in percent.

greater than two years and starting in January 1999. Given that the standard deviations in

Table 6 are not materially affected by the liquidity adjustment, we focus on the sample means.

The two-year real yield from Gürkaynak et al. (2010) is seen to have an average of 0.87%,

which is 32 basis points higher than the mean in the corresponding liquidity-adjusted yield.

The size of this liquidity differential tends to fall with maturity and is 24 basis points for the

ten-year yield. This implies that the average slope of the two- to ten-year segment of the real

yield curve is 121 basis points with our liquidity adjustment, compared with 113 basis points

in Gürkaynak et al. (2010). The full ten-year slope of the real yield curve (i.e., the ten-year

yield minus the short rate) is 142 basis points with our liquidity adjustment, whereas the

corresponding estimate is unavailable from Gürkaynak et al. (2010). We therefore conclude

that the real yield curve in the U.S. is strongly upward sloping on average during our sample

period.

7.2 Model-Implied Inflation Expectations

Another reason for introducing the TIPS market was to allow market participants and policy-

makers to obtain real-time estimates of inflation expectations (Sack and Elsasser (2004)).

These forecasts would serve as a useful supplement to existing measures of inflation expecta-

tions from surveys, which have the limitation of being unavailable in real time and may differ

from the expectations of the marginal investor. Most practitioners compute these market-

based forecasts as the difference between nominal and real yields of the same maturity (i.e.,
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breakeven inflation), but this is likely to give a distorted measure of inflation expectations

for three reasons. First, nominal yields contain an inflation risk premium because investors

require compensation for carrying the uncertainty attached to future inflation, making the

real pay-off from Treasuries unknown. Second, the low liquidity in TIPS adds a liquidity

premium to real yields as described above. Third, the implied yield from TIPS contains the

value of the deflation option, which reduces the implied real yield from TIPS if the option is

in-the-money (see equation (16)). The ATSM we propose allows us to correct for all three

distortions and hence obtain a more reliable measure of inflation expectations than implied

by breakeven inflation (BEI).

To evaluate the model-implied inflation process, we first explore in Table 7 how well our

model forecasts headline CPI inflation one year ahead, i.e., πt+1y ≡ Πt+1y/Πt, from 1997 to

2013. The model-implied forecasts are here benchmarked to the random walk, the median

of forecasts in the Blue Chip Financial Forecasts survey, and the one-year inflation swap

rate (only available after 2005). Table 7 shows that the GL (5) model improves substantially

upon the performance of the corresponding G (4) model without a liquidity factor, both

when using the mean absolute forecasting errors (MAE) and the classic root mean-squared

forecasting errors (RMSE). Both models are here estimated using the benchmark specification,

where KP
z and Σz are diagonal matrices, given that the P dynamics hardly affect the TIPS

liquidity premium (see Section 6.2.1). The expected inflation rate, on the other hand, is

more dependent on the P dynamics, and particularly KP
z , and we therefore also report the

forecasting performance of the GL (5) model when estimated with a fully flexible KP
z matrix.

Table 7 shows that this version of the GL (5) model delivers even better forecasts of CPI

inflation, as our model now outperforms the Blue Chip survey from 2005 to 2013, both

in terms of MAE (113.28 vs. 111.75) and in terms of RMSE (150.93 vs. 141.58). These

improvements are sufficiently large to ensure that our model also outperforms the Blue Chip

survey for the entire sample, although the survey does slightly better than our model from

1997 to 2004. We also find that inflation expectations from both versions of the GL (5) model

clearly outperform the random walk and the one-year inflation swap rate, suggesting that

inflation expectations can be extracted reliably from Treasuries and TIPS when accounting

for the relative liquidity differential between the two markets. Thus, correcting for liquidity

risk in the GL (5) model gives a substantially better measure of CPI inflation compared with

the corresponding G (4) model without a liquidity adjustment.

To understand what drives these results, consider Figure 20, which shows one-year ex-

pected inflation from the G (4) and GL (5) models and the realized CPI inflation. This figure

shows that expected inflation from the G (4) model is generally well below realized inflation.

The fitted value of breakeven inflation from the G (4) model omits the inflation risk premium

but is nevertheless close to its expected inflation rate, showing that the inflation risk premium

is fairly small at the one-year horizon. On the other hand, accounting for liquidity risk in
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1997-2004 2005-2013 1997-2013
MAE RMSE MAE RMSE MAE RMSE

Random walk 91.50 108.04 176.17 230.51 137.68 185.17
Blue Chip survey 73.43 86.44 113.28 150.93 95.17 125.79
One-year inflation swap rate n.a. n.a. 142.24 198.07 n.a. n.a.

G (4) model: EP
t [πt+1y] 118.06 134.67 127.15 164.91 123.02 151.91

GL (5) model: EP
t [πt+1y] 89.54 103.31 109.69 142.93 100.53 126.47

GL (5) model with full KP
z : E

P
t [πt+1y] 74.46 87.41 111.75 141.58 94.80 120.02

Table 7: Comparison of CPI Inflation Forecasts

The table reports the mean absolute errors (MAE) and the root mean-squared errors (RMSE) for

forecasting headline CPI inflation one year ahead. The Blue Chip forecasts are mapped to the end

of each month from July 1997 to December 2013, a total of 198 monthly forecasts. The comparable

model forecasts are generated on the nearest available business day prior to the end of each month.

The subsequent CPI realizations are year-over-year changes starting at the end of the month before

the survey month, implying that the random walk forecasts equal the past year-over-year change in

the CPI series as of the beginning of the survey month. The one-year inflation swap rates are not

available (n.a.) prior to 2005. The model-implied forecasts account for the deflation option in TIPS

and impose a diagonal specification of KP
z and Σz, unless stated otherwise.

TIPS through the GL (5) model generates one-year inflation forecasts that are notably closer

to the Blue Chip survey and to the actual inflation outcomes. Hence, the satisfying forecast-

ing performance of the GL (5) model is explained by the liquidity adjustment and not by the

well-known correction for inflation risk.

These results are obviously very encouraging as they show how the proposed liquidity cor-

rection substantially improves the model’s ability to predict future inflation. We acknowledge

that these results cover the same period as used for the model estimation, but we emphasize

that no data on inflation—neither realized CPI inflation nor surveys—have been included in

the estimation. In this sense, the results presented in Table 7 and Figure 20 are not driven

by in-sample overfitting of inflation or a related survey series.

The proposed model may also be used to extract long-term inflation expectations from fi-

nancial markets and hence evaluate the credibility of the current U.S. monetary policy regime.

We illustrate this property of our model in Figure 21, where we decompose nominal and real

yields at the ten-year maturity using the following procedure. We first use nominal yields

from Gürkaynak et al. (2007) and real yields from Gürkaynak et al. (2010) to compute

the observed ten-year breakeven inflation rate, as shown with a solid black line.23 From the

GL (5) model with a fully flexible KP
z matrix, we obtain a frictionless estimate of breakeven

inflation from the difference between the fitted ten-year nominal and real frictionless yields,

which is shown with the gray line in Figure 21. The spread between the frictionless and

observed BEI represents an estimate of the TIPS liquidity premium at the ten-year maturity

23Note that this series is only available from January 1999 on, and this explains why Figure 21 omits the
first one and a half years of our sample.
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Figure 20: Inflation and One-Year Inflation Expectations

This figure reports realized one-year headline CPI inflation and various estimates of one-year inflation

expectations. Inflation expectations and breakeven inflation from the G (4) model are obtained for the

benchmark specification where KP
z and Σz are diagonal. The inflation expectations from the GL (5)

model are obtained for a fully flexible KP
z matrix. Both models account for the deflation option in

TIPS. These data cover the period from July 11, 1997, to December 27, 2013.

and is marked with the yellow shading in Figure 21. Finally, the estimated model dynamics

under the P measure allow us to decompose the frictionless ten-year BEI into inflation ex-

pectations and an inflation risk premium, shown with red and green solid lines, respectively.

We emphasize two results from this decomposition. First, long-term inflation expectations

implied by Treasuries and TIPS are remarkably stable around the 2 percent inflation target

of the Federal Reserve and close to the long-term inflation expectations from the Blue Chip

survey.24 This suggests that long-term inflation expectations have been well anchored in the

U.S. and that bond markets view the current monetary policy regime as fully credible when

pricing securities.

Second, the stable long-term inflation expectations imply that our model assigns nearly

all variation in the frictionless ten-year BEI to the inflation risk premium. The work of DKW

and AACMY draw the same conclusion, although both papers supplement the information

from Treasuries and TIPS with other data sources and identify liquidity risk slightly differ-

ently compared with our model. That is, DKW include CPI inflation and expected inflation

from surveys, whereas AACMY construct a liquidity factor from the TIPS fitted errors from

24We stress that the Federal Reserve is targeting the Personal Consumption Expenditure Price Index
(PCEPI), which reports a bit lower inflation than the CPI used to adjust the cash flows of TIPS due to
technical differences, see Christensen and Rudebusch (2019). Given that the model-implied ten-year expected
inflation averages slightly above 2 percent, we view our results to be consistent with the Fed’s target.
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Figure 21: Ten-Year BEI Decomposition

This figure decomposes the ten-year BEI based on the GL (5) model with a fully flexible KP
z matrix.

Observed breakeven inflation (BEI) is obtained as the difference between nominal and real ten-year

yields provided by Gürkaynak et al. (2007) and Gürkaynak et al. (2010), respectively. The corre-

sponding frictionless BEI is obtained from the GL (5) model with X liq

t|t = 0 for all t. The difference

between frictionless and observed BEI represents the TIPS liquidity premium and is marked with the

light green shading. The plotted CPI inflation expectations over the next 10 years are the semiannual

consensus expectations from Blue Chip Financial Forecasts, where we thank Richard Crump for shar-

ing his electronic version of the survey. The data cover the period from July 11, 1997, to December

27, 2013.

Gürkaynak et al. (2010) and a measure of the relative transaction volume between Treasuries

and TIPS (see Section 3.3). This similarity may be interpreted as supporting evidence for

the proposed identification scheme in the present paper, and it may also serve to illustrate

that additional information beyond what is implied by Treasuries and TIPS is not needed to

identify the liquidity premium in TIPS.

8 Conclusion

This paper proposes a new arbitrage-free term structure model for nominal and real yields to

estimate the liquidity disadvantage of TIPS. The proposed model relies on a new and very

direct way to identify liquidity risk, which we obtain from the implied price difference of

identical principal and coupon payments related to TIPS. As a result, only a regular panel of

TIPS prices and nominal yields are needed to identify the TIPS liquidity premium. Estimation

results document a large improvement in the ability of our ATSM to fit individual TIPS prices

when accounting for liquidity risk, as the root mean-squared errors for duration-scaled TIPS
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prices fall from 14.6 basis points to just 4.9 basis points when correcting for liquidity. Our

results also reveal that the average liquidity premium is sizable and highly correlated with

well-known observable proxies for liquidity risk such as the VIX options-implied volatility

index, the on-the-run spread on Treasuries, and the TIPS fitted errors from Gürkaynak et al.

(2010). We also document a substantial improvement in the ability of the proposed model

to forecast inflation and match surveys of inflation expectations when correcting for liquidity

risk.

The proposed identification scheme of the TIPS liquidity premium is obviously applica-

ble to other fixed-income markets. Christensen and Mirkov (2019) apply it to study safety

premiums in the Swiss Confederation bond market, while Christensen et al. (2019) use it to

analyze liquidity premiums in the market for Mexican government bonds. Another obvious

application is to study liquidity risk within the U.S. Treasury market. Hence, we envision the

proposed model to be widely used for most sovereign bond markets in addition to its poten-

tial applicability to other fixed-income markets where liquidity is an issue such as corporate

bonds. We leave these and other applications for future research.
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