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Since 1998, U.S. commercial banks with significant trading
activities have been required to hold capital against their
defined market risk exposure. Under the “internal models”
approach embodied in the current regulatory guidelines,
the capital charges are a function of banks’own value-at-
risk (VaR) estimates. VaR estimates are simply forecasts of
the maximum portfolio loss that could occur over a given
holding period with a specified confidence level. Clearly,
the accuracy of these VaR estimates is of concern to both
banks and their regulators.

To date, two hypothesis-testing methods for evaluating
VaR estimates have been proposed, namely, the binomial
and the interval forecast methods. For these tests, the null
hypothesis is that the VaR estimates in question exhibit a
specified property that is characteristic of accurate VaR
estimates. As shown in a simulation exercise, these tests
generally have low power and are thus prone to misclas-
sifying inaccurate VaR estimates as “acceptably accurate.”

An alternative evaluation method, based on regulatory
loss functions, is proposed. Magnitude loss functions that
assign quadratic numerical scores when observed portfo-
lio losses exceed VaR estimates are shown to be particularly
useful. Simulation results indicate that the loss function
evaluation method is capable of distinguishing between VaR
estimates generated by accurate and alternative VaR mod-
els. The additional information provided by this method as
well as its flexibility with respect to the specification of the
loss function make a reasonable case for its use in the reg-
ulatory evaluation of VaR estimates.

In August 1996, U.S. bank regulatory agencies adopted the
market risk amendment (MRA) to the Basle Capital Ac-
cord. The MRA, which became effective in 1998, requires
that commercial banks with significant trading activities set
aside capital to cover the market risk exposure in their trad-
ing accounts.1 The market risk capital requirements are
based on the “value-at-risk” (VaR) estimates generated by
the banks’ own risk management models. In general, VaR
models attempt to forecast the time-varying distributions
of portfolio returns, and VaR estimates are simply speci-
fied lower quantiles of these forecasted distributions. In other
words, VaR estimates are forecasts of the maximum port-
folio loss that could occur over a given holding period with
a specified confidence level.

Given the importance of VaR estimates to banks and now
to their regulators, evaluating the accuracy of the models
underlying them is a necessary exercise. According to Hen-
dricks and Hirtle (1997):

The actual benefits to be derived from the VaR esti-
mates depend crucially on the quality and accuracy
of the models on which the estimates are based. To the
extent that these models are inaccurate and misstate
banks’ true risk exposures, then the quality of the in-
formation derived from any public disclosure will be
degraded. More important, inaccurate VaR models or
models that do not produce consistent estimates over
time will undercut the main benefit of a models-based
capital requirement: the closer tie between capital re-
quirements and true risk exposures. Thus, assessment
of the accuracy of these models is a key concern and
challenge for supervisors. (pp. 8–9)

To date, two hypothesis-testing methods for evaluating VaR
estimates have been proposed: the binomial method, the
quantitative standard currently embodied in the MRA, and
the interval forecast method proposed by Christoffersen
(1998).2 For these tests, the null hypothesis is that the VaR

1. Further details on the MRA are provided in Section I below. For com-
plete details on the MRA, see the Federal Register (1996).

2. Note that other methods for evaluating VaR models have been pro-
posed, but they focus on other aspects of the models’ forecasted distri-
butions. For example, Crnkovic and Drachman (1996) focus on the
entire forecasted distribution, and Lopez (1999) focuses on probability
forecasts generated from the forecasted distributions.



estimates in question exhibit a specified property that is
characteristic of accurate VaR estimates. If the null hypoth-
esis is rejected, the VaR estimates do not exhibit the spec-
ified property, and the underlying VaR model can be said
to be “inaccurate.” If the null hypothesis is not rejected,
then the model can be said to be “acceptably accurate.”

For these evaluation methods, as for any hypothesis test,
a key issue is their statistical power, i.e., their ability to re-
ject the null hypothesis when it is actually incorrect. If the
hypothesis tests exhibit low power, then the probability of
misclassifying an inaccurate VaR model as “acceptably ac-
curate” will be high. A simulation exercise based on several
data-generating processes finds the power of these tests to
be quite low, thus limiting their usefulness for evaluating
VaR estimates.

As an alternative to the hypothesis-testing framework, I
propose an evaluation method that uses standard forecast
evaluation techniques; that is, the accuracy of VaR estimates
is gauged by how well they minimize a loss function that
represents the evaluator’s concerns. I consider three loss
functions that represent specific regulatory concerns: (1)
the binomial loss function that assigns a numerical score
of 1 when a VaR estimate is exceeded by its corresponding
portfolio loss, (2) the zone loss function based on the ad-
justments to the multiplication factor used in the MRA, and
(3) the magnitude loss function that assigns a quadratic nu-
merical score when a VaR estimate is exceeded by its cor-
responding portfolio loss. 

Although statistical power is less relevant for this eval-
uation method, the related issues of comparative accuracy
and model misclassification are examined within the con-
text of a simulation exercise. The simulation results indi-
cate that the degree of model misclassification generally
mirrors that of the other methods. However, in certain cases,
it provides additional useful information on the accuracy
of VaR estimates. Of the three loss functions examined, the
magnitude loss function seems to be more capable of dis-
tinguishing between accurate and alternative VaR estimates
because it incorporates additional information—the magni-
tude of the trading losses—into the evaluation. The ability
to use such additional information, as well as the flexibil-
ity with respect to the specification of the loss function,
make a reasonable case for using the loss function method
in the regulatory evaluation of VaR estimates.

Section I describes the current regulatory environment
and the three evaluation methods. Section II presents the
simulation results that indicate the usefulness of the pro-
posed evaluation method, particularly using the magnitude
loss function. Section III presents a detailed example of how
this method can provide additional information useful in
the regulatory evaluation of VaR estimates, and Section IV
concludes.

I. ALTERNATIVE EVALUATION METHODS

VaR models are characterized by their forecasted distribu-
tions of k-period-ahead portfolio returns. To fix notation, let
Yt represent portfolio value at time t in dollar terms, and 
let yt = ln(Yt). The k-period-ahead portfolio return is εt+k =
yt+k – yt. Conditional on the information available at time
t, εt+k is a random variable with distribution ft+k; that is, 
εt+k | Ωt ~ ft+k. Thus, VaR model m is characterized by fmt+k,
its forecast of ft+k.

VaR estimates are the most common type of forecast gen-
erated from VaR models. A VaR estimate is simply a speci-
fied quantile of the forecasted return distribution over a given
holding period. The VaR estimate at time t derived from
model m for a k-period-ahead return, denoted VaRmt(k,α),
is the critical value that corresponds to the lower α per-
cent tail of fmt+k. Thus, VaRmt(k,α) = F -1

mt+k(α /100), where 
F -1

mt+k is the inverse of the cumulative distribution function
corresponding to fmt+k or, equivalently, VaRmt(k,α) is the so-
lution to

Note that a VaR estimate is typically expressed in dollar
terms as the loss between the current portfolio value and
the portfolio value corresponding to it; that is,VaRmt(k,α) is
expressed in dollar terms as VaR$mt(k,α) = Yt(1 – eVaRmt(k,α)).

Current Regulatory Framework

The U.S. capital rules for the market risk exposure of large
commercial banks, effective as of 1998, are explicitly based
on VaR estimates. The rules cover a bank’s total trading ac-
tivity, which is all assets in a bank’s trading account (i.e.,
assets carried at their current market value) as well as all
foreign exchange and commodity positions wherever located
in the bank. Any bank or bank holding company whose to-
tal trading activity accounts for more than 10 percent of its
total assets or is more than $1 billion must hold regulatory
capital against its market risk exposure. The capital charge
is calculated using the so-called “internal models” approach.

Under this approach, capital charges are based on VaR
estimates generated by banks’ internal risk management
models using the standardizing parameters of a ten-day
holding period (k = 10) and 99 percent coverage (α = 1).
In other words, a bank’s market risk capital charge is based
on its own estimate of the potential loss that would not be
exceeded with 1 percent probability over the subsequent
two-week period. The market risk capital that bank m must
hold for time t + 1, denoted MRCmt+1, is set as the larger of
the dollar value of VaRmt(10,1) or a multiple of the average
of the previous 60 VaRmt(10,1) estimates in dollar terms;

fmt+k(x)dx = α
100−∞

VaRmt (k,α )

∫ .
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that is,

where Smt and SRmt are a multiplication factor and an ad-
ditional capital charge for the portfolio’s idiosyncratic credit
risk, respectively. Note that, under the current framework,
Smt ≥ 3.

The Smt multiplier is included in the calculation of
MRCmt+1 for two reasons. First, as suggested by Hendricks
and Hirtle (1997), it adjusts the reported VaR estimates up
to what regulators consider to be a minimum capital re-
quirement reflecting their concerns regarding prudent cap-
ital standards and model accuracy.3 Second, Smt explicitly
links the accuracy of a bank’s VaR model to its capital charge
by varying over time. Smt is set according to the accuracy
of model m’s VaR estimates for a one-day holding period
(k = 1) and 99 percent coverage, denoted VaRmt(1,1) or sim-
ply VaRmt.

Smt is a step function that depends on the number of ex-
ceptions observed over the last 250 trading days. Excep-
tions are defined as occasions when the portfolio return εt+1

is less than the corresponding VaRmt.4 The possible num-
ber of exceptions is divided into three zones. Within the
green zone of four or fewer exceptions, a VaR model is
deemed “acceptably accurate” to the regulators, and Smt re-
mains at its minimum value of three. Within the yellow zone
of five to nine exceptions, Smt increases incrementally with
the number of exceptions. Within the red zone of ten or
more exceptions, the VaR model is deemed to be “inaccu-
rate” for regulatory purposes, and Smt increases to its max-
imum value of four. The institution also must take explicit
steps to improve its risk management system.5

The “internal models” approach represents a significant
change in the regulatory oversight of bank trading activi-
ties, since previous approaches used relatively simple rules
not based on bank-specific inputs. This approach indicates
a move toward incentive-compatible regulations, i.e., reg-
ulations that give banks incentives to comply with desired

MRCmt+1 = max VaR$mt (10,1); Smt *
1

60
VaR$mt−i (10,1)

i=0

59

∑





+ SRmt ,

outcomes.6 Having established that market risk capital will
be a function of banks’ own VaR estimates, regulators must
now focus on evaluating the accuracy of these VaR estimates.
The following section discusses three methods for evalu-
ating VaR estimates. In accordance with the current regula-
tory framework, one-step-ahead VaR estimates are analyzed.

Alternative Evaluation Methods

Under the MRA, regulators must determine whether a bank’s
VaR model is “acceptably accurate” given 250 VaR esti-
mates and the corresponding portfolio returns. To date, two
methods have been proposed for this type of evaluation:
(1) evaluation based on the binomial distribution and (2)
interval forecast evaluation, as proposed by Christoffersen
(1998). Both methods use hypothesis tests to determine
whether the VaR estimates exhibit a specified property that
is characteristic of accurate VaR estimates.

However, as noted by Diebold and Lopez (1996), it is
unlikely that forecasts from a model will exhibit all the
properties of accurate forecasts. Thus, evaluating VaR es-
timates solely upon whether a specific property is present
may yield only limited information regarding their accu-
racy. In addition, the power of the tests used in the evalua-
tion must also be considered. In this paper, an evaluation
method based on determining how well VaR estimates min-
imize a regulatory loss function is proposed. This evalua-
tion method can provide information that is of direct interest
to the regulators since their concerns are directly incorpo-
rated into the loss function.

Evaluation of VaR estimates based on the binomial distri-
bution. Under the MRA, banks report their VaR estimates
to the regulators, who observe when actual portfolio losses
exceed these estimates.7 As discussed by Kupiec (1995),
assuming that the VaR estimates are accurate, such excep-
tions can be modeled as independent draws from a bino-
mial distribution with a probability of occurrence equal to
1 percent. Accurate VaR estimates should exhibit the prop-
erty that their unconditional coverage α̂ = x/250, where x
is the number of exceptions, equals 1 percent. Since the
probability of observing x exceptions in a sample of size
250 under the null hypothesis is
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3. See Stahl (1997) for a mathematical justification of the multiplication
factor.

4. Note that the portfolio returns reported to the regulators, commonly
referred to as the “profit & loss numbers,” will usually not directly cor-
respond to εt+1. The profit & loss numbers are usually polluted by the
presence of customer fees and intraday trade results, which are not cap-
tured in standard VaR models. No definitive method of dealing with this
discrepancy has been established.

5. The MRA contains a number of other criteria, such as “stress testing,”
that banks’ risk management systems must meet in order to be consid-
ered appropriate for determining market risk capital requirements.

6. Note that an alternative (and possibly more incentive-compatible)
method for monitoring the market risk exposure of commercial banks is
the “precommitment” approach proposed by Kupiec and O’Brien (1995).

7. Note that this reporting is in dollar terms. Since the following dis-
cussion will be in terms of log portfolio returns, these reported numbers
must be transformed into log form in order to make these evaluation
methods operational.



the appropriate likelihood ratio statistic for testing whether
α̂ = 0.01 is

LRuc = 2[log(α̂x(1 – α̂ )250-x) – log(0.01x * 0.99250-x)].

Note that the LRuc test is uniformly most powerful for a given
sample size and that the statistic has an asymptotic χ2(1)
distribution.

The finite sample size and power characteristics of this
test are of interest. With respect to size, the finite sample
distribution of LRuc for the specified parameters may be suf-
ficiently different from a χ2(1) distribution that the asymp-
totic critical values may be inappropriate. Table 1 Panel A
presents the finite-sample critical values as determined via
simulation and shows meaningful differences between the
two distributions which must be accounted for when draw-
ing statistical inference. As for the power of this test,
Kupiec (1995) describes how this test has a limited ability
to distinguish among alternative hypotheses and thus has
low power in samples of size 250.

Evaluation of VaR estimates using the interval forecast
method. VaR estimates are also interval forecasts of the
lower 1 percent tail of ft+1, the one-step-ahead return dis-
tribution. Interval forecasts can be evaluated conditionally
or unconditionally, that is, with or without reference to the
information available at each point in time. The LRuc test
is an unconditional test since it simply counts exceptions
over the entire period. However, in the presence of time-
dependent heteroskedasticity, the conditional accuracy of
interval forecasts is an important issue. Interval forecasts
that ignore such variance dynamics may have correct un-
conditional coverage but, at any given time, will have in-
correct conditional coverage; see Figure 1 for an illustration.
In such cases, the LRuc test is of limited use since it will
classify inaccurate VaR estimates as “acceptably accurate.”

The LRcc test, adapted from the more general test pro-
posed by Christoffersen (1998), is a test of correct condi-
tional coverage. For a given VaR estimate, the indicator
variable Imt+1 for whether an exception occurred is con-
structed as 

Since accurate VaR estimates exhibit the property of cor-
rect conditional coverage, the Imt+1 series must exhibit both
correct unconditional coverage and serial independence.

Imt+1 =
1 if εt+1 < VaRmt

0 if εt+1 ≥ VaRmt





.

Pr(x) =
250

x






0.01x
* 0.99250 −x ,

The LRcc test is a joint test of these two properties. The rel-
evant test statistic is LRcc = LRuc + LRind , which is asymp-
totically distributed χ2(2). The finite sample critical values
for the regulatory parameter values of (k,α) = (1,1) are
shown in Table 1 Panel B.

The LRind statistic is the likelihood ratio statistic for the
null hypothesis of serial independence against the alter-
native of first-order Markov dependence.8 The likelihood
function under this alternative hypothesis is 

LA = (1 – π01)T00 π01
T01(1 – π11)T10 π11

T11 ,

where the Tij notation denotes the number of observations
in state j after having been in state i the period before, π01

= T01/(T00 + T01) and π11 = T11/(T10 + T11). Under the null hy-
pothesis of independence, π01 = π11 = π, and the relevant
likelihood function is L0 = (1 – π)T00+T10 πT01+T11, where π =
(T01 + T11)/250. The test statistic LRind is 2[logLA – log L0]
and has an asymptotic χ2(1) distribution.
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8. As discussed in Christoffersen (1998), several other forms of depend-
ence, such as second-order Markov dependence, can be specified. For the
purposes of this paper, however, first-order Markov dependence is used.

TABLE 1

CRITICAL VALUES FOR THE LRuc

AND LRcc STATISTICS

SIGNIFICANCE LEVEL

1% 5% 10%

A. LRUC STATISTIC

Asymptotic χ2(1) 6.635 3.842 2.706

Finite-Sample 5.497 5.025 3.555
(0.5%) (9.5%) (12.2%)

B. LRcc STATISTIC

Asymptotic χ2(2) 9.210 5.992 4.605

Finite-Sample 6.007 5.015 5.005
(0.2%) (1.1%) (11.8%)

NOTE: The finite-sample critical values for the LRuc and LRcc test statis-
tics for the lower 1 percent quantile (α = 1) are based on 10,000 simu-
lations of sample size T = 250. The percentages in parentheses are the
quantiles that correspond to the asymptotic critical values under the fi-
nite-sample distribution.



Evaluation of VaR estimates using regulatory loss func-
tions. The loss function evaluation method proposed here
is based not on a hypothesis-testing framework, but on as-
signing to VaR estimates a numerical score that reflects
specific regulatory concerns. Although this method forgoes
the benefits of statistical inference, it provides a measure
of relative performance that can be used to compare VaR
estimates across time and across institutions.

To use this method, the regulatory concerns of interest
must be translated into a loss function. The general form
of these loss functions is

Cmt+1 =
f (εt+1,VaRmt ) if εt+1 < VaRmt

g(εt+1,VaRmt ) if εt+1 ≥ VaRmt





,

where f(x,y) and g(x,y) are functions such that f(x,y) ≥
g(x,y). The numerical scores are constructed with a nega-
tive orientation; i.e., lower values of Cmt+1 are preferred since
exceptions are given higher scores than non-exceptions.
Numerical scores are generated for individual VaR esti-
mates, and the score for the complete regulatory sample is 

Under very general conditions, accurate VaR estimates will
generate the lowest possible numerical score.9 Once a loss
function is defined and Cm is calculated, a benchmark can
be constructed and used to evaluate the performance of a
set of VaRmt estimates. Although many regulatory loss func-
tions can be constructed, the three analyzed in this paper
are described below.

Loss function implied by the binomial method. The loss
function implied by the binomial method is

Note that the appropriate benchmark is E[Cmt+1] = 0.01,
which for the full sample is E[Cm] = 2.5. As before, only
the number of exceptions is of interest, and no additional
information beyond that contained in the binomial method
is included in this analysis.

Loss function analogous to the adjustment schedule for the
Smt multiplier. The numerical score assigned to a set of 250
VaR estimates can be generated by assigning a score to each
element of the set or by assigning a score based on the
entire set. The adjustment to the Smt multiplier embodied 
in the MRA is based on the entire set of VaR estimates.
Phrased in the notation above, the loss function that gen-
erates an analogous numerical score is

Cmt +1 (x) =

0 if εt +1 ≥ VaRmt

0 if εt +1 < VaRmt and 0 < x ≤ 4

0.4 / 5 if εt +1 < VaRmt and x = 5

0.5 / 6 if εt +1 < VaRmt and x = 6

0.65 / 7 if εt +1 < VaRmt and x = 7

0.75 / 8 if εt +1 < VaRmt and x = 8

0.85 / 9 if εt +1 < VaRmt and x = 9

1 / x if εt +1 < VaRmt and x ≥ 10



















,

Cmt+1 =
1 if εt+1 < VaRmt

0 if εt+1 ≥ VaRmt





.

Cm = Cmt+ i
i=1

250

∑ .
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9. See Diebold, Gunther, and Tay (1998) as well as Granger and Pesaran
(1996) for further discussion of these conditions with respect to distri-
bution and probability forecasts, respectively.

FIGURE 1

GARCH(1,1)-NORMAL PROCESS

WITH ONE-STEP-AHEAD, LOWER 5% CONDITIONAL

AND UNCONDITIONAL INTERVAL FORECASTS

NOTE: The line labeled GARCH is a realization of 500 portfolio returns
from a GARCH(1,1)-normal data-generating process. The variance dy-
namics are characterized as ht+1 = 0.075 + 0.10ε2

t + 0.85ht, which imply
an unconditional variance of 1.5. The unconditional interval forecasts are
based on the unconditional N(0,11/2) distribution, and the conditional in-
terval forecasts are based on the true data-generating process. Although
both forecasts exhibit correct unconditional coverage with 25 exceptions
(that is, α* = α = 5%), only the conditional confidence intervals exhibit
correct conditional coverage or, in other words, provide 5% coverage at
each point in time.
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where x is the number of exceptions in the entire sample
and the numerical weights are the actual Smt values divided
by x.10 The benchmark for this numerical score is

Note that this loss function incorporates the regulatory con-
cerns expressed in the Smt multiplier, but, like the binomial
loss function, it is based only on the number of exceptions
in the sample.

Loss function that addresses the magnitude of the excep-
tions. As noted by the Basle Committee on Banking Super-
vision (1996), the magnitude as well as the number of the
exceptions are a matter of concern to regulators.11 As dis-
cussed by Hendricks (1996), the magnitude of the observed
exceptions can be quite large; in that study, the portfolio
losses exceed the corresponding VaR estimate by 30 to 40
percent on average, and, in the extreme cases, by up to 300
percent. 

This concern can readily be incorporated into a loss
function by introducing a magnitude term into the bino-
mial loss function. Although several are possible, a quad-
ratic term is used here, such that

Thus, as before, a score of 1 is imposed when an exception
occurs, but now an additional term based on the magnitude
of the exception is included. The numerical score increases
with the magnitude of the exception and can provide addi-
tional information on how the underlying VaR model fore-
casts the lower tail of the ft+1 distribution. Unfortunately,
the benchmark based on the expected value of Cmt+1 can-
not easily be determined because the ft+1 distribution is un-
known. However, simple operational benchmarks based on
certain distributional assumptions can be constructed and
are discussed in Section III.

Cmt+1 =
1+ (εt+1 − VaRmt )2 if εt+1 < VaRmt

0 if εt+1 ≥ VaRmt





.

E Cm(x)[ ] = E Cmt+i (x)
i=1

250

∑





= Pr(x)
x=0

250

∑ * Cmt+i (x) x
i=1

250

∑





= 0.05597 .

II. SIMULATION EXERCISE

To analyze the ability of the three evaluation methods to
gauge the accuracy of VaR estimates and thus avoid VaR
model misclassification, a simulation exercise is conducted.
For the two hypothesis-testing methods, this amounts to
analyzing the power of the statistical tests, i.e., determin-
ing the probability with which the tests reject the specified
null hypothesis when it is incorrect. With respect to the
loss function method, its ability to evaluate VaR estimates
is gauged by how frequently the numerical score for VaR
estimates generated from the true data-generating process
(DGP) is lower than the score for the VaR estimates from
alternative models. If this method is capable of distinguish-
ing between these competing scores, then the degree of VaR
model misclassification will be low.

The first step in this simulation exercise is deciding what
type of portfolio to analyze. Although VaR models are
commonly applied to complicated portfolios of financial
assets, the log portfolio value yt+1 used here is specified as
yt+1 = yt + εt+1, where εt+1 | Ωt ~ ft+1. This process is repre-
sentative of linear deterministic conditional mean specifi-
cations. It is only for portfolios with nonlinear elements,
such as portfolios with options, that this choice presents
inference problems; further research along these lines, as
by Pritsker (1997), is needed.

The simulation exercise is conducted in four parts. To
examine how the evaluation methods perform under differ-
ent distributional assumptions, the true DGP ft+1 is set to 
be the standard normal distribution and a t-distribution
with six degrees of freedom, which induces fatter tails than
the normal, in the first two parts. The last two parts exam-
ine the performance of the evaluation methods in the pres-
ence of variance dynamics: the third part models εt+1 as a
GARCH(1,1)-normal process, and the fourth part does so
as a GARCH(1,1)-t(6) process.

In each part of the exercise, the true DGP is one of eight
VaR models evaluated and is designated as the true model
or model 1. Traditional power analysis of a hypothesis test
is conducted by varying a particular parameter and deter-
mining whether the corresponding incorrect null hypoth-
esis is rejected; such changes in parameters generate what
are termed local alternatives. In this study, non-nested, but
common, VaR models are used as reasonable “local” al-
ternatives. For example, a common type of VaR model
specifies the variance of εt+1, denoted as hmt+1, as an expo-
nentially weighted moving average of squared innovations;
that is,

hmt+1 = (1− λ) λiεt−i
2

i=0

∞

∑ = λhmt + (1− λ)εt
2 .
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10. As currently constructed, the Smt adjustment schedule does not ad-
dress VaR estimates that are possibly too conservative, i.e., VaR esti-
mates that lead to a lower than expected number of exceptions. Given
the regulatory interest in providing adequate capital against negative
outcomes, the absence of such outcomes is not relevant. However, from
the perspective of VaR model evaluation, such outcomes might indicate
modeling error. This concern could be addressed by modifying the loss
function to include a non-zero score when x < 4.

11. Note that Berkowitz (1999) has recently developed a hypothesis-
testing method for calculating VaR estimates that incorporates the mag-
nitudes of the exception.



This VaR model, a version of which is used in the well-
known RiskMetrics calculations (see J.P. Morgan, 1996), is
calibrated here by setting λ equal to 0.94 or 0.99, which
imply a high-degree of persistence in variance.12 The alter-
native VaR models used in each part of the simulation ex-
ercise are described in the subsections below.

The simulation runs are structured identically in each
part of the exercise. For each run, the simulated yt+1 series
is generated using the chosen DGP. After generating an in-
sample period of 3,500 observations, the chosen VaR mod-
els are used to generate one-step-ahead VaR estimates for
the next 250 out-of-sample observations of yt+1. The ana-
lytical results are based on 1,000 simulation runs. The sim-
ulation results are organized below with respect to the four
parts of the exercise.

Two general points can be made regarding the simula-
tion results. First, with the size of the tests set at 5 percent,
the power of the two hypothesis-testing methods varies con-
siderably against the incorrect null hypotheses implied by
the alternative VaR models. In some cases, the power of the
tests is high (greater than 75 percent), but in the majority
of the cases examined, the power is poor (less than 50 per-
cent) to moderate (between 50 and 75 percent). The results
indicate that these two methods are likely to misclassify VaR
estimates from inaccurate models as “acceptably accurate.”

Second, the degree of model misclassification exhibited
by the loss function method roughly matches that of the
other two methods; i.e., when the hypothesis-testing meth-
ods exhibit low power, the loss function method is also
generally less capable of distinguishing between accurate
and inaccurate VaR estimates. Overall, however, the loss
function method has a moderate to high ability to gauge
the accuracy of VaR estimates. Among the three regulatory
loss functions, the results for the magnitude loss function
are relatively better, indicating a greater ability to distin-
guish between models. This result is not surprising given
that the magnitude loss function incorporates additional
information—the magnitude of the exceptions—into the
evaluation.

Simulation Results for the Homoskedastic 
Standard Normal DGP

For the first part of this exercise, the true DGP is the stand-
ard normal; i.e., εt+1 ~ N(0,1). The seven alternative mod-
els examined are: normal distributions with variances of 1/2,

3/4, 11/4, and 11/2; the two heteroskedastic calibrated VaR
models with normal distributions; and the historical sim-
ulation model. For this last model, the VaR estimates are
formed as the lower 1 percent quantile of the empirical dis-
tribution of the 500 previously observed returns.

In Table 2, Panel A presents the power analysis of the
hypothesis-testing evaluation methods for a fixed test size
of 5 percent. For the homoskedastic alternatives (models 2
through 5), the power results vary considerably and are re-
lated to the differences between the true variance and the
model’s variance; i.e., larger differences lead to greater rel-
ative power. With respect to the calibrated models (6 and
7), the tests have no power since the VaR estimates are still
quite similar to those of the true DGP, even though unnec-
essary heteroskedasticity is introduced. Both tests have low
power for the historical simulation model (model 8).

Panel B contains the comparative accuracy results for
the loss function method using the specified loss functions.
Note that each number in the panel represents the percent-
age of simulations for which the numerical score for the
true model is actually lower than that of the inaccurate
model. This method cannot distinguish between the numer-
ical scores for the true DGP and those for models 4 and 5,
which generate conservative VaR estimates and thus lower
scores due to fewer exceptions. This result is generally ac-
ceptable from the viewpoint implicit in the regulatory loss
functions, since regulators are concerned if not enough capi-
tal is held against possible losses, but not if too much cap-
ital is held. However, this method clearly can distinguish
between the true DGP and the low variance models (mod-
els 2 and 3) that consistently generate smaller VaR esti-
mates than necessary. With respect to the calibrated and
historical models (models 6 through 8), the degree of mis-
classification is generally moderate, although the magnitude
loss function exhibits the best results.

Simulation Results for 
the Homoskedastic t(6) DGP

For the second part of the exercise, the true DGP is a t(6)
distribution; i.e., εt+1 ~ t(6). The seven alternative models
are: two normal distributions with variances of 1 and 11/2
(the same variance as the true DGP); the two calibrated mod-
els with normal distributions as well as with t(6) distribu-
tions; and the historical simulation model.
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12. Note that this VaR model is often implemented with a finite lag-
order. For example, the infinite sum is frequently truncated at 250 ob-
servations, which accounts for over 90 percent of the sum of the weights.
See Hendricks (1996) for further discussion on the choice of λ and the 

truncation lag. In this simulation exercise, no such truncation is im-
posed but, of course, one is implied by the overall sample size of the
simulated time series.



In Table 3, Panel A shows that the overall power of the
LR tests against these alternative models is low. With the ex-
ception of the N(0,1) model (model 2), the power results
are below 50 percent; thus, the alternative VaR estimates are
incorrectly classified as “acceptably accurate” a large per-
centage of the time. This result is mainly due to the simi-
larity of the alternative VaR models to the true DGP. For
example, although models 4 through 7 introduce unneces-
sary heteroskedasticity, their VaR estimates are similar to
the true, but constant, VaR estimates.

Panel B contains the results of the loss function evalua-
tion. For the normality-based models (models 2 through
5), the three loss functions have moderate to high ability
to distinguish between alternative VaR estimates, with the
zone loss function doing worst and the magnitude loss
function doing best. However, with respect to models 6
through 8, this method shows a high degree of model mis-
classification due to the models’ similarity to the true DGP.

Simulation Results for 
the GARCH(1,1)-normal DGP

For the last two parts of the simulation exercise, variance
dynamics are introduced by using conditional heteroske-
dasticity of the GARCH form; i.e., ht+1 = 0.075 + 0.10ε2

t +
0.85ht, which has an unconditional variance of 11/2. The only

difference between the DGPs in these two parts of the ex-
ercise is the chosen distributional form. For the third part,
εt+1 | Ωt ~ N(0,ht+1), and for the fourth part, εt+1 | Ωt ~ t(ht+1,6).
The seven alternative VaR models examined are the ho-
moskedastic models of the standard normal, the N(0,11/2)
model, and the t(6) distribution; the historical simulation
model; and the calibrated models with normal innovations
and the GARCH model with the other distributional form.

In Table 4, Panel A presents the power analysis of the
hypothesis-testing methods. The power results are mainly
driven by the differences between the distributional as-
sumptions used by the true DGP and the alternative models.
Specifically, the tests have low power against the calibrated
normal models (models 5 and 6) since their smoothed vari-
ances are quite similar to the true GARCH variances. How-
ever, the results for the GARCH-t(6) model (model 7) are
much better due to the incorrect t(6) assumption. Overall,
the hypothesis-testing methods seem to have substantially
less power against VaR models characterized by close ap-
proximations of the true variance dynamics (models 3
through 6 and 8) and have better power against models with
incorrect distributional assumptions (models 2 and 7).

The results for the loss function evaluation method, pre-
sented in Panel B, are similar; that is, this method has a
low to moderate ability to distinguish between the true and
alternative VaR models. For the heteroskedastic models,
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TABLE 2

SIMULATION RESULTS FOR HOMOSKEDASTIC STANDARD NORMAL DGP

MODELS

Homoskedastic Heteroskedastic Historical

2 3 4 5 6 7 8

A. POWER OF THE LRuc AND LRcc TESTS AGAINST ALTERNATIVE VAR MODELSa (%)

LRuc 97.2 30.4 29.7 54.9 4.3 4.5 40.2

LRcc 97.8 32.9 30.5 60.1 5.4 5.7 43.4

B. ACCURACY OF VAR ESTIMATES USING REGULATORY LOSS FUNCTIONSb (%)

Binomial 100.0 94.4 0.0 0.0 55.3 55.4 28.3

Zone 99.6 66.8 0.0 0.0 17.9 18.2 6.7

Magnitude 100.0 99.7 0.0 0.0 76.1 76.4 53.8

a The size of the tests is set at 5% using the finite-sample critical values in Table 1.

b Each row represents the percentage of simulations for which the alternative VaR estimates have a higher numerical score than the true model, i.e.,
the percentage of the simulations for which the alternative VaR estimates are correctly classified as inaccurate.

NOTE: The results are based on 1,000 simulations. Model 1 is the true data generating process, εt+1 ~ N(0,1). Models 2 through 5 are homoskedastic
normal distributions with variances of 1/2, 3/4, 11/4, and 11/2, respectively. Models 6 and 7 are normal distributions whose variances are exponentially
weighted averages of the squared innovations calibrated using λ = 0.94 and λ = 0.99, respectively. Model 8 is the historical simulation model based
on the previous 500 observations.
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TABLE 3

SIMULATION RESULTS FOR HOMOSKEDASTIC t(6) DGP

MODELS

Homoskedastic Heteroskedastic Historical

2 3 4 5 6 7 8

A. POWER OF THE LRuc AND LRcc AGAINST ALTERNATIVE VAR MODELSa (%)

LRuc 59.1 10.8 15.3 14.6 20.3 19.9 7.9

LRcc 61.5 11.2 17.4 19.9 30.4 30.5 12.4

B. ACCURACY OF VAR MODELS USING REGULATORY LOSS FUNCTIONSb (%)

Binomial 99.2 69.8 85.5 85.5 5.1 5.0 26.3

Zone 85.0 27.1 47.5 47.3 0.2 0.1 5.4

Magnitude 99.9 97.4 97.3 97.2 10.7 10.3 51.0

a The size of the tests is set at 5% using the finite-sample critical values in Table 1.

b Each row represents the percentage of simulations for which the alternative VaR estimates have a higher numerical score than the true model, i.e.,
the percentage of the simulations for which the alternative VaR estimates are correctly classified as inaccurate.

NOTE: The results are based on 1,000 simulations. Model 1 is the true data generating process, εt+1 ~ t(6). Models 2 and 3 are the homoskedastic mod-
els with normal distributions of variance of 1 and 1.5, respectively. Models 4 and 5 are the calibrated heteroskedastic models with the normal distri-
bution, and models 6 and 7 are the calibrated heteroskedastic models with the t(6) distribution. Model 8 is the historical simulation model based on
the previous 500 observations.

TABLE 4

SIMULATION RESULTS FOR GARCH(1,1)-NORMAL DGP

MODELS

Homoskedastic Heteroskedastic Historical

2 3 4 5 6 7 8

A. POWER OF THE LRuc AND LRcc AGAINST ALTERNATIVE VAR MODELSa (%)

LRuc 52.3 21.4 30.5 5.1 10.3 81.7 23.2

LRcc 56.3 25.4 38.4 6.7 11.9 91.6 33.1

B. ACCURACY OF VAR MODELS USING REGULATORY LOSS FUNCTIONSb (%)

Binomial 91.7 41.3 18.1 52.2 48.9 0.0 38.0

Zone 72.1 21.0 8.1 15.2 18.4 0.0 17.7

Magnitude 96.5 56.1 29.1 75.3 69.4 0.0 51.5

a The size of the tests is set at 5% using the finite-sample critical values in Table 1.

b Each row represents the percentage of simulations for which the alternative VaR estimates have a higher numerical score than the true model, i.e.,
the percentage of the simulations for which the alternative VaR estimates are correctly classified as inaccurate.

NOTE: The results are based on 1,000 simulations. Model 1 is the true data generating process, εt+1 | Ωt ~ N(0,ht+1). Models 2, 3, and 4 are the ho-
moskedastic models N(0, 1), N(0,1.5) and t(6), respectively. Models 5 and 6 are the two calibrated heteroskedastic models with the normal distribu-
tion, and model 7 is a GARCH(1,1)-t(6) model with the same parameter values as Model 1. Model 8 is the historical simulation model based on the
previous 500 observations.



the more conservative GARCH-t(6) model (model 7) obvi-
ously minimizes the loss functions due to its smaller num-
ber of exceptions. For the calibrated normal models (models
5 and 6) and the historical model (model 8), this method
generally has a poor ability to classify them correctly. With
respect to the homoskedastic models (models 2 through 4),
the degree of misclassification is low for the standard nor-
mal (model 2), but much higher for the other two models
that have the same unconditional variance as the true DGP.
Note, as previously mentioned, that the magnitude loss
function is relatively more able to classify VaR estimates
correctly than the other two loss functions.

Simulation Results for the GARCH(1,1)-t(6) DGP

In Table 5, Panel A presents the power analysis of the hy-
pothesis-testing methods. The power results are clearly tied
to the presence of heteroskedasticity in the alternative VaR
models. The homoskedastic models (models 2 through 4)
are identified as “inaccurate” with very high power since
their VaR estimates cannot match the magnitude of the
observed returns from the true DGP. However, for the het-
eroskedastic models (models 5 through 7) and the histor-
ical model (model 8), which are more capable of tracking
the underlying variance, the power of the tests declines
dramatically.

For the loss function method, the results in Panel B in-
dicate that the VaR estimates from the true and alternative
models, except for the historical model (model 8), can be
differentiated. For the homoskedastic alternatives (models
2 through 4), this ability is driven mainly by the fact that
constant VaR estimates cannot track the actual returns
process well. The heteroskedastic models (models 5 though
7) that can adjust over time do better, but they can still be
identified as inaccurate due to their misspecified distribu-
tional assumptions. For the historical model, the method’s
ability to distinguish it from the true DGP is diminished.
Note again that, of the three loss functions, the magnitude
loss function is most capable of differentiating between
the models.

III. IMPLEMENTATION OF
THE LOSS FUNCTION METHOD

The simulation results presented above indicate that the
loss function method is generally capable of distinguish-
ing between VaR estimates from the true DGP and alterna-
tive models. Although this ability varies, the method can
provide information useful for the regulatory evaluation of
VaR estimates, particularly when the magnitude loss func-
tion is used. This result is not surprising given that it incor-
porates the additional information on the magnitude of the
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TABLE 5

SIMULATION RESULTS FOR GARCH(1,1)-t(6) DGP

MODELS

Homoskedastic Heteroskedastic Historical

2 3 4 5 6 7 8

A. POWER OF THE LRuc AND LRcc AGAINST ALTERNATIVE VAR MODELSa (%)

LRuc 99.8 97.5 94.4 17.9 34.7 59.1 47.3

LRcc 99.9 97.7 95.6 23.7 35.6 61.5 54.8

B. ACCURACY OF VAR ESTIMATES USING REGULATORY LOSS FUNCTIONSb (%)

Binomial 99.9 99.9 99.8 82.6 66.9 99.2 42.4

Zone 99.9 99.0 97.1 47.2 42.7 85.0 29.9

Magnitude 99.9 99.9 99.9 94.8 78.0 99.9 53.7

a The size of the tests is set at 5% using the finite-sample critical values in Table 1.

b Each row represents the percentage of simulations for which the alternative VaR estimates have a higher numerical score than the true model, i.e.,
the percentage of the simulations for which the alternative VaR estimates are correctly classified as inaccurate.

NOTE: The results are based on 1,000 simulations. Model 1 is the true data generating process, εt+1 | Ωt ~ t(ht+1,6). Models 2, 3, and 4 are the ho-
moskedastic models N(0,1), N(0,1.5) and t(6), respectively. Models 5 and 6 are the two calibrated heteroskedastic models with the normal distribu-
tion, and model 7 is a GARCH(1,1)-normal model with the same parameter values as Model 1. Model 8 is the historical simulation model based on
the previous 500 observations.



exceptions into the evaluation. In this section, this evalu-
ation method using the magnitude loss function is made
operational by creating a benchmarking process and by il-
lustrating its use in a detailed example.

Creating a Benchmark for 
the Observed Numerical Scores 

Under the current regulatory framework, regulators ob-
serve the VaR estimates and portfolio returns, denoted
{εt+i,VaRmt+i-1}250

i=1, for bank m and thus can construct, un-
der the magnitude loss function, the numerical score Cm.
However, for a particular realized value C*

m, aside from the
number of exceptions, not much inference on the perform-
ance of the underlying VaR estimates is available. That is,
we don’t know whether C*

m is a “high” or “low” number.
Although comparisons could be made cross-sectionally
across banks, a better method for gauging the magnitude
of C*

m is to create a comparative benchmark based on the
distribution of Cm, which is a random variable due to the ran-
dom portfolio returns. Since each portfolio return has a
conditional distribution εt+1 | Ωt ~ ft+1, additional assump-
tions on the dependence of the returns and their distri-
butions must be imposed in order to analyze f(Cm), the
distribution of Cm.

An immediate and commonly used assumption is that
the observed returns are independent and identically dis-
tributed (iid); i.e., εt+1 ~ f. This is quite a strong assump-
tion, especially given the heteroskedasticity often found 
in portfolio returns.13 However, the small sample size of
250 observations mandated by the MRA allows few other
choices. Having made the assumption that the observed re-
turns are iid, their empirical distribution, denoted f̂ (εt+1),
can be estimated using a variety of methods. For example,
nonparametric methods, such as smoothed kernel density
estimators as per Silverman (1986) or unsmoothed boot-
strap methods, could be used. Generally, for issues of tract-
ability, parametric methods are commonly used; i.e., a
specific distributional form is assumed, and the necessary
parameters are estimated from the available data. For ex-
ample, if the returns are assumed to be normally distribu-
ted with zero mean, the variance can be estimated such that
f̂ (εt+1) is N(0,σ̂2).

A reasonable alternative to assuming independence is 
to impose some explicit form of dependence on the data.
For example, if the returns are assumed to be driven by 
a GARCH process, the necessary parameters could be es-

timated from the observed portfolio returns and used to
specify f̂(εt+1 | Ωt). Since the small sample size will limit
the usefulness of such parameter estimates, the calibrated
models previously discussed present a reasonable alterna-
tive specification.14 In the example that follows, both as-
sumptions are used to examine the VaR estimates for
different models.

Once f̂ (εt+1) or f̂(εt+1 | Ωt) has been determined, the em-
pirical distribution of the numerical score Cm under the dis-
tributional assumptions, denoted f̂ (Cm), can be generated.
For example, if εt+1 ~ N(0,σ̂2), then the corresponding VaR
estimates are VaRf̂ t = –2.32σ̂. If the assumption is that εt+1

~ N(0, ĥt+1), then 

where ̂ht+1 is the assumed variance at time t + 1. Using these
assumptions, f̂ (Cm) can then be constructed via simulation
by forming, say, 1,000 values of the numerical score Cm,
each based on 250 draws from the assumed distribution of
εt+1 and its corresponding VaR estimates.15

Once f̂ (Cm) has been generated, the empirical quantile
q̂*

m = F̂(C*
m), where F̂(Cm) is the cumulative distribution

function of f̂(Cm), can be calculated for the observed value
C*

m. This empirical quantile provides a performance bench-
mark, based on the distributional assumptions, that can be
incorporated into the regulatory evaluation of the underly-
ing VaR estimates. In order to make this benchmark oper-
ational, the regulator should select a threshold quantile
above which concerns regarding the performance of the
VaR estimates are raised. This decision should be based
both on the regulators’ preferences and the severity of the
distributional assumptions used. If q̂*

m is below the thresh-
old that regulators believe is appropriate, say, below 80 per-
cent, then C*

m is “typical” under the assumptions made
about the portfolio returns and given the regulators’ pref-
erences. If q̂*

m is above the threshold, then C*
m can be con-

sidered atypical given their preferences, and the regulators
should take a closer look at the underlying VaR model.

Note that this method for evaluating VaR estimates does
not replace the hypothesis-testing methods but, instead, pro-
vides complementary information, especially regarding the
magnitude of the exceptions. In addition, the flexibility of
this method permits many other concerns to be incorpo-
rated into the analysis via the choice of the loss function.

VaR
f̂ t

= −2.32 ĥt+1,
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13. See Kearns and Pagan (1997) for a discussion of the consequences
of ignoring the dependence in financial data when drawing inferences
about the tails of the data’s distribution.

14. The negative impact of misspecified dependence in the data on the
construction of f̂(Cm) relative to that of the iid assumption is not known;
further research is necessary.

15. Note that although a closed form solution for f̂(Cm) should be avail-
able if a parametric assumption is made, simulation methods will be
used in this paper.



The example below illustrates how this method might be
employed in an actual case; it can be seen that, in certain
cases, the loss function method flags important informa-
tion not captured in the standard binomial analysis.

Detailed Example

For this detailed example, the performance of three sets 
of VaR estimates is examined using the three evaluation
methods. As will be shown, inferences about the accuracy
of the VaR estimates based on the loss function method
match those drawn from the hypothesis-testing methods.
However, since it incorporates additional information on
the magnitude of the exceptions, the loss function method
permits regulators to draw further inferences.

The underlying returns process is εt+1 | Ωt ~ t(ht+1,6) with
ht+1 = 0.075 + 0.10ε2

t + 0.85ht. VaR estimates are generated
from three VaR models: the true GARCH-t(6) model; the
historical simulation model based on a rolling window of

the 500 previous observations; and the calibrated normal
model with λ = 0.94. The models are henceforth denoted
as the true, historical, and calibrated models, respectively.
The 1,250 generated observations are analyzed over the five
contiguous but non-overlapping periods of 250 observa-
tions. Two periods of simulated data and the corresponding
VaR estimates are plotted in Figure 2.

Table 6 contains the evaluation results for the two hy-
pothesis-testing methods. Panel A reports the number of
exceptions in each of the five periods for the three sets of
VaR estimates, and Panels B and C report the LRuc and LRcc

statistics, respectively. The occasions for which the null hy-
pothesis is rejected at the 5 percent significance level are
noted. For the true model, both tests correctly do not reject
the null hypothesis that the VaR estimates exhibit the spec-
ified properties, and the Smt multiplier would remain at
three. For the historical model, the number of exceptions
is particularly large in the second and third periods, and the
corresponding test statistics reject the null hypotheses. In
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FIGURE 2

SIMULATED SERIES FOR THE ILLUSTRATION

NOTE: The solid line represents the simulated negative returns. The dotted line represents the corresponding VaR estimates from each of the three
models. The points at which the solid line crosses the dotted line are the exceptions in the sample. Note that, for the true and calibrated models, VaR
estimates that are more negative than permitted by the specified y-axis are not shown.
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these periods, Smt increases to its maximum value of four.
However, for the other time periods, this VaR model is “ac-
ceptably accurate,” even though the hypothesis tests indi-
cate a problem in the fifth period when no exceptions
occurred. For the calibrated model, the null hypotheses are
rejected in only one case, and Smt is above three in all but

one period. These results present a tangible example of the
poor power characteristics of these tests.

Turning to the proposed loss function method, in Table
7, Panel A contains the C*

m numerical scores under the mag-
nitude loss function. As mentioned, these scores alone do not
provide a very useful basis for evaluating the VaR estimates.
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TABLE 6

HYPOTHESIS-TESTING RESULTS

FOR THE DETAILED EXAMPLE

MODEL

PERIOD True Historical Calibrated

A. NUMBER OF EXCEPTIONS

1 1 2 5

2 3 11 6

3 1 14 3

4 1 1 6

5 2 0 5

B. LRUC STATISTICS

1 1.1765 0.1084 1.9568

2 0.0949 15.8906* 3.5554

3 1.1765 25.7803* 0.0949

4 1.1765 1.1765 3.5554

5 0.1084 5.0252* 1.9568

C. LRcc STATISTICS

1 1.1846 0.1408 2.1617

2 0.1681 16.9078* 3.8517

3 1.1846 30.1907* 5.5202*

4 1.1846 1.1846 3.8517

5 0.1408 5.0252* 2.1617

NOTE: The time periods are based on a division of the entire simulation
run of 1,250 observations into five contiguous, but non-overlapping pe-
riods of 250 observations. The true model is εt+1 | Ωt ~ t(ht+1,6) with ht+1

= 0.075 + 0.10ε2
t + 0.85ht. The historical simulation model is based on

the 500 previous observations. The calibrated model uses the calibrated
variance parameter of λ = 0.94 and the normal distribution.

The asterisk indicates that the null hypothesis is rejected at the 5% sig-
nificance level using the finite-sample critical values presented in Table 1.

TABLE 7

MAGNITUDE LOSS FUNCTION RESULTS

FOR THE DETAILED EXAMPLE

MODEL

PERIOD True Historical Calibrated

A. NUMERICAL SCORES

1 1.1287 2.0803 7.1048

2 3.8180 58.3150 15.8955

3 1.4854 507.5814 24.7188

4 200.1094 71.4351 243.8740

5 15.6136 0.0 16.9524

B. EMPIRICAL QUANTILES

UNDER THE TRUE DGP (%)

1 13.7 22.0 54.1

2 31.0 89.6 64.6

3 11.3 86.9 37.6

4 95.9 86.1 97.0

5 53.8 0.0 56.1

C. EMPIRICAL QUANTILES UNDER

THE NORMAL DISTRIBUTION (%)

1 17.4 29.0 88.6

2 44.0 100.0 91.7

3 10.5 99.8 46.5

4 100.0 99.8 100.0

5 82.7 0.0 84.3

D. EMPIRICAL QUANTILES UNDER THE

CALIBRATED NORMAL DISTRIBUTION (%)

1 20.5 33.1 90.1

2 52.9 99.6 93.4

3 13.6 99.3 62.2

4 99.9 98.8 99.9

5 86.7 0.0 88.5

NOTE: See note to Table 6.



However, by making assumptions about the distribution of
the observed returns, an approximate distribution of the
numerical scores, f̂ (Cm), can be generated via simulation
and used to provide a benchmark for evaluation.

Since, in this example, the true DGP is known, the ac-
tual f(Cm) can be generated. In Table 7, Panel B reports the
empirical quantiles q*

m under f(Cm). Three results are im-
mediately clear. First, the inference drawn from the loss
function method generally matches that drawn from the two
hypothesis-testing methods; i.e., the q*

ms are generally low
(below the threshold 80 percent), except in a few distinct
cases. Second, the q*

ms for the historical model in the sec-
ond and third periods are high (above 80 percent) due to
the large number of exceptions. Third, the q*

ms for all of the
models are high in the fourth period, even though the num-
ber of exceptions is low. Recall that the two hypothesis-
testing methods indicated that these three sets of VaR
estimates were “acceptably accurate” for that period.

The reason for the relatively high scores and q*
ms in the

fourth period can be seen in Figure 2. Observation num-
ber 217 is a particularly large negative number; in terms of
relative magnitudes, it exceeds the VaR estimates by about
120 percent for the true model, 50 percent for the histori-
cal model and 144 percent for the calibrated model. This
result clearly indicates the advantages of the loss function
evaluation. By incorporating additional information on the
magnitude of the exceptions into the evaluation, this method
can alert the regulator when an extraordinary event, not de-
tectable by the hypothesis-testing methods, has occurred.

In an actual implementation of the loss function evalu-
ation method, the true DGP is not known. Hence, Panels C
and D of Table 7 contain the q*

ms under two different as-
sumed f̂ (Cm) distributions. In Panel C, f̂(Cm) is formed un-
der the assumption that the returns are independent and
normally distributed; i.e., εt+1 ~ N(0,σ̂2). In Panel D, f̂ (Cm

| Ωt) is formed under the assumption that εt+1 ~ N(0, ĥt+1),
where ĥt+1 follows an exponentially weighted moving av-
erage of squared observed returns with a calibration para-
meter of 0.94.16 The empirical quantiles under these two
assumed distributions are higher than those under the true
DGP, which causes a form of Type I error; that is, under
these assumed distributions and for a fixed threshold quan-
tile, the observed C*

ms will indicate more instances of pos-
sibly large exceptions than are called for under the true
DGP. The reason for this upward bias is that under these

distributional assumptions, the expected value of Cmt+1

conditional on an exception having occurred will be lower
than under the true DGP, skewing f̂(Cm) and f̂(Cm | Ωt) more
towards zero than the true f (Cm) distribution.17 Thus, when
the C*

ms are compared to ̂f (Cm) and f̂ (Cm | Ωt), they will gen-
erally be in a higher quantile than under f (Cm).

Although this upward bias is present in the q*
ms, useful

inferences can still be drawn. If the threshold quantile re-
mains at 80 percent, the previously noted instances are also
found to indicate concern under the two assumed distri-
butions.18 In addition, four new instances arise: the cali-
brated model in the first, second, and fifth periods, and the
true model in the fifth period.

For the calibrated model in the first period depicted in
Figure 2, the five observed exceptions range from about 9
percent to 27 percent more than their stated VaR estimates,
which are relatively low compared to the magnitudes cited
by Hendricks (1996). Thus, the “high” q*

ms for these VaR
estimates under the two assumed distributions are based
more on the number of exceptions than on their magnitude.
In this case, inferences based on the loss function method
provide additional detail, but do not change our overall eval-
uation of the VaR estimates. For the calibrated model in the
second period, the six exceptions are still within the yel-
low zone set in the MRA, but the loss function method high-
lights that their magnitudes, which range from 5 percent to
45 percent beyond the observed return, may be a concern.

For the fifth period, the number of exceptions are again
acceptable at two, zero, and five for the true, historical, and
calibrated models, respectively. Although the loss function
method cannot provide additional information on the his-
torical model due to the lack of exceptions (an acceptable
outcome under this regulatory loss function), the q*

ms for
the other two models are between 80 percent and 90 per-
cent. The reason for these high q*

ms is that the exceptions
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16. Note that, in forming the ĥt+1 series for each simulation run, an ini-
tial value ĥ1 must be chosen. The results presented in Table 7, Panel D
are based on setting ĥ1 equal to the estimated variance of the simulated
sample. An alternative specification, in which ĥ1 = ε1

2, generates qual-
itatively similar results.

17. Note that this upward bias in the q*
ms is brought about by distri-

butional assumptions that generate returns that, conditional on being
exceptions, are not as negative as those actually observed. If the distri-
butional assumptions were to generate returns that were generally more
negative than actually observed, the bias would go in the opposite di-
rection and cause a form of Type II error, i.e., not indicate concerns
when they truly may be present. Although such distributional assump-
tions could be made, the general concern in practice is that observed re-
turns are being generated from DGPs with fatter, not thinner, tails than
empirically observed.

18. Note that an alternative way to conduct this type of evaluation is to
recognize the upward bias imparted by the assumptions and use a higher
threshold quantile, say, 90 percent. This route is complicated by the fact
that the proper alternative threshold is not readily apparent. It is simpler
to set the threshold quantile quite high at 80 percent and examine the
flagged cases with care.



in both cases are relatively large. The true model’s two ex-
ceptions are both over 50 percent of the observed returns,
and the calibrated model’s five exceptions range from 1
percent to 50 percent over the corresponding returns. Thus,
even though both models are “acceptably accurate” under
the MRA guidelines, the loss function method based on
these distributional assumptions provides useful, additional
(though biased) information on the performance of the VaR
estimates. Regulators may use this additional information
to evaluate these VaR estimates in a manner that is more
directly in line with their specific concerns.

IV. CONCLUSION

As implemented in the U.S., the market risk amendment
(MRA) to the Basle Capital Accord requires that large com-
mercial banks with significant trading activities provide
their regulators with VaR estimates from their own internal
models. The VaR estimates are used to determine the banks’
market risk capital requirements. This development clearly
indicates the importance of evaluating the accuracy of VaR
estimates from a regulatory perspective. In this paper, three
methods for evaluating VaR estimates are discussed.

The binomial method, currently the quantitative standard
in the MRA, and the interval forecast method are both based
on a hypothesis-testing framework and are used to test the
null hypothesis that the reported VaR estimates are “accept-
ably accurate,” where accuracy is defined by the test con-
ducted. As shown in the simulation exercise, the power of
these tests can be low against reasonable alternative VaR
models. This result does not negate their usefulness, but it
does indicate that the inference drawn from them should
be questioned and examined more carefully for regulatory
purposes.

The loss function method is based on assigning numer-
ical scores to the performance of the VaR estimates under
a loss function that reflects the concerns of the regulators.
As shown in the simulation exercise, this loss function
method can distinguish between VaR estimates from the
actual and alternative VaR models. Furthermore, it allows
the evaluation to be tailored to specific interests that reg-
ulators may have, such as the magnitude of the observed
exceptions. Although this evaluation method introduces
certain biases due to necessary distributional assumptions,
the analytical results provide useful additional information
on the performance of the VaR estimates. Since these three
methods provide complementary information, they should
all be useful in the regulatory evaluation of VaR estimates.
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