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1 Introduction

Two distinct branches of the existing literature on optimal monetary policy deliver diametrically
opposed policy recommendations concerning the long-run and cyclical behavior of prices and in-
terest rates. One branch follows the theoretical framework laid out in Lucas and Stokey (1983). It
studies the joint determination of optimal fiscal and monetary policy in flexible-price environments
with perfect competition in product and factor markets. In this group of papers, the government’s
problem consists in financing an exogenous stream of public spending by choosing the least disrup-
tive combination of inflation and distortionary income taxes. The criterion under which policies are
evaluated is the welfare of the representative private agent. A basic result of this literature is the
optimality of the Friedman rule. A zero opportunity cost of money has been shown to be optimal
under perfect-foresight in a variety of monetary models, including cash-in-advance, money-in-the-
utility function, and shopping-time models.1

In a significant contribution to the literature, Chari et al. (1991) characterize optimal monetary
and fiscal policy in stochastic environments with nominal non-state-contingent public debt. They
prove that the Friedman rule is also optimal under uncertainty: the government finds it optimal to
set the nominal interest rate to zero at all dates and all states of the world. In addition, Chari et
al. show that income tax rates are remarkably stable over the business cycle, and that the inflation
rate is highly volatile and serially uncorrelated. Under the Ramsey policy, the government uses
unanticipated inflation as a lump-sum tax on financial wealth. The government is able to do this
because public debt is nominal and non-state-contingent. Thus, inflation plays the role of a shock
absorber of unexpected innovations in the fiscal deficit.

On the other hand, a more recent literature focuses on characterizing optimal monetary policy
in environments with nominal rigidities and imperfect competition.2 Besides its emphasis on the
role of price rigidities and market power, this literature differs from the earlier one described above
in two important ways. First, it assumes, either explicitly or implicitly, that the government has
access to (endogenous) lump-sum taxes to finance its budget. An important implication of this
assumption is that there is no need to use unanticipated inflation as a lump-sum tax; regular
lump-sum taxes take up this role. Second, the government is assumed to be able to implement a
production (or employment) subsidy so as to eliminate the distortion introduced by the presence
of monopoly power in product and factor markets.

A key result of this literature is that the optimal monetary policy features an inflation rate that
is zero or close to zero at all dates and all states.3 In addition, the nominal interest rate is not
only different from zero, but also varies significantly over the business cycle. The reason why price
stability turns out to be optimal in environments of the type described here is straightforward: the
government keeps the price level constant in order to minimize (or completely eliminate) the costs
introduced by inflation under nominal rigidities.

This paper aims to incorporate in a unified framework the essential elements of the two ap-
proaches to optimal policy described above. Specifically, in this paper we build a model that shares
two elements with the earlier literature: (a) The only source of regular taxation available to the
government is distortionary income taxes. In particular, the fiscal authority cannot adjust lump-

1See, for example, Chari et al. (1991), Correia and Teles (1996), Guidotti and Végh (1993), and Kimbrough (1986).
2See, for example, Erceg, Henderson, and Levin (1999), Gaĺı and Monacelli (2000), Khan, King, and Wolman

(2000), Rotemberg and Woodford (1999), Woodford (1999), and Woodford (2000).
3In models where money is used exclusively as a medium of account or when money enters in an additively

separable way in the utility function, the optimal inflation rate is typically strictly zero. Khan, King, and Wolman
(2000) show that when a nontrivial transaction role for money is introduced, the optimal inflation rate lies between
zero and the one called for by the Friedman rule. However, in calibrated model economies they find that the optimal
rate of inflation is in fact very close to zero and smooth.
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sum taxes endogenously in financing its outlays. (b) The government cannot implement production
subsidies to undo distortions created by the presence of imperfect competition. At the same time,
our model shares two important assumptions with the more recent body of work on optimal mon-
etary policy. First, product markets are not perfectly competitive. In particular, we assume that
each firm in the economy is the monopolistic producer of a differentiated good. Second, nominal
prices are assumed to be sticky. We introduce price stickiness à la Rotemberg (1982) by assuming
that firms face a convex cost of adjusting the price of the good they produce. An assumption main-
tained throughout this paper that is common to all of the papers cited above (except for Lucas
and Stokey, 1983) is that the government has the ability to fully commit to the implementation of
announced fiscal and monetary policies.

In an earlier study, Schmitt-Grohé and Uribe (2001a), we characterize optimal fiscal and mon-
etary policy in a flexible price economy under imperfect competition. Under such environment,
we find that if the government is unable to tax monopoly profits at a hundred percent rate or if
the government can set income and profit taxes separately, the Friedman rule ceases to be opti-
mal. When product markets are imperfectly competitive, the Ramsey planner resorts to a positive
nominal interest rate as an indirect way to tax profits. The nominal interest rate represents an
indirect tax on profits because households must hold (non-interest-bearing) fiat money in order to
convert income into consumption. Another result of the aforementioned study that is central to
the current analysis is that while the first moments of inflation, the nominal interest rate, and tax
rates are sensitive to the degree of market power in the Ramsey allocation, the cyclical properties
of these variables are similar to those arising in perfectly competitive environments. In particular,
it is optimal for the government to smooth tax rates and to make the inflation rate highly volatile.
Thus, as in the case of perfect competition, the government uses variations in the price level as a
state-contingent tax on financial wealth.

When prices are sticky, the government faces a tradeoff in choosing the path of inflation. On
the one hand, the government would like to use unexpected inflation as a non-distorting tax on
nominal wealth. In this way the fiscal authority can minimize the need to vary distortionary income
taxes over the business cycle. On the other hand, changes in the rate of inflation come at a cost,
for firms face nominal rigidities.4 The main result of this paper is that under plausible calibrations
of the degree of price stickiness, this trade off is overwhelmingly resolved in favor of price stability.
The optimal fiscal/monetary regime features relatively low inflation volatility. Thus, the Ramsey
allocation delivers an inflation process that is more in line with the predictions of the more recent
body of literature on optimal monetary policy referred to above, which ignores fiscal constraints
by assuming that the government can resort to lump-sum taxation.

The remainder of the paper is organized in 6 sections. Section 2 describes the economic envi-
ronment and defines a competitive equilibrium. Section 3 presents the Ramsey problem and shows
that the allocations and prices that satisfy the constraints of the Ramsey problem are equivalent
to the allocations and prices that constitute a competitive equilibrium. Section 4 analyzes the
business-cycle properties of Ramsey allocations. It first describes the calibration of the model,
then presents the quantitative results, and finally discusses the accuracy of the numerical solution
method. Sectionr̃efsec:interest-rate-feedback-rules investigates whether the time series process for
the nominal interest rate implied by the Ramsey policy can be represented as a Taylor-type interest
rate feedback rule. Section 8 presents concluding remarks.

4Christiano and Fitzgerald (2000) and Sims (2001) also remark on the desirability of quantitatively investigating
the costs and benefits of price volatility in environments with sluggish price adjustment.
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2 The Model

In this section we develop a simple infinite-horizon production economy with imperfectly competi-
tive product markets and sticky prices. A demand for money is motivated by assuming that money
facilitates transactions. The government finances an exogenous stream of purchases by levying
distortionary income taxes, printing money, and issuing one-period nominally risk-free bonds.

2.1 The Private Sector

Consider an economy populated by a large number of identical households. Each household has
preferences defined over processes of consumption and leisure and described by the utility function

E0

∞∑
t=0

βtU(ct, ht) (1)

where ct denotes consumption, ht denotes labor effort, β ∈ (0, 1) denotes the subjective discount
factor, and E0 denotes the mathematical expectation operator conditional on information available
in period 0. The single period utility function U is assumed to be increasing in consumption,
decreasing in effort, strictly concave, and twice continuously differentiable.

In each period t ≥ 0, households can acquire two types of financial assets: fiat money, Mt,
and one-period, state-contingent, nominal assets, Dt+1, that pay the random amount Dt+1 of
currency in a particular state of period t+1. Money facilitates consumption purchases. Specifically,
consumption purchases are subject to a proportional transaction cost s(vt) that depends on the
household’s money-to-consumption ratio, or consumption-based money velocity,

vt =
Ptct

Mt
, (2)

where Pt denotes the price of the consumption good in period t. The transaction cost function
satisfies the following assumption:

Assumption 1 The function s(v) satisfies: (a) s(v) is nonnegative and twice continuously differ-
entiable; (b) There exists a level of velocity v > 0, to which we refer as the satiation level of money,
such that s(v) = s′(v) = 0; (c) (v− v)s′(v) > 0 for v �= v; and (d) 2s′(v)+ vs′′(v) > 0 for all v ≥ v.

Assumption 1(a) states that the transaction cost is non-negative and smooth. Assumption 1(b)
ensures that the Friedman rule, i.e., a zero nominal interest rate, need not be associated with
an infinite demand for money. It also implies that both the transaction cost and the distortion
it introduces vanish when the nominal interest rate is zero. Assumption 1(c) guarantees that in
equilibrium money velocity is always greater than or equal to the satiation level. As will become
clear shortly, assumption 1(d) ensures that the demand for money is decreasing in the nominal
interest rate. (Note that assumption 1(d) is weaker than the more common assumption of strict
convexity of the transaction cost function.)

The consumption good ct is assumed to be a composite good made of a continuum of interme-
diate differentiated goods. The aggregator function is of the Dixit-Stiglitz type. Each household
is the monopolistic producer of one variety of intermediate goods. The intermediate goods are
produced using a linear technology, zth̃t, that takes labor, h̃t, as the sole input and is subject to an
exogenous productivity shock, zt. The household hires labor from a perfectly competitive market.
The demand for the intermediate input is of the form Ytd(pt), where Yt denotes the level of aggre-
gate demand and pt denotes the relative price of the intermediate good in terms of the composite
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consumption good. The relative price pt equals P̃t/Pt, where P̃t is the nominal price of the inter-
mediate good produced by the household and Pt is the price of the composite consumption good.
The demand function d(·) is assumed to be decreasing and to satisfy d(1) = 1 and d′(1) < −1.5

The monopolist sets the price of the good it supplies taking the level of aggregate demand as given,
and is constrained to satisfy demand at that price, that is,

zth̃t ≥ Ytd(pt). (3)

We follow Rotemberg (1982) and introduce sluggish price adjustment by assuming that the firm
faces a resource cost that is quadratic in the inflation rate of the good it produces

Price adjustment cost =
θ

2

(
P̃t

P̃t−1

− 1

)2

.

The parameter θ measures the degree of price stickiness. The higher is θ the more sluggish is the
adjustment of nominal prices. If θ = 0, then prices are flexible.

Each period the household is assumed to receive profits from financial institutions in the amount
Πt. The household takes Πt as exogenous. We introduce the variable Πt because we want to allow
for the possibility that in equilibrium only a fraction of the transaction and price adjustment costs
be true resource costs. We do so by assuming that part of these costs are rebated to the public in
a lump-sum fashion.6

The flow budget constraint of the household in period t is then given by:

Ptct[1 + s(vt)] + Mt + Etrt+1Dt+1 ≤ Mt−1 + Dt + Pt

[
ptYtd(pt)− wth̃t − θ

2

(
Pt

Pt−1

pt

pt−1
− 1
)2
]

+(1 − τt)Ptwtht + Πt, (4)

where wt is the real wage rate and τt is the labor income tax rate. The variable rt+1 denotes
the period-t price of a claim to one unit of currency in a particular state of period t + 1 divided
by the probability of occurrence of that state conditional on information available in period t.
The left-hand side of the budget constraint represents the uses of wealth: consumption spending,
including transactions costs, money holdings, and purchases of interest bearing assets. The right-
hand side shows the sources of wealth: money, the payoff of contingent claims acquired in the
previous period, profits from the sale of the differentiated good net of the price-adjustment cost,
after-tax labor income, and profits received from financial institutions.

In addition, the household is subject to the following borrowing constraint that prevents it from
engaging in Ponzi schemes:

lim
j→∞

Etqt+j+1(Dt+j+1 + Mt+j) ≥ 0, (5)

at all dates and under all contingencies. The variable qt represents the period-zero price of one unit
of currency to be delivered in a particular state of period t divided by the probability of occurrence
of that state given information available at time 0 and is given by

qt = r1r2 . . . rt,

5The restrictions on d(1) and d′(1) are necessary for the existence of a symmetric equilibrium.
6We motivate the rebate of the transaction cost by assuming that the amount rebated represents pure profits of

financial institutions owned (in equal shares) by the public.
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with q0 ≡ 1.
The household chooses the set of processes {ct, ht, h̃t, pt, vt,Mt,Dt+1}∞t=0, so as to maximize (1)

subject to (2)-(5), taking as given the set of processes {Yt, Pt,Πt, wt, rt+1, τt, zt}∞t=0 and the initial
condition M−1 + D0.

Let the multiplier on the flow budget constraint be λt/Pt and the one on the production con-
straint be mctλt/Pt. Then the first-order conditions of the household’s maximization problem
are (2)-(5) holding with equality and

Uc(ct, ht) = λt[1 + s(vt) + vts
′(vt)] (6)

−Uh(ct, ht)
Uc(ct, ht)

=
(1 − τt)wt

1 + s(vt) + vts′(vt)
(7)

v2
t s

′(vt) = 1 − Etrt+1 (8)

λt

Pt
rt+1 = β

λt+1

Pt+1
(9)

mct =
wt

zt
(10)

0 = λt[Ytd(pt) + ptYtd
′(pt)− θπt(πtpt/pt−1 − 1) −mctYtd

′(pt)]
+βθEtλt+1πt+1(πt+1pt+1/pt − 1)pt+1/pt

2, (11)

where πt = Pt/Pt−1 denotes gross consumer price inflation. The interpretation of these optimality
conditions is straightforward. The first-order condition (6) states that the transaction cost intro-
duces a wedge between the marginal utility of consumption and the marginal utility of wealth.
The assumed form of the transaction cost function ensures that this wedge is zero at the satiation
point v and increasing in money velocity for v > v. Equation (7) shows that both the labor income
tax rate and the transaction cost distort the consumption/leisure margin. Given the wage rate,
households will tend to work less and consume less the higher is τ or the smaller is vt. Equation (8)
implicitly defines the household’s money demand function. Note that Etrt+1 is the period-t price
of an asset that pays one unit of currency in every state in period t+1. Thus Etrt+1 represents the
inverse of the risk-free gross nominal interest rate. Formally, letting Rt denote the gross risk-free
nominal interest rate, we have

Rt =
1

Etrt+1

Our assumptions about the form of the transactions cost function imply that the demand for money
is strictly decreasing in the nominal interest rate and unit elastic in consumption. Equation (9)
represents a standard pricing equation for one-step-ahead nominal contingent claims. Equation (10)
states that marginal cost equals the ratio of wages to the marginal product of labor. Finally,
equation (11) states that the presence of price-adjustment costs prevent firms in the short run from
setting their prices so as to equate marginal revenue, pt + d(pt)/d′(pt), to marginal cost, mct.
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2.2 The Government

The government faces a stream of public consumption, denoted by gt, that is exogenous, stochastic,
and unproductive. These expenditures are financed by levying labor income taxes at the rate τt, by
printing money, and by issuing one-period, risk-free (non-contingent), nominal obligations, which
we denote by Bt. The government’s sequential budget constraint is then given by

Mt + Bt = Mt−1 +Rt−1Bt−1 + Ptgt − τtPtwtht

for t ≥ 0. The monetary/fiscal regime consists in the announcement of state-contingent plans for
the nominal interest rate and the tax rate, {Rt, τt}.

2.3 Equilibrium

We restrict attention to symmetric equilibria where all households charge the same price for the
good they produce. As a result, we have that pt = 1 for all t. It then follows from the fact that
all firms face the same wage rate, the same technology shock, and the same production technology,
that they all hire the same amount of labor. That is, h̃t = ht. Also, because all firms charge the
same price, we have that the marginal revenue of the individual monopolist is constant and equal
to 1 + 1/d′(1). Let

η = d′(1)

denote the equilibrium value of the elasticity of demand faced by the monopolist. Then in equilib-
rium equation (11) gives rise to the following expectations augmented Phillips curve

λtπt(πt − 1) = βEtλt+1πt+1(πt+1 − 1) +
λtηztht

θ

[
1 + η

η
− wt

zt

]
, (12)

which has become a standard element in much of the recent related literature on optimal monetary
policy.

Because all households are identical, in equilibrium there is no borrowing or lending among
them. Thus, all interest-bearing asset holdings by private agents are in the form of government
securities. That is,

Dt = Rt−1Bt−1

at all dates and all contingencies. In equilibrium, it must be the case that the nominal interest rate
is non-negative,

Rt ≥ 1.

Otherwise pure arbitrage opportunities would exist and households’ demand for consumption would
not be well defined.

Finally, as explained earlier, we assume that only a fraction of the transaction and price-
adjustment costs represents a true resource costs. The remainder of these costs are assumed to be
rebated to the household in a lump-sum fashion. Thus, in equilibrium

Πt = (1 − α1)cts(vt) + (1 − α2)
θ

2
(πt − 1)2 ,

where α1, α2 ∈ [0, 1].
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We are now ready to define an equilibrium. A competitive equilibrium is a set of plans {ct, ht,
Mt, Bt, vt, mct, λt, Pt, qt, rt+1} satisfying the following conditions:

Uc(ct, ht) = λt[1 + s(vt) + vts
′(vt)] (13)

−Uh(ct, ht)
Uc(ct, ht)

=
(1 − τt)ztmct

1 + s(vt) + vts′(vt)
(14)

v2
t s

′(vt) =
Rt − 1
Rt

(15)

λtrt+1 = βλt+1
Pt

Pt+1
(16)

Rt =
1

Etrt+1
≥ 1 (17)

λtπt(πt − 1) = βEtλt+1πt+1(πt+1 − 1) +
λtηztht

θ

[
1 + η

η
−mct

]
(18)

Mt + Bt + τtPtztmctht = Rt−1Bt−1 + Mt−1 + Ptgt (19)

lim
j→∞

Etqt+j+1(Rt+jBt+j + Mt+j) = 0 (20)

qt = r1r2 . . . rt with q0 = 1 (21)

[1 + α1s(vt)]ct + gt + α2
θ

2
(πt − 1)2 = ztht (22)

vt = Ptct/Mt, (23)

given policies {Rt, τt}, exogenous processes {zt, gt}, and the initial condition R−1B−1 + M−1 > 0.
The optimal fiscal and monetary policy is the process {Rt, τt} associated with the competitive
equilibrium that yields the highest level of utility to the representative household, that is, that
maximizes (1). As is well known, in the absence of price stickiness, the Ramsey planner will always
find it optimal to confiscate the entire initial nominal wealth of the household by choosing a policy
that results in an infinite initial price level, P0 = ∞. This is because such a confiscation amounts to
a nondistortionary lump-sum tax. To avoid this unrealistic feature of optimal policy, it is typically
assumed in the flexible price literature that the initial price level is given. We follow this tradition
here to make our results comparable to this literature. However, we note that in the presence of
price adjustment costs it may not be optimal for the Ramsey planner to choose P0 = ∞. The
reason is twofold. First, such policy would be distortionary as it would introduce a large deviation
of marginal cost from marginal revenue. Second, an infinitely large initial inflation would absorb a
large number of resources in the case that the implementation of price changes requires the use of
real resources, which is the case if α2 > 0.
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3 The Ramsey Problem

A key difference between our sticky-price model with non-state-contingent nominal government debt
and models with flexible prices (such as Chari et al., 1991, and Schmitt-Grohé and Uribe, 2001a)
or models with sticky prices but state-contingent debt (like the model considered by Correia et al.,
2001) is that in our model the primal form of the competitive equilibrium cannot any longer be
reduced to a single intertemporal implementability (budget) constraint in period 0 and a feasibility
constraint holding in every period. This feature of the Ramsey problem is akin to the one identified
by Marcet, Sargent and Seppala (2000) in their analysis of optimal policy in a real economy without
state-contingent debt.

The following proposition presents a simpler form of the competitive equilibrium and establishes
that it is equivalent to the definition of competitive equilibrium given in section 2.3.

Proposition 1 Plans {ct, ht, vt, πt, λt, bt,mct}∞t=0 satisfying (13), (18), (22),

λt = βρ(vt)Et
λt+1

πt+1
(24)

ct

vt
+ bt +

(
mctzt +

Uh(ct, ht)γ(vt)
Uc(ct, ht)

)
ht =

ρ(vt−1)bt−1

πt
+

ct−1

vt−1πt
+ gt; t > 0 (25)

c0
v0

+ b0 +
(
mc0z0 +

Uh(c0, h0)γ(v0)
Uc(c0, h0)

)
h0 =

R−1B−1 + M−1

P−1π0
+ g0

lim
j→∞

Et

{
βj λt+j+1

πt+j+1

(
ρ(vt+j)bt+j +

ct+j

vt+j

)}
= 0 (26)

vt ≥ v and v2
t s

′(vt) < 1,

for all dates and under all contingencies given (R−1B−1 +M−1)/P−1, are the same as those satis-
fying (13)-(23), where

γ(vt) ≡ 1 + s(vt) + vts
′(vt)

and
ρ(vt) ≡ 1/[1 − v2

t s
′(vt)].

Proof: See the appendix.

We will assume that the government has the ability to commit to the contingent policy rules it
announces at period 0. It then follows from proposition 1 that the Ramsey problem can be stated
as choosing contingent plans ct, ht, vt, πt, λt, bt,mct so as to maximize (1) subject to (13), (18),
(22), (24)-(26), vt ≥ v, and v2

t s
′(vt) < 1, taking as given (M−1 + R−1B−1)/P0 and the exogenous

stochastic processes gt and zt.
The Lagrangian of the Ramsey planner’s problem as well as the associated first-order conditions

are shown in the appendix.
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3.0.1 Alternative representation of the Ramsey constraints

While it is not possible to reduce the constraints of the Ramsey problem to a single intertemporal
budget constraint in period 0 and one feasibility constraint holding at every date and at every
state, as is the case under price flexibility, it is possible to express the set of constraints the Ramsey
planner faces in terms of a sequence of intertemporal budget constraints rather than in terms
of the sequence of transversality conditions given in (26). The next proposition presents such a
representation.

Proposition 2 Plans {ct, ht, vt, πt, bt,mct}∞t=0 satisfying the feasibility constraint (22), the expec-
tations augmented Phillips curve

πt(πt − 1) = βEt
Uc(ct+1, ht+1)
Uc(ct, ht)

γ(vt)
γ(vt+1)

πt+1(πt+1 − 1) +
ηztht

θ

[
1 + η

η
−mct

]
(27)

the sequential budget constraint of the government,

ct

vt
+ bt +

[
mctzt +

Uh(ct, ht)γ(vt)
Uc(ct, ht)

]
ht =

ρ(vt−1)bt−1

πt
+

ct−1

vt−1πt
+ gt ∀t ≥ 1 (28)

c0
v0

+ b0 +
[
mc0z0 +

Uh(c0, h0)γ(v0)
Uc(c0, h0)

]
h0 =

R−1B−1 + Mt−1

P−1π0
+ g0,

the sequence of intertemporal budget constraints

Et

∞∑
j=0

βj

{
Uc(ct+j , ht+j)ct+jφ(vt+j) + Uh(ct+j , ht+j)ht+j + zt+jht+j(mct+j − 1)

Uc(ct+j , ht+j)
γ(vt+j)

(29)

+α2
θ

2
(πt+j − 1)2

Uc(ct+j , ht+j)
γ(vt+j)

}
=

Uc(ct, ht)
γ(vt)

[
ct−1/vt−1 + ρ(vt−1)bt−1

πt

]

and the boundary conditions on vt

vt ≥ v and v2
t s

′(vt) < 1,

for all dates and under all contingencies given (R−1B−1 +M−1)/P−1, are the same as those satis-
fying the definition of a competitive equilibrium, that is, (13)-(23).

Proof: See the appendix.

4 Dynamic Properties of Ramsey Allocations

In this section we characterize numerically the dynamic properties of Ramsey allocations. We
compute dynamics by solving first- and second-order logarithmic approximations to the Ramsey
planner’s policy functions around a non-stochastic Ramsey steady state. In what follows, we first
describe the calibration of the model. Then we present the quantitative results. Finally, we discuss
the accuracy of the solution method.
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4.1 Calibration

We calibrate our model to the U.S. economy. The time unit is meant to be a year. We assume
that up to period 0, the economy is in the non-stochastic steady state of a competitive equilibrium
with constant paths for consumption, hours, nominal interest rates, inflation, tax rates, etc. To
facilitate comparison to the case of price flexibility we adopt, where possible, the calibration of
Schmitt-Grohé and Uribe (2001a). Specifically, we assume that in the steady state the inflation
rate is 4.2 percent per year, which is consistent with the average growth rate of the U.S. GDP
deflator over the period 1960:Q1 to 1998:Q3, that the debt-to-GDP ratio is 0.44 percent, which
corresponds to the figure observed in the United States in 1995 (see the 1997 Economic Report
of the President, table B-79), and that government expenditures are equal to 20 percent of GDP,
a figure that is in line with postwar U.S. data. We follow Prescott (1986) and set the subjective
discount rate β to 0.96 to be consistent with a steady-state real rate of return of 4 percent per year.

We assume that the single-period utility index is of the form

U(c, h) = ln(c) + δ ln(1 − h)

We set the preference parameter δ so that in the flexible-price steady state households allocate 20
percent of their time to work. The resulting parameter value is δ = 2.9.7

To calibrate the price elasticity of demand η, we use the fact that in a flexible price equilibrium
the markup of prices over marginal costs is related to the price elasticity of demand as 1 + µ =
η/(1 + η). Drawing from the empirical study of Basu and Fernald (1997), we assign a value of 0.2
to the value added markup of prices over marginal cost, µ. Basu and Fernald estimate gross output
production functions and obtain estimates for the gross output markup of about 1.1. They show
that their estimates are consistent with values for the value added markup of up to 25 percent.

To calibrate the degree of price stickiness, we use Sbordone’s (1998) estimate of a linear new-
Keynesian Phillips curve. Such a Phillips curve arises in our model from a log-linearization of
equilibrium condition (18) around a zero-inflation steady state:

π̂t = βEtπ̂t+1 +
h

θµ
m̂ct,

where a circumflex denotes log-deviations from the steady state. Using quarterly postwar U.S. data,
Sbordone estimates the coefficient θµ/h to be 17.5. Given our calibration h = 0.2 and µ = 0.2,
we have that the price-stickiness coefficient θ is 17.5. As pointed out by Sbordone, in a Calvo-Yun
staggered price setting model, this value of θ implies that firms change their price on average every
9 months. Because in our model the time unit is a year, we set θ equal to 17.5/4.

We use the following specification for the transactions cost technology:

s(v) = Av + B/v − 2
√
AB (30)

This functional form implies a satiation point for consumption-based money velocity, v, equal to√
B/A. The money demand function implied by the above transaction technology is of the form

v2
t =

B

A
+

1
A

Rt − 1
Rt

,

To identify the parameters A and B, we estimate this equation using quarterly U.S. data from
1960:1 to 1999:3. We measure v as the ratio of non-durable consumption and services expenditures

7See Schmitt-Grohé and Uribe (2001a) for a derivation of the exact relations used to identify δ.
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to M1. The nominal interest rate is taken to be the three-month Treasury Bill rate. The OLS
estimate implies that A = 0.0111 and B = 0.07524.8 At the calibrated steady-state interest rate
of 8.2 percent per year, the implied semi-elasticity of money demand with respect to the nominal
interest rate (∂ lnm/∂R) is equal to -2.82. Wwhen the nominal interest rate is zero, our money
demand specification also implies a finite semi-elasticity equal to -6.6.

In our baseline calibration we assume that both transaction costs and price-adjustment costs
represent true resource costs, that is, we set α1 = α2 = 1.

Government spending, gt, and labor productivity, zt, are assumed to follow independent AR(1)
processes in their logarithms,

ln gt = (1 − λg) ln g + λg ln gt−1 + εgt ; εgt distributes N(0, σεg )

and

ln zt = λz ln zt−1 + εzt ; εzt distributes N(0, σεz )

We assume that (λg, σεg) = (0.9, 0.03) and that (λz, σεz) = (0.82, 0.02). This specification is in line
with the calibration of the stochastic processes for gt and zt given in Chari et al. (1995). Table 1
summarizes the calibration of the economy.

4.2 Numerical Results

In Schmitt-Grohé and Uribe (2001a) we show that under flexible prices it is possible to find an
exact numerical solution to the Ramsey problem. The reason is that in that case the constraints of
the Ramsey problem reduce to a feasibility constraint and a single intertemporal implementability
constraint. On the other hand, when price adjustment is sluggish and the government issues
only nominal state non-contingent debt, the Ramsey problem contains a sequence of intertemporal
implementability constraints, one for each date and state. This complication renders impossible
the task of finding an exact numerical solution. One is thus forced to resort to approximation
techniques. In this section we limit attention to results based on log-linear approximations to the
Ramsey planner’s optimality conditions. In section 4.4, we present results based on a second-order
approximation to the Ramsey planner’s decision rules. We show there that the results of this
section are robust to higher-order approximations.

Table 2 displays a number of sample moments of key macroeconomic variables under the Ramsey
policy. The moments are computed as follows. We first generate simulated time series of length T
for the variables of interest and compute first and second moments. We repeat this procedure J
times and then compute the average of the moments. In the table, T equals 100 years and J equals
500. In section 4.4 we explain the criterion for choosing these two parameter values.

4.3 Preliminaries: Ramsey Allocations in Flexible-Price Economies

The top panel of table 2 corresponds to a flexible-price economy with perfect competition (θ = 0
and η = −∞), the middle panel to a flexible-price economy with imperfect competition (θ = 0,
η = −6), and the bottom panel to an economy with sluggish price adjustment and imperfect
competition (θ = 17.5/4 and η = −6).

Under flexible prices and perfect competition, the nominal interest rate is constant and equal
to zero. That is, the Friedman rule is optimal. Because under perfect competition the nominal

8The estimated equation is v2
t = 6.77 + 90.03(Rt − 1)/Rt. The t-statistics for the constant and slope of the

regression are, respectively, 6.81 and 5.64; The R̄2 of the regression is 0.16. Instrumental variable estimates using
three lagged values of the dependent and independent variables yield similar estimates for A and B.
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Table 1: Calibration

Symbol Definition Value Description

Calibrated Parameters:
β 0.96 Subjective discount factor
π 1.042 Gross inflation rate
h 0.2 Fraction of time allocated to work
sg g/y 0.2 Government consumption to GDP ratio
sb B/(Py) 0.44 Public debt to GDP ratio

1 + µ η/(1 + η) 1.2 Gross value-added markup
θ 17.5/4 Degree of price stickiness
A 0.01 Parameter of transaction cost function

s(v) = Av + B/v − 2
√
AB

B 0.08 Parameter of transaction cost function
α1 1 Fraction of transaction cost not rebated
α2 1 Fraction of price-adjustment cost not rebated
λg 0.9 Serial correlation of log gt

σεg 0.0302 Standard deviation of innovation to ln gt

λz 0.82 Serial correlation of technology shock
σεz 0.0229 Standard deviation of innovation to ln zt

Note. The time unit is a year. The variable y ≡ zh denotes steady-state output.

interest rate is zero at all times, the distortion introduced by the transaction cost is driven to zero
in the Ramsey allocation (s(v) = s′(v) = 0). On the other hand, distortionary income taxes are far
from zero. The average value of the labor income tax rate is 18.7 percent. The Ramsey planner
keeps this distortion smooth over the business cycle; the standard deviation of τ is 0.04 percentage
points.

In the Ramsey allocation with perfect competition and flexible prices, inflation is on average
negative (-3.7 percent per year). The most striking feature of the Ramsey allocation is the high
volatility of inflation. A two-standard deviation band on each side of the mean features a deflation
rate of 15.7 percent at the lower end and inflation of 8.3 percent at the upper end. The Ramsey
planner uses the inflation rate as a state-contingent lump-sum tax/transfer on households’ financial
wealth. This lump-sum tax/transfer appears to be used mainly in response to unanticipated changes
in the state of the economy. This is reflected in the fact that inflation displays a near zero serial
correlation.9

The high volatility and low persistence of the inflation rate stands in sharp contrast to the
smooth and highly persistent behavior of the labor income tax rate. Our results on the dynamic
properties of the Ramsey economy under perfect competition and flexible prices are consistent with
those obtained by Chari et al. (1991).

Under imperfect competition and flexible prices, the volatility and correlation properties of
9The result that in the Ramsey equilibrium inflation acts as a lump-sum tax on wealth is due to Chari et al.

(1991) and has recently been stressed by Sims (2001).
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Table 2: Dynamic Properties of the Ramsey Allocation (Linear Approximation)

Variable Mean Std. Dev. Auto. corr. Corr(x, y) Corr(x, g) Corr(x, z)
Flexible Prices and Perfect Competition (θ = 0 and η = −∞)

τ 18.7 0.044 0.834 -0.322 0.844 -0.516
π -3.66 6.04 -0.0393 -0.245 0.313 -0.321
R 0 0 – – – –
y 0.25 0.00843 0.782 1 0.203 0.975
h 0.25 0.00217 0.834 -0.322 0.846 -0.516
c 0.21 0.00827 0.778 0.955 -0.0797 0.997

Flexible Prices and Imperfect Competition (θ = 0)
τ 25.8 0.0447 0.616 0.236 -0.845 0.511
π -1.82 6.8 -0.0411 -0.207 0.329 -0.321
R 1.83 0.0313 0.797 -0.237 0.845 -0.513
y 0.208 0.00675 0.783 1 0.289 0.951
h 0.208 0.0024 0.833 -0.237 0.845 -0.513
c 0.168 0.00645 0.777 0.93 -0.0624 0.998

Baseline Sticky-Price Economy
τ 25.1 0.998 0.743 -0.283 0.476 -0.238
π -0.16 0.171 0.0372 -0.123 0.385 -0.289
R 3.85 0.562 0.865 -0.949 -0.0372 -0.969
y 0.209 0.00713 0.815 1 0.199 0.943
h 0.208 0.00253 0.813 -0.124 0.611 -0.424
c 0.168 0.00707 0.819 0.938 -0.131 0.958

Note. τ , π, and R are expressed in percentage points and y, h, and c in levels. Unless
indicated otherwise, the parameter values are: α1 = 1, α2 = 1, β = 1/1.04, δ = 2.9,
g = 0.04, b−1 = 0.088, η = −6, θ = 17.5/4, A = 0.0111, B = 0.07524,

T = 100, and J = 500.
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inflation, income tax rates, and other real variables are virtually unchanged. The main effect of
imperfect competition is that the Friedman rule ceases to be optimal. The average nominal interest
rate rises to 1.8 percent. The reason for this departure from the Friedman rule is the presence of
monopoly profits. These profits represent pure rents for the owners of the monopoly rights, which
the Ramsey planner would like to tax at a hundred percent rate. If profit taxes are either unavailable
or restricted to be less than one hundred percent, then social planner uses inflation as an indirect
tax on profits. Inflation acts as an indirect tax on profits because when consumers transform profits
into consumption, they must hold money to perform the required transaction. The Friedman rule
reemerges if (a) monopoly profits are completely confiscated; (b) profit tax rates are constrained
to be equal to income tax rates; (c) monopolistically competitive firms make no profits (as could
be the case in the presence of fixed costs); and (d) the Ramsey planner has access to consumption
taxes.10 Another difference between the perfectly and imperfectly competitive economies is that in
the latter the average income tax rate is 7 percentage points higher than in the former, even though
initial public debt and the process for government purchases are the same in both economies. The
reason for this difference is that under imperfect competition, the labor income tax base is smaller
due to the presence of market power.

4.3.1 Price Stickiness and Optimal Inflation Volatility

The bottom panel of table 2 displays some dynamic properties of the Ramsey allocation in an
economy featuring market power and sticky prices. The Ramsey allocation is characterized by a
near-zero average inflation rate of -0.16 percent per year. A key finding of this paper is the the
dramatic drop in the standard deviation of inflation from about 7 percent per year under flexible
prices to a mere 0.17 percent per year when prices adjust sluggishly.11 This implication of the
Ramsey allocation under sticky prices is more in accord with the recent literature on optimal
monetary policy that ignores fiscal considerations (see the references cited in footnote 2).

It is intuitively easy to see why allowing for price stickiness must induce a less volatile rate of
inflation. If price changes are brought about at a cost, then it is natural to expect that a benevolent
government will try to implement policies consistent with a more stable behavior of prices. However,
the quantitative effect of an empirically plausible degree of price rigidity on inflation volatility is
not clear a priori. When price adjustment is costly, the social planner faces a tradeoff. On the
one hand, the planner would like to use unexpected changes in the price level as a state-contingent
lump-sum tax or transfer on nominal wealth. In this way, the benevolent government avoids the
need to resort to changes in distortionary taxes and interest rates over the business cycle. The
use of inflation for this purpose would imply a relatively large volatility in prices. On the other
hand, the Ramsey planner has incentives to stabilize the price level in order to minimize the costs
associated with nominal price changes. Table 2 shows that for the degree of stickiness that has
been estimated for the U.S. economy, the tradeoff is to a large extent resolved in favor of price
stability.

Indeed the impact of price stickiness on the optimal degree of inflation volatility turns out to be
much stronger than suggested by the numbers in table 2. Figure 1 shows that a minimum amount
of price stickiness suffices to make price stability the central goal of optimal policy. Specifically,
when the degree of price stickiness, embodied in the parameter θ, is assumed to be 10 times smaller
than the estimated value for the US economy used in the bottom panel of table 2, the volatility of

10For a formal derivation of these results and a more detailed discussion, see Schmitt-Grohé and Uribe (2001a).
11Siu (2001) obtains similar results in a cash-credit economy where nominal rigidities are introduced by assuming

that a fraction of firms must set their price one period in advance and the only source of uncertainty are government
purchases shocks.
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Figure 1: Degree of Price Stickiness and Optimal Inflation Volatility
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The baseline value of θ is 4.4. The standard deviation of inflation is measured in percent per
year.

inflation is below 0.52 percent per year, 13 times smaller than under full price flexibility.
Therefore, the question arises as to why even a marginal degree of price stickiness can turn

undesirable the use of a seemingly powerful fiscal instrument, such as large re- or devaluations of
private real financial wealth through surprise inflation. Our conjecture is that in the flexible-price
economy, the welfare gains of surprise inflations or deflations are very small. Our intuition is as
follows. Under flexible prices it is optimal for the central bank to keep the nominal interest rate
constant over the business cycle. This means that large surprise inflations must be as likely as
large deflations, as variations in real interest rates are small. In other words, inflation must have
a near-i.i.d. behavior. As a result, high inflation volatility cannot be used by the Ramsey planner
to reduce the average amount of resources to be collected via distortionary income taxes, which
would be a first-order effect. The volatility of inflation serves primarily the purpose of smoothing
the process of income tax distortions—a second-order source of welfare losses—without affecting
their average level.

Another way to gain intuition for the dramatic decline in optimal inflation volatility that takes
place even at very modest levels of price stickiness is to interpret price volatility as a way for the gov-
ernment to introduce real state-contingent public debt. Under flexible prices the government uses
state-contingent changes in the price level as a non-distorting tax or transfer on private holdings of
government assets. In this way, non-state contingent nominal public debt becomes state-contingent
in real terms. So, for example, in response to an unexpected increase in government spending (a
war, say) the Ramsey planner does not need to increase tax rates by much because by inflating
away part of the public debt he can ensure intertemporal budget balance. It is therefore clear that
introducing costly price adjustment is as if the government was limited in its ability to issue real
state-contingent debt. It follows that the larger is the welfare gain associated with the ability to
issue real state-contingent public debt—as opposed to non-state contingent debt—the larger is the
amount of price stickiness required to reduce the optimal degree of inflation volatility. Recent work
by Marcet, Sargent, and Seppala (2000) shows that indeed the level of welfare under the Ramsey
policy in an economy without state-contingent public debt is virtually the same as in an economy
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Figure 2: Degree of Price Stickiness and Deviations from the Friedman Rule
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with state-contingent debt. Our finding that a small amount of price stickiness is all it takes to
bring the optimal volatility of inflation from a very large level to near zero is thus perfectly in line
with the finding of Marcet, Sargent, and Seppala.12

4.3.2 Price Stickiness and Deviations from the Friedman Rule

In our baseline sticky-price economy the Friedman rule fails to hold. The average nominal interest
rate is 3.8 percent per year. This significant deviation from the Friedman rule can be decomposed
in two parts. First, as shown by Schmitt-Grohé and Uribe (2001a), the presence of monopolistic
competition induces the social planner to tax money balances as an indirect way to tax monopoly
profits. Comparing the top and middle panels of table 2, it follows that imperfect competition
induces a deviation from the Friedman rule of 1.8 percentage points per year. Comparing the
middle and bottom panels, it then follows that in our baseline economy price stickiness explains
half of the 3.8 percentage points by which the nominal interest rate deviates from the Friedman
rule. Indeed, as figure 2 illustrates, there exists a strong increasing relationship between the degree
of price stickiness and the average nominal interest rate associated with the Ramsey allocation.
The intuition behind this result is simple. The more costly it is for firms to alter nominal prices,
the closer to zero is the inflation rate chosen by the benevolent government.

4.4 Accuracy of Solution

The quantitative results presented above are based on a log-linear approximation to the first-order
conditions of the Ramsey problem. In Schmitt-Grohé and Uribe (2001a) we show how to compute
exact numerical solutions to the Ramsey problem in the flexible-price economies (with perfectly
and imperfectly competitive product markets). The availability of exact solutions allows us to
evaluate the accuracy of the log-linear solution for the flexible-price economies considered above.
The calibrations of the flexible-price economies considered in this paper and in Schmitt-Grohé and

12In section 5 we present further evidence that an economy with (even a small amount of) price stickiness behaves
like one without real state contingent debt.
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Table 3: Accuracy of the approximate numerical solution

Variable Mean Std. Dev. Auto. corr. Mean Std. Dev. Auto. corr.
Flexible Prices and Perfect Competition
Exact Solution Log-Linear Approximation

τ 18.8 0.0491 0.88 18.7 0.044 0.834
π -3.39 7.47 -0.0279 -3.66 6.04 -0.0393
R 0 0 – 0 0 –

Flexible Prices and Imperfect Competition
Exact Solution Log-Linear Approximation

τ 26.6 0.042 0.88 25.8 0.0447 0.616
π -1.46 7.92 -0.0239 -1.82 6.8 -0.0411
R 1.95 0.0369 0.88 1.83 0.0313 0.797

Baseline Sticky-Price Economy
Log-Quadratic Approximation Log-Linear Approximation

τ 25.3 0.908 0.719 25.1 0.998 0.743
π -0.148 0.206 0.237 -0.16 0.171 0.0372
R 3.82 0.689 0.892 3.85 0.562 0.865

Note. τ , π, and R are expressed in percentage points.

Uribe (2001a) are identical. The top and middle panels of table 3 shows that the quantitative
results obtained using the exact numerical solution and a log-linear approximation are remarkably
close. The most noticeable differences concerns the unconditional expectation of the inflation rate
and the nominal interest rate as well as the standard deviation of inflation. As expected, under the
log-linear approximation the sum of the mean of inflation and the nominal interest rate are much
closer to the real interest rate that prevails in the nonstochastic steady state than under the exact
solution. In addition, the log-linear approximation seems to underpredict the optimal volatility of
inflation somewhat.

Here we make an effort to gauge the accuracy of such approximation by comparing it to results
based on a log-quadratic approximation. The details of the quadratic approximation technique are
described in a technical appendix to this paper (Schmitt-Grohé and Uribe, 2001b). The results
shown in the bottom panel of table 3 suggest that the log-linear and log-quadratic approximation
deliver similar quantitative results. In particular the dramatic decline in inflation volatility vis-a-vis
the flexible-price economy also arises under the higher-order approximation.

We close our discussion of numerical accuracy by pointing out that in both the flexible- and
sticky-price economies the first-order approximation to the Ramsey allocation features a unit root.
As a result, the local approximation techniques employed here become more inaccurate the longer
is the simulated time series used to compute sample moments. The reason is that in the long run
the log-linearized equilibrium system is bound to wander far away from the point around which
the approximation is taken. We choose to restrict attention to time series of length 100 years
because for this sample size the log-linear model of the flexible-price economy performs well in
comparison to the exact solution. The need to keep the length of the time series relatively short
also applies when a log-quadratic approximation is used. If the system deviates far from the point
of approximation, then the quadratic terms might introduce large errors. These discrepancies can
render the quadratic approximation even more imprecise than the lower-order one. The quadratic
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approximation is guaranteed to perform better than the linear one only if the system’s dynamics
are close enough to the point around which the model is approximated.

5 Near Random Walk Property of Taxes and Public Debt under
Sticky Prices

Lucas and Stokey (1983) show that under state contingent government debt tax rates and public
debt inherit the stochastic process of the underlying exogenous shocks. This, implies, for example,
that if the shocks driving business cycles are serially uncorrelated, so are bonds and tax rates. The
work of Barro (1979) and more recently Marcet, Sargent, and Seppala (2000) suggests that the
Lucas and Stokey result hinges on the assumption that the government can issue state-contingent
debt. These authors show that independently of the assumed process for the shocks generating
aggregate fluctuations, tax rates and public debt exhibit near random walk behavior. It is well-
known from the work of Chari, Christiano, and Kehoe (1995) that the Ramsey allocation of a
flexible price economy with nominally non-state-contingent debt behaves like one with real state-
contingent debt. This is because state-contingent variations in prices effectively turn nominally
risk-free debt into real state-contingent debt.

In this section we investigate the extent to which the introduction of nominal rigidities brings
the Ramsey allocation closer to the one arising in an economy without real state contingent debt. In
other words, we wish to find out whether the Barro-Marcet-Sargent-Seppala result can be obtained,
not by ruling out complete markets for real public debt, but instead by introducing sticky prices
in an economy in which the government issues only non-state-contingent nominal debt.

To this end, we consider the response of the flexible- and sticky-price economies under optimal
fiscal and monetary policy to a serially uncorrelated government purchases shock. The result is
displayed in figure 3. The response of the flexible price economy is shown with a dashed line and
the response of the sticky price economy with a solid line. Government purchases are assumed
to increase by 3 percent (one standard deviation) in period 1. Under flexible prices and perfect
competition (the Chari, et al. economy), taxes and bonds, like the shock itself, return after one
period to their pre-shock values. By contrast, under sticky prices both variables are permanently
affected by the shock. Specifically, when prices are sticky, bonds and taxes jump up on impact and
then converge to values above their pre-shock levels. The difference in behavior under the two model
specifications can be explained entirely by the behavior of the price level. Under flexible prices,
the Ramsey planner inflates away part of the real value of outstanding nominal debt, bringing real
public debt to its pre-shock level in just one period. Under sticky prices, the government finds it
optimal not to increase the price level much. This is because price increases are costly. Instead, the
planner finances the increase in government spending partly by increasing public debt and partly by
increasing taxes. In order to avoid a large distortion at the time of the shock, the planner smoothes
the tax increase over time. As a consequence, the stock of public debt displays a persistent increase.

Thus, our sticky price model appears to replicate the near random walk behavior of bonds
and tax rates found under the Ramsey allocation in real models without state-contingent debt, the
Barro-Marcet-Sargent-Seppala result. Indeed, the Barro-Marcet-Sargent-Seppala result obtains not
only under the baseline calibration of the degree of price stickiness (i.e., θ = 17.5/4, or firms change
prices once every 9 months), but for a minimal degree of nominal rigidities. Specifically, if we
reduce θ by a factor of 10, bonds and tax rates maintain their near-random-walk behavior. This
result is consistent with figure 1, which documents that a small amount of price rigidity suffices to
bring the volatility of inflation close to zero.
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Figure 3: Impulse response to an iid government purchases shock
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6 The Role of Market Incompleteness

In a recent paper, Correia et al. (2001) show that sticky prices are irrelevant for the real allocation
under the Ramsey policy. In their model price stickiness takes the form of prices being set one period
in advance, the demand for money stems from a cash-in-advance constraint, and the government
issues a complete array of contingent claims. The results of Correia et al. might at first seem at
odds with those presented in previous sections of this paper. For we show that under sticky prices
consumption and hours behave quite differently than under flexible prices. In particular, we find
that in the sticky-price model these two variables display near-random-walk dynamics, whereas
under flexible prices they inherit the stochastic process of the exogenous shocks.

In this section we reconcile these seemingly contradictory results. We show that what leads to
the difference in results is neither the assumed source of nominal rigidities nor the way in which
the demand for money is motivated. Rather, what drives the difference in results is the assumed
structure of government-issued assets. The following proposition presents this result formally. It
shows that under complete contingent claims markets the real allocation implied by the Ramsey
problem in our economy is identical under sticky and flexible prices.

Proposition 3 (Irrelevance of price stickiness with state-contingent government debt) Suppose
that α2 = 0 and that in any competitive equilibrium limj→∞Etβ

jλt+jπt+j(πt+j − 1) = 0. Then if
the government can issue state-contingent nominal debt, the real allocation {ct, ht, vt} is the same
under sticky prices (θ > 0) as under flexible prices (θ = 0).

Proof: See the appendix.

The assumptions under which the irrelevance of price stickiness under complete markets is
proved are that sticky prices involve no direct resource costs (α2 = 0) and that the equilibrium
inflation rate and marginal utility of wealth do not grow at a rate greater than the discount factor.
The assumption that α2 must be zero is obviously necessary. One can show that if α2 is greater
than zero, then under complete markets the Ramsey constraints take the form of a feasibility
equation like (22) and a single intertemporal implementability constraint in ct, vt, ht, and πt. Our
conjecture is that in this case, while the real allocation will differ from the one arising under full
price flexibility, it will be similar to it in the sense that real variables will not display near random
walk behavior.

7 Interest-Rate Feedback Rules

In this section we address the question of whether the time series arising from the Ramsey allocation
imply a relation between the nominal interest rate, inflation, and output consistent with available
estimates of such relationship for U.S. data. In recent years there has been a revival of empirical
and theoretical research aimed at understanding the macroeconomic consequences of monetary
policy regimes that take the form of interest-rate feedback rules. One driving force of this renewed
interest can be found in empirical studies showing that in the past two decades monetary policy
in the United States is well described as following such a rule. In particular, an influential paper
by Taylor (1993) characterizes the Federal Reserve as following a simple rule whereby the federal
funds rate is set as a linear function of inflation and the output gap with coefficients of 1.5 and
0.5, respectively. Taylor emphasizes the stabilizing role of an inflation coefficient greater than
unity, which loosely speaking implies that the central bank raises real interest rates in response
to increases in the rate of inflation. After his seminal paper, interest-rate feedback rules with
this feature have become known as Taylor rules. Taylor rules have also been shown to represent
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an adequate description of monetary policy in other industrialized economies (see, for example,
Clarida, Gaĺı, and Gertler, 1998).

To see whether the nominal interest rate process associated with the Ramsey allocation can
be well represented by a linear combination of inflation and output, we estimate the following
regression using artificial time series from the sticky-price model.

Rt = β0 + β1πt + β2yt + ut.

Here the nominal interest rate, Rt, and inflation, πt, are measured in percent per year, and output,
yt, is measured as percent deviation from its mean value. To generate time series for Rt, πt,
and yt, we draw artificial time series of size 100 for the two shocks driving business cycles in our
model, government consumption and productivity shocks. We use these realizations to compute
the implied time series of the endogenous variables of interest using the baseline calibration of the
sticky-price model. We then proceed to estimate the above equation. We repeat this procedure
500 times and take the median of the estimated regression coefficients. The OLS estimate of the
interest rate feedback rule is

Rt = 0.04 − 0.14πt − 0.16 yt + ut; R2 = 0.92.

Clearly, an interest rate feedback rule fits quite well the optimal interest rate process. The R2

coefficient of the regression is above 90 percent. However, the estimated interest-rate feedback rule
does not resemble a Taylor rule. First, the coefficient on inflation is less than unity, and indeed
insignificantly different from zero with a negative point estimate. Second, the output coefficient is
negative. The results are essentially unchanged if one estimates the feedback rule by instrumental
variables using lagged values of π, y, and R as instruments. Thus, an econometrician working with
a data sampled from the Ramsey economy would conclude that monetary policy is passive, in the
sense that the interest rate does not seem to react to changes in the rate of inflation.

The results are also insensitive to the introduction of a smoothing term à la Sack (1998) in the
above interest-rate rule. Specifically, adding the nominal interest rate with one lag to the set of
explanatory variables yields

Rt = 0.03 + 0.15πt − 0.11 yt + 0.34Rt−1 + ut; R2 = 0.96.

One issue that has attracted the attention of both empirical and theoretical studies on interest-
rate feedback rules is whether the central bank looks at contemporaneous or past measures of
inflation. It turns out that in our Ramsey economy, a backward-looking rule also features an
inflation coefficient significantly less than one. Specifically, replacing πt with πt−1 in our original
specification of the interest rate rule we obtain

Rt = 0.04 + 0.21πt−1 − 0.16 yt + ut; R2 = 0.92.

We close this section by pointing out that the results should not be interpreted as suggesting
that optimal monetary policy can be implemented by passive interest-rate feedback rules like the
ones estimated above. In order to arrive at such conclusion, one would have, in addition, to identify
the underlying fiscal regime. Then, one would have to check whether in a competitive equilibrium
where the government follows the resulting monetary/fiscal regime, welfare of the representative
household is close enough to that obtained under the Ramsey allocation. An obvious problem
that one might encounter in performing this exercise is that the competitive equilibrium fails to be
unique at the estimated policy regime. This is a matter that deserves further investigation.
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8 Conclusion

The focus of this paper is the implications of price stickiness for the optimal degree of price volatility
in economies where the government does not have access to lump-sum taxation and public debt is
state-non-contingent. The central finding is that for plausible calibrations of the degree of nominal
rigidity the volatility of inflation associated with the Ramsey allocation is near zero. Indeed, a very
small amount of price stickiness suffices to make the optimal inflation volatility many times lower
than the one arising under full price flexibility.

One can interpret this result as indicating that in the U.S. economy the degree of sluggish price
adjustment is high enough to induce a benevolent government to refrain from generating surprises
in the price level as a way to tax nominal wealth in response to adverse shocks. (This is the primary
role of inflation under flexible prices.) Instead, the government concentrates on keeping a relatively
stable path for prices.

An important assumption driving the result that significantly less inflation volatility is desirable
in the presence of sticky prices is that government debt is state-noncontingent. When government
debt is state contingent, the presence of sticky prices may introduce no difference in the in the
Ramsey real allocation (see also Correia et al., 2001). The reason for this result is that, as shown
in Lucas and Stokey (1983), when government debt is state contingent and prices are fully flexible,
the Ramsey allocation does not pin down the price level uniquely. In this case there is an infinite
number of price level processes (and thus of money supply processes) that can be supported as
Ramsey outcomes. Loosely speaking, the introduction of price stickiness simply “uses this degree
of freedom” without altering other aspects of the Ramsey solution. This is not possible under
state-noncontingent debt. For in this case the price level is uniquely determined in the flexible-
price economy. Thus, the presence of nominal rigidities modifies the optimal real allocation in
fundamental ways.
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Appendix

Proof of Proposition 1

We first show that plans {ct, ht, vt, πt, λt, bt,mct} satisfying (13)-(23) also satisfy (24) (25), (26)
vt ≥ v, and v2

t s
′(vt) < 1. It follows from the definition of ρ(vt) and (15) that ρ(vt) = Rt. It is

easy to see then that (15), (17), and assumption 1 together imply that vt ≥ v and v2
t s

′(vt) < 1.
Taking expectations conditional on information available at time t of (16), using the definition of
ρ(vt), and combining it with (17) one obtains (24). To obtain (25) divide (19) by Pt. Solve (14)
for τt and use the resulting expression to eliminate τt from (19). Use (23) to replace Mt/Pt and
let bt = Bt/Pt. Finally, multiply and divide (20) by Pt+j and replace qt+j+1 with (21) and (16).
Multiply by λt/(qtPt) to get(26).

Next, we must show that for any plan {ct, ht, vt, πt, λt, bt,mct} satisfying (13), (18), (22), (24)
(25), (26) and vt ≥ v, and v2

t s
′(vt) < 1 one can construct plans {Mt, Bt, qt, rt+1, τt, Rt} so that

(14)-(17), (19)-(21), and (23) hold at all dates and under all contingencies. Set τt such that (14)
holds. Set Rt = ρ(vt). It follows from the definition of ρ(vt) that (15) holds. Assumption 1, the
constraints vt ≥ v and v2

t s
′(vt) < 1 ensure that Rt ≥ 1. Let rt+1 be given by (16). Taking expected

value and comparing the resulting expression to (24) shows that (17) is satisfied. With rt in hand,
let qt be given by (21). Using Bt = btPt and (23) to write Mt/Pt = ct/vt, and the definition of
τt we recover (19). Let Pt = πtPt−1 and recall that P−1 is given. Multiply (26) by qtPt/λt. Note
that qtPtλtβ

jλt+j+1/πt+j+1 using (16) and (21) can be expressed as qt+j+1Pt+j . Finally, replace
ct+j/vt+j with (23) to obtain (20).

Proof of Proposition 2

We first show that plans {ct, ht, vt, πt, bt,mct} satisfying (13)-(23) also satisfy (27)-(29), vt ≥ v,
and v2

t s
′(vt) < 1. It follows from the definition of ρ(vt) and (15) that ρ(vt) = Rt. It is easy to see

then that (15), (17), and assumption 1 together imply that vt ≥ v and v2
t s

′(vt) < 1. To obtain
(27) divide (18) by λt and then use (13) to eliminate λt. Next divide (19) by Pt. Solve (14) for
τt and use the resulting expression to eliminate τt from (19). Use (23) to replace Mt/Pt and let
bt = Bt/Pt. This yields (28). For any t, j ≥ 0, (19) can be written as

Mt+j + Bt+j + τt+jPt+jzt+jmct+jht+j = Rt+j−1Bt+j−1 + Mt+j−1 + Pt+jgt+j

Let Wt+j+1 = Rt+jBt+j + Mt+j and note that Wt+j+1 is in the information set of time t + j. Use
this expression to eliminate Bt+j from (19) and multiply by qt+j to obtain

qt+jMt+j(1 −R−1
t+j) + qt+jEt+jrt+j+1Wt+j+1 − qt+jWt+j = qt+j[Pt+jgt+j − τt+jPt+jmct+jzt+jht+j ],

where we use (17) to write Rt+j in terms of rt+j+1. Take expectations conditional on information
available at time t and sum for j = 0 to j = J

Et

J∑
j=0

[
qt+jMt+j(1 −R−1

t+j)− qt+j(Pt+jgt+j − τt+jPt+jmct+jzt+jht+j)
]
= −Etqt+J+1Wt+J+1 + qtWt.

Take limits for J → ∞. By (20) the limit of the right hand side is well defined and equal to qtWt.
Thus, the limit of the left-hand side exists. This yields:

Et

∞∑
j=0

[
qt+jMt+j(1 −R−1

t+j) − qt+j(Pt+jgt+j − τt+jPt+jmct+jzt+jht+j)
]
= qtWt
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By (16) we have that Pt+jqt+j/qt = βjλt+jPt/λt. Use (13) to eliminate λt+j , (23) to eliminate
Mt+j/Pt+j to obtain

Et

∞∑
j=0

βj Uc(ct+j , ht+j)
γ(vt+j)

[
ct+j

vt+j
(1 −R−1

t+j)− (gt+j − τt+jmct+jzt+jht+j)
]

=
Wt

pt

Uc(ct, ht)
γ(vt)

Solve (14) for τt+j . Then τt+jmct+jzt+jht+j = mct+jzt+jht+j+γ(vt+j)/Uc(ct+j , ht+j)Uh(ct+j , ht+j)ht+j .
Use this in the above expression and replace gt+j with (22). This yields

Et

∞∑
j=0

βj


Uc(ct+j , ht+j)ct+j

1 + α1s(vt+j) +
1−R−1

t+j

vt+j

γ(vt+j)
+ Uh(ct+j , ht+j)ht+j+

zt+jht+jUc(ct+j , ht+j)
γ(vt+j)

(mct+j − 1) + α2
θ

2
(πt+j − 1)2

Uc(ct+j , ht+j)
γ(vt+j)

]
=

Wt

Pt

Uc(ct, ht)
γ(vt)

Finally, use (15) to replace (1 − R−1
t+j)/vt+j with vt+js

′(vt+j) and use the definitions of φ(vt)
and Wt to get (29).

We next show that that plans {ct, ht, vt, πt, bt,mct} satisfying (22), (27)-(29), and vt ≥ v, and
v2
t s

′(vt) < 1 also satisfy (13)-(23). Construct λt so that it satisfies (13). Let τt be given by (14). Let
Rt be given by (15). Let rt+1 be given by (16). Let qt be given by (21) and Mt/Pt by (23). By the
same arguments given in the proof of Proposition 2 on can show that (18) and (19) then hold. Thus,
what remains to be shown is that (17) and (20) are satisfied. Note that Rt = ρ(vt) = 1/[1−v2

t s
′(vt)],

then the restriction vt ≥ v and v2
t s

′(vt) < 1 and assumption 1 imply that Rt ≥ 1. Write (29) as

Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht + ztht(mct − 1)
Uc(ct, ht)
γ(vt)

+ α2
θ

2
(πt − 1)2

Uc(ct, ht)
γ(vt)

+Et

∞∑
j=1

βj

{
Uc(ct+j , ht+j)ct+jφ(vt+j) + Uh(ct+j , ht+j)ht+j + zt+jht+j(mct+j − 1)

Uc(ct+j , ht+j)
γ(vt+j)

(31)

+α2
θ

2
(πt+j − 1)2

Uc(ct+j , ht+j)
γ(vt+j)

}
=

Uc(ct, ht)
γ(vt)

[
ct−1/vt−1 + ρ(vt−1)bt−1

πt

]

Make a change of index h = j − 1.

Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht + ztht(mct − 1)
Uc(ct, ht)
γ(vt)

+ α2
θ

2
(πt − 1)2

Uc(ct, ht)
γ(vt)

+βEt

∞∑
h=0

βh {Uc(ct+h+1, ht+h+1)ct+h+1φ(vt+h+1) + Uh(ct+h+1, ht+h+1)ht+h+1

+zt+h+1ht+h+1(mct+h+1 − 1)
Uc(ct+h+1, ht+h+1)

γ(vt+h+1)
(32)

+α2
θ

2
(πt+h+1 − 1)2

Uc(ct+h+1, ht+h+1)
γ(vt+h+1)

}
=

Uc(ct, ht)
γ(vt)

[
ct−1/vt−1 + ρ(vt−1)bt−1

πt

]

Using (29) this expression can be simplified to read:

Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht + ztht(mct − 1)
Uc(ct, ht)
γ(vt)

+ α2
θ

2
(πt − 1)2

Uc(ct, ht)
γ(vt)

+βEt

{
Uc(ct+1, ht+1)

γ(vt+1)

[
ct/vt + ρ(vt)bt

πt+1

]}
=

Uc(ct, ht)
γ(vt)

[
ct−1/vt−1 + ρ(vt−1)bt−1

πt

]
(33)
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Take expectations of (16) and use the resulting expression to eliminate βEt

{
Uc(ct+1,ht+1)
γ(vt+1)πt+1

}
. This

yields

Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht + ztht(mct − 1)
Uc(ct, ht)
γ(vt)

+ α2
θ

2
(πt − 1)2

Uc(ct, ht)
γ(vt)

+Etrt+1
Uc(ct, ht)
γ(vt)

[ct/vt + ρ(vt)bt] =
Uc(ct, ht)
γ(vt)

[
ct−1/vt−1 + ρ(vt−1)bt−1

πt

]
(34)

Multiply by Ptγ(vt)/Uc(ct, ht) and replace α2θ/2(πt − 1)2 with (22). Combine (15) with (23) to
express , ct/vt(v2

t s
′(vt)) as Mt/Pt(1−R−1

t ). Finally, use (14) to replace Uh/Ucγ(vt)ht. The resulting
expression is

Mt(1 −R−1
t ) + τPtmctztht − Ptgt + Etrt+1(Mt + RtBt) = Mt−1 + Rt−1Bt−1 (35)

Subtracting (19) from this expression it follows that (17) must hold. Finally, we must show that
(20) holds. Multiply (19) in period t + j by qt+j and take information conditional on information
available at time t to get

Et[qt+jMt+j(1 − rt+j+1) + qt+j+1Wt+j+1] = Et[qt+jWt+j + qt+j(Pt+jgt+j − τt+jPt+jwt+jht+j)]

Now sum for j = 0 to j = J .

Et

J∑
j=0

[qt+jMt+j(1 − rt+j+1) − qt+j(Pt+jgt+j − τt+jPt+jwt+jht+j)] = −Etqt+J+1Wt+J+1 + qtWt

Divide by qtPt

Et

J∑
j=0

qt+jPt+j

qtPt
[(ct+j/vt+j)(1 − rt+j+1)− (gt+j − τt+jwt+jht+j)] = −Etqt+J+1Wt+J+1/(qtPt) +

Wt

Pt

It follows from (29) that the limit of the left-hand side of the above expression as J → ∞ is Wt/Pt.
Hence the limit of the right-hand side is well defined. It then follows that

lim
J→∞

Etqt+J+1Wt+J+1 = 0

for every date t. Using the definition of Wt, one obtains immediately (20).

The Lagrangian of the Ramsey Problem

L = E0

∞∑
t=0

βt

{
U(ct, ht) + λf

t

[
ztht − [1 + α1s(vt)]ct − gt − α2

θ

2
(πt − 1)2

]
(36)

+λb
t

[
λt − βρ(vt)Et

λt+1

πt+1

]

+λs
t

[
ct

vt
+ bt +

(
mctzt +

Uh(ct, ht)γ(vt)
Uc(ct, ht)

)
ht − ρ(vt−1)bt−1

πt
− ct−1

vt−1πt
− gt

]

+λp
t

[
βEt

λt+1

λt
πt+1(πt+1 − 1) +

ηztht

θ

(
1 + η

η
−mct

)
− πt(πt − 1)

]
+ λc

t [Uc(ct, ht) − λtγ(vt)]}

25



First-Order Conditions of the Ramsey problem for t ≥ 1

ztht = [1 + α1s(vt)]ct + gt + α2
θ

2
(πt − 1)2 (37)

λt = βρ(vt)Et
λt+1

πt+1
(38)

ct

vt
+ bt +

(
mctzt +

Uh(ct, ht)γ(vt)
Uc(ct, ht)

)
ht =

ρ(vt−1)bt−1

πt
+

ct−1

vt−1πt
+ gt (39)

πt(πt − 1) = βEt
λt+1

λt
πt+1(πt+1 − 1) +

ηztht

θ

(
1 + η

η
−mct

)
(40)

Uc(ct, ht) = λtγ(vt) (41)

Uc(t) − λf
t [1 + α1s(vt)] +

λs
t

vt
+ λs

thtγ(vt)Mc(t)− βEt
λs

t+1

vtπt+1
+ λc

tUcc(t) = 0 (42)

Uh(t) + λf
t zt + λs

t (mctzt + Mtγ(vt)) + λs
thtMh(t)γ(vt) +

λp
tηzt

θ

(
1 + η

η
−mct

)
+ λc

tUch(t) = 0

(43)

λb
t −

ρ(vt−1)λb
t−1

πt
− β

λp
t

λ2
t

Etλt+1πt+1(πt+1 − 1) +
λp

t−1

λt−1
πt(πt − 1) − λc

tγ(vt) = 0 (44)

−λf
t α1s

′(vt)ct − βλb
tρ

′(vt)Et
λt+1

πt+1
− λs

tct

v2
t

+ λs
tMthtγ

′(vt) − βbtρ
′(vt)Et

λs
t+1

πt+1
+ β

ct

v2
t

Et
λs

t+1

πt+1
− λc

tλtγ
′(vt) = 0

(45)

−λf
t α2θ(πt − 1) + λb

t−1ρ(vt−1)
λt

π2
t

+ λs
t

ρ(vt−1)bt−1 + ct−1/vt−1

π2
t

+ λp
t−1

λt

λt−1
(2πt − 1) − λp

t (2πt − 1) = 0

(46)

λs
t = βρ(vt)Et

λs
t+1

πt+1
(47)

λs
t =

η

θ
λp

t (48)

lim
j→∞

Et

{
βj λt+j+1

πt+j+1

(
ρ(vt+j)bt+j +

ct+j

vt+j

)}
= 0 (49)
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First-Order Conditions of the Ramsey Problem at time 0

ztht = [1 + α1s(vt)]ct + gt + α2
θ

2
(πt − 1)2 (50)

λt = βρ(vt)Et
λt+1

πt+1
(51)

ct

vt
+ bt +

(
mctzt +

Uh(ct, ht)γ(vt)
Uc(ct, ht)

)
ht =

ρ(vt−1)bt−1

πt
+

ct−1

vt−1πt
+ gt (52)

πt(πt − 1) = βEt
λt+1

λt
πt+1(πt+1 − 1) +

ηztht

θ

(
1 + η

η
−mct

)
(53)

Uc(ct, ht) = λtγ(vt) (54)

Uc(t) − λf
t [1 + α1s(vt)] +

λs
t

vt
+ λs

thtγ(vt)Mc(t)− βEt
λs

t+1

vtπt+1
+ λc

tUcc(t) = 0 (55)

Uh(t) + λf
t zt + λs

t (mctzt + Mtγ(vt)) + λs
thtMh(t)γ(vt) +

λp
tηzt

θ

(
1 + η

η
−mct

)
+ λc

tUch(t) = 0

(56)

λb
t − β

λp
t

λ2
t

Etλt+1πt+1(πt+1 − 1) − λc
tγ(vt) = 0 (57)

−λf
t α1s

′(vt)ct − βλb
tρ

′(vt)Et
λt+1

πt+1
− λs

tct

v2
t

+ λs
tMthtγ

′(vt) − βbtρ
′(vt)Et

λs
t+1

πt+1
+ β

ct

v2
t

Et
λs

t+1

πt+1
− λc

tλtγ
′(vt) = 0

(58)

λs
t = βρ(vt)Et

λs
t+1

πt+1
(59)

λs
t =

η

θ
λp

t (60)

lim
j→∞

Et

{
βj λt+j+1

πt+j+1

(
ρ(vt+j)bt+j +

ct+j

vt+j

)}
= 0 (61)
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Steady State of the Ramsey Economy

Assume that bt = b−1 for all t and that xt = xt−1 = xt+1 = x for all endogenous and exogenous
variables. Also, z = 1. Note that the steady-state value of the marginal cost mct = wt/zt is simply
w.

h = [1 + α1s(v)]c + g + α2
θ

2
(π − 1)2 (62)

1 = βρ(v)
1
π

(63)

c

v
+ b+

(
w +

Uh(c, h)γ(v)
Uc(c, h)

)
h =

ρ(v)b
π

+
c

vπ
+ g (64)

π(π − 1) =
ηh

θ(1− β)

(
1 + η

η
− w

)
(65)

Uc(c, h) = λγ(v) (66)

Uc − λf [1 + α1s(v)] +
λs

v
+ λshγ(v)Mc − β

λs

vπ
+ λcUcc = 0 (67)

Uh + λf + λs(w + Mγ(v)) + λshMhγ(v) +
λpη

θ

(
1 + η

η
− w

)
+ λcUch = 0 (68)

λb − ρ(v)λb

π
− β

λp

λ2
λπ(π − 1) +

λp

λ
π(π − 1) − λcγ(v) = 0 (69)

−λfα1s
′(v)c − βλbρ′(v)

λ

π
− λsc

v2
+ λsMhγ′(v) − βbρ′(v)

λs

π
+ β

c

v2

λs

π
− λcλγ′(v) = 0 (70)

−λfα2θ(π − 1) + λbρ(v)
λ

π2
+ λs ρ(v)b + c/v

π2
+ λp(2π − 1) − λp(2π − 1) = 0 (71)

π = βρ(v) (72)

λs =
η

θ
λp (73)
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Proof of Proposition 3

We begin by defining a competitive equilibrium in the complete markets sticky price economy. A
competitive equilibrium is a set of plans {ct, ht, Mt, vt, mct, λt, Pt, qt, rt+1} satisfying the following
conditions:

Uc(ct, ht) = λt[1 + s(vt) + vts
′(vt)] (74)

−Uh(ct, ht)
Uc(ct, ht)

=
(1 − τt)ztmct

1 + s(vt) + vts′(vt)
(75)

v2
t s

′(vt) = 1− Etrt+1 ≥ 0 (76)

λtrt+1 = βλt+1
Pt

Pt+1
(77)

λtπt(πt − 1) = βEtλt+1πt+1(πt+1 − 1) +
λtηztht

θ

[
1 + η

η
−mct

]
(78)

Mt + Etrt+1Dt+1 + τtPtztmctht = Dt + Mt−1 + Ptgt (79)

lim
j→∞

Etqt+j+1(Dt+j+1 + Mt+j) = 0 (80)

qt = r1r2 . . . rt with q0 = 1 (81)

[1 + α1s(vt)]ct + gt = ztht (82)

vt = Ptct/Mt, (83)

given policies {Dt, τt}, exogenous processes {zt, gt}, and the initial condition D0 + M−1 > 0.

Claim 1 Plans {ct, ht, vt}∞t=0 satisfying

ztht = [1 + αs(vt)]ct + gt, (84)

E0

∞∑
t=0

βt

{
Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht +

Uc(ct, ht)
γ(vt)

ztht

η

}
=

Uc(c0, h0)
γ(v0)

(
D0 + M−1

P0
+

θ

η
π0(π0 − 1)

)
,

(85)

vt ≥ v and v2
t s

′(vt) < 1,

given D0 + M−1 and P0, where

γ(vt) ≡ 1 + s(vt) + vts
′(vt)

and
φ(vt) ≡ [1 + α1s(vt) + vts

′(vt)]/γ(vt),

are the same as those satisfying (74)- (83).
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Proof: We first show that plans {ct, ht, vt} satisfying (74)-(83) also satisfy (84), (85), vt ≥ v, and
v2
t s

′(vt) < 1.
Obviously, (82) implies (84). Furthermore, (76) and the fact that rt+1 > 0 because λt, Pt > 0

in the competitive equilibrium imply that v2
t s

′(vt) < 1. Assumption 1 together with (76) implies
that vt ≥ v. Let Wt+1 = Dt+1 +Mt and note that Wt+1 is in the information set of time t+1. Use
this expression to eliminate Dt from (79) and multiply by qt to obtain

qtMt(1 − Etrt+1) + qtEtrt+1Wt+1 − qtWt = qt[Ptgt − τtPtztmctht].

Take expectations conditional on information available at time zero and sum for t = 0 to t = T to
obtain

E0

T∑
t=0

[qtMt(1 − Etrr+1)− qt(Ptgt − τtPtztmctht)] = −E0qT+1WT+1 + W0.

In writing this expression, we use the fact that q0 = 1. Take limits for T → ∞. By (80) the limit
of the right hand side is well defined and equal to W0. Thus, the limit of the left-hand side exists.
This yields:

E0

∞∑
t=0

[qtMt(1 − Etrt+1)− qt(Ptgt − τtPtztmctht)] = W0

By (77) we have that Ptqt = βtλtP0/λ0. Use (74) to eliminate λt, (83) to eliminate Mt/Pt, and
(76) to replace (1 − Etrt+1) to obtain

E0

∞∑
t=0

βtUc(ct, ht)
γ(vt)

[
ctvts

′(vt)− (gt − τtztmctht)
]
=

W0

P0

Uc(c0, h0)
γ(v0)

Solve (14) for τt and (78) for mct. Then τtztmctht = (1 + η)/ηztht + γ(vt)/Uc(ct, ht)Uh(ct, ht)ht +
θ

ηλt
[βEtλt+1πt+1(πt+1 − 1) − λtπt(πt − 1)]. Use this in the above expression and replace gt with

(82). This yields

E0

∞∑
t=0

βt

[
Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht +

ztht

η

Uc(ct, ht)
γ(vt)

]

+
θ

η

[
lim

j→∞
E0β

j+1λj+1πj+1(πj+1) − Uc(c0, h0)
γ(v0)

π0(π0 − 1)
]

=
W0

P0

Uc(c0, h0)
γ(v0)

,

where we used the definitions φ(vt) = 1+αs(vt)+vts′(vt)
γ(vt)

. If we now make the additional assumption
that in any competitive equilibrium

lim
j→∞

E0β
j+1λj+1πj+1(πj+1) = 0

and use W0 = D0 + M−1, then we obtain (85).
Now we show that plans {ct, ht, vt} that satisfy vt ≥ v, v2

t s
′(vt) < 1, (84), and (85) also satisfy

(74)-(83) at all dates and all contingencies.
Clearly, (84) implies (82). Given a plan {ct, ht, vt} proceed as follows. Use (76) to construct

a process for rt+1. Note that given assumption 1, the constraints vt ≥ v and v2
t s

′(vt) < 1 ensure
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that 1 − Etrt+1 ≥ 0 and that Etrt+1 > 0. Let λt be given by (74) and Pt+1 be given by (77). In
this way, we obtain for a given choice of the process for rt+1 a unique process for πt. Hence we can
use (78) to construct a process for mct. Of course, only if the resulting marginal cost process is
positive can the plan {ct, ht, vt} be supported as a competitive equilibrium, that is, we would like
to ensure that mct > 0. We assume that there exists at least one choice of the rt+1 process such
that mct > 0 all dates all contingencies. Then let τt be given by (75) and Mt by (83). Construct
Dt+1 (one contingent claim pay-off for each state of the world in t + 1) as the solution to:

Et+1

∞∑
j=0

βj [Uc(ct+j+1, ht+j+1)ct+j+1φ(vt+j+1) + Uh(ct+j+1, ht+j+1)ht+j+1

+
zt+j+1ht+j+1

η

Uc(ct+j+1, ht+j+1)
γ(vt+j+1)

]
=
(
Uc(ct+1, ht+1)

γ(vt+1)

)(
Dt+1 + Mt

Pt+1
+

θ

η
πt+1(πt+1 − 1)

)
.(86)

We wish to show that if Dt is defined in this way, then(79), (80) and (81) also hold. Use the
definition of Dt and (85) to get for any t ≥ 0:

Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht +
ztht

η

Uc(ct, ht)
γ(vt)

+

Et

∞∑
j=1

βj

[
Uc(ct+j , ht+j)ct+jφ(vt+j) + Uh(ct+j , ht+j)ht+j +

zt+jht+j

η

Uc(ct+j , ht+j)
γ(vt+j)

]

=
Uc(ct, ht)
γ(vt)

(
Dt +Mt−1

Pt
+

θ

η
πt(πt − 1)

)

Make a change of index. Let k = j − 1 and use the definition of Dt+1. Then the above expression
can be written as

Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht +
ztht

η

Uc(ct, ht)
γ(vt)

+

βEt

[
Uc(ct+1, ht+1)

γ(vt+1)

(
Dt+1 + Mt

Pt+1
+

θ

η
πt+1(πt+1 − 1)

)]
=

Uc(ct, ht)
γ(vt)

(
Dt + Mt−1

Pt
+

θ

η
πt(πt − 1)

)

Multiplying by γ(vt)Pt/Uc(ct, ht) yields

Ptct(1 + α1s(vt) + vts
′v(t)) + Uh(ct, ht)/Uc(ct, ht)γ(vt)Ptht +

Ptztht

η

+βEt

[
Pt

Uc(ct+1, ht+1)
γ(vt+1)

γ(vt)
Uc(ct, ht)

(
Dt+1 + Mt

Pt+1
+

θ

η
πt+1(πt+1 − 1)

)]
=
(
Dt + Mt−1 + Pt

θ

η
πt(πt − 1)

)

Then use (74) and (77) to simplify the expression to

Ptct(1 + α1s(vt) + vts
′v(t)) + Uh(ct, ht)/Uc(ct, ht)γ(vt)Ptht +

Ptztht

η

+Et

[
rt+1(Dt+1 + Mt) + β

θ

η

Ptλt+1

λt
πt+1(πt+1 − 1)

]
=
(
Dt + Mt−1 + Pt

θ

η
πt(πt − 1)

)

Using (75), (78), (76), and (82) this expression can be written as:

τtztmctPtht + Etrt+1Dt+1 + Mt = Dt + Mt−1 + Ptgt,

which is (79).
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Finally, we must show that (80) holds. Let qt be given by (81). We just established that (79)
holds at every date and under every contingency. Multiply (79) in period t + j by qt+j and take
expectations conditional on information available at time t to get

Et[qt+jMt+j(1 − rt+j+1) + qt+j+1Wt+j+1] = Et[qt+jWt+j + qt+j(Pt+jgt+j − τt+jPt+jzt+jmct+jht+j)]

Now sum for j = 0 to j = J .

Et

J∑
j=0

[qt+jMt+j(1 − rt+j+1) − qt+j(Pt+jgt+j − τt+jPt+jzt+jmct+jht+j)] = −Etqt+J+1Wt+J+1 + qtWt

Divide by qtPt

Et

J∑
j=0

qt+jPt+j

qtPt
[(ct+j/vt+j)(1 − rt+j+1)− (gt+j − τt+jzt+jmct+jht+j)] = −Etqt+J+1Wt+J+1/(qtPt) +

Wt

Pt

Using the definition of Dt given by (86) and the assumption that

lim
J→∞

Etβ
J+1λJ+1πJ+1(πJ+1) = 0

at every date and every contingency, it follows that the limit of the left-hand side of the above
expression as J → ∞ is Wt/Pt. Hence the limit of the right-hand side is well defined. It then
follows that

lim
J→∞

Etqt+J+1Wt+J+1 = 0

for every date t. Using the definition of Wt, one obtains (80).

Finally, Schmitt-Grohé and Uribe (2001a) show that the constraints of the Ramsey problem
under flexible prices are (84),

E0

∞∑
t=0

βt

{
Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht +

Uc(ct, ht)
γ(vt)

ztht

η

}
=

Uc(c0, h0)
γ(v0)

(
D0 + M−1

P0

)
,

vt ≥ v and v2
t s

′(vt) < 1,

.
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