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Abstract

Macro-finance theory implies that trend inflation and the equilibrium real interest rate

are fundamental determinants of the yield curve. However, empirical models of the term

structure of interest rates generally assume that these fundamentals are constant. We

show that accounting for time variation in these underlying long-run trends is crucial for

understanding the dynamics of Treasury yields and predicting excess bond returns. We

introduce a new arbitrage-free model that captures the key role that long-run trends play

in determining interest rates. The model also provides new, more plausible estimates of

the term premium and accurate out-of-sample yield forecasts.
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1 Introduction

Researchers have made numerous attempts to connect macroeconomic variables to the term

structure of interest rates using a variety of approaches ranging from reduced-form no-arbitrage

models to fully fledged dynamic macro models.1 Despite both theoretical and empirical

progress, there is no clear consensus about how macroeconomic information should be in-

corporated into yield curve analysis. One important link between the macroeconomy and

the yield curve that has been largely overlooked is the connection between the time-varying

long-run means of macroeconomic series and interest rates, that is, between their stochas-

tic trends. Specifically, macroeconomic data and models can shed light on estimates of the

trend in inflation (π∗t ) and the equilibrium real interest rate (r∗t ), while finance theory—from

the Fisher equation to modern no-arbitrage theory—implies that such macroeconomic trends

must be reflected in interest rates. Of course, the key outstanding issue is whether there is

empirically significant variation in these long-run trends over time. Almost all term structure

analyses in finance assume constant long-run means. Instead, in this paper, we document that

accounting for changes in π∗t and r∗t is essential for modeling the term structure, estimating

bond risk premia, and forecasting yields. We quantify the importance of time-varying macroe-

conomic trends for interest rates in two steps. First, using a variety of empirical proxies for

these shifting endpoints, we establish some stylized facts about macroeconomic and interest

rate trends. One of these stylized facts is the importance of such trends for predicting excess

bond returns. Second, to account for these stylized facts, we introduce a new dynamic term

structure model that embeds a stochastic interest rate trend. This no-arbitrage model pro-

vides new estimates of the long-run stochastic trend in Treasury yields and the term premium

and accurately predicts interest rates out of sample. This analysis bridges an important gap

between macroeconomics and finance by incorporating shifting macro-finance trends.

A simple illustration of the potential importance of macro trends for U.S. interest rates is

provided in Figure 1. The underlying drivers of the apparent secular decline in longer-term

Treasury yields since the early 1980s remain contentious. Standard finance (no-arbitrage)

models of the yield curve assume that interest rates are stationary, i.e., mean-reverting—see

Kim and Wright (2005), Joslin et al. (2011), and Adrian et al. (2013), among many others. This

mean reversion implies that expected short-term rates are invariably close to their historical

average at horizons beyond a few years ahead. That is, the expectations component of long-

term interest rates varies only modestly. Consequently, low-frequency variation in interest

rates must be captured by the term premium, which is the residual difference between a long-

1See, among many others, Ang and Piazzesi (2003), Diebold et al. (2006), Bikbov and Chernov (2010), and
Rudebusch and Swanson (2012). A detailed survey is Gürkaynak and Wright (2012).
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term interest rate and its expectations component (e.g., Wright, 2011). Instead, our analysis

stresses the important role of the time-varying trends underlying interest rates. To illustrate

this role, Figure 1 displays observable proxies of these trends (described further in Section 2).

Trend inflation, π∗t , measured using long-horizon survey forecasts, declined almost 6 percentage

points from the Volcker disinflation of the early 1980s to the late 1990s and then remained

stable around 2 percent. In contrast, the trend or equilibrium real interest rate, r∗t—shown

here as the average of several estimates—changed little early on but declined notably over the

past two decades, likely reflecting structural changes in the global economy. As a result, the

equilibrium nominal short-term interest rate, i∗t = π∗t + r∗t , which reflects movements in both

underlying macro trends, accounts for much of the low-frequency movements in the ten-year

Treasury yield through variation in the expectations component. This suggests that the early

downward trend in π∗t and the more recent decline in r∗t—that is, an environment of falling

stars—played a major role in the secular decline in nominal interest rates.

This link between macro trends and interest rate trends is at the core of our analysis.

We first establish two stylized facts about macro-finance trends and yields using empirical

proxies for these trends.2 First, variation in both the inflation trend and the equilibrium real

interest rate is responsible for the very high persistence of interest rates. It has long been

recognized that nominal interest rates of different maturities contain a slow-moving common

trend component and are best modelled as cointegrated (Campbell and Shiller, 1987; Hall

et al., 1992). We show that this common trend is i∗t and that it is driven by quantitatively

important fluctuations in both underlying macroeconomic trends, π∗t and r∗t . Accounting only

for the inflation trend on its own, as in Kozicki and Tinsley (2001) and Cieslak and Povala

(2015), leaves a highly persistent component of interest rates unexplained. We show that it is

necessary to include movements in r∗t to fully capture the trend component in interest rates.

Our second stylized fact is that macro trends are crucial for understanding bond risk pre-

mia. Relative to the canonical predictive regressions for excess bond returns that forecast

future excess bond returns with current yields (Fama and Bliss, 1987; Campbell and Shiller,

1991; Cochrane and Piazzesi, 2005), we find that adding π∗t and r∗t as regressors provides no-

table gains in predictive power. Our findings provide evidence against the spanning hypothesis

implied by most asset pricing models, which posits that the current yield curve contains all

the relevant information for predicting future interest rates (e.g., Duffee, 2013; Bauer and

Rudebusch, 2017; Bauer and Hamilton, 2018). The predictive gains are economically large,

2Along with a survey-based π∗t , we use existing estimates of r∗t from Laubach and Williams (2003, 2016),
Kiley (2015), Holston et al. (2017), Del Negro et al. (2017), and Johannsen and Mertens (2016, 2018). For
robustness, we also consider four r∗t estimates that we create, which range from a simple moving-average of
the real rate to a multivariate estimate.
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so, for example, when interest rates adjust to a lower trend, long-term bond holders benefit

substantially, just as they did during the adjustment to a lower r∗t following the 2008 financial

crisis. Indeed, including the equilibrium real rate is especially important later in our sample

when the inflation trend shows less variation.3

To account for these two stylized facts, we introduce a new dynamic term structure model

(DTSM) with a shifting endpoint for interest rates. This novel no-arbitrage specification

parsimoniously models the Treasury yield curve using four state variables: three “yield factors”

which are simply linear combinations of yields, and one common stochastic trend, i∗t , which

captures movements in the underlying macroeconomic trends. The existence of a common

trend in interest rates stands in stark contrast to the usual stationary DTSMs in which yield

factors follow a stationary VAR(1). Furthermore, in our model the trend is unspanned or

hidden, so it cannot be backed out from the cross section of yields. This specification is

consistent with our evidence showing that adding i∗t improves predictions of bond returns. In

addition, an unspanned i∗t need not follow Treasury yields in lockstep and can play a similar

role as the trend component in an unobserved components model. For robustness, we employ

two different estimation methodologies, which provide similar results. First, we estimate the

model using an observed proxy for i∗t in order to carry out a model-based analysis using

the same real-time interest rate trend we employed in establishing the stylized facts about

macro-finance trends. Second, we use Bayesian estimation of our model to infer i∗t using only

Treasury yields, imposing a certain degree of smoothness on our trend estimate, similar to

Del Negro et al. (2017).

We then show that simulated data from these empirical specifications are able to match

the stylized facts that we established about the role of trends for the yield curve. The model-

based estimates of the trend and cycle components of interest rates are consistent with the

cointegration regression results from the actual data. Also, the model accounts for the ad-

ditional predictive power for future bond returns provided by the trend underlying interest

rates as was evident in our historical data sample. Specifically, predictive regressions using

simulated data from our model demonstrate notable increases in R2 when the interest rate

trend is added as a predictor—just as in the actual data.

We also use our shifting-endpoint model to investigate two important applications of

DTSMs: (1) decomposing long-term interest rates into an expectations component and a term

premium and (2) forecasting interest rates. For the former, our model provides markedly

3The improvement we document using trends to predict excess bond returns dovetails with recent re-
search showing predictive gains from including slow-moving averages of past inflation, real output growth, and
consumption growth as predictors (e.g., Cieslak and Povala, 2015; Brooks and Moskowitz, 2017; Garg and
Mazzoleni, 2017; Jorgensen, 2017)—variables that are closely related to π∗t and r∗t .
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different decompositions of long-term rates than the usual stationary DTSM. A stationary

DTSM implies a quite stable expectations component and attributes most of the secular de-

cline in interest rates to the residual term premium, as discussed in critiques by Kim and

Orphanides (2012) and Bauer et al. (2014). Instead, our shifting-endpoint model decomposi-

tion attributes the majority of that secular decline to a fall in long-term expectations driven

by i∗t . Consequently, our term premium estimates exhibit only a modestly decreasing trend

and more pronounced cyclical swings, similar to other risk premia in asset prices (Fama and

French, 1989). As for out-of-sample interest rate forecasting, previous researchers have found

it surprisingly difficult to consistently beat the simple random walk forecast, which predicts

that a future yield will equal the current yield. But we find that forecasts implied by our

shifting-endpoint DTSM are generally more accurate than this martingale benchmark and

also better than long-range projections from the Blue Chip survey of professional forecasters.

By contrast, the standard stationary DTSM (corresponding to the special case of our model

with a constant i∗) forecasts substantially worse than the random walk. The improvements

in forecast accuracy from allowing a slow-moving shifting endpoint are both economically

and statistically significant, and they are consistent with yields returning over time to their

underlying macro trend.4

Our analysis is related to several different strands of the macro and finance literatures.

Some studies have described a link between the inflation trend and nominal yields (Kozicki

and Tinsley, 2001; van Dijk et al., 2014; Cieslak and Povala, 2015), but this leaves unexplained

the continuing decline in yields over the past 20 years. Time variation in r∗t has so far received

little attention in finance, despite growing evidence of a sizable decline in the equilibrium

real interest rate.5 Our paper comprehensively documents the empirical importance of both

relevant macro trends, π∗t and r∗t , for the dynamics of the yield curve.

No-arbitrage models of the yield curve typically rule out time-varying trends by specifying

that the dynamics of yields are stationary. However, such models are ill-suited to capture the

extreme persistence of interest rates, and a variety of remedies have been suggested.6 Our

4In related work, van Dijk et al. (2014) documented forecast improvements relative to a random walk by
including shifting endpoints based on their proxy of π∗t . We demonstrate how to achieve even greater forecast
gains in an arbitrage-free DTSM framework that accounts for time-varying π∗t and r∗t .

5The economic forces reducing the equilibrium real interest rate likely include lower productivity growth,
changing demographics, a decline in the price of capital goods, and strong precautionary saving flows from
emerging market economies, which have tended to increase global savings, reduce desired investment, and
push down the steady-state real interest rate. Discussions include Summers (2014), Kiley (2015), Rachel and
Smith (2015), Hamilton et al. (2016), Laubach and Williams (2016), Johannsen and Mertens (2016, 2018),
Christensen and Rudebusch (2019), Del Negro et al. (2017), Holston et al. (2017) and Lunsford and West
(2019). In macroeconomics, r∗t is often labeled the neutral or natural rate of interest although, as noted below,
there can be subtle dfferences among various definitions.

6Proposed remedies include adding survey information (Kim and Wright, 2005; Kim and Orphanides, 2012),
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results suggest that allowing for shifting long-run trends is a better solution. The idea of a

shifting-endpoint term structure model goes back to Kozicki and Tinsley (2001), who specified

a restrictive two-factor DTSM that imposed the expectations hypothesis and identified i∗t with

a distant-horizon forward rate (with a unit root under both the risk-neutral and the real-world

measure). Some macro-finance models of the yield curve allow for changes in the inflation

trend but still assume a constant equilibrium real rate (Hördahl et al., 2006; Rudebusch and

Wu, 2008). The model of Campbell et al. (2017), which is designed to capture the changing

comovement of stock and bond returns, is an asset pricing model with a time-varying π∗t and

constant r∗. A few no-arbitrage models allow for changes in r∗t , but they also make strong

assumptions about this trend by tightly linking it to π∗t (Dewachter and Lyrio, 2006) or trend

output growth (Dewachter and Iania, 2011). Our model allows both stochastic macroeconomic

trends to affect term structure dynamics. We also depart from the existing literature by

treating i∗t as unspanned, which allows this trend to exhibit some variation independent of

contemporaneous yields.

Three recent papers propose statistical models of interest rates with time-varying long-run

means, and are thus closely related to ours. Del Negro et al. (2017) estimate a Bayesian

common-trend VAR for interest rates and inflation that allows for time variation in π∗t and

r∗t . We use their estimates of r∗t , along with others, in our analysis establishing stylized facts.

Johannsen and Mertens (2018) also propose a time series model for yields and a Bayesian

estimation framework that allows for stochastic volatility, and we also include their real-time

r∗t among our trend proxies. Finally, Crump et al. (2018) allow for shifting macroeconomic

trends in a common-trend VAR for interest rates and inflation with i∗t , r
∗
t , and π∗t pinned

down from surveys of professional forecasters. These three papers provide complementary

time series analyses to our approach. However, our arbitrage-free specification, which jointly

captures the time series and cross section of Treasury yields, allows us to investigate the role

of trends for the yield curve, the term premium and expected bond returns.

The paper is structured as follows. Section 2 describes key concepts and our initial proxies

for the macroeconomic trends. Section 3 presents stylized facts about the macroeconomic

trends and Treasury yields. Section 4 introduces our no-arbitrage model, shows how it captures

the stylized facts, and presents novel estimates of the term premium as well as out-of-sample

forecast results. Section 5 concludes. The Appendix contains further details, and a separate

Online Appendix7 contains supplemental material.

restricting risk prices (Joslin et al., 2014; Bauer, 2018), correcting for small-sample bias (Bauer et al., 2012,
2014), and using near-integration or long memory processes (Jardet et al., 2013; Goliński and Zaffaroni, 2016).

7The Online Appendix is available at https://www.michaeldbauer.com/files/br_trends_online_

appendix.pdf.
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2 Interest rate trends: theory and estimates

The role of trends for interest rates can be illustrated with the usual decomposition of any

n-period yield, y
(n)
t , into expectations of short-term rates and a term premium, TP

(n)
t :

y
(n)
t =

1

n

n−1∑
j=0

Etit+j + TP
(n)
t = i∗t +

1

n

n−1∑
j=0

Eti
c
t+j + TP

(n)
t , (1)

where it is the nominal short rate, y
(1)
t .8The term premium compensates bond investors for the

duration risk in longer-term bonds, though in practice, it also captures liquidity and financial

market frictions. The expectations theory of interest rates assumes that the term premium

is zero (strong form) or constant (weak form), whereas modern finance theories of interest

rates explicitly model the time variation in the term premium, as described in Section 4. The

second equality in equation (1) introduces the trend or equilibrium short rate, i∗t , and the

short rate cycle, ict = it − i∗t . We define i∗t as the Beveridge-Nelson trend in the short-term

nominal interest rate,

i∗t ≡ lim
j→∞

Etit+j. (2)

We employ this stochastic trend concept throughout this paper and assume no deterministic

time trends. All nominal yields are affected by changes in i∗t , and if this trend is time-varying,

then yields are nonstationary with a common trend. In this case, Kozicki and Tinsley (2001)

fittingly call i∗t a “shifting endpoint.” The Fisher equation suggests that two macroeconomic

trends determine this endpoint:

it = rt + Etπt+1 ⇒ i∗t = r∗t + π∗t ,

where rt is the real short rate, πt is inflation, and the trends in rt and πt are defined analogously

to i∗t . If inflation or the real interest rate contain long-run trend components, then nominal

interest rates will also be driven by these same macroeconomic trends.

The remainder of this section describes the empirical proxies of these trends that we em-

ploy to establish stylized facts about macro-finance trends in interest rates.9 For the long-run

inflation trend, the prevailing consensus in empirical macroeconomics models inflation as an

I(1) process—in order to produce accurate forecasts and correctly capture the evolution of

8This intuitive definition of the term premium—the expected excess log return on the long-term bond held
to maturity over a strategy of rolling over short-term bonds—is common in macroeconomics. It differs from
the definition used in DTSMs by a Jensen inequality term, but in homoskedastic models such as the one
proposed in this paper, this variance correction term is a constant.

9Appendix A provides an overview of all trend estimates.
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inflation expectations (Stock and Watson, 2007; Faust and Wright, 2013). From a macroe-

conomic perspective, the resulting time-varying π∗t can be viewed as the perceived inflation

target of the central bank. Empirical proxies for trend inflation have been constructed from

surveys, statistical models, or a combination of the two—see, for example, Stock and Watson

(2016) and the references therein. We employ a well-known, widely used survey-based mea-

sure of long-run inflation expectations, the Federal Reserve’s series on the perceived target

rate (PTR) for inflation (e.g., Clark and McCracken, 2013; Del Negro et al., 2017). Figure 1

shows that, from the beginning of our sample to the late 1990s, this estimate generally mir-

rored the rise and fall of the ten-year yield.10 Since then, however, it has remained close to

2 percent, which has been the explicit longer-run inflation goal of the Federal Reserve since

2012. Given our focus on forecasting, real-time availability is an important issue, and for most

of our sample (since 1979) the PTR estimate was available in real time from the Survey of

Professional Forecasters.

As a proxy for r∗t , we use a variety of estimates to avoid reliance on one specific model

or estimation approach. All of these estimates are consistent with our definition of r∗t as the

stochastic trend in the real short rate, analogous to equation (2). The first two r∗t estimates

are the long-run real rate trends from time series models identified with Bayesian methods:

Del Negro, Giannone, Giannoni, and Tambalotti (2017)(DGGT) estimate a linear state space

model with common trends, and Johannsen and Mertens (2016, 2018)(JM) employ a nonlinear

state space model with a shadow rate. Three additional estimates are based on simple New

Keynesian macro models and use the Kalman filter to infer the neutral real interest rate, that

is, the level of the real rate consistent with real output at potential and inflation at target:

Laubach and Williams (2003, 2016) (LW) implemented this concept empirically using the

Rudebusch and Svensson (1999) model; Holston, Laubach, and Williams (2017) (HLW) use a

slight simplification of the LW model; and Kiley (2015) augments the LW model to account

for changes in financial conditions. The implementation of these macro models assumes that

the neutral rate follows a martingale; thus, their r∗t estimates are consistent with the long-run

concept we employ. We also construct three model-based estimates of our own. The first is

based on a simple univariate unobserved components model, and the second uses the same

model augmented with moving averages of real GDP and labor force growth that appear to

be correlated with the real rate trend (Lunsford and West, 2019). The third estimate uses the

observed nominal short rate and inflation in a state-space model with a latent real rate and

r∗t . We estimate these models using Bayesian methods, and like Del Negro et al. (2017) we

10Other estimates of the inflation trend, such as the long-range forecasts in the Blue Chip survey, the moving-
average estimate of Cieslak and Povala (2015), or various model-based estimates (Clark and Doh, 2014; Stock
and Watson, 2016) exhibit a similar pattern.
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employ a prior with a low innovation variance for r∗t . Finally, as a simple, model-free estimate

of r∗t , we include an exponentially-weighted moving average of past real rates.11

Figure 2 summarizes these r∗t estimates. The left panel shows the average and range of

the smoothed (two-sided) estimates, which use the full data sample for inference about the

parameters and state variables. These show a relatively stable r∗t until the late 1990s, but then

exhibit a pronounced decline. To better capture what bond market investors could have known

about macro trends contemporaneously, our analysis will focus on filtered (one-sided) and real-

time estimates of r∗t , which are shown in the right panel of Figure 2. Filtered estimates—from

the LW, HLW, and Kiley models—infer latent state variables at time t using data available

up to time t. However, they also use model parameter estimates from the full sample, which

would not have been available to investors in real time.12 Therefore, to avoid the pitfall of

look-ahead bias in our analysis of predictive power, we consider (pseudo) real-time estimates

that only use data through period t to construct r∗t . Such real-time estimates are available for

the JM and DGGT models, our own three models, and the moving-average of past real rates.13

As shown in Figure 2, the average of these six real-time estimates increased from about one

to two percent early in the sample, moved sideways for about 15 years, and then around

2000 started a substantial, steady decline until the end of the sample. This pattern closely

follows the movements of the moving-average estimate of r∗t , which has the added benefit of

not relying on a model or estimation technique unavailable to investors historically. Finally,

the average of all nine filtered and real-time r∗t estimates, which is displayed in Figure 1, also

shows a similar pattern.

Substantial estimation and model uncertainty underlie estimates of any long-run trends,

as suggested by the range of estimates in Figure 2. To reduce the uncertainty inherent in

individual estimates, we take averages of r∗-estimates across models. While this approach is

in no way a cure-all for estimation uncertainty and measurement error, model-averaging is

well-known to improve forecast accuracy (Timmermann, 2006).14 Our baseline estimate of i∗t

for the analysis in Section 3 will be the sum of the PTR estimate of π∗t and the average of all

six real-time estimates of r∗t .
15

11Our smoothing parameter of 0.98 follows other research estimating macro trends (Malmendier and Nagel,
2011; Orphanides and Williams, 2005).

12Still, Laubach and Williams (2016) argue that, for the past decade, truly real-time r∗t estimates are similar
to their filtered estimates.

13These estimated trends all rely on revised inflation data, and the multivariate model also uses revised
output data. Although the use of real-time data vintages can be important for near-term forecasting, it is
arguably less relevant for estimation of long-run trends.

14Because we find a close link between the yield curve and our noisy estimates of the macro trends, our
results are likely somewhat conservative regarding the tightness of the connection between the yield curve and
the true underlying trends (as discussed in the Online Appendix).

15An alternative proxy for i∗t could be obtained from surveys, such as the long-range forecast for the three-
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3 Macro trends and yields: stylized facts

3.1 The common trend in nominal yields

We first investigate whether macroeconomic trends account for the high persistence of interest

rates. We then assess whether accounting for just the inflation trend is sufficient or if a real rate

trend also materially contributes to movements in nominal bond yields. Our proxies for these

macro trends are the PTR survey-based estimate of π∗t and the three alternative estimates of r∗t :

the average of three filtered estimates, the average of the six real-time estimates, and a simple

(exponentially weighted) moving average of past real rates. We proxy for the equilibrium

nominal short rate i∗t with the sum of π∗t and the real-time average estimate of r∗t (but obtain

similar results with the filtered or moving-average measures).

We find that variation in the macro trends accounts for the persistence of interest rates,

and the trend and cycle components of interest rates can be identified using our proxy i∗t .

This is illustrated in Figure 3, which shows the (demeaned) ten-year yield and two detrended

versions of that yield.16 The first detrended yield is the simple difference between the yield

and i∗t , which should be stationary if the yield is indeed driven by this trend and the loading

on i∗t is unity. In comparison to the ten-year yield, this series exhibits much less of a trend,

for example, declining by less than half as much from the early 1980s to the end of our

sample. Still, a notable trend remains in this simple difference, which indicates that the

yield trend component moves more than one-for-one with i∗t . By definition, the expectations

component of yields moves one-for-one with i∗t , so the ten-year term premium must contain

a trend component positively related to i∗t . To account for this relationship, the second

detrended series is the residual from a (Dynamic OLS) cointegration regression of the yield

on i∗t , discussed below. This cointegration residual shows no discernible trend, indicating that

changes in i∗t , properly scaled, can fully capture the trend in the ten-year Treasury yield.

The fitted value of the cointegration regression is the trend component of the ten-year yield,

for which we also obtain a model-based estimate in Section 4.3, and the residual—shown in

Figure 3—corresponds to the interest rate cycle.

It has long been known that nominal interest rates are highly persistent.17 Summary

statistics and unit root tests reported in the Online Appendix confirm that Treasury yields are

best modeled as having a stochastic trend in our sample. We examine whether this persistence

month T-bill rate from the Blue Chip Financial Forecasts. This series, which is only available semiannually
starting in 1986, fluctuates around our baseline estimate of i∗t . We consider survey forecasts in Section 4.6.

16We use end-of-quarter zero-coupon Treasury yields from Gürkaynak et al. (2007) with maturities from one
to 15 years and three-month and six-month Treasury bill rates from the Federal Reserve’s H.15 release, over
the period from 1971:Q4 to 2018:Q2.

17See, for example, Nelson and Plosser (1982), Rose (1988), and King et al. (1991).
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is driven by a common macro trend. Figure 3 suggests a likely cointegration relationship

with a loading on the trend larger than unity. To formally investigate this relationship,

including the individual contributions of π∗t and r∗t , we use cointegration regressions of the

form y
(40)
t = β0 + β′1X

∗
t + ut, where y

(40)
t is the ten-year yield, the vector X∗t contains one or

two macro trend proxies, and ut is a stationary residual under cointegration. We estimate

the coefficients β0 and β1 using the Dynamic OLS estimator of Stock and Watson (1993) by

including four leads and lags of ∆y
(40)
t and ∆X∗t .18

Table 1 shows the results of our cointegration analysis, including coefficient estimates,

Newey-West standard errors (using six lags) and the regression R2. The first regression spec-

ification includes only π∗t , and the results echo those of Cieslak and Povala (2015), who used

simple OLS regressions but a similar inflation trend proxy. The inflation trend coefficient is

somewhat higher than one and strongly significant, and the R2 is very high. However, trend

inflation does not fully account for the trend behavior of yields, as evident from the persistence

of the cointegration residuals ût = y
(40)
t − β̂0 + β̂1π

∗
t . While ût is much less persistent than

the ten-year yield, it is still quite persistent. As shown in the second column, for this series,

unit root tests—the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests—do not

reject the null, and the low-frequency stationary test of Müller and Watson (2013) rejects sta-

tionarity at the 5 percent level.19 The inadequacy of detrending with only π∗t is also supported

by a Johansen (1991) trace test, which does not reject the null of absence of cointegration

among the yield and the inflation trend.20 Finally, an error-correction model, where ∆y
(40)
t

is regressed on ût−1 and four lags each of the first-differenced yield and the inflation trend,

indicates only modest equilibrating forces pushing yields toward the inflation trend.

The missing driver of the level of the yield curve is the real rate trend. The remaining

columns of Table 1 show that there is strong evidence for cointegration once r∗t is added.

For all three r∗ proxies, the estimated coefficients are at or above one and strongly significant.

Adding the real rate trend increases the R2 by 8 to 11 percentage points, and the cointegration

residual now appears to be stationary. For the real-time and moving-average estimates of r∗t ,

the Johansen test indicates a cointegration rank of one, and the error-correction model shows

that yields quickly remedy deviations from trend. The coefficients on the two macro trends

are roughly equal, and the last column of Table 1 shows that i∗t can fully capture the trend

18In the Online Appendix, we report results for the level of the yield curve, which are similar to those for
the ten-year yield. Also, standard OLS as well as the reduced-rank maximum likelihood VAR estimation
of Johansen (1991) lead to the same conclusions as Dynamic OLS (not reported).

19For the unit root tests of cointegration residuals, we omit intercepts in the ADF and PP regressions and
use the critical values provided by Phillips and Ouliaris (1990), which vary with the number of regressors (as
detailed in the Online Appendix.)

20The test is based on a VAR representation with four lags, based on information criteria.
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component in the ten-year yield, since the evidence for cointegration is as strong as when

both macro trends are included individually. The cointegration coefficient is 1.67, suggesting

a positive loading of the term premium on i∗t , a result replicated by our model in Section 4.3.

The error-correction coefficient is estimated as -0.45 and is strongly significant. Accordingly,

when the ten-year yield is high relative to i∗t , it tends to revert quickly toward this trend,

with almost half of the equilibrium error on average reversed within one quarter. Therefore,

knowledge of the macro trend appears quite useful when predicting future yields. In sum, these

results indicate that the low-frequency behavior of Treasury yields is explained by movements

in a common underlying macroeconomic trend, i∗t , in which both π∗t and r∗t play important

roles.

3.2 Predicting excess bond returns with macro trends

We now consider whether macroeconomic trends can help predict future excess bond returns.

The one-quarter return on a bond with maturity n in excess of the risk-free rate is

rx
(n)
t+1 ≡ p

(n−1)
t+1 − p(n)t − y

(1)
t = −(n− 1)y

(n−1)
t+1 + ny

(n)
t − y

(1)
t ,

where p
(n)
t denotes the log-price of a zero-coupon bond. Since Fama and Bliss (1987) and

Campbell and Shiller (1991) it is well-known that the yield curve contains useful information

for predicting excess bond returns. The key question is whether the current yield curve

contains all of the information relevant for predicting future returns, that is, whether the

spanning hypothesis holds. Cieslak and Povala (2015) showed that adding a proxy for the

inflation trend significantly improved predictive power—an apparent violation of the spanning

hypothesis. Bauer and Hamilton (2018) found that even after correcting for the small-sample

econometric distortions associated with highly persistent regressors the trend inflation proxy

remains a relatively robust predictor and thus is unspanned by the yield curve.21

To investigate this result more broadly, we examine the gains from including π∗t , r
∗
t , and

i∗t in predictive regressions for excess bond returns. We predict the one-quarter excess return

averaged across maturities from two to 15 years.22 Table 2 reports results for six different

predictive regressions. The first column is the usual baseline specification that includes only

21Other empirical results contradict spanning in different ways. For example, Cochrane and Piazzesi (2005)
find that lagged forward rates add predictive power to current forward rates.

22We use one-quarter holding periods to avoid the econometric problems resulting from overlapping observa-

tions. The one-quarter returns are calculated with the usual approximation y
(n−1)
t+1 ≈ y(n)t . We have obtained

qualitatively similar results with annual returns (not reported). In addition, the Online Appendix provides
estimates for individual bond maturities.
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a constant and the first three principal components (PCs) of yields.23 The specification in the

second column adds π∗t , and columns three through five include π∗t as well as one of our three

proxies of r∗t in order to capture the effects of both trends. The final column adds only i∗t

instead of two separate macro trends. We report White standard errors as well as small-sample

p-values for the macro trends using the parametric bootstrap of Bauer and Hamilton (2018) to

obtain accurate small-sample tests even though regressors are persistent and correlated with

lagged forecast errors.24 The top panel uses the full sample of data, while the bottom panel

considers a subsample from 1985 to 2018 for robustness. There is some evidence of a shift in

the conduct of U.S. monetary policy in the mid-1980s, which would likely lead to a change in

interest rate dynamics, so such a subsample is often considered for yield curve analysis (e.g.,

Rudebusch and Wu, 2007; Joslin et al., 2014).

In the full sample, the inclusion of the inflation trend increases the predictive power sub-

stantially compared with using only yield curve information. Both the inflation trend and the

level of yields (PC1) are highly significant (in addition to the slope, PC2), as in Cieslak and

Povala (2015). However, adding r∗t to the regression leads to further impressive gains in pre-

dictive power. Notably, for the moving-average estimate of r∗t , the R2 jumps, the coefficients

and significance for π∗t and PC1 rise, and the coefficient on r∗t is large and significant.25 Not

surprisingly given Figure 1, the relative predictive power of the two macro trends changes in

the more recent period as variation in r∗t has become more pronounced. In the subsample

starting in 1985, the inflation trend by itself is not statistically significant. Only with the ad-

dition of the equilibrium real rate do both trends matter for bond risk premia: the coefficients

on π∗t and PC1 more than double, the R2 increases substantially, and the coefficients on π∗t

and r∗t are statistically significant. These results imply that the trend in the real interest rate

is as important as, and recently more important than, the trend in inflation.

The inflation and real-rate trends have roughly equal coefficients (as for the cointegration

regression). This suggests they play similar roles for yield dynamics and that their sum,

i∗t , can capture the relevant information. Indeed, as shown in the final column of Table 2,

including just i∗t as a predictor provides the same strong predictive gains. The coefficient

on i∗t is of course negative: If the trend component increases, then interest rates also rise in

23We scale the PCs such that they correspond to common measures of level, slope, and curvature, as in
Joslin et al. (2014). For example, the loadings of yields on PC1 sum to one.

24We simulate 5000 bootstrap samples for yields and predictors under the spanning hypothesis, using sep-
arate (bias-corrected) VAR(1) models for yield factors and predictors. The small-sample p-values are the
fractions of simulated samples in which the t-statistics of the macro trends are at least as large (in absolute
value) as in the actual data.

25Changes in R2 can be difficult to interpret in the presence of highly persistent predictors, and the Online
Appendix confirms these results using our bootstrap.
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response, producing losses for bond holders.26 The coefficient is also larger in magnitude than

the coefficient on the yield curve level (PC1), consistent with the evidence in Sections 3.1 and

4 that the trend component of yields moves more than one-for-one with changes in i∗t .

The earlier literature showed that a high yield curve slope predicts positive excess bond

returns. Cochrane and Piazzesi (2005) also found additional predictive power in other aspects

of the shape of the yield curve—captured in mid-curve forward rates or higher-order PCs. Our

findings, by contrast, document the importance of the level of the yield curve as a powerful

predictor. While in yields-only regressions, such as specification (1) in Table 2, the level

appears irrelevant, it becomes a strong predictor once i∗t is accounted for. This result implies

that the level of interest rates matters for expected future bond returns, but that it needs to

be viewed relative to its underlying yield trend. Furthermore, accounting for i∗t makes the

slope of the yield curve an even more powerful predictor.

In Table 3, we further investigate the importance of viewing interest rates relative to

their stochastic trend by using stochastically detrended yields as predictors. The use of such

predictors with low persistence has the added benefit that conventional, large-sample inference

is more reliable (Bauer and Hamilton, 2018). We use the first three PCs of the 17 detrended

yields as predictors, where each detrended yield is obtained as the cointegration residual from

a regression of the yield on macro trends. As before, we consider three types of detrending:

using only π∗t , using both π∗t and (real-time) r∗t , as well as using i∗t . In the full sample, all three

detrending methods lead to substantial predictive gains compared to the baseline regression

with just the first three PCs of the 17 original yields. Notably, the detrended level of the yield

curve (PC1) becomes strongly significant. Detrending with i∗t works particularly well, giving

the largest gain of 11 percentage points. In the post-1985 sample, the R2 does not increase

when detrending with only π∗t , but it increases by 9 and 6 percentage points, respectively, when

detrending with either both π∗t and r∗t or with only i∗t . These estimates provide additional

support for the importance of macro trends in predicting bond returns.

In sum, the key to predicting bond returns and estimating bond risk premia is to account

for the long-run trend in interest rates. Both underlying macro trends have strong incremental

predictive power for bond returns relative to the observed yield curve. That is, the long-run

trend cannot be inferred from the cross-section of yields alone, so our results contradict the

spanning hypothesis. An alternative method to uncover their predictive power is to detrend

interest rates, but it is crucial to use i∗t instead of π∗t for that detrending.

26Numerically, an increase in i∗t by 0.1 percentage point predicts a decrease in the next quarter’s excess bond
return by 0.45 percentage point. The Online Appendix shows that this coefficient rises with bond maturity.
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4 A no-arbitrage model with a stochastic trend

To account for the stylized facts establishing an important low-frequency macro-finance in-

terplay, we introduce and estimate a new DTSM. While existing DTSMs generally assume

stationarity, our new formulation incorporates a shifting endpoint for interest rates, i∗t , as a

common stochastic trend for yields. This novel specification allows us to explain the stylized

facts, provide new estimates of the term premium, and more accurately forecast interest rates.

4.1 Model specification

The state variables of our model of yield dynamics include N linear combinations of yields

in the vector Pt, and we use N = 3 such yield factors.27 The key feature of our model is

the presence of a single stochastic trend τt common to the three factors. The common trends

representation of the dynamic system is:

Pt = P̄ + γτt + P̃t, τt = τt−1 + ηt, P̃t = ΦP̃t−1 + ũt, (3)

where γ is an N -vector with the loadings on the common trend, ηt is iid normal with variance

σ2
η, P̃t are the N cycle components that have iid normal innovations ũt with covariance matrix

Ω̃, and Φ is a mean-reversion matrix that has eigenvalues with modulus less than one so that

P̃t is stationary. Accordingly, the state variables Zt = (τ, P ′t)
′ are trivially cointegrated.28 We

assume that innovations to trend and cycle are orthogonal, E(ηtũt) = 0, as is commonly done

with unobserved components models (Watson, 1986; Del Negro et al., 2017). Our assumptions

imply that the long-run trend components of Pt are

P ∗t ≡ lim
j→∞

EtPt+j = P̄ + γτt. (4)

The short-term interest rate is taken to be an affine function of Pt:

it = δ0 + δ′1Pt. (5)

Finally, we assume absence of arbitrage opportunities so that there exists a “risk-neutral”

probability measure, denoted by Q, which prices all financial assets (Harrison and Kreps,

27Let the vector Yt contain J model-implied yields. Then Pt = WYt, where W is an N×J coefficient matrix.
28Appendix B gives the VAR representation of the dynamic system. Innovations to Pt are Pt − Et−1Pt ≡

ut = γηt + ũt with covariance matrix Ω = γγ′σ2
η + Ω̃.
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1979). The risk-neutral dynamics are specified as

Pt = µQ + ΦQPt−1 + uQt , (6)

where the innovations uQt are iid normal (under Q) with covariance matrix Ω. We assume

that Pt is stationary under Q by imposing that ΦQ has eigenvalues less than one in absolute

value, thus forward rates, yields, and bond convexity remain finite in the limit as maturity

increases. Equations (5) and (6) imply that yields are affine functions of the yield factors Pt,

Yt = A+BPt. The loadings in A and B are determined by the risk-neutral parameters.29

Two types of normalizations are required for the state variables and parameters to be

identified. The first set of normalizations, required in any affine term structure model, uniquely

pins down the yield factors Pt. In their absence, an affine transformation of Pt would leave

implied interest rates Yt unchanged (Dai and Singleton, 2000). We use the normalization

of Joslin et al. (2011), which imposes restrictions only on the Q-dynamics and is ideally

suited for the use of linear combinations of yields as yield factors. In this normalization,

only four parameters determine the Q-dynamics: a scalar kQ and an N -vector λQ containing

the eigenvalues of ΦQ which we assume to be real, distinct, and less than one. These four

parameters and Ω fully determine the yield loadings A and B. Details are in the Online

Appendix.

The second normalization is needed to identify the unobserved trend τt. Without it, an

affine transformation of τt would leave the yield factors Pt unchanged. For identification, we

require one linear constraint on each of the vectors P̄ (to fix the level) and γ (to fix the

scale).30 We identify τt as the long-run mean of the short rate, τt = i∗t = δ0 + δ′1P
∗
t , using

the normalizations δ0 + δ′1P̄ = 0 and δ′1γ = 1. In total, the parameters of the model are

kQ, λQ, γ, P̄ ,Φ,Ω, σ2
η, and σ2

e , where γ and P̄ each have two degrees of freedom.

The key innovation of this model relative to existing affine DTSMs is that the equilibrium

nominal interest rate i∗t is allowed to be time-varying. This implies that bond yields have a

common stochastic trend and are I(1). Imposing a unit root in this fashion is a convenient

way to account for a very persistent process in a dynamic model, and it crystalizes the ar-

guments regarding slow-moving interest rate trends. Taken literally, a unit root specification

for interest rates is unlikely because nominal interest rates appear to have remained bounded

over the centuries. However, in finite samples, a persistent stationary process can always be

29Appendix B provides additional details, including the VAR representation of (3), the stochastic discount
factor, expressions for excess returns and the term premium, and more details on the role of the long-run trend
for yields and risk premia.

30For further discussion of identification requirements in multivariate unobserved components (common
trends) models, see, for example, Harvey (1990).
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approximated arbitrarily well by a unit root process, and it is well-known that doing so can

often be beneficial for forecasting (e.g., Campbell and Perron, 1991).31 To illustrate the im-

portance of the time-varying trend in interest rates, we will compare our model, which we refer

to as the “shifting endpoint” (SE ) model, to a conventional DTSM with stationary dynamics,

a “fixed endpoint” (FE ) model. The latter specification corresponds to a restricted special

case of our model where i∗t = i∗, i.e., σ2
η = 0, which is equivalent to the popular three-factor

affine DTSM of Joslin et al. (2011).

Another important aspect of our model is that the long-run trend is unspanned by the yield

curve, that is, the cross section of interest rates at time t is not deterministically related to i∗t .

Asset pricing models generally imply spanning, since in the absence of knife-edge restrictions

the state variables can be backed out from the yield curve.32 Such inference is not possible

in our model because the trend does not directly affect yields: Conditional on Pt, yields do

not load on i∗t . Therefore, the model can match the evidence against the spanning hypothesis

documented in Section 3.2, as we demonstrate below.33 Another important rationale for an

unspanned trend is to allow it to be unobserved. To incorporate an unobserved components

specification within a dynamic term structure model, it is necessary for the trend component

to be unspanned; otherwise, i∗t would be completely determined by the time-t yield curve and

thus observed. A trend hardwired to current interest rates would also result in excessively

volatile trend estimates.34

Our parsimonious specification can accurately fit the cross section of yields, is consistent

with absence of arbitrage and time-varying risk premia, and includes a stochastic trend in

line with much evidence showing that nominal interest rates are effectively I(1). Importantly,

changes in i∗t may affect expectations of future short rates as well as the term premium, and

our estimates below will assess the empirical importance of a trend in the term premium.

While our DTSM framework is quite flexible, it is kept deliberately simple by focusing on

31For example, a unit root in inflation may not be literally true, but assuming so often improves forecast
performance (Faust and Wright, 2013).

32See Duffee (2013). Starting with Duffee (2011), many papers have built no-arbitrage models of the yield
curve that impose such knife-edge restrictions and therefore allow for unspanned factors.

33A regression of i∗t on contemporaneous yields provides an alternative perspective on spanning. For our
preferred i∗ proxy, such a regression gives an R2 of 95%, which might seem to suggest that the trend is
effectively spanned, but this high R2 is misleading because of the presence of stochastic trends. Furthermore,
this regression does not reveal whether any unspanned information is relevant for risk premia, as noted by
Joslin et al. (2014).

34While sufficiently flexible spanned DTSM can generally match the data equally well as the correspond-
ing unspanned DTSM, such spanned models require many more parameters (Bauer and Rudebusch, 2017).
Furthermore, this result applies only to models in which the unspanned factors are observed, as in Joslin
et al. (2014), whereas we allow for the possibility that the trend is unobserved. We have estimated term
structure models with spanned trend factors and obtained implausibly volatile trend estimates, as movements
in long-term yields are tightly linked to movements in the trend factor.
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the nominal yield curve instead of separately modeling inflation and real yields. Such a

separation, in the spirit of Christensen et al. (2010), would be a useful future extension that

could differentiate r∗t and π∗t , but it is unnecessary for our purposes of estimating nominal risk

premia and forecasting nominal Treasury yields.

4.2 Model estimation

The shifting trend model can be cast in state-space form for estimation. The measurement

equation is Y o
t = A + BPt + et, with et

iid∼ N(0, σ2
eIJ). For our data set, Y o

t includes J = 17

yields. The state equation follows from (3).

The common trend in our DTSM is both unspanned and latent, unlike the observed un-

spanned factors in models like Joslin et al. (2014). Our specification is therefore effectively an

unobserved components model. While this is desirable for matching the stylized facts of trends

in interest rates, we face the usual estimation problem that empirically uncovering long-run

trends using limited sample sizes is intrinsically difficult (Watson, 1986). For a very persis-

tent time series with relatively infrequent business cycle fluctuations, even several decades of

data typically contain limited information that can pin down the underlying trend. Simply

estimating an unobserved components model with maximum likelihood and no external ad-

ditional information is problematic and unreliable.35 Therefore, in the literature, two broad

approaches have been used to facilitate estimation of unobserved trends from time series data:

the first includes additional data or proxies for the trend, the second incorporates prior in-

formation about properties of the trend such as its smoothness. For robustness, we consider

each of these two methods for estimating our stochastic trend DTSM.

The first method adds data that can directly help pin down the trend estimate. For

example, long-run survey expectations of inflation are often used to inform estimates of π∗t

(Kozicki and Tinsley, 2012; Del Negro et al., 2017). Similarly, Crump et al. (2018) use surveys

of professional forecasters to estimate i∗t in a factor model for the yield curve. In this spirit, we

use the empirical proxy for i∗t equal to the sum of the PTR estimate of π∗t and our real-time

estimate of r∗t . Section 3 showed that this trend proxy captures low-frequency movements of

yields and predicts excess bond returns. Because we can now treat both i∗t and Pt as observed,

estimation is greatly simplified.36 We denote the resulting estimates as the “observed shifting

35The likelihood is essentially flat in some dimensions of the parameter space, and numerical optimization
leads to local optima with very different trend estimates, depending on starting values.

36Details are in the Online Appendix. Taking i∗t as observed is justified because maximum likelihood
estimation of a state-space model with an additional measurement equation for i∗t results in a noise variance
equal to essentially zero. Taking the yield factors Pt as observed was proposed and justified by Joslin et al.
(2011). If estimation with the state-space model is desired, excellent starting values for the model’s parameters
can be obtained from a first-step estimation with observed state variables.
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endpoint” (OSE ) model. To guard against the problems that the zero lower bound (ZLB)

on nominal interest rates poses for the estimation of affine yield curve models (Bauer and

Rudebusch, 2016), we estimate the parameters of the OSE model using a sample that ends

in 2007:Q4, before the height of the financial crisis and the ZLB period. Once the parameter

estimates are obtained, we proceed to use the model over the entire sample period.37 We find

that the OSE model fits observed yields well, with a root mean-squared error of 8 basis points

over the full sample. The Q-dynamics are highly persistent, with the largest eigenvalue of

ΦQ equal to 0.997. For the real-world dynamics, the mean reversion to the common trend is

relatively quick, with the largest eigenvalue of Φ equal to 0.933.

Our second estimation method of the long-run trend model uses only Treasury yield data

while making use of prior information in a Bayesian framework. In this regard, an effective

approach to estimating unobserved trends imposes a tight prior distribution for the variance

of the trend innovations. Such priors are commonly used in a variety of macroeconomic

contexts to produce smooth trend estimates, consistent with the underlying macroeconomics

that such trends are determined by gradual variation in structural factors such as demographic

change. For interest rates, Del Negro et al. (2017) used such a smoothness prior for estimation

of r∗t . Similarly, we specify a tight inverse-gamma prior for σ2
η with a mean of 0.062/400,

implying that the standard deviation of the change in i∗t over a century is six percent. In

light of the observed variation in interest rates and our trend proxies, we view this as a

conservative choice in the sense that it limits the amount of yield variation that can be

attributed to the long-run trend. Also, we follow Del Negro et al. (2017) by combining this prior

with the stationary version of a Minnessota VAR-prior for the cycle components P̃t with the

distribution for the diagonal elements of Φ centered around zero. We call this representation

the “estimated shifting endpoint” (ESE ) model. We use largely uninformative priors for the

remaining parameters, and design a Markov chain Monte Carlo (MCMC) algorithm to simulate

draws from the joint posterior distribution of the latent state variables and parameters (as

described in detail in the Online Appendix). To account for the ZLB, we treat short-term

yields as missing observations when they were constrained.38

Figure 4 plots the resulting ESE model estimate of i∗t—specifically, the posterior mean

and 95 percent credibility intervals. The ESE model i∗t rose until the early 1980s to over eight

37An extension of our model to explicitly account for the zero lower bound, for example with a shadow-rate
specification as in Kim and Singleton (2012) and Bauer and Rudebusch (2016), is conceptually straightforward
but beyond the scope of this paper.

38Specifically, three- and six-month yields are assumed to be missing from 2008:Q4 to 2015:Q3, the one-year
yield is omitted from 2011:Q4 to 2014:Q3, and the two-year yield is omitted from 2012:Q4 to 2013:Q1. The
start dates of these periods are based on results in Swanson and Williams (2014) while the end dates are when
the yields lifted off from the ZLB.
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percent and then gradually declined over the following decades to just below three percent at

the end of our sample. For comparison, the ten-year Treasury yield and the real-time proxy

estimate of i∗t are also plotted. The ESE model estimate matches the proxy fairly closely

and can account for much of the low-frequency variation in the ten-year yield. As usual for

unobserved trend models, the uncertainty around the estimated trend is quite large. From

2008 to 2015, the estimation intervals widen a bit as uncertainty increases because the yield

curve is partially constrained by the ZLB and is less informative about the underlying trend.

4.3 Implications for trend components of yields

Section 3.1 showed that proxies for i∗t were important drivers of yields, particularly in terms

of cointegration. Now we interpret this evidence in the context of our model.

First, note that our shifting-endpoint DTSM can decompose yields into trend and cycle

components:

Yt = Y ∗t + Ỹt = A+BP̄ +Bγi∗t +BP̃t, Y ∗t ≡ lim
j→∞

EtYt+j. (7)

Figure 5 shows the (actual and model-fitted) ten-year yield and its trend and cycle components.

The trend component accounts for most of the low-frequency movements in the yield, while

the cycle component—the model-based analog of the regression-based interest rate cycles

discussed in Section 3.1—exhibits clear mean reversion around zero and little to no apparent

trend. This confirms that our model accounts for the long-run trend in interest rates.

Second, we can compare the model-implied coefficients of yields on i∗t to the empirical

results we obtained from the cointegration regressions of yields on proxies of i∗t in Section

3.1. In the model, the trend i∗t is unspanned and only indirectly affects yields through its

relationship with Pt. Equation (7) shows that the implied loadings of yields on i∗t are Bγ.

Figure 6 plots these coefficients, which gradually rise from unity at the short end—since i∗ is by

definition the trend component of the short rate—to around 1.7. In the data, the coefficients

(shown with their 95 percent confidence intervals) are relatively flat around 1.6-1.9, with

a slight hump around two years and a gradual decline thereafter. Note that the estimated

coefficient for the ten-year yield corresponds to the value reported in the last column of the top

panel of Table 1. To gauge whether the model is consistent with the estimated cointegration

coefficients we need to account for sampling uncertainty, hence we simulate 5,000 artificial

samples of the trend and yields with the same size as the actual data, and estimate the

cointegration regressions in each simulated sample. The 95 percent Monte Carlo intervals of

the coefficient estimates, shown as dashed lines in Figure 6, comfortably contain the values
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obtained with the actual data.39

Our results here and in Section 3.1 show that the trend component of long-term Treasury

yields moves more than one-for-one with changes in i∗t—the coefficients on i∗t are larger than

one. Because expectations of future short rates by definition load with a unit coefficient on

i∗t , coefficients above one indicate that the term premium positively responds to changes in

i∗t . (For a yield of maturity n, the term premium loading on i∗t is B′nγ − 1.) That is, our

cointegration regressions and the model estimates suggest that the term premium responds

positively to i∗t . In Section 4.5, we will show the resulting term premium estimates and quantify

the relative importance of the trend in short-rate expectations and in the term premium. Our

model has similar implications for the trend behavior of the slope of the yield curve. The slope,

if measured as the simple difference between a long-term yield and the short rate, in fact has

the exact same trend component and loading on i∗t as the term premium in that long-term

yield. While some macroeconomic time series models, such as DGGT, assume that separate

trends drive short rates and the slope, in our no-arbitrage model the slope contains a trend

due to the risk in i∗t .

4.4 Model-based explanation of excess return predictability

A key stylized fact from Section 3 is that various measures of the long-run trends in interest

rates have substantial predictive power for excess bond returns, and this additional information

is not spanned by the first three principal components of yields. To explain this result with

our shifting endpoint DTSMs, we first simulate 10,000 artificial samples from each of our three

models: the FE model with stationary yields, the OSE model with an observed trend proxy,

and the ESE model with an estimated trend.40 We then run excess return regressions using

the simulated data sets from the three models, and report the means and the 2.5th and 97.5th

percentiles of the resulting Monte Carlo distributions.

Table 4 presents the R2 results from the actual and simulated data. The top row reports

the R2 for the predictive regressions of excess bond returns using actual data with and without

i∗t as an additional predictor, as described in Section 3.2 (corresponding to the estimates in the

first and last column of the top panel of Table 4). The reported ∆R2 shows the substantial

predictive gains from including the macro trend proxy.

The remaining three rows provide results using data simulated from the FE, OSE, and

ESE models. For the FE model, there are essentially no predictive gains on average from

39Because our model is stationary under Q, the infinite-maturity yield is constant, so loadings of yields on
all risk factors eventually decline to zero as maturity increases. For maturities of practical interest—say, less
than 100 years—the loadings on i∗t are notably larger than one (as discussed in the Online Appendix).

40For the FE model, we separately simulate i∗t from a random walk process using the OSE parameters.
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adding i∗t to the yield principal components, with a mean ∆R2 of 1 percentage point. This is

not surprising because this model imposes the null hypothesis that i∗t truly has no predictive

power. The upper bound of the Monte Carlo interval (4 percentage points) is much lower

than the actual improvement in R2 from adding trends in the data (12 percentage points),

consistent with our rejections of the spanning hypothesis in Section 3.2 using the bootstrap,

which also simulated data under the null hypothesis.

For the OSE model, the predictive gains from adding i∗t are large: the mean gain of 9

percentage points is close to the ∆R2 of 12 percentage points in the actual data. Importantly,

the Monte Carlo interval comfortably contains the value found in the data. For the ESE

model, the results are similar, with large model-implied predictive gains from including the

trend as an additional predictor. Overall, the shifting-endpoint models accurately replicate

the actual predictive gains from adding i∗t in regressions for excess bond returns.

In our shifting-endpoint model, shifts in i∗t are unspanned by the yield curve by construc-

tion. Why are changes in the trend unspanned in the data? The intuitive reason is the

following: Shifts in the level of the yield curve can occur because of either changes in the

underlying trend (see the loadings in Figure 6) or because of movements in interest rates

relative to the trend. These two drivers have opposite implications for expectations of fu-

ture bond returns, and investors cannot distinguish between them based on observed yields

alone.41 Therefore, yields and macro trends contain important separate pieces of information

for predicting future interest rates.

To better understand the predictability of excess bond returns through the lens of our

model, we examine model-implied expected excess bond returns analytically. Leaving aside

constant terms that are irrelevant for predictability, bond risk premia are

Etrx
(n)
t+1 = B′n−1

(
EtPt+1 − EQt Pt+1

)
= B′n−1

[
(IN − Φ)γτt + (Φ− ΦQ)Pt

]
, (8)

where Bn contains the affine loadings of the log bond price p
(n)
t on the risk factors Pt. The

derivation is given in the Online Appendix. The first expression shows that time variation

in bond risk premia is due to differences in expectations of future yields under the physical

and risk-neutral probability measures. In the presence of an unspanned trend in yields, as in

our model, physical-measure expectations depend not only on current yields (Pt) but also on

the shifting endpoint i∗t . Thus, bond risk premia depend on both as well, as evident from the

second expression. Ignoring the trend misses an important part of the variation in EtPt+1 and

41Even in a term structure model with a spanned trend, the cross-sectional loadings of yields on i∗t would
differ only slightly from the loadings of the level factor in detrended yields, and small measurement errors
would make them effectively indistinguishable (Jorgensen, 2017).
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understates the predictability of bond returns.

A final point concerns the role of detrended yields, which we have shown in Section 3.2 to

capture most of the variation in bond risk premia. Our model implies that the term premium

and excess returns also have a small trend component, meaning that detrended yields cannot

fully explain movements in bond risk premia. Empirically, however, when predicting excess

bond returns it is of first-order importance to account for the trend in yields, and only of

second-order importance to separately account for the trend when conditioning on detrended

yields (as described in Appendix B).

4.5 The term premium in long-term yields

Another perspective on the pricing of risk in Treasury bonds is given by the term premium

in long-term interest rates.42 As evident from the definition in equation (1), estimating the

term premium requires long-horizon projections of future short-term rates, which will depend

crucially on the nature of the long-run trend in interest rates. Furthermore, because the term

premium is the average of expected future excess bond returns, TP
(n)
t = n−1

∑n−2
j=0 Etrx

(n−j)
t+j+1,

our results about the importance of a trend in interest rates for predictions of excess bond

returns suggest that this trend should matter for the estimation of term premia as well.

Our baseline for comparison is the FE model in which the state variables follow a stationary

VAR. This special case of our no-arbitrage model with a constant endpoint i∗t is representative

of the conventional DTSM in the literature. The left panel of Figure 7 shows the five-to-ten-

year forward rate as well as its expectations component, i.e., the “risk-neutral rate,” and the

term premium as estimated from the FE model.43 The expectations component is estimated to

be very stable, and it remains near the unconditional mean of the short rate, the fixed endpoint

i∗. Therefore, the term premium, the residual, has to account for the trend in the long-term

interest rate since the 1980s. As argued by Kim and Orphanides (2012) and Bauer et al.

(2012), among others, such behavior by the expectations component and the term premium

appears at odds with observed trends in survey-based expectations (Kozicki and Tinsley, 2001)

and with the cyclical behavior of risk premia in asset prices (Fama and French, 1989). By

allowing for a long-run trend in interest rates, we avoid such counterfactual decompositions of

long-term rates into expectations and term premium. The right panel of Figure 7 shows the

estimates for the risk-neutral rate and the term premium from our no-arbitrage OSE and ESE

models.44 For these shifting-endpoint models, short-rate expectations are anchored at i∗t , and

42In a DTSM the term premium is defined as the difference between model-implied yields and risk-neutral
yields, see Appendix B.

43Results for the ten-year yield are qualitatively similar.
44For the OSE model, the risk-neutral rate and term premium is calculated using point estimates of the
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the cycle components P̃t mean-revert relatively quickly; hence, the expectations component

of the five-to-ten-year forward rate closely mirrors this trend. Movements in the expectations

component account for the majority of the low-frequency variation in the observed interest

rate. In particular, the estimates exhibit a pronounced downward trend since the 1980s due

to the decline in i∗t .

Our shifting-endpoint models attribute a majority of the secular decline in interest rates

not to the term premium but instead to the decline in long-run expectations of future short-

term rates. The drop in the forward rate from its average during 1980-1982 to its average

during 2015-2017 was close to 10 percentage points. According to the stationary FE model,

the estimated term premium accounts for 75 percent of this decline. In contrast, the shifting-

endpoint models attribute only 35 percent (OSE ) and 37 percent (ESE ) to the term premium,

while attributing the majority to a falling expectations component, in line with the substantial

downward shift in the underlying macro trends.45 Furthermore, the estimated term premium

with a shifting endpoint exhibits more pronounced cyclical variation, in line with the notion

that risk premia are countercyclical (Fama and French, 1993; Cochrane and Piazzesi, 2005).

This stark difference demonstrates how accounting for the slow-moving trend component in

interest rates fundamentally alters our understanding of the driving forces of long-term interest

rates, and bridges the gap between the secular trends in macroeconomics and no-arbitrage

models for the yield curve.

Although the shifting-endpoint models attribute most of the trend in the forward rate

to the expectations component, the estimated forward term premium does exhibits some

moderate low-frequency swings, declining from around 4-5 percent in the early 1980s to about

0-1 percent at the end of the sample. The reason is that long-term interest rates exhibited

more pronounced secular movements than our estimates of i∗t , and expectations move one-for-

one with i∗t , thus the estimated term premium also contains a trend component.46 In other

words, our estimates show that changes in the trend carry a positive risk premium. From

a macro-finance perspective, some downward trend in the term premium since the 1980s is

plausible. Notably, inflation risk declined substantially over this period as average inflation

declined, and the term premium includes compensation for this risk (Wright, 2011).47 In any

parameters. For the ESE model, we calculate the means of the MCMC posterior distribution for these objects.
45Some researchers estimate stationary DTSMs with a sample beginning in, say, the mid-1980s to avoid the

earlier shifts in inflation, but our comparison results were little changed using a post-1984 sample.
46As discussed above in Section 4.3, yields load on i∗t with coefficients larger than unity, and the term

premium consequently has a positive loading on this trend.
47Furthermore, in theory, a decline in the term premium is consistent with the fall in the covariance between

nominal bond returns and stock returns since the 1980s, as emphasized by Campbell et al. (2017). A decline
in real risk premia would also be implied by a change in business cycle dynamics that increased persistent risk
relative to transitory risk, as described by Campbell (1986) and Beeler and Campbell (2012).
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event, the decline in the term premium is much more moderate and more plausible with a

shifting rather than a fixed endpoint.

Using a shifting-endpoint model with a slow-moving trend component solves the knife-edge

problem of Cochrane (2007), who pointed out that assuming either stationarity or a random

walk for the level of interest rates leads to drastically different implications for expectations

and term premia, in both cases at odds with widely held views about interest rates. Imposing

a random walk for the level is known to forecast well but leads to the implausible implication

that the expectations component accounts for essentially all variation in yields. Imposing

stationarity, as shown in the left panel of Figure 7, leads to the implausible implication that

the term premium component accounts for all of the low-frequency variation in yields. Our

approach of assuming that interest rates contain a slow-moving common trend avoids both

extremes. It also delivers term premium estimates that are in line with the common macro-

finance priors and produces interest rate forecasts that outperform the random walk, as we

will show below.

In recent work, Crump et al. (2018) estimate the term premium from a statistical model

with shifting endpoints and find a somewhat more variable term premium than we do. Based

on their estimates, the term premium accounts for just over half of the variance of long-term

interest rates, whereas it accounts for about one-third according to our estimates.48 While

we use an arbitrage-free term structure specification, the different results largely reflect how

the shifting endpoint is identified. Crump et al. use survey data, and their i∗t closely mirrors

long-run survey expectations of the three-month T-bill rate. This estimate of i∗t is fairly stable

and implies a somewhat more limited role for trends and long-run expectations and greater

variability in the residual term premium.

Finally, we note that when interpreting model-based estimates of the term premium, it is

important to keep in mind that they assume rational expectations, which may not represent

the expectations of investors at each point in time. As shown by Piazzesi et al. (2015) and

Cieslak (2018), statistical estimates of risk premia are affected by persistent forecast errors

by investors, i.e., deviations from rational expectations.49 While this caveat also applies to

our estimates, models like ours that allow for shifting endpoints are better suited to capture

changes in long-run investor expectations that can result from learning about macroeconomic

48Specifically, we calculated the same decomposition of the sample variance of forward rates as in Table 2
of Crump et al. (2018). For the variances of levels, they find that 53 to 56 percent is explained by the forward
term premium at maturities of five years and beyond. By contrast, over their sample period, we find that only
35 percent of the variance is explained by the term premium.

49While some might conclude that estimates of term premia should therefore rely exclusively on survey
expectations, there is no guarantee that expectations from surveys of professional forecasters are any closer to
the true subjective expectations of bond traders than statistical models.
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trends and policies. Estimates of such models are also much less sensitive to the choice of

sample period than stationary DTSMs, which require inference about the unconditional mean

of the short-term interest rate, assumed to be constant (Orphanides and Wei, 2012). For

these reasons, our shifting-endpoint model is likely to be better able to recover true historical

investor expectations and bond risk premia.

4.6 Out-of-sample forecasts of interest rates

We now turn to out-of-sample (OOS) forecasts of long-term interest rates using our new

shifting-endpoint DTSM. Despite many advances in yield curve modeling, the random walk

model has proven very hard to beat when forecasting bond yields, due to the extreme persis-

tence of interest rates (Duffee, 2013). But our results so far suggest that one might be able to

obtain more accurate forecasts by accounting for the interest rate trend.

We construct out-of-sample forecasts using the OSE model, which proxies for i∗t with

the sum of the PTR estimate for π∗t and the real-time estimate of r∗t described in Section

2. We will compare these forecasts to those from the FE model and from a driftless random

walk.50 The models are recursively estimated—that is, using an expanding estimation window

using all data available up to each forecast date—starting in 1976:Q1 when five years of data

are available.51 We focus on forecasts of the ten-year yield; we have found results for other

maturities to be qualitatively similar. We forecast at horizons of 4, 10, 20, 30, and 40 quarters,

and because our data end in 2018:Q2 the last forecast date is 2008:Q2, for a total of 127

(overlapping) forecasts.52 The top panel of Table 5 reports the root mean-squared errors in

percentage points. We also calculate p-values for tests of equal finite-sample forecast accuracy

using the approach of Diebold and Mariano (1995) (DM).53 We calculate the DM p-values

using standard normal critical values for one-sided tests of the null hypothesis that the OSE

model does not improve upon the RW or FE forecasts. We find that the forecasts from

our common-trend model OSE are substantially and statistically significantly more accurate

50We do not include estimates from the ESE model because the estimation of this model using our MCMC
sampler takes a significant amount of time, which renders recursive estimation with each additional available
observation period as required for out-of-sample forecasting computationally too burdensome.

51A rolling scheme, which uses only a fixed number of observations for parameter estimation, allows for
an easier asymptotic justification of tests for predictive ability (Giacomini and White, 2006) but requires a
specific choice of the window length. We have also obtained forecasts with such a scheme, using a variety of
different window lengths, and found qualitatively similar results as when using a recursive scheme.

52The last date for which we re-estimate the models is 2007:Q4, consistent with Section 4.2.
53Following common use, we construct the DM test with a rectangular window for the long-run variance

and the small-sample adjustment of Harvey et al. (1997). Monte Carlo evidence in Clark and McCracken
(2013) indicates that this test has good size in finite samples. However, for very long forecast horizons, the
long-run variance is estimated with considerable uncertainty because there are only a few such non-overlapping
observations in our sample.
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than the FE model. For example, when forecasting 10 years ahead, model OSE lowers the

RMSE by about 40 percent relative to the FE model. The improvements relative to the

RW are smaller but still statistically significant.54 These results document that, relative to

conventional stationary models, more accurate Treasury yields forecasts can be obtained by

allowing for an underlying common trend in interest rates. Gains are even possible relative to

the random walk benchmark. In contrast to the random walk forecast, which simply assumes

all changes are permanent, accounting for i∗t , the underlying source of the highly persistent

changes in interest rates, improves forecast accuracy.55

Finally, we compare the accuracy of our statistical models to that of professional forecast-

ers. Since 1988, the Blue Chip Financial Forecasts (BC ) survey has asked its respondents

for long-range forecasts of interest rates twice a year. The respondents provide their average

expectations of the target variable for each of the upcoming five calendar years and for the

subsequent five-year period—we will focus on the five annual forecast horizons. We match the

available information sets by using only data up to the quarter preceding the survey date for

our model-based forecasts, and we exactly match the forecast horizons with the BC forecasts

by taking averages of model-based forecasts over the relevant calendar years. The sample

includes 48 forecast dates from March 1988 to December 2011. The bottom panel of Table

5 shows the RMSEs of the survey forecasts and the three model-based forecasts. Shifting-

endpoint forecasts based on i∗t improve over the RW forecasts in this sample as well, which

are better than the BC forecasts. Because of the smaller sample size and substantial overlap,

the gains of the OSE model are not as strongly significant, and for some horizons they are

insignificant. The gains relative to the FE model are again strongly significant. The reason for

the poor performance of the survey forecasts is that they consistently overpredict future yields,

in particular at long horizons (results not shown). Other studies have documented the poor

performance of survey forecasts of interest rates (e.g., van Dijk et al., 2014), which contrasts

with the very good performance of survey-based inflation forecasts (Ang et al., 2007; Faust

and Wright, 2013). Our results suggest that the underlying reason for this poor performance

is that professional forecasters have not sufficiently accounted for the shifting long-run trend

component in interest rates.

54Additional, unreported analysis—using plots of differences in cumulative sums of forecast errors over
time—shows that the forecast gains of OSE are not driven by certain unusual subperiods but instead are a
consistent pattern over most of our sample period.

55Earlier research by van Dijk et al. (2014) found that, when forecasting interest rates, it is beneficial to link
long-run projections of interest rates to long-run expectations of inflation, but their forecasts do not account
for time variation in r∗t and are not based on an arbitrage-free model.
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5 Conclusion

This paper bridges the gap between macroeconomic and finance views of long-run trends. We

provide new evidence that interest rates and bond risk premia are determined over time by

variation in the perceived trend in inflation and the equilibrium real rate of interest. Indeed,

allowing for persistent shifts in π∗t and r∗t is crucial to account for yield dynamics. To under-

stand and forecast long-term interest rates and bond returns requires a time-varying trend

component in yields. In the recent period, variation in the equilibrium real rate is even more

consequential than movements in the inflation trend. Our analysis started by establishing

the links between macroeconomic trends and yields using trend estimates from surveys and

macroeconomic and statistical models. However, to understand these results, we formulated

and estimated a new no-arbitrage model that simultaneously models the long-run trend and

term premium in yields—a key contribution of our analysis. In particular, when estimated

with just yield curve data, this model, which embeds a non-stationary i∗t , provides a new

finance-based measure of the trend in nominal interest rates that complements estimates in

the macroeconomics literature. It also provides for the first time an internally consistent

formulation of that equilibrium trend and bond risk premia.

Instead of the ubiquitous stationary dynamic yield curve models with constant means,

our results strongly support specifications that allow for slow-moving changes in the long-run

means of nominal and real interest rates. Building upon our new common-trend dynamic

term structure model, much work remains in jointly estimating macro trends and yield curve

dynamics. Three future research avenues seem particularly promising. First, a joint model

with shifting endpoints of real yields, nominal yields, and inflation expectations could provide

separate estimates of π∗t and r∗t . Second, combining our shifting-endpoint DTSM specification

with the shadow-rate paradigm (Bauer and Rudebusch, 2016) would allow for a sophisticated

treatment of the effective lower bound on interest rates, which may provide additional insights

into macro and yield-curve trends over post-crisis period. Third, one could consider time

variation in the variability of trends by adding stochastic volatility (as in Stock and Watson,

2007) in order to assess how our (mostly unconditional) results about the relative importance

of trends are affected by taking a conditional perspective.
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Appendix

A Trend estimates

Table A.1 provides an overview of all of the trend estimates used in our analysis. The first
five estimates of r∗t are obtained from models in published studies, and the following four
estimates of r∗t are new. In Section 3, we use a “filtered” estimate and a “real-time” estimate
of r∗t , which are averages of the three filtered and six real-time estimates, respectively. The
real-time estimate of i∗t is the sum of the PTR estimate of π∗t and the real-time estimate of r∗t .
The ESE model estimate of i∗t is described in Section 4.2.

Table A.1: Overview of trend estimates

Trend Source Real-time Filtered Smoothed

r∗ Del Negro et al. (2017) (DGGT) X X
Johannsen and Mertens (2016) (JM) X X
Laubach and Williams (2016) (LW) X X
Holston et al. (2017) (HLW) X
Kiley (2015) X X

r∗ UC X X
Proxies X X
SSM X X
MA X

π∗t PTR X

i∗ Real-time X
ESE X

Overview of trend estimates used in the paper: five external sources of r∗, our own four estimates of r∗, the
PTR estimate of π∗, and two i∗ estimates. “Real-time” indicates (pseudo) real-time estimation of the trend
proxy, “filtered” indicates estimates from a (one-sided) Kalman filter using full-sample parameter estimates,
and “smoothed” indicates (two-sided) Kalman smoother or full-sample Bayesian estimate of the trend. All
trend estimates are quarterly from 1971:Q4 to 2018:Q1.

Our proxy estimate of the inflation trend π∗t is the Fed’s PTR measure, the perceived
target rate (PTR) of inflation. PTR measures expectations for inflation in the price index of
personal consumption expenditures (PCE). Consistent with this definition, our estimates of
r∗t are based on real interest rates relative to PCE inflation. Since 1979, PTR corresponds to
long-run inflation expectations from the Survey of Professional Forecasters (SPF). Before 1979,
it is based on estimates from a learning model for expected inflation. For details see Brayton
and Tinsley (1996). Data are available at https://www.federalreserve.gov/econresdata/
frbus/us-models-package.htm.
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The estimates of r∗t are plotted and described in the Online Appendix. All of these es-
timates are based on the assumption that the real rate contains a stochastic trend, i.e., a
stochastic endpoint.

B A shifting-endpoint dynamic term structure model

Equation (3) specifies the evolution of the state variables Zt = (τ, P ′t)
′ under the real-

world/physical probability measure P. It has the form of a common trends representation
and shows that Zt is trivially cointegrated with one common trend. The same holds for yields,
see equation (7). The VAR representation is

Zt = µZ + ΦZZt−1 + vt, vt = (ηt, u
′
t)
′, (B.1)

with

µZ =

(
0

(In − Φ)P̄

)
, ΦZ =

(
1 01×N

(IN − Φ)γ Φ

)
,

Ωv = E(vtv
′
t) =

(
σ2
η γ′σ2

η

γσ2
η Ω

)
.

The innovations to Pt, ut = γηt + ũt, have covariance matrix Ω = E(utu
′
t) = γγ′σ2

η + Ω̃.
Equation (6) specifies the evolution under the risk-neutral measure Q. We assume that

under Q the yield factors follow a stationary VAR. This specification avoids the counterfactual
implication of a unit root under Q that yields and forward rates diverge to minus infinity with
maturity.

From the short rate equation (5) and the Q-dynamics (6), it follows that the trend τt is
unspanned by yields, meaning that there is no deterministic mapping from Pt (or yields) to τt.
Formally, the requirement for τt to be an unspanned risk factor is

EQ(it+h|Pt, τt) = EQ(it+h|Pt), for all h,

see Joslin et al. (2014), which holds true because neither the short rate it nor expectations
of future yield factors Pt+h depend on τt once we condition on Pt. The key features of the
risk-neutral distribution for Pt are its stationarity and its independence of τt.

The dynamics under P and Q together imply a stochastic discount factor (SDF) and prices
of risk. The SDF is the projection of the economy-wide SDF on the risk factors driving bond
prices, Pt, as in Joslin et al. (2014). As usual in affine DTSMs, the SDF is exponentially affine:

Mt+1 = exp(−it −
1

2
λ′tλt − λ′tεt+1) (B.2)

with εt = L−1ut, where LL′ = Ω. The risk prices λt are affine in Zt:

λt = Ω−1/2(λ0 + λ1Zt), (B.3)

where λ0 is a N -vector and λ1 is a N × (N + 1) matrix of risk sensitivities. The Online
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Appendix shows that
λ0 = (In − Φ)P̄ − µQ (B.4)

and
λ1 =

[
(IN − Φ)γ,Φ− ΦQ

]
. (B.5)

A “knife-edge” restriction is imposed so that τt does not to affect EQ(Pt+1|Zt). Namely,
the risk prices λt respond exactly in the same way to changes in τt as do the expectations
EP(Pt+1|Zt), and the sensitivities in each case are (IN − Φ)γ. This restriction implies that
movements in τt lead to changes in term premia that exactly offset the changes in expectations,
leaving yields unchanged.

Prices of zero-coupon bonds are exponentially affine, so that for the log-price of an n-period
bond we have p

(n)
t = An +B′nPt, and the coefficients follow the usual recursions (e.g., Ang and

Piazzesi, 2003):

An+1 = An + B′nµQ +
1

2
B′nΩBn − δ0 (B.6)

Bn+1 = (ΦQ)′Bn − δ1 (B.7)

with initial conditions A0 = 0 and B0 = 0. Yields are affine functions of the factors:

y
(n)
t = An +B′nPt An = − 1

n
An, Bn = − 1

n
Bn.

If we denote the vector of J yields that are included in our model as Yt, we can write Yt =
A+BPt for J-vector A = (An1 , . . . , AnJ

)′ and J×N matrix B = (Bn1 , . . . , BnJ
)′. For forward

rates f
(n)
t = p

(n)
t − p

(n+1)
t the Online Appendix shows that

f
(n)
t = −1

2
B′nΩBn + δ0 − B′nµQ + δ′1(Φ

Q)nP0 + δ′1(Φ
Q)nγτt + δ′1(Φ

Q)nP̃t. (B.8)

The convexity term in the expression for forward rates is −1
2
B′nΩBn. Since the Q-dynamics

are stationary, Bn converges to a finite limit as n tends to infinity, along with the convexity in
yields and forward rates. If, by contrast, ΦQ had an eigenvalue on the unit circle, convexity
and therefore yields and forward rates would diverge to minus infinity. This fact, discussed in
Campbell et al. (1997, p. 433), is an important reason why term structure models are usually
specified with stationary risk-neutral dynamics, and we follow this tradition here.

Loadings of yields and forward rates on the trend τt are hump-shaped with respect to
maturity. Short rate loadings equal one since τt = i∗t . For longer maturities in our sample, the
term premium responds positively to τt, so yields move more than one-for-one with the trend.
Eventually, loadings decline very gradually toward their limit of zero, and the infinite-maturity
forward rate/bond yield is a constant. Further details are provided in the Online Appendix.

Model-implied excess bond returns are

rx
(n)
t+1 = −1

2
B′n−1ΩBn−1 + B′n−1

(
EtPt+1 − EQt Pt+1

)
+ B′n−1ut+1. (B.9)
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thus expected excess returns, adjusted for convexity, are

Etrx
(n)
t+1 +

1

2
V artrx

(n)
t+1 = B′n−1

[
λ0 + (IN − Φ)γτt + (Φ− ΦQ)Pt

]
(B.10)

= B′n−1
[
λ0 + (Φ− ΦQ)P̄ + (IN − ΦQ)γτt + (Φ− ΦQ)P̃t

]
. (B.11)

Equation (B.10) shows that when holding the yield factors Pt constant, the loadings on τt
are B′n−1(IN − Φ)γ, and our model estimates imply substantially negative values for these
loadings, across all n, in line with the regression estimates in Section 3.2. Conditional on
current yields, an increase in the trend implies lower expected returns. Equation (B.11) shows
the separate roles of trends and cycles for bond risk premia. If we hold the yield cycles P̃t
constant, the loadings on τt are B′n−1(IN − ΦQ)γ. These loadings tend to be an order of
magnitude smaller (in absolute value) than the loadings on τt in equation (B.10), consistent
with the findings in Section 3.2 that predictive regressions with only detrended yields capture
most of the predictability of excess bond returns. The loadings on τt in (B.11) are positive
because risk premia are positively related to movements in the trend. Unreported results show
that predictive regressions with both detrended yields and trend proxies lead to coefficients
on the trend that are insignificantly different from both zero and the model-based loadings—
consistent with the implications of our model.

A term premium is the difference between a long-term interest rate and an expectations
component of the same maturity. For simplicity, the expectations component is often specified
as the average of expected future short rates, as in equation (1). In a no-arbitrage term
structure model, it is advantageous to instead use “risk-neutral rates” which, like yields,
account for the convexity of bond prices. Specifically, the risk-neutral yield on an n-period
bond is

ỹ
(n)
t = − logEt exp

(
−

n−1∑
j=0

it+j

)
/n,

which differs from the average expected future short rate
∑n−1

j=0 Etit+j/n by a Jensen’s in-
equality term that is constant in a homoskedastic model like ours. The risk-neutral yields
are affine in Zt, and the loadings are calculated using recursions similar to those in equations
(B.6)- (B.7), with µZ and ΦZ replacing µQ and ΦQ, Ωv replacing Ω, and an N + 1 vector
(0, δ′1)

′ replacing δ1. Crucially, risk-neutral yields depend on both τt and Pt, since τt affects
real-world expectations of future short rates. The term premium on an n-period bond is then
defined as

TP
(n)
t = y

(n)
t − ỹ

(n)
t .

Because the real-world dynamics feature a unit root, risk-neutral rates diverge to minus
infinity (and the term premium to infinity) as maturity increases. This issue is neither of
theoretical nor practical concern: First, no tradeable securities have payoffs tied to these
quantities. Second, at the maturities we focus on, due to the high persistence of the risk-
neutral dynamics, the convexity in actual and risk-neutral yields is quite similar, and estimates
of the term premium are not noticeably affected by convexity.
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Risk-neutral forward rates are

f̃
(n)
t = −1

2
B̃′nΩvB̃n + τt + δ′1Φ

nP̃t, (B.12)

consistent with f̃
(n)
t = Etit+n + convexity and short-rate expectations that move one-for-one

with the trend. Equations (B.8) and (B.12) imply that the forward term premium is

ftp
(n)
t = f

(n)
t − f̃

(n)
t = constant + δ′1

[
(ΦQ)n − IN

]
γτt + δ′1

[
(ΦQ)n − Φn

]
P̃t. (B.13)

The loadings on τt have a limit of -1 as n tends to infinity. The limiting-maturity forward rate
is constant, as the limiting-maturity forward term premium exactly offsets movements in the
limiting-maturity risk-neutral rate. However, for maturities relevant in the real world, forward
rates and yields have loadings on τt greater than one and positive term premia loadings—
consistent with the cointegration regressions reported in Section 3.1.
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Table 1: Cointegration regressions and tests

Yield (1) (2) (3) (4) (5)

constant 6.48 0.65 -0.22 -1.82 -0.64 -2.17
(0.55) (0.54) (0.33) (0.43) (0.39) (0.30)

π∗t 1.65 1.26 1.53 1.47
(0.11) (0.08) (0.07) (0.07)

r∗t 0.99 1.76 1.18
(0.15) (0.16) (0.13)

i∗t 1.67
(0.06)

R2 0.85 0.93 0.96 0.96 0.95
Memo: r∗ filtered real-time mov. avg. real-time
SD 2.94 1.31 1.09 0.70 0.87 0.70
ρ̂ 0.97 0.88 0.85 0.65 0.75 0.64
Half-life 26.4 5.6 4.3 1.6 2.5 1.5
ADF -1.13 -2.60 -3.94** -5.32*** -4.33** -5.37***
PP -3.11 -18.32* -26.73** -68.47*** -46.30*** -70.30***
LFST 0.00 0.03 0.16 0.72 0.23 0.71
Johansen r = 0 13.34 33.08* 46.83*** 45.49*** 30.69***
Johansen r = 1 1.29 5.92 11.57 9.14 0.73
ECM α̂ -0.11 -0.18 -0.44 -0.49 -0.45

(0.03) (0.05) (0.08) (0.09) (0.08)

Dynamic OLS regressions of the ten-year yield, y
(40)
t , on macroeconomic trends, including four leads and lags

of ∆y
(40)
t and differenced trend variables. Newey-West standard errors using six lags are in parentheses. The r∗

estimates are described in Section 2, and the long-run nominal short rate i∗t is the sum of π∗t and the real-time
estimate of r∗t . For the cointegration residuals (and, in the first column, for the ten-year yield itself), the second
panel reports standard deviations (SD), first-order autocorrelation coefficients (ρ̂), half-lives (ln(0.5)/ ln(ρ̂)),
Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root test statistics, and p-values for Mueller-
Watson low-frequency stationary test (LFST). The table also reports the Johansen trace statistic which tests
whether the cointegration rank (r) among the yield and the macro trends is zero/one against the alternative
that it exceeds zero/one, using four lags in the VAR. For ADF, PP and Johansen tests ∗,∗∗ and ∗∗∗ indicate
significance at 10%, 5%, and 1% level. Estimates of the coefficient α (with White standard errors) on the

cointegration residual in the error-correction model (ECM) for ∆y
(40)
t that also includes an intercept, four lags

of ∆y
(40)
t , and four lags of differenced macro trends. The data are quarterly from 1971:Q4 to 2018:Q1.
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Table 2: Predictive regressions: yields and macro trends

(1) (2) (3) (4) (5) (6)

Full sample: 1971:Q4–2018:Q1
PC1 0.08 0.98 1.39 2.38 2.04 2.47

(0.17) (0.26) (0.39) (0.67) (0.56) (0.61)
PC2 0.43 0.47 0.43 0.67 0.68 0.70

(0.17) (0.17) (0.17) (0.15) (0.15) (0.15)
PC3 -2.37 -1.79 -1.92 -0.92 -0.90 -0.86

(1.34) (1.27) (1.22) (1.39) (1.43) (1.35)
π∗t -1.95 -2.21 -4.40 -3.89

(0.44) (0.47) (1.10) (0.92)
[0.00] [0.00] [0.00] [0.00]

r∗t -1.19 -3.89 -2.71
(0.59) (1.47) (1.04)
[0.14] [0.07] [0.04]

i∗t -4.50
(1.05)
[0.00]

R2 0.09 0.16 0.18 0.21 0.20 0.21
Memo: r∗ filtered real-time mov. avg. real-time

Subsample: 1985:Q1–2018:Q1
PC1 0.25 0.59 1.67 2.65 2.38 1.93

(0.16) (0.22) (0.47) (0.57) (0.51) (0.47)
PC2 0.41 0.50 0.49 0.53 0.65 0.58

(0.15) (0.16) (0.16) (0.15) (0.15) (0.15)
PC3 -1.09 -0.97 0.14 1.74 2.11 0.56

(1.14) (1.12) (1.30) (1.48) (1.55) (1.19)
π∗t -1.05 -1.95 -3.44 -3.34

(0.73) (0.75) (0.87) (0.83)
[0.38] [0.10] [0.01] [0.01]

r∗t -2.03 -5.80 -4.11
(0.82) (1.54) (1.08)
[0.07] [0.01] [0.01]

i∗t -3.08
(0.91)
[0.02]

R2 0.08 0.10 0.14 0.19 0.18 0.16
Memo: r∗ filtered real-time mov. avg. real-time

Predictive regressions for quarterly excess bond returns, averaged across two- to 15-year maturities. The
predictors are the first three principal components of yields (PC1, PC2, PC3) and estimates of the inflation
trend π∗t , the real-rate trend r∗t , and the long-run nominal short rate i∗t . The long-run nominal short rate
i∗t is the sum of π∗t and the real-time estimate of r∗t . The macro trend estimates are described in Section 2.
Numbers in parentheses are White standard errors and in squared brackets are small-sample p-values obtained
with the bootstrap method of Bauer and Hamilton (2018). The data are quarterly from 1971:Q4 to 2018:Q1.
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Table 3: Predictive regressions: detrended yields

Full sample: 1971–2018 Subsample: 1985–2018

(1) (2) (3) (4) (1) (2) (3) (4)

PC1 0.08 0.98 1.25 1.36 0.33 0.41 1.14 0.81
(0.17) (0.25) (0.51) (0.50) (0.16) (0.22) (0.39) (0.38)

PC2 0.43 0.48 0.76 0.78 0.34 0.44 0.62 0.62
(0.17) (0.17) (0.16) (0.16) (0.14) (0.14) (0.14) (0.14)

PC3 -2.37 -1.77 -0.79 -0.73 -1.04 -0.96 1.53 0.45
(1.34) (1.26) (1.38) (1.33) (1.01) (1.01) (1.32) (1.05)

R2 0.09 0.15 0.18 0.20 0.08 0.08 0.17 0.14

Predictive regressions for quarterly excess bond returns, averaged across two- to 15-year maturities. In spec-
ification (1) the predictors are the first three principal components of observed yields (PC1, PC2, PC3). In
specifications (2), (3), and (4) the predictors are the first three principal components of detrended yields, that
is, of residuals in regressions for yields on π∗t , π∗t and r∗t , or i∗t , respectively. The long-run nominal short rate
i∗t is the sum of π∗t and the real-time estimate of r∗t . The macro trend estimates are described in Section 2.
Numbers in parentheses are White standard errors with six lags. The data are quarterly from 1971:Q4 to
2018:Q1.

Table 4: Model-implied predictability of excess bond returns

R2 PCs only R2 with i∗t ∆R2

Data 0.09 0.21 0.12
FE model 0.09 0.10 0.01

[0.04, 0.17] [0.04, 0.17] [0.00, 0.04]
OSE model 0.10 0.19 0.09

[0.04, 0.17] [0.13, 0.26] [0.02, 0.18]
ESE model 0.07 0.14 0.08

[0.02, 0.13] [0.05, 0.27] [0.00, 0.20]

The R2 of predictive regressions for quarterly excess bond returns, averaged across maturities of 2 to 15 years.
The R2 in the data correspond to the full-sample estimates in Table 2 (first and last columns of top panel).
The model-implied R2 are based on 10,000 simulations of artificial data sets of the same size as the full sample.
The table reports means and 95%-Monte Carlo intervals (in square brackets) of the R2 of predictive regressions
estimated in these simulated data.
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Table 5: Accuracy of out-of-sample forecasts for the ten-year yield

Quarterly sample: 1976:Q3-2008:Q1 Horizon in quarters

(127 quarters) 4 10 20 30 40

Random walk (RW ) 1.33 1.85 2.52 2.60 2.88
Fixed endpoint (FE ) 1.42 2.25 3.28 3.72 4.19
Observed shifting endpoint (OSE ) 1.17 1.76 2.37 2.39 2.60
p-value: OSE ≥ RW 0.05 0.00 0.00 0.03 0.04
p-value: OSE ≥ FE 0.00 0.00 0.01 0.03 0.05

Blue Chip sample: 1988:Q1-2011:Q4 Horizon in years

(48 Blue Chip surveys) 1 2 3 4 5

Blue Chip (BC ) 1.06 1.39 1.59 1.79 1.99
Random walk (RW ) 0.85 1.08 1.21 1.37 1.56
Fixed endpoint (FE ) 1.53 2.08 2.52 2.96 3.34
Observed shifting endpoint (OSE ) 0.87 0.95 1.04 1.18 1.37
p-value: OSE ≥ BC 0.10 0.08 0.15 0.18 0.20
p-value: OSE ≥ RW 0.58 0.05 0.01 0.04 0.08
p-value: OSE ≥ FE 0.00 0.00 0.00 0.00 0.00

Root mean-squared errors for forecasts for the ten-year Treasury yield. Method RW is a driftless random walk,
FE is a common stationary dynamic term structure model (DTSM), which has a fixed endpoint, and OSE is

a model with an observed shifting endpoint that uses the proxy i∗t = π∗t + r∗,RTt . The data are quarterly from
1971:Q4 to 2018:Q1. Top panel: forecasts for horizons from 4 to 40 quarters made each quarter from 1976:Q3
(once five years of data are available) to 2008:Q1 for a total of 127 (overlapping) observations. Bottom panel:
forecasts for horizons from 1 to 5 years (yearly averages of quarterly forecasts) made each quarter preceding
a Blue Chip survey (long-range forecasts in Blue Chip Financial Forecasts) from 1988:Q1 to 2011:Q4 (48
surveys). Models are re-estimated each quarter up to 2007:Q4 (expanding window). Last rows in each panel
report one-sided p-values for testing the null hypothesis of equal forecast accuracy against the alternative
that method OSE is more accurate, using the method of Diebold and Mariano (1995) with a small-sample
correction.
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Figure 1: Ten-year yield and macroeconomic trends
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Ten-year Treasury yield and estimates of trend inflation, π∗t (the mostly survey-based PTR measure from
FRB/US), the equilibrium real rate, r∗t (an average of all filtered and real-time estimates, see Section 2), and
the equilibrium short rate, i∗t = π∗t + r∗t . Shaded areas are NBER recessions. The data are quarterly from
1971:Q4 to 2018:Q1.
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Figure 2: Measures of the equilibrium real interest rate
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Smoothed (two-sided), filtered (one-sided), and real-time estimates of the equilibrium real interest rate, or
long-run r∗t . Left panel: range and average of seven smoothed estimates, including the four estimates by Del
Negro et al. (2010) (DGGT), Johannsen and Mertens (2018) (JM), Laubach and Williams (2016) (LW), and
Kiley (2015), as well as our own three model-based estimates. Right panel: range and average of filtered and
real-time estimates. Filtered estimates are the estimates of LW, Holston et al. (2017), and Kiley. Real-time
estimates are those of DGGT, JM, our own three real-time model-based estimates, and the model-free moving-
average estimate, which is also shown separately. For details, see Section 2 and Appendix A. The data are
quarterly from 1971:Q4 to 2018:Q1.
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Figure 3: Detrending the ten-year yield
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Ten-year Treasury yield and two detrended yield series using as the proxy for the equilibrium interest rate i∗t
the sum of the PTR estimate of π∗t and the real-time estimate of r∗t shown in Figure 2. The first detrended
yield series is the difference between the yield and i∗t . The second detrended series is the residual from the
(Dynamic OLS) cointegration regression of the yield on i∗t , estimates of which are reported in the last column
of Table 1. Shaded areas are NBER recessions. The data are quarterly from 1971:Q4 to 2018:Q1.
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Figure 4: Model-based estimate of equilibrium interest rate
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Bayesian (MCMC) estimate—posterior mean and 95%-posterior credibility intervals—of the equilibrium nom-
inal short rate, i∗, from the estimated shifting endpoint (ESE ) dynamic term structure model. Also shown is
a proxy estimate of i∗, the sum of the PTR estimate of π∗ and the real-time macro estimate of r∗. The data
are quarterly from 1971:Q4 to 2018:Q1.
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Figure 5: Trend and cycle components of ten-year yield
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Model-based decomposition of ten-year yield into trend and cycle components. Blue lines show trend and cycle
(posterior means) for the model with estimated shifting endpoint (ESE ), shaded area shows 95%-posterior
credibility intervals for trend component; red lines show trend and cycle for model with observed shifting
endpoint (OSE ). The data are quarterly from 1971:Q4 to 2018:Q1.
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Figure 6: Loadings of yields on the equilibrium interest rate
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Comparison of loadings of Treasury yields on the equilibrium nominal short rate i∗t in the data and in the
shifting-endpoint dynamic term structure model. Data: regression coefficients (with 95%-confidence intervals)
for cointegration regressions of yields on the proxy-estimate of i∗t (the PTR estimate of π∗ plus the real-time
macro estimate of r∗). Model: loadings of yields on i∗t in population and 95%-Monte Carlo intervals for
regression coefficients in small samples simulated from the model with an observed shifting endpoint (OSE ).
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Figure 7: Expectations and term premium components in long-term interest rates
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Five-to-ten-year forward rate with estimated expectations component (risk-neutral rate) and term premium.
Left panel: conventional dynamic term structure model (DTSM) with a fixed endpoint i∗ (Joslin et al., 2011).
Right panel: DTSM with a common stochastic trend, where the shifting endpoint is either estimated (ESE,
estimated shifting endpoint) or taken as observed using a proxy of i∗t (OSE, observed shifting endpoint). The
data are quarterly from 1971:Q4 to 2018:Q1.

50


	Abstract
	Introduction
	Interest rate trends: theory and estimates
	Macro trends and yields: stylized facts
	The common trend in nominal yields
	Predicting excess bond returns with macro trends

	A no-arbitrage model with a stochastic trend
	Model specification
	Model estimation
	Implications for trend components of yields
	Model-based explanation of excess return predictability
	The term premium in long-term yields
	Out-of-sample forecasts of interest rates

	Conclusion
	Trend estimates
	A shifting-endpoint dynamic term structure model

