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Abstract

We examine a model of consumer learning and price signaling where price

and quality are optimally chosen by a monopolist. Through numerical solution

and simulation of the model we find that price signaling causes the firm to raise its

prices, lower its quality, and dampen the degree to which it passes on cost shocks to

price. We identify two mechanisms through which signaling affects pass-through.

The first is static: holding quality fixed, price signaling increases the curvature

of demand relative to the case where quality is known, which ultimately acts to

dampen how prices respond to changes in cost. The second is dynamic: a firm that

engages in signaling recognizes that changing prices today affects consumer beliefs

about the relationship between prices and quality in the future. We also find that

signaling can lead to asymmetric pass-through. If the cost of adjusting quality is

sufficiently high, then cost increases pass through to a greater extent than cost

decreases.
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1 Introduction

We develop a model of consumer learning and price signaling where price and quality

are optimally chosen by a monopolist. Price signaling may occur when consumers have

imperfect information about product quality. To infer quality, consumers may rely on

previous experience or may use some of the product’s observable characteristics, such as

the product’s price. We examine the scenario whereby the firm can endogenously change

consumers’ beliefs about the product’s quality by altering both the price and quality of

its product. Our main findings are that, in this type of setting, price signaling causes

the firm to raise its price, lower its quality, and dampen the degree to which it responds

to cost shocks. If the cost of adjusting quality is sufficiently high, the dampening effect

is pronounced in the downward direction, meaning that price signaling causes prices to

respond less to cost decreases than cost increases.

In our model, consumers have beliefs about the joint distribution of price and quality

for the firm’s product. Given no prior information on quality and price, consumer beliefs

about a firm’s quality may or may not be correct. Before making a purchase, consumers

do not observe the quality of the product but make an inference about it using their

beliefs. After purchase, the product’s quality is revealed and consumers update their

beliefs through a quasi-Bayesian learning process. Thus, over time consumers will observe

realized price and quality, and will update their beliefs about a firm’s policy given their

past experience. In each period, a forward-looking monopolist chooses the product’s

price and quality, accounting for the fact that its choice will affect consumer beliefs and

future profits. We solve the model using numerical methods and then simulate it under

a range of parameters.

To our knowledge, this study is the first to assess the effects of price signaling on price

adjustment with endogenous quality and a forward-looking monopolist.1 Previous studies

1Concurrent work by L’Huillier (2013) shows in a macroeconomic model with exogenous monetary

shocks and consumer learning that signaling can lead to price rigidity. In that model, the firm may have

an incentive to hide whether its product is cheap or expensive relative to the numeraire good by keeping

its price rigid. Two important differences between the two models are that in L’Huillier (2013) firms

are not forward-looking and the firm does not choose its quality. Our work accounts for the impact of

reputation on quality provision and price rigidity.

1



on price signaling, such as Judd and Riordan (1994) and Wolinsky (1983) have focused

on examining static equilibrium price levels and have assumed either a one- or two-period

setting. Our model extends this line of research by assessing the effects of cost changes on

price adjustment, but it also introduces a dynamic framework with consumer learning.

We show that consumer learning may be important if a firm’s optimal strategy includes

endogenously manipulating consumers’ expectations about the relationship between price

and quality. In particular, we find that this type of forward-looking behavior further

moderates the effect of cost changes on optimal prices. Due to the complexity of our

model, analytical solutions to the firm’s policy functions are not available. Thus, we

turn to simulation of a calibrated model to draw our conclusions.

Relative to a full information model, where a bit more than 50% of either a cost

increase or a cost decrease is passed on to prices, we find a signaling model implies that

only 43% of a cost increase and only 42% of a cost decrease is passed on. We solve our

model at parameter values that are calibrated to match aggregate margins by U.S. firms.

However, our finding that price signaling results in dampened pass-through is robust to

perturbations of these parameters. We also find evidence of asymmetric pass-through.

If the cost of adjusting quality is sufficiently high, a firm will pass on more of a cost

increase than a decrease, which is consistent with empirical findings (Peltzman 2000).

The results of our model have important insights regarding the literature on price

stickiness and cost pass-through, which covers a number of fields including marketing,

macroeconomics, and international economics. There are a number of explanations for

nominal price rigidity. Rotemberg (2005) proposes that price changes may be muted

because they may anger consumers. Cabral and Fishman (2012) put forth a model

showing that price changes may induce consumers to search for competitors’ products.

A few studies have shown that, more generally, prices will be more rigid the more curved

the demand function (see for example, Kimball (1995) and Klenow and Willis (2006)).

Indeed, in a recent study on cost pass-through in the coffee market, Nakamura and

Zerom (2010) find that this type of demand curvature is responsible for a large portion

of wholesale coffee price rigidity. Understanding what economic forces can drive price

rigidity is important from a policy perspective because price rigidities provide scope for

monetary policy. In macroeconomics, a large body of research is devoted to exploring
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informational drivers of price stickiness (see Lucas (1972), Mankiw and Reis (2002), Reis

(2006), Mackowiak and Wiederholt (2009), and L’Huillier (2013)).

Building on prior work by Weyl and Fabinger (2013), we mathematically derive two

drivers of the impact of signaling on cost pass-through, which we denote as the static and

dynamic effects. The static mechanism is in line with studies by Kimball (1995), Klenow

and Willis (2006), and Nakamura and Zerom (2010). Specifically, we show that if the

steady-state ratio of quality to price is not too high, signaling increases the curvature of

the demand function, which ultimately acts to dampen how prices respond to changes in

cost. The demand function becomes more curved because, under price signaling, raising

the price may signal to the consumer that the product is of higher quality. Thus, demand

does not necessarily monotonically fall with prices. This finding may help explain the

relatively large degree of demand curvature needed to explain incomplete pass-through

by Nakamura and Zerom (2010).

The dynamic effect arises because a forward-looking firm recognizes that if it changes

the price of a product today, it affects consumer beliefs about the relationship between

price and quality in the future. Adjusting prices has two effects on future demand.

First, adjusting prices alters consumer beliefs about the relationship between price and

quality, changing the effectiveness of the signal. Second, adjusting prices changes the

precision of the signal, ”locking in” their beliefs in the future. If the firm’s value function

is sufficiently concave in price then signaling will lead to dampened pass-through. Our

simulation results suggest that the dampened pass-through rates from signaling are due

to both the static and dynamic effects. The static effect is much larger: signaling overall

dampens pass-through by about 8 or 9%, and about 7 to 8% of that is due to the

impact of signaling on the shape of the demand curve. To examine the generality of our

finding that signaling moderates pass-through, we derive conditions on the ratio of price

to quality under which signaling increases demand curvature. As long as this ratio is

above the consumer’s willingness to pay for the product, and below an upper bound that

increases in the share of income spent on the product, signaling will increase the demand

curvature. Our findings suggest that the dampening effect of signaling on pass-through

is more likely to be prevalent in more expensive products.

It is important to note that our modeling framework differs from prior theoretical
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work on signaling such as Wolinsky (1983). This literature has assumed that consumers

know the functional form of demand and costs, and can therefore directly compute the

firm’s optimal pricing strategy. While this approach is tractable in the static settings

typically examined in the signaling literature, it is intractable in a dynamic setting such

as ours. Therefore, a strong assumption of our model is that consumers do not base

their beliefs on the optimal solution of the firm’s problem. Similar issues have arisen in

the estimation of dynamic games.2 In our context, consumers are following a behavioral

rule that is consistent with the notion of equilibrium behavior proposed by Fershtman

and Pakes (2012). A consequence of our assumption is that, in our model, consumers

will never be able to learn the optimal policy of the firm exactly as they would in more

standard models. However, due to the Bayesian updating process they will, on average,

be able to correctly predict the firm’s quality conditional on price.

In addition to contributing to the literature on price stickiness, our paper also con-

tributes to the literature that models a firm’s reputation for quality. Klein and Leffler

(1981) and Shapiro (1983) assess the conditions under which firms do not “cheat” con-

sumers by offering a quality that is less than contracted for. Both studies consider a

forward-looking firm and find that prices are set at a premium above cost in order to

compensate for the firm’s initial investment in quality.3 Similar to our study, these stud-

ies consider forward-looking firms; however, they differ from ours in that they do not

explicitly model the beliefs of consumers. These authors assume that once a firm cheats

(by offering a low quality product at a high price) all consumers cease to purchase from

the firm—a type of trigger strategy. More recent studies on reputation such as Board

and Meyer-ter Vehn (2013) model quality as a function of past investments in quality,

implicitly allowing the firm to control consumers’ beliefs through persistent investment

decisions. In our model, a firm has an incentive to cheat consumers because they do not

immediately observe a product’s quality and must learn about it over time. Consumers

in our model learn according to a modified Bayesian learning process where consumer

forgetting can occur: observations that occurred far in the past may be downweighted

2Recent work, for example Fershtman and Pakes (2012), has proposed that, rather than being fully

rational, some agents are assumed to use past outcomes to forecast current outcomes.
3Specifically, a large discounted future flow of profits can then be a better strategy than pocketing

the short-term gain of reducing quality and losing future customers.

4



relative to more recent data (see, for example, Orphanides and Williams (2004)).4 We

find that a firm has more incentive to cheat consumers if they forget the past more eas-

ily; if the firm produces a poor quality product beliefs will update quickly. In contrast,

if consumer beliefs update slowly then there is scope for a firm to offer a high quality

product for a while to raise consumer perceptions, and then to cheat consumers for some

time by producing a low quality product at a high price.

An outline of the paper is as follows. In Section 2, we introduce our model of price

signaling and consumer learning. Section3 describes the techniques used to numerically

solve the model, and the steady state of our model at our preferred parameterization.

Section 4 shows the simulated pass-through from our preferred parameterization, the

mathematical derivations of pass-through, and the breakdown of pass-through into static

and dynamic components. Section 6 shows the robustness of our results to alternative

parameterizations, and Section 7 concludes.

2 Model

2.1 Demand

We assume there exists a continuous measure of infinitely lived consumers indexed by

i, each endowed with wealth wi ∼ U [0, w]. The total measure of consumers is normalized

to 1. Under an additively linear direct utility function, it follows that consumer i’s

indirect utility upon purchase of a product with quality xt and price pt in time period t

is:

Ui = xt − αpt + ǫIt. (1)

The error term ǫit is an i.i.d. taste shock that reflects consumer heterogeneity in tastes

for the firm’s product. ǫit is observed to the consumer at time t but unobserved to the

firm. We assume that the ǫit follows a type 1 Extreme value distribution. α measures the

consumer’s marginal utility of income.5 If a consumer does not purchase the product,

4In standard Bayesian updating, all observations receive equal weight.
5In this model we implicitly assume that the consumer has a utility function that is quasilinear in two

goods, the monopolist’s product and a numeraire good z. If the consumer purchases the monopolist’s
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she consumes the outside good. We normalize the price and quality of the outside good

to zero.

The case we explore in this study consists of the scenario where the consumer does

not know the true quality of the product, xt, and thus must infer the quality based on

her information set ℑt (that is, her beliefs).6 Consumer i purchases the product if her

expected utility for the product is positive, and if the price is lower than her wealth wi.

Under these assumptions, the aggregate demand for the good will be

D(pt,ℑt) =

{ (
1− pt

w

) (
exp(E(xt|ℑt)−αpt)

1+exp(E(xt|ℑt)−αpt)

)

if pt ≤ w

0 otherwise.
(2)

We assume that the consumers believe the expected quality conditional on the observed

price is linear in the price:

E(xit|pit) = b0 + b1p. (3)

Because in our model we interpret the outside good as a product with quality 0 and

price 0, in order for consumer expectations to be consistent we normalize b0 = 0. We

additionally assume that consumers do not know b1, but learn about it over time. At

the beginning of period t, consumers observe only the price and condition their beliefs

about product quality on price and on their beliefs about b1. We denote the consumer’s

expected value of b1 as β, and the variance of their belief around β as σ2. At the end

of the period, the quality of the firm’s product is revealed to the entire market. The

information revelation could occur through magazine ratings such as Consumer Reports,

ratings on Internet websites such as Amazon, or word of mouth.7 We assume that

consumers form their beliefs in period t using a weighted regression:

βt = min
β

t∑

τ=1

λ(t−τ)(xτ − βpτ )
2. (4)

good then her consumption of the numeraire good is z = wi − p.
6For reasons we will clarify below, in our model the information set will be the same for all consumers.
7Allowing for consumers to differ in their beliefs would complicate the modeling considerably. The

firm would have to track an infinite dimensional state variable, the distribution of beliefs, over time.
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The term λ ≤ 1 is an exponential forgetting factor that downweights earlier obser-

vations. If λ = 1, then consumers have perfect recall; λ < 1 assumes that consumers

eventually forget early observations. Note that if λ = 1, then consumer uncertainty

about the value of b1 will approach zero. This can lead to the somewhat unrealistic

scenario where, if a firm were to choose a high quality and a high price for a long pe-

riod of time, consumer beliefs would not update much if the firm suddenly dropped its

quality to zero. If λ < 1, consumers will always remain somewhat uncertain about the

relationship between price and quality and a large change in x will have an impact on

consumer beliefs, even in the limit (t = ∞).

When we solve the problem, it is convenient to write consumer belief updating in re-

cursive form as a Kalman filter following Bersetkas and Tsitsiklas (1996). If the variance

of beliefs at time t is σ2
t−1 then the updating formulas for βt and σ2

t can be written as:

σ2
t =

1
λ

σ2
t−1

+ p2t
(5)

βt = βt−1 + σ2
t pt(xt − βt−1pt).

Note that if λ = 1, it can be shown that s2 → 0 as t → ∞.

The effect of changing prices on consumer beliefs leads to the dynamic effects of

signaling which we discuss in the introduction. Consumer beliefs will update so that, on

average, they are correct. For a given quality level of the firm, a price increase will tend to

lower the parameter βt, weakening consumer beliefs about the relationship between price

and quality. Additionally, a higher price provides a stronger signal to consumers, and

will lead to a lower value of σ2
t−1, as shown in equation (6). To the firm, the advantage

of having a lower value of σ2
t−1 is that consumers will be more locked in to their beliefs in

the future, and their beliefs will update more slowly to future price and quality changes.

Before proceeding we make some comments on our assumptions about consumer

beliefs and the process by which beliefs update. First, we note that we assume consumers

believe the expected value of quality is linear in price. This assumption is attractive

due to its tractability and has been used in learning papers in macroeconomics (Wieland

2000). One way to interpret this assumption is that, although the actual function E(x|p)

may be nonlinear in price, consumers are boundedly rational and have a limited ability
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to process information. One could approximate E(x|p) with any degree of accuracy

using a Taylor expansion; the higher is the order of this Taylor expansion, the more

parameters one has to track. Our assumption would be justified by the assumption that

consumers use a linear approximation. To check the robustness of our findings to this

assumption, in Appendix 11 we consider an alternative model where prices and quality

take on discrete values, and consumer beliefs are not constrained to be linear. Our overall

findings appear to be robust to the specification of beliefs. We prefer a specification of

beliefs that allows for continuous prices, because observed prices are continuous and

pass-through derivations are more tractable in a continuous setting.

A second assumption underlying consumer behavior is that consumers do not solve the

firm’s dynamic problem and base their beliefs on the optimal solution of the firm problem.

Prior theoretical work on signaling such as Wolinsky (1983), has assumed that consumers

know the functional form of demand and costs, and can compute a firm’s optimal pricing

strategy. Consumers make purchase decisions knowing this optimal strategy and taking it

into account. This approach is tractable in the static settings that are typically examined

in the signaling literature, but would not be tractable in a setting such as ours. Similar

issues have arisen in the estimation of dynamic games, and recent work in that area has

proposed that rather than modeling all agents as being fully rational, one can assume

that some agents use outcomes experienced in past periods to form forecasts of outcomes

in current periods (Fershtman and Pakes 2012). In our context, consumers are following

a behavioral rule that is consistent with the notion of equilibrium behavior proposed by

Fershtman and Pakes (2012).

2.2 Firm

A monopolist maximizes profits in a dynamic sense, in that it chooses price and

quality, keeping in mind how this joint decision alters consumers’ expectation of quality.

We assume that the firm’s marginal cost, ct, is a stochastic vector (c0t, c1t). Each draw of

ct is i.i.d. across time with distribution Fc(·). The stochastic nature of cost can include

a multitude of exogenous factors such as process innovations, weather disruptions, or

factory malfunctions. Firm profits will be a function of price, quality, cost draws, and

consumer beliefs at time t, which we denote as St = (βt, σ
2
t ):
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π(pt, xt,St, xt−1, ct) = D(pt, xt,St)[pt − c0t − c1tx
ν
t ]− γ(xt − xt−1)

2.

The cost c0t ≥ 0 reflects the marginal cost of producing a quality 0 product, while

c1t ≥ 0 allows for higher quality products to have higher production costs. ν ≥ 0

determines the rate at which the marginal cost of producing higher quality increases

with quality. γ is an adjustment cost, which incorporates the idea that quality is not

as easy to change as price: for example, creating a higher or lower quality product may

involve retooling production plants. D represents aggregate demand, as specified in

equation (26).

We assume that the monopolist is forward-looking, which means that it will choose

prices and quality every period to maximize the expected present discounted sum of

profits8,

max
[pt+i,xt+i]∞i=0

E

[
∞∑

i=0

δiπ(pt+i, xt+i,St+i, xt+i−1, ct+i)|St

]

, (6)

subject to the evolution of the state variable St, which we write in vector form below as

a mapping from L : R2 → R
2 as follows:

St+1 = L(xt, pt,St) =

(

βt−1 +
pt(xt − βt−1pt)

λ
σ2
t−1

+ p2t
,

1
λ

σ2
t−1

+ p2t

)

. (7)

The firm’s problem in (6) can be written in Bellman equation form as follows:

V (S, x−) =

∫

max
p,x

{π(p, x,S, x−, c) + δV (L(p, x,S), x) }dFc(c). (8)

In each period t, the firm will optimally choose p and x, accounting for how those choices

will affect consumer beliefs the subsequent period. The firm faces a trade-off in the sense

that raising p and lowering x will raise current-period profits, but may also diminish

future profits. A higher price will signal higher quality to consumers, and a lower x

will lower current production costs, thus increasing current profits. However, when

8The expectation is taken over the cost draws.
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consumers learn that quality is low they will lower their belief about the effectiveness

of price signaling. Note that the impact of p and x on future beliefs will be greater the

smaller are λ and σ2
t−1. If λ is close to 1 and σ2

t−1 is close to zero, consumers will be

relatively certain of the relationship between price and quality, and will update their

beliefs slowly in response to new information. The firm will have an incentive to exploit

the price signal, until consumer beliefs about βt adjust to a sufficiently low value. A low

value of λ keeps the firm in line in the sense that consumers will never be certain about

their belief about βt, so if the firm tries to exploit consumers today it will face a large

change to its reputation tomorrow. Existence of a fixed point for the Bellman equation

rests on the fact that the per-period profit function is continuous and bounded in S (see

Rust (1996)). The optimal choice of price and quality will come from the solution to

the Bellman equation. Policy and value functions can be obtained from iterating the

Bellman equation at an initial guess. We describe our algorithm for solving for the value

and policy functions in more detail in Section 11.3.

3 Solving the Model and Numerical Methods

We solve for the firm’s optimal policy and value functions using value function itera-

tion combined with policy function iteration (Judd 1998). Because our state variables are

continuous, we solve for the value function on a grid of points and interpolate the value

function everywhere else using simplical interpolation (Weiser and Zarantonello 1988).

Simplical interpolation is a generalization of linear interpolation to multiple dimensions.

We describe the simplical interpolation algorithm in Appendix 8.

The details of the algorithm are as follows. Our problem has two continuous state

variables, which are βt and σ2
t , the mean and precision of consumer beliefs about the

relationship between price and quality. First, we split the continuous state space into

a finite number of grid points, and interpolate the value function in between points.

We choose a regular 51 by 51 grid for interpolation. We solve for the value and policy

functions at each (βt, σ
2
t ) point on the grid; we index each such state point from i =

1, ..., Ns = 2601, and denote each (βt, σ
2
t ) combination as si. The bounds on the grid for

βt are 0 and 20, and the bounds on the grid for σ2
t are 0 and 16. Our simulated values
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of βt and σ2
t lie well within these bounds.

The value and policy function iteration then proceeds as follows. Indexing each

iteration with n, at n = 1 we begin with a guess that the value function Vn is 0 at all

points si. We then solve for the optimal policy function (xn(si, c), pn(si, c)) at each state

space point, si, and possible cost draw c:

(xn(si, c), pn(si, c)) = argmax
x,p

{π(p, x, si, c) + δVn(L(p, x, si))}. (9)

We then solve for the value function that would be obtained if these policies were

fixed. Operationally, we iterate on the value function contraction mapping with fixed

policy functions until convergence. Denoting a policy iteration by np, we start by setting

V p
1 = Vn and update using the equation

V p
np+1(si) = Ec

[

π(pn(si, c), xn(si, c), si, c) + δV p
np
(L(pn(si, c), xn(si, c), si))

]

. (10)

We assume that the policy step has converged when max
i=1,Nj

s
‖V p

np+1(s
j
i )−V p

np
(sji )‖ <

ǫp, where we choose ǫp = 1e−4. The policy iteration step in equation (31) converges very

quickly. Once the policy step converges, we set Vn = V p, and solve for the optimal policies

at step n+ 1 using equation (30). The algorithm converges when maxi=1,Ns
‖Vn+1(si)−

Vn(si)‖ < ǫv, where we set ǫv = 1e − 3. We have found that this algorithm converges

much more quickly than standard value function iteration, where one would solve for the

optimal policy every time one updated the value function.

3.1 Model Simulation

We simulate equilibrium prices and qualities for two versions of this model, one with

zero adjustment cost and one with infinite adjustment cost. These two cases allow us to

infer how price signaling affects the firm’s pricing decisions in different types of situations.

An infinite adjustment cost model might approximate the case in which a firm initially

decides whether it wants to sell in the luxury or the economy market. A zero adjustment

cost model, on the other hand, might represent a barber who can adjust quality by simply

exerting different amounts of effort. The case with an infinite adjustment cost is simpler
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in that the firm never adjusts the quality of its product, only its price. Therefore, once

quality is initially chosen it can be considered exogenous thereafter. In the case, of zero

adjustment costs, the firm is free to adjust both its price and quality without any cost.

That is, quality is considered endogenous.

Our preferred parameter values for numerical solution of the model are shown in

Table 1. Maximum income is normalized to 1, and the firm’s discount factor is chosen

to be consistent with a yearly interest rate of 5%. The cost parameter values are chosen

to produce prices such that marginal costs match aggregate labor share of income in the

U.S. economy, which is 60% (this approach to calibrating markups is often used in papers

in macroeconomics, for example Gali and Gertler (1999)). In this sense our parameter

values are realistic in that they imply average markups that are consistent with what

is observed for an average firm. The parameter on the convexity of marginal costs in

quality is chosen to be 2. To get a sense of the robustness of our conclusions to changes

in the parameters, we will also solve the model for cost distributions that are lower and

higher than those in the table, and for values of λ that are lower and higher than 0.99.

We discuss these perturbations to the model in Section 6.

The solution to the firm’s problem involves computing an optimal price p and an

optimal quality x. To simplify the solution of this problem we discretize the x values

and assume that the firm can choose x in increments of 0.1 between 0.5 and 10. The

distribution of marginal costs is assumed to be uniform, and we integrate over costs using

Gauss-Legendre quadrature with five quadrature points.

3.1.1 Fixed Quality: Infinite Adjustment Costs

The policy function under the infinite adjustment cost case is depicted in Figure 1.

We graph the policy function conditional on the quality x = 3.6; as we show below, this

is the level of quality that maximizes profits if consumers have full information and know

the quality of the product with certainty. The figure shows that at very low values of β,

price is increasing in β. At higher values of β, the optimal price becomes relatively flat

with respect to β.

The non-monotonicity of the pricing policy function in β seems counterintuitive but

is attributable to the fact that increasing β has two effects on demand. First, for a given
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Table 1: Parameter Values for Base Simulation

Variable Value

δ 0.95

w 1

α 1

c0 U[0.35, 0.45]

c1 0.002

ν 2

λ 0.99

price, a larger β signals that the product is of higher quality, so demand is higher. All

else equal, this “demand effect” should induce the firm to raise its price. Second, a larger

β means that a change in price will have a larger effect on the change in demand, which

acts to increase the price elasticity of demand. All else equal, this “elasticity effect”

will induce the firm to lower its price. When β is low, an increase in β has a relatively

larger demand effect than an elasticity effect, so the price increases in β. However, at

higher levels of β the elasticity effect dominates slightly, which is why the pricing policy

function eventually starts decreasing in β. In Appendix 9, Figure 3, we show how the

optimal price for a myopic firm is affected by changes in β.

We assume the firm chooses a level of quality in period 0 to maximize the expected

present discounted value of profits, and cannot change it afterwards. The optimal level

of x depends on consumer beliefs. In the steady state of this model, beliefs and prices

will always adjust to the same values conditional on x, so the effect of the starting points

will die out. We simulated firm decisions at starting values of β = 3.5 and σ2 = 1, which

produced an optimal x of 3.6, which is the same as the optimal x in the full information

(i.e. a model with no signaling) case.9

9In our simulations we have found that the optimal level of x is decreasing in the initial level of

β, and is also decreasing in σ2. The higher is β and the lower is σ2, the lower will be the optimal x.

Producing a higher quality product is costly for the firm in the short run; however, the benefits to being
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Figure 1: Pricing policy function for xt−1 = 3.6, γ = ∞

Table 2 shows the steady-state values of price, quality, firm profit, and consumer

surplus.10 To assess how price signaling impacts price and quality over and above the

standard textbook case, the table also shows the case where the consumer knows the

quality of the product with certainty (i.e., the case of full information). The general

takeaway from the table is that information asymmetry (i.e., price signaling) acts to

raise the equilibrium price relative to full information and also lowers consumer surplus.

3.1.2 Flexible Quality: Zero Adjustment Costs

The policy functions under the zero adjustment cost case are depicted in Figure 2.

Here, there are two policy functions (one for x and one for p) since the choice of x is

high quality are only realized in the long run as consumers adjust their beliefs about the relationship

between price and quality. If β is initially higher, the firm has more incentive to produce a lower quality

product since it will take longer for consumers to figure out the firm is bad; similar results arise if σ2 is

lower.
10The values of outcome variables are the averages over the simulation, starting with the 500th

iteration and ending in the 1000th. The first 500 iterations are removed for burn-in. For a graphical

illustration of the steady state values see Appendix 10.
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endogenous. The shape of the pricing policy looks similar to the γ = ∞ case, with some

some subtle differences. This has to do with how the choice of x impacts the choice

of p. First, note that the optimal choice of quality is generally decreasing in β. The

intuition here is that as β becomes smaller, the consumer is less perceptive that a higher

price signals higher quality. Thus, when β decreases, the firm attempts to raise the price

signal by choosing to offer a high quality product at a high price. As β becomes larger

this effect is weaker, hence the optimal price now falls with β when β is large. It is

interesting to note how the optimal choice of x is impacted by σ2. The optimal choice

of x is generally increasing in σ2. The intuition here is that, the smaller is σ2, the more

apt the firm is to exploit the signal by cheating. For instance, if the consumer is very

confident that a high price signals a high quality, areas where σ2 is very low, the firm

will cheat the consumer by offering a very low quality product at a relatively high price.
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Figure 2: Policy functions for γ = 0

As shown in Table 2, the effect of signaling on price is exaggerated in the case of

flexible quality. Specifically, the firm chooses to offer a lower quality product, x = 2.3,

at the similarly higher price found in the fixed quality setting.11 We should note that,

11We simulate the firm’s policy and start out at state variables of β = 3.2 and s = 0.019, which are
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although average steady-state profits fall a bit moving from γ = 0 to γ = ∞, the present

discounted value of future profits (not shown in the table) rises.12 These results are

robust to different parameters, as we discuss in Section 6.

Table 2: Comparison of Full Information and signaling Steady States

γ = ∞ γ = 0

Full Info signaling Full Info signaling

Price 0.71 0.72 0.71 0.72

Quality 3.6 3.6 3.64 2.3

Firm Profit 0.08 0.08 0.08 0.07

Consumer Surplus 0.85 0.82 0.86 0.5

In both full information cases, all the outcome variables (profits, prices,

etc.) are averaged over costs. The values of outcome variables for the

signaling model are the averages over the simulation, starting with the

500th iteration and ending with the 1000th. The first 500 iterations are

removed for burn-in.

4 The Impact of Price Signaling on Cost Pass-through

We assess how price signaling affects price adjustment by simulating the model under

a temporary cost shock. We begin at a base cost of 0.40, and for a decrease we drop

the cost to 0.35, while for an increase we raise the cost to 0.45. We solve for optimal

prices both before and after the cost change. Simulating both a cost increase and a cost

decrease allows us to examine whether price signaling has any impact on the symmetry

of pass-through.

the long-run values when x is fixed at 3.6. The steady state of the γ = 0 specification does not appear

to be affected by the starting points of the simulation — we have always gotten to the same steady state

for different initial beliefs.
12When the firm can choose quality, it initially chooses a slightly lower quality product to exploit

beliefs. It subsequently raises quality over time to 2.3 as beliefs update (i.e., as β falls). In the γ = ∞

case, profits seem to be relatively constant over time.
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The results of this exercise are depicted in Table 3. Specifically, this table shows

the percentage impact of a cost shock on prices. We depict the case for x = 2.3—

the equilibrium quality under the case of zero adjustment costs—as well as the case

for x = 3.6—the equilibrium quality under the case of infinite adjustment costs. For

completeness, we also show the infinite adjustment cost case under the assumption that

x = 2.3. The table also shows cost pass-through when we shut down the dynamic

component of the model (i.e., when we set δ = 0), which we label the myopic model.

Relative to the full-information case, price signaling acts to considerably decrease

cost pass-through. This effect is more pronounced for a cost decrease relative to a cost

increase. For instance, in the case of x = 3.6, price signaling causes pass-through to fall

from 51% to 46% for a cost increase, but to 45% for a cost increase. As we will discuss

later, most of the overall effect from signaling is coming from the myopic component of

the model—the impact of signaling on the shape of the demand curve.

The asymmetry of cost pass-through seems to reverse when quality is chosen endoge-

nously (i.e., γ = 0.) In this case, pass-through falls from 52% to 44% for a cost increase,

but to 45 percent for a cost decrease. This reversal of the asymmetry likely arises due

to the fact that the firm also adjusts quality in response to cost shocks. When cost

decreases, the firm drops quality from 2.3 to 2.1. However, when cost increases, quality

rises, but by a smaller amount to 2.4. Prices will tend to move with quality, and since

quality drops more in response to cost decreases, prices do as well. Another interesting

result is that pass-through seems to be lower for higher quality goods.

5 Discussion of Pass-Through Results

Our results indicate that price-signaling generates a considerable amount of price

rigidity. In the following subsection we will discuss the role of demand-curvature and

how this mechanism explains the link between price signaling and cost pass-through.

We explain the intuition analytically under the simpler case of fixed quality, and then

show that the intuition holds in the case where the firm can choose quality (i.e., flexible

quality).
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Table 3: The Impact of a Cost Shock on Prices

x = 2.3 x = 3.6

Full Info Signaling Full Info Signaling

Dynamic Myopic Dynamic Myopic

γ = ∞ Cost Decrease 52 42 43 51 45 45

Cost Increase 52 43 44 51 46 46

γ = 0 Cost Decrease 52 45 51

Cost Increase 52 44 51

Notes: This table shows the percentage impact of a cost increase or decrease on prices. For all the

simulations, we begin at a base cost of 0.40, and for a decrease we drop the cost to 0.35. For an

increase we raise the cost to 0.45. In the signaling cases, we simulate the model for 1000 periods,

holding cost fixed at its new value. That is, in period 1000 the cost is 0.40, and in the following

period cost is 0.35 or 0.45.

5.1 Fixed Quality: Infinite Adjustment Costs

The simplest case considers a high adjustment cost (γ) so that the firm chooses quality

in period 1 and never changes it after that. We will derive the impact of an idiosyncratic

shock to c0 on price. Recall that we assume that the stochastic process for the evolution

of costs is

cjt ∼ U [cj , cj ],

where cjt is i.i.d. over time and j. To explain the intuition behind how cost shocks affect

prices, we first assume that the firm is myopic δ = 0, that γ is high so x is fixed over

time, and that costs are nonstochastic: cjt = cj = cj, ∀j, t. We can derive the impact

of an increase in c0 on prices following analysis outlined in Weyl and Fabinger (2013)

and Jaffe and Weyl (2013). We write the firm first-order conditions as

f(p) = −
∂D

∂p

−1

D(p)− (p− c0 − c1x
α) = 0. (11)

If we add a tax t to the marginal cost, the first-order condition becomes
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f(p) + t = 0.

By implicitly differentiating this first-order condition we get the equation for static pass-

through:

∂p

∂t
=

−1

f ′(p)
. (12)

Note that f ′(p) = D ∂2D
∂p2

/
(

∂D
∂p

)2

− 2 depends only on the first and second derivatives

of demand, and is a measure of the curvature of the demand curve. This provides one way

for signaling to affect pass-through. For the case of full information, where x is known

to consumers, we could compute pass-through from equation (12). If signaling increases

the curvature of demand relative to full information, then that increase in curvature will

dampen pass-through. Intuitively, we would expect signaling to dampen pass-through in

the short term, especially for cost decreases. If the monopolist observes a cost decrease,

it has a disincentive to drop the price because a lower price signals lower quality.

The dynamics in our model provide an additional avenue for pass-through. Suppose

that the firm is forward-looking, so δ > 0. Then we can write the firm’s first-order

conditions in the same way as equation (11):

−
∂D

∂p

−1

D(p)− (p− c0 − c1x
α)

︸ ︷︷ ︸

f(p)

−δ
∂D

∂p

−1∂V

∂S

′∂L

∂p
︸ ︷︷ ︸

g(p)

+t = 013

An addition term g(p) arises which is the derivative of the value function with respect

to price.14 Note that this value function derivative is a function of t directly, since if we

change the tax on costs, we change firm future profits. The dynamic analogue to our

static pass-through equation (12) is

∂p

∂t
= −

1

f ′(p) + ∂g

∂p

. (13)

13The second term, g, is not a function of t because we are imagining a temporary cost shock. If the

shock to costs were permanent this term would be a function of t as well.
14The partial of V is the Jacobian of V with respect to its arguments, and the L partial is a Jacobian

as well. The prime indicates transpose, not a future value.
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The term ∂g

∂p
captures the dynamic effect of signaling on pass-through; if this term is

negative, then signaling further dampens pass-through (in full information the firm is

not forward-looking, so ∂g

∂p
= 0). The sign of this derivative will depend on the signs

of the first and second derivatives of the value function with respect to price, and on

the curvature of demand. To see how, note that if we express the value function as a

function of price (subsuming the state transition) we can write

∂g

∂p
=

∂2D
∂p2

(
∂D
∂p

)2

∂V ′

∂p
−

1
∂D
∂p

∂2V ′

∂p2
. (14)

Note that the first term in equation (5.1) contains the demand curvature from the

static pass-through equation. We have previously argued that this term will be negative

under signaling. Furthermore, for a sufficiently high price ∂D
∂p

will be negative as well un-

der signaling.15 For equation (5.1) to be negative under pass-through, the value function

must be increasing and concave in price.

Table 4: Analytical Derivatives that Determine Pass-Through (γ = ∞)

x=2.3 x=3.6

Full Info Signaling Full Info Signaling

f ′(p) -1.93 -2.18 -1.98 -2.11
∂g

∂p
-0.028 -0.010

We found in Table 3 in the previous section that when x was fixed, prices were more

rigid for a forward-looking firm than for a myopic one. We can relate this finding to

the analytical equations (12) and (5.1) by computing the numerical equivalent in our

simulation. These are shown in Table 4. Because f ′(p) falls from -1.93 to -2.18, signaling

increases the curvature of demand acting to dampen pass-through. Additionally, because

15It is possible for ∂D
∂p

to be positive under signaling for very low prices, because higher prices imply

higher quality, increasing demand. The inclusion of the term 1 − p
w

in our demand equation ensures

that even if signaling is very strong, demand will eventually be decreasing in price.

20



∂g

∂p
< 0 the firm’s forward-looking behavior acts to further dampen pass-through. The

magnitude of the static effect is much larger than the dynamic effect.

5.2 Flexible Quality: Zero Adjustment Cost

We now consider the case where x may also respond to changes in cost. In our

simulations we discretized x, so if the cost shock is sufficiently small the firm will not

change x, and the analysis should be similar to the previous section. However, for a large

enough cost shock, x will change. When thinking about the change in x, the interesting

case is where the firm is forward-looking—if the firm is myopic, it will set x as low as

possible because increasing x does not affect current demand, but does increase marginal

cost. The math is similar to the previous case, although there are some complications.

For this exercise, we will assume that the set of x’s the firm can choose is continuous:

x ∈ [0,∞].

When the firm can adjust x, there are two first-order conditions. The first one is the

same as before, but we will relabel f as f1 and g as g1. The second equation will have

two similar terms,

f2(p, x) = −D(p)αc1x
α−1

g2(p, x) = δ
∂V

∂S

′∂L

∂x
,

and we can write the system of equations that defines the pass-through rate as

f1(p) + g1(p, x) + t = 0

f2(p, x) + g2(p, x) = 0.

It is straightforward to show that two pass-through rates arise from this system, one for

p and one for x. They are
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∂p

∂t
=

−1

f ′
1 + g1p − g2pg1x/(f2x + g2x)

(15)

∂x

∂t
=

f2p + g2p
(f ′

1 + g1p)(f2x + g2x)− g2pg1x
. (16)

The price pass-through equation is similar to the infinite adjustment cost case, except

that the denominator contains an extra term that involves the derivatives of the first

order condition with respect to x. Note that if the firm is myopic, the g terms will be zero

in equation (15), and the equation will collapse to equation (5.1). Similarly, equation

(16) collapses to −∂p

∂t

f2p
f2x

which is negative.16

The logic of the previous paragraph suggests that one can bread down the impact of

pass-through into static and dynamic components as we did in Table 4. Under signaling,

f ′
1(p) = −2.17, and the static pass-through rate under signaling will be 1/2.17 = 0.46.

Since the overall pass-through rate under signaling is between 0.44 and 0.45 (Table 3), we

can conclude that the optimal policy of a forward-looking firm is to dampen pass-through

more than a myopic firm would.17

5.3 Generality of the Impact of Signaling on Pass-through

The results in Table 3, and our derivations of f ′(p) in the previous section, show that

the most important impact of signaling on pass-through occurs through shape of the

demand curve, measured by the term f ′(p). A follow-up question we now consider is:

under what general conditions will signaling reduce the term f ′(p)? Note that in Table

3, f ′
FullInfo(p) is somewhat larger than -2 and f ′

Signaling(p) is lower than -2. Hence, two

sufficient conditions for signaling to result in dampened pass-through are

16Since ∂p
∂t

> 0 and f2p < 0 and f2x < 0, we should get ∂x
∂t

< 0, which is intuitive.
17Although, as with γ = ∞, the bulk of the impact of signaling on pass-through operates through the

static effect.
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f ′
FullInfo(p) + 2 = D

∂2D

∂p2
/

(
∂D

∂p

)2

> 0

f ′
Signaling(p) + 2 = D

∂2D

∂p2
/

(
∂D

∂p

)2

< 0.

It can be shown that in the full information model the static pass-through term f ′(p)

reduces to

f ′
FullInfo(p) + 2 = wα

(
1− p

w

)
1

1+exp(x−αp)

(

2 + wα
(
1− p

w

) 1−exp(x−αp)
1+exp(x−αp)

)

(

1 + wα
(
1− p

w

)
1

1+exp(x−αp)

)2 , (17)

and in the signaling model this is

f ′
Signaling(p) + 2 = −

(β − α)
(
1− p

w

)
1

1+exp((β−α)p)

(
2
w
− (β − α)

(
1− p

w

) 1−exp((β−α)p)
1+exp((β−α)p)

)

(
1
w
− (β − α)

(
1− p

w

)
1

1+exp((β−α)p)

)2 .

(18)

First consider equation (17). This equation will be positive as long as

2 + wα
(

1−
p

w

) 1− exp(x− αp)

1 + exp(x− αp)
> 0.

At our chosen normalization of α = 1 and w = 1, this inequality will always hold because
1−exp(x−αp)
1+exp(x−αp)

> −1. In general, as long as the term α that measures the marginal utility

of income is not too large relative to the maximum wealth, the inequality will hold.

Now let us turn to equation ((18)). A sufficient condition for this to be negative is if

(β − α)

(
2

w
− (β − α)

(

1−
p

w

) 1− exp((β − α)p)

1 + exp((β − α)p)

)

> 0.

This result suggests that signaling is more likely to dampen pass-through for relatively

expensive goods—goods that take up a significant share of income. To see this, note that

this inequality will hold as long as β is in the range [α, 2/(w−p)+α]. In the steady state
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of the signaling model, β will be close to x/p, the ratio of quality to price. What this

inequality tells us is that the quality to price ratio should be larger than the consumer’s

willingness to pay for quality, α, but not too much larger as it depends on the inverse

of the consumer’s remaining budget—w − p. That is, the upper bound on β will rise as

the share of income spent on the monopolist’s product increases.18

6 Pass-through at Alternative Parameters

In this section, we investigate the robustness of our results by altering the parameters

of the model. Specifically, we assess the model under alternate distributions of costs and

the exponential forgetting factor λ. In Table 5 we show the full information and signaling

steady states for four different parameterizations of the model: a version with a lower

cost distribution of U [0.2, 0.3], a higher cost distribution of U [0.5, 0.6], a low value of the

exponential forgetting factor, λ = 0.95, and a high value of λ = 0.999.

Overall, Table 5 shows an emerging pattern similar to that found in our previous

analysis. Relative to the case of full information, signaling causes consumer surplus to

fall—the firm lowers the quality of its product and sells it at a higher or similar price.

This is especially true in the case where the firm can freely adjust quality. An exception

is the case where the cost distribution is high and quality is fixed (i.e., the case of infinite

adjustment costs). In this instance, the signaling and full-information cases result in

similar steady states.

Table 6 shows how pass-through responds to changes in the cost distribution and

λ. There are three findings that are robust to changes in the cost distribution and λ:

First, signaling results in dampened pass-through relative to full information. Second,

18At our chosen parameter values, note that the bounds are approximately [1, 7.7], and the quality

to price ratio is around 3 to 5 (Table 2). The inequality that defines how signaling affects pass-through

looks like it depends on the units used to measure wealth due to the inclusion of the term 2/(w − p).

This is not the case however, for two reasons. First, if we scaled up wealth and prices by some factor

κ, we would have to scale down the marginal utility of income, α, by the same amount. Additionally,

since the term β measures how many units of utility a consumer expects to get from a product of

price p, β would also scale by the same factor in the steady state. The inequality would then become

β/κ ∈ [α/κ, 2/(κw − κp) + α/κ].
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Table 5: Robustness: Comparison of Full Information and Signaling Steady States

γ = ∞ γ = 0

Full Info Signaling Full Info Signaling

c0t ∼ U [0.2, 0.3]

Price 0.64 0.65 0.64 0.65

Quality 3.8 3.6 3.76 2.35

Firm Profit 0.12 0.12 0.12 0.12

Consumer Surplus 1.16 1.04 1.15 0.65

c0t ∼ U [0.5, 0.6]

Price 0.79 0.79 0.79 0.79

Quality 3.5 3.6 3.44 2.03

Firm Profit 0.04 0.04 0.04 0.04

Consumer Surplus 0.6 0.6 0.58 0.32

λ = 0.95

Price 0.71 0.72 0.71 0.71

Quality 3.6 3.6 3.64 3.14

Firm Profit 0.08 0.08 0.08 0.08

Consumer Surplus 0.85 0.82 0.86 0.72

λ = 0.999

Price 0.71 0.72 0.71 0.71

Quality 3.6 3.6 3.64 0.95

Firm Profit 0.08 0.08 0.08 0.06

Consumer Surplus 0.85 0.82 0.86 0.23

In both full information cases, all the outcome variables (profits, prices,

etc.) are averaged over costs. The values of outcome variables for the

signaling model are the averages over the simulation, starting with the

500th iteration and ending with the 1000th. The first 500 iterations are

removed for burn-in.
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pass-through rates are slightly higher when the firm is myopic. Third, pass-through is

asymmetric when the cost of changing quality is high. In contrast, with low adjustment

costs, the asymmetry of pass-through varies with λ and with the cost distribution.

Recall that we found in the last section that when adjustment costs are low, the firm

passes on more of cost decreases than increases. We can see in the second column of

Table 6 that for low and high cost distributions the firm passes on more of cost increases

than decreases. When λ is low, the firm passes on more of cost decreases than increases;

this finding reverses when λ is 0.999. Overall, it appears that the asymmetry of pass-

through depends on both the cost distribution and the speed at which consumer beliefs

update. For extreme values of these parameters firms pass on more of cost increases than

decreases. For values that are more in the middle we observe the opposite.

7 Conclusion

Our results indicate that price signaling affects the optimal price, quality, and the

rate at which the optimal price adjusts after a cost shock. Our result that price signaling

acts to raise the equilibrium price relative to the case of full information, corresponds

well with classical works on price signaling, for example, Wolinsky (1983). Our model,

however, extends this line of literature by allowing the firm to choose quality, and there-

fore dynamically affect the beliefs of the consumer about the price signal. We find that

under this type of setting the firm chooses to offer a lower quality product at higher

price relative to the full information case. We contribute to the literature examining the

drivers of price stickiness by deriving conditions under which signaling leads to dampened

pass-through.

There are many ways in which our work could be extended. One possibility would

be to examine how results might change under competition. If more competition tends

to result in decreased prices and increased quality, then the impact of signaling on pass-

through could be mitigated. It could also be interesting to examine the robustness of

our conclusions to the functional form used for the demand curve. We think that our

proposed functional form is a reasonable starting point because it is based on the logit

demand model, which is standard in empirical work. Finally, another step would be to
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Table 6: Robustness: The Impact of a Cost Shock on Prices

x = 2.3 x = 3.6

Full Info signaling Full Info signaling

Dynamic Myopic Dynamic Myopic

c0t ∼ U [0.2, 0.3]

γ = ∞ Cost Decrease 52 39 40 51 42 43

Cost Increase 52 40 41 51 43 44

γ = 0 Cost Decrease 52 36 51

Cost Increase 52 45 51

c0t ∼ U [0.5, 0.6]

γ = ∞ Cost Decrease 52 45 45 51 47 47

Cost Increase 52 46 46 51 47 47

γ = 0 Cost Decrease 52 47 51

Cost Increase 52 49 51

λ = 0.95

γ = ∞ Cost Decrease 52 42 43 51 44 45

Cost Increase 52 43 44 51 45 46

γ = 0 Cost Decrease 52 50 51

Cost Increase 52 40 51

λ = 0.999

γ = ∞ Cost Decrease 52 43 43 51 45 45

Cost Increase 52 44 44 51 46 46

γ = 0 Cost Decrease 52 45 51

Cost Increase 52 46 51

Notes: This table shows the percentage impact of a cost increase or decrease on prices. For all the

simulations, we begin at a base cost at the midpoint of the c0t distribution, and for a decrease we

drop cost to the distribution’s lower bound. For an increase we raise cost to its upper bound. In the

signaling cases, we simulate the model for 1000 periods, holding cost fixed at its new value. That

is, in period 1000 the cost is 0.5 ∗ (c+ c) and in the following period cost is c or c.
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take our model to the data and to determine the prevalence of signaling in actual markets.

This question has received attention in the marketing literature (Erdem, Keane, and Sun

2000).
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Appendix

8 Description of the Multilinear Interpolation Algo-

rithm

We apply the algorithm in Weiser and Zarantonello (1988) to interpolate the value

function over the two dimensional continuous part of the state space. The algorithm

proceeds as follows. As we have described earlier, we split the two dimensional unit

square into an Ng by Ng regular grid, where Ng = 21. First, given a vector (α̃H , α̃L),

we figure out which grid points contain the vector: we find the integer i such that

(i − 1)/(Ng − 1) ≤ α̃H ≤ i/(Ng − 1), and the integer j such that (j − 1)/(Ng − 1) ≤

α̃H ≤ j/(Ng − 1). We then scale the square up to a [0, 1] by [0, 1] square, transforming

(α̃H , α̃L) to

(x1, x2) =

(

(Ng − 1)

(

α̃H −
(i− 1)

Ng − 1

)

, (Ng − 1)

(

α̃L −
(j − 1)

Ng − 1

))

.

We also relabel the save value functions at the vertices of the square as Vn(l, m), where

(l, m) ∈ {0, 1} × {0, 1}. We then figure out which simplex of the unit square contains

(x1, x2). To do this, we find a permutation of (1, 2), (p(1), p(2)) such that xp(1) ≤ xp(2).

The interpolated value function can then be constructed as a linear combination of

Vn(l, m) at the vertices using the following algorithm:

1. Start with s0 = (1, 1)

2. Let V̂ = Vn(s0)

3. Let i = 1

4. Let si = si−1−ep(i), where ep(i) is a 2-vector with 1 in position ep(i) and 0 everywhere

else.

5. Let V̂ = V̂ + (1− xp(i))(Vn(si)− Vn(si−1))

6. Increment i by 1
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7. If i ≤ 2, go to step 4. Otherwise, return the interpolated value function V̂ .

Note that this algorithm can easily be extended to continuous state spaces with N > 2

dimensions. It can also be extended to include nonregular grids. For a nonregular grid,

the only change is that we find the grid points containing (α̃H , α̃L), and scale up the grid

points to the unit hypercube.

9 The Effect of Changes in β on the Optimal Price

(Myopic Firm)
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10 Steady-State Simulation
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Figure 4: Simulation Results, γ = ∞
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11 Robustness: Discrete Price Model

In this section we present a robustness check against the linear functional form of our

consumer learning process. For this section we assume that quality, xt, can take on one of

two values {xL, xH}, where xH > xL and that the firm can only choose a discrete number

of prices: pt ∈ {p1, ..., pK}. Consumers correctly believe that the joint distribution of

pt and xt are discrete, and update those beliefs using a multinomial-Dirichlet Bayesian

updating process.

11.1 Demand

We assume there exists a continuous measure of consumers indexed by i, each with

taste for quality vi ∼ U [0, v] and endowed with wealth wi ∼ U [0, w]. Under an additively

linear direct utility function, it follows that consumer i’s indirect utility upon purchase

of a product with vertical quality xt and price pt is:

Ui = vixt − pt, (19)

The more general case consists of the scenario where the consumer does not know the

true quality of the product, xt, and thus must infer the quality based on her information

set (that is, her beliefs). We assume that the consumer believes the relationship between

price and quality takes the form:

Prob(xt = xj , pt = pk) = µjk, (20)

where j, k ∈ {H,L}. Therefore, upon observing the good’s price, pt, the consumer forms

an expectation of its quality based on the conditional probability:

E[xt|pt = pk] =

(
µHk

µHk + µLk

)

xH +

(
µLk

µHk + µLk

)

xL. (21)

where µHk + µLk is the probability of observing price pk. Consumers’ beliefs about the

unknown parameters, µjk, are modeled as Dirichlet:

f(µjk) = Dir(αHH , αHL, αLH , αLL), (22)
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where αjk > 0. Note that under this assumption,

E [µjk] =
αjk

∑

j,k∈{H,L} αjk

and

E

[
µjk

µHk + µLk

]

=
αjk

∑

j∈{H,L} αjk

.19

If consumers hypothetically live for an infinite amount of time, they will use all

past information of prices and quality over the course of the good’s life to infer α =

(αHH , αHL, αLH , αLL). The information in period t can be summarized in the vector

αt = (aHH,t, aHL,t, aLH,t, aLL,t), where consumers believe that the distribution of α at

period t is Dir(αt). By the end of period t, consumers have observed both price and

quality, and will update their beliefs using a multinomial-Dirichlet Bayesian updating

process:

αjk,t+1 =

{

αjk,t + 1 if xt = xj and pt = pk

αjk,t otherwise
(23)

By updating their beliefs each period, consumers learn the relationship between price and

quality. One problematic feature of assuming an infinitely lived consumer is that, in the

limit, her beliefs about the relationship between price and quality become fixed. That

is, α will eventually be learned with zero standard error. In this case, any alteration of

the stochastic process of price and quality will not cause beliefs to update.20

To allow for beliefs to continue updating indefinitely, we propose that consumers

recall the previous period’s information with error. In our multinomial-Dirichlet Bayesian

updating problem, demand for the product will be a function of consumer beliefs about

19Because the µjk’s are Dirichlet, the random variables
µjk

µHk+µLk
also follow a Dirichlet distribution

(see Null (2008) and citations therein).
20We have solved and simulated a version of our model with infinitely-lived consumers, and we find

that when consumers become sure enough of their beliefs, the firm will charge a high price but lower

product quality, and beliefs will update so slowly that the firm can maintain a low quality. In the limit,

as consumers become completely sure of their beliefs, the firm can keep quality low and price high and

consumers will continue to believe that ex-ante quality will be high.
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quality conditional on price (see Equation (21)). We therefore assume that the consumers

keep track of the conditional probabilities of observing xH given pt:

Prob(xt = xH |pt = pk,αt) =
αHk,t

αHk,t + αLk,t

= α̃k,t.

The memory error, which we denote νt, subsequently affects this conditional probability

by introducing noise into the consumer’s belief about quality upon observing price. We

assume that there are two error terms, νHt and νLt, each corresponding to conditioning

on pt = pH or pt = pL, respectively. We assume that the νkt’s are i.i.d. across time and

k, and that they follow a discrete distribution,

νkt =

{

ν with probability πν

ν with probability 1− πν

(24)

We further assume that consumers have limited memory in the sense that the consumer’s

information set only includes the last Nk observations, where αHk,t + αL,k,t = Nk. In

this sense, Nk determines the weight the consumer places on the observed current price

in affecting her beliefs about quality. The modified Bayesian updating process in our

overlapping generations type model is

α̃k,t+1 = l(pt, xt, α̃k,t) =







Nk

Nk+1
α̃k,t +

1
Nk+1

+ Nk

Nk+1
νkt if xt = xH and pt = pk

Nk

Nk+1
α̃k,t +

Nk

Nk+1
νkt if xt = xL and pt = pk

α̃k,t + νkt otherwise.

(25)

The intuition behind this quasi-Bayesian updating formula is as follows. We can

interpret the αjk,t’s as the number of times each quality and price combination has been

observed. Consumers have a limited amount of memory, in the sense that they can only

remember the past Nk observations for each value of pk. Every period the αjk’s are

perturbed by an error that approximately preserves the average conditional probability

α̃k,t; if the firm does not charge pk in period t, then E[α̃k,t] = E[α̃k,t+1]. If the firm does

charge pk, then an observation must be added to either the high quality or low quality

bin, depending on the value of x that is chosen. The multiplication by Nk

Nk+1
in this case

keeps the total number of observations for pk fixed at Nk. Note that if the firm chooses
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to produce the high quality good, for example, consumer beliefs about the probability

of a high quality good given pk will increase on average by a factor of 1
Nk+1

, which is the

same as how much the probability would go up under the standard Bayesian updating

procedure. Note that the size of Nk will determine how quickly consumer beliefs adjust.

If Nk is large, beliefs will adjust slowly in response to new information; if it is small, new

information will receive greater weight.

Thus, in the limit, there always exists uncertainty about the underlying parameter

vector α. In every period, it is only necessary for consumers to track the state variable

α̃t = (α̃Ht, α̃Lt). It follows from (19) that consumer i will purchase the product if both

E(xt|pt, α̃t) − pt > 0 and pt < wi. Hence, the demand curve for each period that the

firm faces is:

D(pt, xt, α̃t) =

{ (
1− pt

w

) (

1− pt
vE(xt|pt)

)

if pt ≤ vE(xt|pt, α̃t) and pt < w

0 otherwise
. (26)

We define the mapping L : R4 → R
2 as follows:

α̃t+1 = L(xt, pt, α̃t) = (l(xt, pt, αH,t), l(xt, pt, αL,t)) (27)

Equation (27) defines the evolution of beliefs in vector form, conditional on period t

price and quality.

11.2 Firm

A monopolist maximizes profits in a dynamic sense, in that it chooses price and

quality keeping in mind how this joint decision alters consumers’ expectation of qual-

ity. We assume that the firm’s marginal cost, ct, is a stochastic vector (c0t, c1t, c2t).

Each draw of ct is i.i.d. across time with distribution Fc(·). The stochastic nature of

cost can include a multitude of exogenous factors such as process innovations, weather

disruptions, or factory malfunctions. Let total current period profits be represented as

π(pt, xt, α̃t, xt−1, ct) = D(pt, xt, α̃t)[pt − c0t − c1txt] − c2txt − γ1{xt 6= xt−1}. The cost

c0t ≥ 0 reflects the marginal cost of producing a quality 0 product, while c1t ≥ 0 allows

for higher quality products to have higher production costs. c2t can be interpreted as
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a fixed cost of producing a higher quality product, and γ is an adjustment cost. The

adjustment cost incorporates the idea that quality is not as easy to change as price: for

example, creating a higher or lower quality product may involve retooling production

plants.

It follows that the firm will choose price and quality to maximize its discounted

stream of profits:

max
[pt+i,xt+i]∞i=0

E

[
∞∑

i=0

δiπ(pt+i, xt+i, α̃t+i, xt+i−1, ct+i)|α̃t

]

, (28)

subject to the evolution of the state variable α̃t in equation (27). Specifically, the state

variable α̃t will evolve according to how consumers update their beliefs upon the firm’s

choices of price and quality. This can be intuited from writing the firm’s problem in the

form of a Bellman equation:

V (α̃, x−) =

∫

max
p,x

{π(p, x, α̃, x−, c) + δ

∫

V (L(p, x, α̃), x)dFν(ν) }dFc(c). (29)

where fε, fν , and fγ are the distributions of the respective shocks and x− represents

the previous period’s quality choice. Existence of a fixed point rests on the fact that

the per-period profit function is continuous and bounded in α̃ (see Rust (1996)). The

optimal choice of price and quality will come from the solution to the Bellman equation.

Policy and value functions can be obtained from iterating the Bellman equation at an

initial guess. We describe our algorithm for solving for the value and policy functions in

more detail in Section 11.3.

11.3 Simulation Setup and Numerical Methods

Our procedure for solving for the value and policy functions is similar to that outlined

in the body of the paper. Our problem has two continuous state variables, which are the

probabilities people believe the product quality is high conditional on a high or low price,

and last period’s quality choice, which directly affects profits through the adjustment

cost. First, we split the continuous part of the state space into a finite numbers of grid
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points, and interpolate the value function in between points. We choose a regular 21 by

21 grid for interpolation. We solve for the value and policy functions at each (α̃H , α̃L)

point on the 21 by 21 grid, for each value of xt−1; we index each such state point from

i = 1, ..., Ns = 441, and denote each (α̃H , α̃L, xt−1) combination as si.

The value and policy function iteration then proceeds as follows. Indexing each

iteration with n, at n = 1 we begin with a guess that the value function Vn is 0 at all

points si. We then solve for the optimal policy function (xn(si, c), pn(si, c)) at each state

space point, si, and possible cost draw c:

(xn(si, c), pn(si, c)) = argmax
x,p

{π(p, x, si, c) + δEνVn(L(p, x, si))} (30)

We then solve for the value function that would be obtained if these policies were

fixed. Operationally, we iterate on the value function contraction mapping with fixed

policy functions until convergence. Denoting a policy iteration by np, we start by setting

V p
1 = Vn and update using the equation

V p
np+1(si) = Ec

[

π(pn(si, c), xn(si, c), si, c) + δEνV
p
np
(L(pn(si, c), xn(si, c), si))

]

. (31)

We assume that the policy step has converged when max
i=1,Nj

s
‖V p

np+1(s
j
i )−V p

np
(sji )‖ < ǫp,

where we choose ǫp = 1e − 4. The policy iteration step in equation (31) converges very

quickly. Once the policy step converges, we set Vn = V p, and solve for the optimal policies

at step n+ 1 using equation (30). The algorithm converges when maxi=1,Ns
‖Vn+1(si)−

Vn(si)‖ < ǫv, where we set ǫv = 1e − 4. We have found that this algorithm converges

much more quickly than standard value function iteration, where one would solve for the

optimal policy every time one updated the value function. The parameter values where

we solve our problem are laid out in Table 7. Unlike the model in the body of the paper,

in this version of the model we assume that costs are constant over time.

11.4 Simulation of a permanent shock to the marginal cost of

production

In this section we investigate the extent to which price signaling may induce price

stickiness, in the sense that a high quality firm may not drop its price in response to a
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Table 7: Simulation Parameters

Variable Value

δ 0.95

v 0.6

w 1

xL 0.25

xH 2

c0 0.05

c1 0

c2 0.001

pL 0.25

pH 0.5

ν -0.001

ν 0.001

πν 0.5

γ 0.003
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surprise cost shock, even though in the full information case dropping the price would

be optimal. To do this, we solve our model again, assuming that the marginal cost of

production, c0, is 0 rather than 0.05. If there is no price signaling, it is optimal for the

firm to lower its price in response to a cost shock like this. We lay out the optimal

prices, costs and profits for the full information case in Table 8. Note that there are no

dynamics in this case, as we assume that consumers know product quality upon entering

the market.

Table 8: Optimal Price and Quality In Response to a Cost Shock, Full Information

c0 = 0.05 c0 = 0

Optimal Price 0.5 0.25

Optimal Quality 2 2

Profits 0.129 0.146

To see what happens in the price signaling case, we first simulated the model for both

Nk = 50 and Nk = 1000 for 10,000 periods. For a cost of 0.05, the steady-state price is

0.5 in each case, and the steady state-quality is 2. Additionally, in our simulations the

steady-state α̃Ht is close to 1, while α̃Lt is low, settling at around 0.05. We see what the

impact of a cost shock in period 10,000 would be by looking at the firm pricing policy

functions, which are shown for the high cost in Figure 7 and at the low cost in Figure

6 for Nk = 50. If c0 dropped unexpectedly at period 10,000, the firm’s optimal policy

would be to keep the price high, since the optimal policy for high α̃Ht and low α̃Lt is

high from Figure 6. Intuitively, the firm does not want to lower the price because doing

so in response to this cost shock would signal to consumers that the product’s quality

was low. We have also investigated the effect of a cost shock in the Nk = 1000 case. The

results are similar to the Nk = 50 case. If α̃Ht is sufficiently high, and α̃Lt is sufficiently

low, the firm will not drop the price in response to a cost shock.
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Figure 6: Policy functions for xt−1 = xH , Nk = 50
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