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Snce 1998, U.S commercial bankswith significant trading
activities have been required to hold capital against their
defined market risk exposure. Under the* internal models”
approach embodied in the current regulatory guidelines,
the capital charges are a function of banks own value-at-
risk (VaR) estimates. VaR estimates are simply forecasts of
the maximum portfolio loss that could occur over a given
holding period with a specified confidence level. Clearly,
the accuracy of these VaR estimates is of concern to both
banks and their regulators.

To date, two hypothesis-testing methods for evaluating
VaR estimates have been proposed, hamely, the binomial
and theinterval forecast methods. For these tests, the null
hypothesis is that the VaR estimates in question exhibit a
specified property that is characteristic of accurate VaR
estimates. As shown in a simulation exercise, these tests
generally have low power and are thus prone to misclas-
sifying inaccurate VaR estimatesas* acceptably accurate”

An alternative evaluation method, based on regulatory
loss functions, is proposed. Magnitude loss functions that
assign quadratic numerical scores when observed portfo-
liolosses exceed VAR estimates are shown to be particularly
useful. Smulation results indicate that the loss function
evaluation method iscapabl e of distinguishing between VaR
estimates generated by accurate and alter native VaR mod-
els. Theadditional information provided by this method as
well asitsflexibility with respect to the specification of the
loss function make a reasonable case for itsusein thereg-
ulatory evaluation of VaR estimates.

In August 1996, U.S. bank regulatory agencies adopted the
market risk amendment (MRA) to the Basle Capital Ac-
cord. The MRA, which became effective in 1998, requires
that commercial bankswith significant trading activities set
aside capital to cover themarket risk exposureintheir trad-
ing accounts.® The market risk capital requirements are
based on the “value-at-risk” (VaR) estimates generated by
the banks' own risk management models. In general, VaR
models attempt to forecast the time-varying distributions
of portfolio returns, and VaR estimates are simply speci-
fied lower quantiles of theseforecasted distributions. In other
words, VaR estimates are forecasts of the maximum port-
folio lossthat could occur over agiven holding period with
a specified confidence level.

Given theimportance of VaR estimates to banksand now
to their regulators, evaluating the accuracy of the models
underlying themisanecessary exercise. According to Hen-
dricks and Hirtle (1997):

The actual benefits to be derived from the VaR esti-
mates depend crucially on the quality and accuracy
of the model s on which the estimates are based. To the
extent that these models are inaccurate and misstate
banks' true risk exposures, then the quality of thein-
formation derived from any public disclosure will be
degraded. Moreimportant, inaccurate VaR model s or
models that do not produce consistent estimates over
timewill undercut the main benefit of a model s-based
capital requirement: the closer tie between capital re-
guirements and truerisk exposures. Thus, assessment
of the accuracy of these modelsis a key concern and
challenge for supervisors. (pp. 8-9)

To date, two hypothesi s-testing methodsfor eval uating VaR
estimates have been proposed: the binomia method, the
guantitative standard currently embodied in the MRA, and
the interval forecast method proposed by Christoffersen
(1998).2 For these tests, the null hypothesisisthat the VaR

1. Further detailson the MRA are provided in Section | below. For com-
plete details on the MRA, see the Federal Register (1996).

2. Note that other methods for evaluating VaR models have been pro-
posed, but they focus on other aspects of the models' forecasted distri-
butions. For example, Crnkovic and Drachman (1996) focus on the
entire forecasted distribution, and Lopez (1999) focuses on probability
forecasts generated from the forecasted distributions.
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estimates in question exhibit a specified property that is
characterigtic of accurate VaR estimates. If the null hypoth-
esisisrgjected, the VaR estimates do not exhibit the spec-
ified property, and the underlying VaR model can be said
to be “inaccurate.” If the null hypothesisis not rejected,
then the model can be said to be “acceptably accurate.”

For these evaluation methods, asfor any hypothesistest,
akey issueistheir statistical power, i.e., their ability tore-
ject the null hypothesiswhen it is actually incorrect. If the
hypothesis tests exhibit low power, then the probability of
misclassifying aninaccurate VaR model as* acceptably ac-
curate” will be high. A smulation exercise based on severa
data-generating processes finds the power of these teststo
be quite low, thus limiting their usefulness for evaluating
VaR estimates.

As an dternative to the hypothesis-testing framework, |
propose an evaluation method that uses standard forecast
evaluation techniques; that i s, the accuracy of VaR estimates
is gauged by how well they minimize aloss function that
represents the evaluator’s concerns. | consider three loss
functions that represent specific regulatory concerns: (1)
the binomial loss function that assigns a numerical score
of 1 when aVaR estimateis exceeded by its corresponding
portfolio loss, (2) the zone loss function based on the ad-
justmentsto the multiplication factor usedintheMRA, and
(3) the magnitudelossfunction that assignsaquadratic nu-
merical score when a VaR estimate is exceeded by its cor-
responding portfolio loss.

Although statistical power isless relevant for this eval-
uation method, the related issues of comparative accuracy
and model misclassification are examined within the con-
text of a simulation exercise. The simulation results indi-
cate that the degree of model misclassification generally
mirrorsthat of the other methods. However, in certain cases,
it provides additional useful information on the accuracy
of VaR estimates. Of the three|lossfunctions examined, the
magnitude | oss function seems to be more capable of dis-
tingui shing between accurate and aternative VaR estimates
becauseit incorporates additional information—the magni-
tude of the trading losses—into the evaluation. The ability
to use such additional information, as well as the flexibil-
ity with respect to the specification of the loss function,
make areasonabl e case for using the loss function method
in the regulatory evaluation of VaR estimates.

Section | describes the current regulatory environment
and the three evaluation methods. Section Il presents the
simulation results that indicate the usefulness of the pro-
posed eval uation method, particularly using the magnitude
lossfunction. Section 111 presentsadetailed example of how
this method can provide additional information useful in
the regulatory evaluation of VaR estimates, and Section 1V
concludes.

|. ALTERNATIVE EvALUATION METHODS

VaR models are characterized by their forecasted distribu-
tions of k-period-ahead portfolio returns. To fix notation, let
Y; represent portfolio value at time't in dollar terms, and
lety, = In(Y,). The k-period-ahead portfolio returnise,,, =
Vik — ¥i. Conditional on the information available at time
t, €.« IS @ random variable with distribution f,,,; that is,
€k | Qi ~ frri- Thus, VaR model mischaracterized by fy.,
its forecast of f,,.

VaR estimates are the most common type of forecast gen-
erated from VaR models. A VaR estimateissimply aspeci-
fied quantile of theforecasted return distribution over agiven
holding period. The VaR estimate at time t derived from
model mfor a k-period-ahead return, denoted VaR (k,a),
is the critical value that corresponds to the lower o per-
cent tail of f,, . Thus, VaR4(k,a) = F.,(a/100), where
FL.« istheinverse of the cumulative distribution function
correspondingtof,. or, equivalently, VaR,;(k,a) isthe so-

lution to
VaR, (k,a)

a
o (X)dx=—.

_J; mt+k(X) 00

Note that a VaR estimate is typically expressed in dollar
terms as the loss between the current portfolio value and
the portfolio value corresponding to it; that is, VaR(k,a) is
expressed in dollar terms as VaR$,(k,a) = Y,(1 — eVRm(ka)),

Current Regulatory Framework

The U.S. capital rulesfor the market risk exposure of large
commercial banks, effective as of 1998, are explicitly based
on VaR estimates. Therules cover abank’stotal trading ac-
tivity, which is all assetsin a bank’s trading account (i.e.,
assets carried at their current market value) as well as all
foreign exchange and commodity positionswherever located
inthebank. Any bank or bank holding company whose to-
tal trading activity accountsfor more than 10 percent of its
total assets or is more than $1 billion must hold regulatory
capital against itsmarket risk exposure. The capital charge
iscd culated using the so-called “internal models’ approach.

Under this approach, capital charges are based on VaR
estimates generated by banks' internal risk management
models using the standardizing parameters of a ten-day
holding period (k = 10) and 99 percent coverage (o = 1).
In other words, abank’s market risk capital chargeishbased
on its own estimate of the potential loss that would not be
exceeded with 1 percent probability over the subsequent
two-week period. The market risk capital that bank mmust
hold for timet + 1, denoted MRC,,.1, iS Set asthe larger of
the dollar value of VaR,(10,1) or amultiple of the average
of the previous 60 VaR4(10,1) estimates in dollar terms;



thatis,

MRGC,,., =max E/aRSBmI (10,2); S, * 6—10_2 VaR$,, . (10,1)% R,,

where §,; and SR,; are a multiplication factor and an ad-
ditional capital chargefor the portfolio’sidiosyncratic credit
risk, respectively. Note that, under the current framework,
Si23.

The S, multiplier is included in the calculation of
MRC, ;.1 for two reasons. First, as suggested by Hendricks
and Hirtle (1997), it adjusts the reported VaR estimates up
to what regulators consider to be a minimum capital re-
guirement reflecting their concernsregarding prudent cap-
ital standards and model accuracy.® Second, S,; explicitly
linkstheaccuracy of abank’sVaR model toitscapital charge
by varying over time. S, is set according to the accuracy
of model m's VaR estimates for a one-day holding period
(k=1) and 99 percent coverage, denoted VaR,,(1,1) or sim-
ply VaR.

S isastep function that depends on the number of ex-
ceptions observed over the last 250 trading days. Excep-
tionsaredefined asoccasionswhen the portfolioreturn e, ;
is less than the corresponding VaR,;.* The possible num-
ber of exceptions is divided into three zones. Within the
green zone of four or fewer exceptions, a VaR model is
deemed “ acceptably accurate” to theregulators, and S, re-
mains at its minimum value of three. Within theyellow zone
of five to nine exceptions, S,; increases incrementally with
the number of exceptions. Within the red zone of ten or
more exceptions, the VaR model is deemed to be “inaccu-
rate” for regulatory purposes, and S, increasesto its max-
imum value of four. Theinstitution also must take explicit
steps to improve its risk management system.®

The*"internal models” approach represents a significant
change in the regulatory oversight of bank trading activi-
ties, since previous approaches used rel atively smplerules
not based on bank-specific inputs. This approach indicates
a move toward incentive-compatible regulations, i.e., reg-
ulations that give banks incentives to comply with desired

3. See Sahl (1997) for amathematical justification of the multiplication
factor.

4. Note that the portfolio returns reported to the regulators, commonly
referred to asthe “ profit & loss numbers,” will usually not directly cor-
respond to €,,;,. The profit & loss numbers are usualy polluted by the
presence of customer fees and intraday trade results, which are not cap-
tured in standard VaR models. No definitive method of dealing with this
discrepancy has been established.

5. The MRA containsanumber of other criteria, such as* stresstesting,”
that banks' risk management systems must meet in order to be consid-
ered appropriate for determining market risk capital requirements.
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outcomes.® Having established that market risk capital will
beafunction of banks’ own VaR estimates, regul ators must
now focus on eval uating the accuracy of these VaR estimates.
The following section discusses three methods for evalu-
ating VaR estimates. In accordancewith the current regul a-
tory framework, one-step-ahead VaR estimates are analyzed.

Alter native Evaluation Methods

Under theMRA, regulatorsmust determinewhether abank’s
VaR model is “acceptably accurate” given 250 VaR esti-
mates and the corresponding portfolio returns. To date, two
methods have been proposed for this type of evaluation:
(1) evaluation based on the binomia distribution and (2)
interval forecast evaluation, as proposed by Christoffersen
(1998). Both methods use hypothesis tests to determine
whether the VaR estimates exhibit aspecified property that
is characteristic of accurate VaR estimates.

However, as noted by Diebold and Lopez (1996), it is
unlikely that forecasts from a model will exhibit all the
properties of accurate forecasts. Thus, evaluating VaR es-
timates solely upon whether a specific property is present
may yield only limited information regarding their accu-
racy. In addition, the power of the tests used in the evalua-
tion must also be considered. In this paper, an evaluation
method based on determining how well VaR estimates min-
imize aregulatory loss function is proposed. This evalua-
tion method can provideinformation that isof direct interest
to the regulators since their concerns are directly incorpo-
rated into the loss function.

Evaluation of VaR estimates based on the binomial distri-
bution. Under the MRA, banks report their VaR estimates
to theregulators, who observe when actual portfolio losses
exceed these estimates.” As discussed by Kupiec (1995),
assuming that the VaR estimates are accurate, such excep-
tions can be modeled as independent draws from a bino-
mial distribution with aprobability of occurrence equal to
1 percent. Accurate VaR estimates should exhibit the prop-
erty that their unconditional coverage & = x/250, where x
is the number of exceptions, equals 1 percent. Since the
probability of observing x exceptions in a sample of size
250 under the null hypothesisis

6. Note that an alternative (and possibly more incentive-compatible)
method for monitoring the market risk exposure of commercial banksis
the* precommitment” approach proposed by Kupiec and O’ Brien (1995).
7. Note that this reporting is in dollar terms. Since the following dis-
cussion will bein terms of log portfolio returns, these reported numbers
must be transformed into log form in order to make these evaluation
methods operational .
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Pr(x) = [E?_io go.or* 0.99%507%

the appropriate likelihood ratio statistic for testing whether
a=001is

LR, = 2[log(6X(1 — & )5*%) —l0g(0.01% * 0.9920)].

Notethat the LR test isuniformly most powerful for agiven
sample size and that the statistic has an asymptotic x?(1)
distribution.

The finite sample size and power characteristics of this
test are of interest. With respect to size, the finite sample
distribution of LR, for the specified parameters may be suf-
ficiently different from ax?(1) distribution that the asymp-
totic critical values may be inappropriate. Table 1 Panel A
presentsthefinite-sample critical values asdetermined via
simulation and shows meaningful differences between the
two distributions which must be accounted for when draw-
ing statistical inference. As for the power of this test,
Kupiec (1995) describes how thistest has alimited ability
to distinguish among alternative hypotheses and thus has
low power in samples of size 250.

Evaluation of VaR estimates using the interval forecast
method. VaR estimates are also interval forecasts of the
lower 1 percent tail of f,,;, the one-step-ahead return dis-
tribution. Interval forecasts can be evaluated conditionally
or unconditionally, that is, with or without referenceto the
information available at each point in time. The LR, test
is an unconditional test since it ssimply counts exceptions
over the entire period. However, in the presence of time-
dependent heteroskedasticity, the conditional accuracy of
interval forecasts is an important issue. Interval forecasts
that ignore such variance dynamics may have correct un-
conditional coverage but, at any given time, will have in-
correct conditional coverage; seeFigure 1 for anillustration.
In such cases, the LR test is of limited use since it will
classify inaccurate VaR estimates as* acceptably accurate.”

The LR, test, adapted from the more general test pro-
posed by Christoffersen (1998), is atest of correct condi-
tional coverage. For a given VaR estimate, the indicator
variable 1., for whether an exception occurred is con-
structed as

| Cif g < VaRy,
mAT LY if g, 2 VaR,,

Since accurate VaR estimates exhibit the property of cor-
rect conditional coverage, thel ., seriesmust exhibit both
correct unconditional coverage and serial independence.

TABLE 1

CriTiCAL VALUES FOR THE LR ¢
AND LR SraTisTiCS

SGNIFICANCE LEVEL

1% 5% 10%

A. LR, SraTisTiC

Asymptotic x3(1) 6.635 3.842 2.706
Finite-Sample 5.497 5.025 3.555
(0.5%) (9.5%) (12.29%)

B. LR SraTisTiC

Asymptotic X3(2) 9.210 5.992 4.605
Finite-Sample 6.007 5.015 5.005
(0.2%) (1.1%) (11.8%)

Note: Thefinite-sample critical valuesfor the LR and LR test statis-
tics for the lower 1 percent quantile (o = 1) are based on 10,000 simu-
lations of sample size T = 250. The percentages in parentheses are the
quantiles that correspond to the asymptotic critical values under the fi-
nite-sample distribution.

TheLR. testisajoint test of thesetwo properties. Therel-
evant test statistic is LR, = LR + LR, 4, Which is asymp-
totically distributed x2(2). Thefinite sample critical values
for the regulatory parameter values of (k,a) = (11) are
shown in Table 1 Panel B.

The LR, statistic isthe likelihood ratio statistic for the
null hypothesis of serial independence against the ater-
native of first-order Markov dependence.? The likelihood
function under this alternative hypothesisis

La= (1 —Tipy) oo Thgg (1 — 1) To 4™,

where the T;; notation denotes the number of observations
in state j after having been in state i the period before, 11y;
= Toa/ (Too + Top) @and 113 = Tp4/(Typ + Ty4). Under the null hy-
pothesis of independence, 11y, = T;; = 11, and the relevant
likelihood function is Ly = (1 — 11) "ot To 1t T where 11 =
(Tor + T11)/250. The test statistic LR;,q is 2[logL, —l0g L]
and has an asymptotic x(1) distribution.

8. Asdiscussed in Christoffersen (1998), several other formsof depend-
ence, such as second-order Markov dependence, can be specified. For the
purposes of thispaper, however, first-order Markov dependenceis used.



FIGURE 1
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Note: Theline labeled GARCH isarealization of 500 portfolio returns
from a GARCH(1,1)-normal data-generating process. The variance dy-
namics are characterized as h,,; = 0.075 + 0.10&Z+ 0.85h,, which imply
an unconditional variance of 1.5. The unconditional interval forecastsare
based on the unconditional N(0,1%,) distribution, and the conditional in-
terval forecasts are based on the true data-generating process. Although
both forecasts exhibit correct unconditional coverage with 25 exceptions
(that is, a* = a = 5%), only the conditional confidence intervals exhibit
correct conditional coverage or, in other words, provide 5% coverage at
each point in time.

Evaluation of VaR estimates using regulatory loss func-
tions. The loss function evaluation method proposed here
is based not on a hypothesis-testing framework, but on as-
signing to VaR estimates a numerical score that reflects
specific regulatory concerns. Although this method forgoes
the benefits of statistical inference, it provides a measure
of relative performance that can be used to compare VaR
estimates across time and across ingtitutions.

To use this method, the regulatory concerns of interest
must be trandated into a loss function. The general form
of theseloss functionsis

_Of (B, VAR ) i &y < VAR,
17 Hye,VaR,,) if €., 2 VaR, '’
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where f(x,y) and g(x,y) are functions such that f(x,y) =
g(x,y). The numerical scores are constructed with a nega
tiveorientation; i.e., lower valuesof G, arepreferred since
exceptions are given higher scores than non-exceptions.
Numerical scores are generated for individual VaR esti-
mates, and the score for the compl ete regulatory sampleis

250
Q'n = _Zlcmﬁi '

Under very general conditions, accurate VaR estimateswill

generate the lowest possible numerical score.® Once aloss
function is defined and C,, is calculated, a benchmark can
be constructed and used to evaluate the performance of a
set of VaR,; estimates. Although many regulatory lossfunc-
tions can be constructed, the three analyzed in this paper
are described below.

Loss function implied by the binomial method. The loss
function implied by the binomial method is

LM if g < VaR,
G =0y it g2 VeR,

Note that the appropriate benchmark is E[C.,] = 0.01,
which for the full sampleis E[C,] = 2.5. As before, only
the number of exceptionsis of interest, and no additional
information beyond that contained in the binomial method
isincluded in this analysis.

Lossfunction anal ogousto the adjustment schedul efor the
S« multiplier. The numerical score assigned to a set of 250
VaR estimates can be generated by assigning ascoreto each
element of the set or by assigning a score based on the
entire set. The adjustment to the S,; multiplier embodied
in the MRA is based on the entire set of VaR estimates.
Phrased in the notation above, the loss function that gen-
erates an analogous numerical scoreis

0 if g, =VaR,
if €., <VaR, and
M.4/5 if €, <VaR, and
H.5/6 if g, <VaR, and
Crera () = T0.65/7 if ., < VaR, and
(0.75/8 if ¢, <VaR, and
%).85/9 if €. <VaR, and
H/ x if €, <VaR, and

N
IN
N

X X X X X X O
\% 1

=
OOCD\IG)U'IX

9. SeeDiebold, Gunther, and Tay (1998) aswell as Granger and Pesaran
(1996) for further discussion of these conditions with respect to distri-
bution and probability forecasts, respectively.
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where X is the number of exceptions in the entire sample
and the numerical weights arethe actual S,; valuesdivided
by x. The benchmark for this numerical scoreis

E[C 9] = E53 G 005 3 PO+ £ G (O 0.08567.

Notethat thislossfunctionincorporatesthe regul atory con-
cernsexpressed in the §,; multiplier, but, like the binomial
lossfunction, it isbased only on the number of exceptions
in the sample.

Loss function that addresses the magnitude of the excep-
tions. Asnoted by the Basle Committee on Banking Super-
vision (1996), the magnitude as well as the number of the
exceptions are a matter of concern to regulators.* Asdis-
cussed by Hendricks (1996), the magnitude of the observed
exceptions can be quite large; in that study, the portfolio
losses exceed the corresponding VaR estimate by 30 to 40
percent on average, and, in the extreme cases, by up to 300
percent.

This concern can readily be incorporated into a loss
function by introducing a magnitude term into the bino-
mial loss function. Although several are possible, a quad-
ratic term is used here, such that

C. CA+(ey —VaR, ) if g, <VaR,
" if £,2VaR,

Thus, asbefore, ascore of 1isimposed when an exception
occurs, but now an additional term based on the magnitude
of the exceptionisincluded. The numerical scoreincreases
with the magnitude of the exception and can provide addi-
tional information on how the underlying VaR model fore-
casts the lower tail of the f,,, distribution. Unfortunately,
the benchmark based on the expected value of C,; can-
not easily be determined becausethef,,, distributionisun-
known. However, simple operational benchmarksbased on
certain distributional assumptions can be constructed and
are discussed in Section I11.

10. As currently constructed, the S,; adjustment schedule does not ad-
dress VaR estimates that are possibly too conservative, i.e., VaR esti-
mates that |ead to a lower than expected number of exceptions. Given
the regulatory interest in providing adequate capital against negative
outcomes, the absence of such outcomesis not rel evant. However, from
the perspective of VaR model eval uation, such outcomes might indicate
modeling error. This concern could be addressed by modifying the loss
function to include a non-zero score when x < 4.

11. Note that Berkowitz (1999) has recently developed a hypothesis-
testing method for calculating VaR estimates that incorporates the mag-
nitudes of the exception.

[l. SMULATION EXERCISE

To analyze the ability of the three evaluation methods to
gauge the accuracy of VaR estimates and thus avoid VaR
model misclassification, asimulation exerciseis conducted.
For the two hypothesis-testing methods, this amounts to
analyzing the power of the statistical tests, i.e., determin-
ing the probability with which the tests reject the specified
null hypothesis when it is incorrect. With respect to the
loss function method, its ability to evaluate VaR estimates
is gauged by how frequently the numerical score for VaR
estimates generated from the true data-generating process
(DGP) is lower than the score for the VaR estimates from
aternative models. If this method is capable of distinguish-
ing between these competing scores, then the degree of VaR
model misclassification will be low.

Thefirst stepinthissimulation exerciseisdeciding what
type of portfolio to analyze. Although VaR models are
commonly applied to complicated portfolios of financial
assets, the log portfolio value y;,; used hereis specified as
Vie1 = Vi + €41, Where €4 | Q; ~ fiuq. This processis repre-
sentative of linear deterministic conditional mean specifi-
cations. It is only for portfolios with nonlinear elements,
such as portfolios with options, that this choice presents
inference problems; further research along these lines, as
by Pritsker (1997), is needed.

The simulation exercise is conducted in four parts. To
examine how the evaluation methods perform under differ-
ent distributional assumptions, the true DGP f,; is set to
be the standard normal distribution and a t-distribution
with six degrees of freedom, which inducesfatter tailsthan
the normal, in thefirst two parts. The last two parts exam-
ine the performance of the evaluation methodsin the pres-
ence of variance dynamics: the third part models €., asa
GARCH(1,1)-normal process, and the fourth part does so
as a GARCH(1,1)-t(6) process.

In each part of the exercise, the true DGP is one of eight
VaR models evaluated and is designated as the true model
or model 1. Traditional power analysis of a hypothesistest
is conducted by varying a particular parameter and deter-
mining whether the corresponding incorrect null hypoth-
esisisregected; such changesin parameters generate what
aretermed local aternatives. In this study, non-nested, but
common, VaR models are used as reasonable “local” al-
ternatives. For example, a common type of VaR model
specifies the variance of €,,,, denoted as h,;.,4, as an expo-
nentially weighted moving average of squared innovations,
that is,

e = (L= A) 3 NEZ, = Ay, + (1= AJe?.
i=0



This VaR model, a version of which is used in the well-
known RiskMetrics calculations (see JP. Morgan, 1996), is
calibrated here by setting A equal to 0.94 or 0.99, which
imply ahigh-degree of persistencein variance.*? The alter-
native VaR models used in each part of the simulation ex-
ercise are described in the subsections bel ow.

The simulation runs are structured identically in each
part of the exercise. For each run, the smulated y,,, series
isgenerated using the chosen DGP. After generating anin-
sampl e period of 3,500 observations, the chosen VaR mod-
els are used to generate one-step-ahead VaR estimates for
the next 250 out-of-sample observations of y;,;. The ana-
Iytical resultsare based on 1,000 simulation runs. Thesim-
ulation results are organized below with respect to the four
parts of the exercise.

Two general points can be made regarding the simula-
tion results. First, with the size of the tests set at 5 percent,
the power of thetwo hypothesi s-testing methodsvaries con-
siderably against the incorrect null hypotheses implied by
the alternative VaR models. In some cases, the power of the
testsis high (greater than 75 percent), but in the majority
of the cases examined, the power is poor (lessthan 50 per-
cent) to moderate (between 50 and 75 percent). Theresults
indicatethat thesetwo methodsarelikely to misclassify VaR
estimates from inaccurate model s as “ acceptably accurate.”

Second, the degree of model misclassification exhibited
by the loss function method roughly matches that of the
other two methods; i.e., when the hypothesi s-testing meth-
ods exhibit low power, the loss function method is also
generally less capable of distinguishing between accurate
and inaccurate VaR estimates. Overal, however, the loss
function method has a moderate to high ability to gauge
the accuracy of VaR estimates. Among thethree regulatory
loss functions, the results for the magnitude loss function
are relatively better, indicating a greater ability to distin-
guish between models. This result is not surprising given
that the magnitude loss function incorporates additional
information—the magnitude of the exceptions—into the
evaluation.

Smulation Results for the Homoskedastic
Sandard Normal DGP

For thefirst part of this exercise, the true DGP is the stand-
ard normal; i.e., €., ~ N(0,1). The seven alternative mod-
elsexamined are: normal distributionswith variancesof %,,

12. Note that this VaR modéd is often implemented with a finite lag-
order. For example, the infinite sum is frequently truncated at 250 ob-
servations, which accountsfor over 90 percent of the sum of theweights.
See Hendricks (1996) for further discussion on the choice of A and the
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3,, 14,, and 1%; the two heteroskedastic calibrated VaR
models with normal distributions; and the historical sim-
ulation model. For this last model, the VaR estimates are
formed asthelower 1 percent quantile of theempirical dis-
tribution of the 500 previously observed returns.

In Table 2, Panel A presents the power analysis of the
hypothesis-testing eval uation methods for a fixed test size
of 5 percent. For the homoskedastic alternatives (models 2
through 5), the power resultsvary considerably and arere-
lated to the differences between the true variance and the
model’svariance; i.e., larger differenceslead to greater rel-
ative power. With respect to the calibrated models (6 and
7), the tests have no power since the VaR estimates are still
guite similar to those of the true DGP, even though unnec-
essary heteroskedasticity isintroduced. Both tests have low
power for the historical simulation model (model 8).

Panel B contains the comparative accuracy results for
thelossfunction method using the specified lossfunctions.
Note that each number in the panel represents the percent-
age of simulations for which the numerical score for the
true model is actually lower than that of the inaccurate
model. Thismethod cannot distinguish between the numer-
ical scores for the true DGP and those for models 4 and 5,
which generate conservative VaR estimates and thus lower
scores due to fewer exceptions. Thisresult is generally ac-
ceptable from the viewpoint implicit in the regulatory loss
functions, sinceregulatorsare concerned if not enough capi-
tal isheld against possible losses, but not if too much cap-
ital is held. However, this method clearly can distinguish
between the true DGP and the low variance models (mod-
els 2 and 3) that consistently generate smaller VaR esti-
mates than necessary. With respect to the calibrated and
historical models (models 6 through 8), the degree of mis-
classificationisgenerally moderate, athough the magnitude
loss function exhibits the best results.

Smulation Results for
the Homoskedastic t(6) DGP

For the second part of the exercise, the true DGP is a t(6)
distribution; i.e., €., ~ t(6). The seven aternative models
are: two normal distributions with variances of 1 and 1%,
(thesamevariance asthetrue DGP); thetwo calibrated mod-
elswith normal distributions as well as with t(6) distribu-
tions; and the historical simulation model.

truncation lag. In this simulation exercise, no such truncation is im-
posed but, of course, one is implied by the overall sample size of the
simulated time series.
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TABLE 2
SMULATION RESULTS FOR HomoskEDASTIC STANDARD NORMAL DGP
MopELs
Homoskedastic Heteroskedastic Historical
2 3 4 5 6 7 8
A. Power oF THE LR ¢ AND LR TESTS AGAINST ALTERNATIVE VAR MoDELS? (%)
LR, 97.2 304 29.7 54.9 4.3 4.5 40.2
LR 97.8 329 30.5 60.1 5.4 5.7 434
B. Accuracy orF VAR EstiMaTES UsING REGULATORY Loss FuncTions® (%6)

Binomial 100.0 94.4 0.0 0.0 55.3 55.4 28.3
Zone 99.6 66.8 0.0 0.0 17.9 18.2 6.7
Magnitude 100.0 99.7 0.0 0.0 76.1 76.4 53.8

aThe size of thetestsis set at 5% using the finite-sample critical valuesin Table 1.

b Each row represents the percentage of simulations for which the alternative VaR estimates have a higher numerical score than the true moddl, i.e.,
the percentage of the simulations for which the alternative VaR estimates are correctly classified as inaccurate.

Note: The results are based on 1,000 simulations. Model 1 isthe true data generating process, €..; ~ N(0,1). Models 2 through 5 are homoskedastic
normal distributions with variances of ¥, %,, 1Y,, and 1%, respectively. Models 6 and 7 are normal distributions whose variances are exponentially
weighted averages of the squared innovations calibrated using A = 0.94 and A = 0.99, respectively. Model 8 isthe historical simulation model based

on the previous 500 observations.

In Table 3, Panel A showsthat the overall power of the
LR tests againgt these dternative modelsislow. With the ex-
ception of the N(0,1) model (model 2), the power results
arebelow 50 percent; thus, the aternative VaR estimatesare
incorrectly classified as* acceptably accurate” alarge per-
centage of the time. This result is mainly due to the simi-
larity of the alternative VaR models to the true DGP. For
example, although models 4 through 7 introduce unneces-
sary heteroskedasticity, their VaR estimates are similar to
the true, but constant, VaR estimates.

Panel B contains the results of the loss function evalua-
tion. For the normality-based models (models 2 through
5), the three loss functions have moderate to high ability
to distinguish between alternative VaR estimates, with the
zone loss function doing worst and the magnitude loss
function doing best. However, with respect to models 6
through 8, this method shows a high degree of model mis-
classification duetothemodes' similarity to thetrue DGP.

Smulation Results for
the GARCH(1,1)-normal DGP

For the last two parts of the simulation exercise, variance
dynamics are introduced by using conditional heteroske-
dasticity of the GARCH form; i.e., h,; = 0.075 + 0.10€? +
0.85h,, which hasan unconditiona variance of 1%,. Theonly

difference between the DGPs in these two parts of the ex-
erciseisthe chosen distributional form. For the third part,
€1 ] ~N(O,h,,,), andfor thefourth part, €, | Q; ~t(h.,1,6).
The seven alternative VaR models examined are the ho-
moskedastic models of the standard normal, the N(0,1%,)
model, and the t(6) distribution; the historical simulation
mode!; and the calibrated models with normal innovations
and the GARCH model with the other distributional form.
In Table 4, Panel A presents the power analysis of the
hypothesis-testing methods. The power results are mainly
driven by the differences between the distributional as-
sumptions used by the true DGP and the alternative models.
Foecifically, thetests have low power against the calibrated
normal models(models5 and 6) sincetheir smoothed vari-
ances are quite similar to the true GARCH variances. How-
ever, the results for the GARCH-t(6) model (moddl 7) are
much better due to the incorrect t(6) assumption. Overall,
the hypothesi s-testing methods seem to have substantially
less power against VaR models characterized by close ap-
proximations of the true variance dynamics (models 3
through 6 and 8) and have better power against modelswith
incorrect distributional assumptions (models 2 and 7).
Theresultsfor theloss function eval uation method, pre-
sented in Panel B, are similar; that is, this method has a
low to moderate ability to distinguish between the true and
dternative VaR models. For the heteroskedastic models,
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TABLE 3
SMuLATION RESULTS FOR HomoskEDASTIC t(6) DGP
MopELs
Homoskedastic Heteroskedastic Historical
2 3 4 5 6 7 8

A. Power oF THE LR ¢ AND LR AGAINST ALTERNATIVE VAR MoDELs? (%)
LR, 59.1 10.8 15.3 14.6 20.3 19.9 7.9
LR 61.5 11.2 17.4 19.9 304 30.5 12.4

B. Accuracy oF VAR MobeLs UsiNg REGULATORY Loss FuncTions? (%)

Binomial 99.2 69.8 85.5 85.5 51 50 26.3
Zone 85.0 271 47.5 47.3 0.2 0.1 54
Magnitude 99.9 97.4 97.3 97.2 10.7 10.3 51.0

aThe size of thetestsis set at 5% using the finite-sample critical valuesin Table 1.

b Each row represents the percentage of simulations for which the alternative VaR estimates have a higher numerical score than the true moddl, i.e.,
the percentage of the simulations for which the alternative VaR estimates are correctly classified as inaccurate.

Note: The results are based on 1,000 simulations. Model 1 isthe true data generating process, €., ~t(6). Models 2 and 3 are the homoskedastic mod-
elswith normal distributions of variance of 1 and 1.5, respectively. Models 4 and 5 are the calibrated heteroskedastic models with the normal distri-
bution, and models 6 and 7 are the calibrated heteroskedastic models with the t(6) distribution. Model 8 isthe historical simulation model based on
the previous 500 observations.

TABLE 4
SiMuLATION RESULTS FOR GARCH(1,1)-NormAL DGP
MobELs
Homoskedastic Heteroskedastic Historical
2 3 4 5 6 7 8

A. Power oF THE LR . AND LR AGAINST ALTERNATIVE VAR MoDELs? (%)
LR 52.3 214 30.5 51 10.3 8L7 23.2
LR, 56.3 254 384 6.7 119 91.6 331

B. Accuracy oF VAR MopeLs UsiNG REGULATORY Loss FuNcTions? (%)

Binomial 9.7 41.3 18.1 52.2 48.9 0.0 38.0
Zone 721 210 8.1 15.2 18.4 0.0 17.7
Magnitude 96.5 56.1 291 75.3 69.4 0.0 515

aThe size of thetestsis set at 5% using the finite-sample critical valuesin Table 1.

b Each row represents the percentage of simulations for which the alternative VaR estimates have a higher numerical score than the true model, i.e.,
the percentage of the simulations for which the alternative VaR estimates are correctly classified as inaccurate.

Note: The results are based on 1,000 simulations. Model 1 is the true data generating process, €., | Q; ~ N(0,h,). Models 2, 3, and 4 are the ho-
moskedastic models N(0, 1), N(0,1.5) and t(6), respectively. Models 5 and 6 are the two calibrated heteroskedastic models with the normal distribu-
tion, and model 7 isa GARCH(1,1)-t(6) model with the same parameter values as Model 1. Model 8 isthe historical simulation model based on the
previous 500 observations.



12 FRBSF Economic Review 1999, NUMBER 2

the more conservative GARCH-t(6) model (model 7) obvi-
ously minimizesthe loss functions due to its smaller num-
ber of exceptions. For the calibrated normal models(modds
5 and 6) and the historical model (model 8), this method
generally hasapoor ability to classify them correctly. With
respect to the homoskedastic model s (models 2 through 4),
the degree of misclassification islow for the standard nor-
mal (model 2), but much higher for the other two models
that have the same unconditional variance asthetrue DGP.
Note, as previously mentioned, that the magnitude loss
function is relatively more able to classify VaR estimates
correctly than the other two loss functions.

Smulation Results for the GARCH(1,1)-t(6) DGP

In Table 5, Panel A presents the power analysis of the hy-
pothesi s-testing methods. The power resultsare clearly tied
to the presence of heteroskedasticity in the alternative VaR
models. The homoskedastic models (models 2 through 4)
are identified as “inaccurate” with very high power since
their VaR estimates cannot match the magnitude of the
observed returns from the true DGP. However, for the het-
eroskedastic models (models 5 through 7) and the histor-
ical model (model 8), which are more capable of tracking
the underlying variance, the power of the tests declines
dramatically.

For the loss function method, the resultsin Panel B in-
dicate that the VaR estimates from the true and aternative
models, except for the historical model (model 8), can be
differentiated. For the homoskedastic alternatives (models
2 through 4), this ahility is driven mainly by the fact that
constant VaR estimates cannot track the actual returns
processwell. The heteroskedastic models (model s5though
7) that can adjust over time do better, but they can still be
identified as inaccurate due to their misspecified distribu-
tional assumptions. For the historical model, the method's
ability to distinguish it from the true DGP is diminished.
Note again that, of the three loss functions, the magnitude
loss function is most capable of differentiating between
the models.

[1l. IMPLEMENTATION OF
THE Loss FuncTioN METHOD

The simulation results presented above indicate that the
loss function method is generally capable of distinguish-
ing between VaR estimates from the true DGP and alterna-
tive models. Although this ability varies, the method can
provideinformation useful for the regulatory eval uation of
VaR estimates, particularly when the magnitude loss func-
tionisused. Thisresult isnot surprising given that it incor-
poratesthe additional information on the magnitude of the

TABLES
SMuLATION RESULTS FOR GARCH(1,1)-t(6) DGP
MobELs
Homoskedastic Heteroskedastic Historical
2 3 4 5 6 7 8
A. PoweR oF THE LR . AND LR AGAINST ALTERNATIVE VAR MoDELS? (%)
LR, 99.8 97.5 94.4 17.9 34.7 59.1 47.3
LR, 99.9 97.7 95.6 237 35.6 61.5 54.8
B. Accuracy oF VAR EsTIMATES UsING REGULATORY Loss FUNCTIONSP (%6)

Binomial 99.9 99.9 99.8 82.6 66.9 99.2 42.4
Zone 99.9 99.0 97.1 47.2 27 85.0 29.9
Magnitude 99.9 99.9 99.9 94.8 78.0 99.9 53.7

aThe size of thetestsis set at 5% using the finite-sample critical valuesin Table 1.

b Each row represents the percentage of simulations for which the alternative VaR estimates have a higher numerical score than the true model, i.e.,
the percentage of the simulations for which the alternative VaR estimates are correctly classified as inaccurate.

Note: The results are based on 1,000 simulations. Model 1 is the true data generating process, €., | Q; ~ t(h.1,6). Models 2, 3, and 4 are the ho-
moskedastic models N(0,1), N(0,1.5) and t(6), respectively. Models 5 and 6 are the two calibrated heteroskedastic models with the normal distribu-
tion, and model 7 isa GARCH(1,1)-normal model with the same parameter values as Model 1. Model 8 is the historical simulation model based on

the previous 500 observations.
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exceptions into the evaluation. In this section, this evalu-
ation method using the magnitude loss function is made
operational by creating abenchmarking process and by il-
lustrating its use in a detailed example.

Creating a Benchmark for
the Observed Numerical Scores

Under the current regulatory framework, regulators ob-
serve the VaR estimates and portfolio returns, denoted
{€ui,VaR i1} 25, for bank m and thus can construct, un-
der the magnitude loss function, the numerical score G,
However, for aparticular realized value C;,, aside from the
number of exceptions, not much inference on the perform-
ance of the underlying VaR estimatesis available. That is,
we don’t know whether C;,isa“high” or “low” number.
Although comparisons could be made cross-sectionally
across banks, a better method for gauging the magnitude
of C,, isto create a comparative benchmark based on the
distribution of C,,, whichisarandom variableduetotheran-
dom portfalio returns. Since each portfolio return has a
conditional distribution €, | Q; ~ f.;;, additional assump-
tions on the dependence of the returns and their distri-
butions must be imposed in order to analyze f(C,), the
distribution of C,,.

An immediate and commonly used assumption is that
the observed returns are independent and identically dis-
tributed (iid); i.e., €4, ~ f. Thisis quite a strong assump-
tion, especially given the heteroskedasticity often found
in portfolio returns.’®* However, the small sample size of
250 observations mandated by the MRA allows few other
choices. Having made the assumption that the observed re-
turns are iid, their empirical distribution, denoted f(g.,,),
can be estimated using avariety of methods. For example,
nonparametric methods, such as smoothed kernel density
estimators as per Silverman (1986) or unsmoothed boot-
strap methods, could be used. Generally, for issues of tract-
ability, parametric methods are commonly used; i.e., a
specific distributional form is assumed, and the necessary
parameters are estimated from the available data. For ex-
ample, if the returns are assumed to be normally distribu-
ted with zero mean, the variance can be estimated such that
f(€n1) iISN(0,G?).

A reasonable aternative to assuming independence is
to impose some explicit form of dependence on the data.
For example, if the returns are assumed to be driven by
a GARCH process, the necessary parameters could be es-

13. See Kearns and Pagan (1997) for a discussion of the consequences
of ignoring the dependence in financial data when drawing inferences
about the tails of the data’s distribution.

timated from the observed portfolio returns and used to
specify (.1 | Q). Since the small sample size will limit
the usefulness of such parameter estimates, the calibrated
models previously discussed present areasonable alterna-
tive specification.* In the example that follows, both as-
sumptions are used to examine the VaR estimates for
different models. _

Oncef(g.) or f(€.,1 | Q) has been determined, the em-
pirical distribution of thenumerical score C;,under thedis-
tributional assumptions, denoted f(C,,), can be generated.
For example, if €., ~ N(0,62), then the corresponding VaR
estimates are VaR;, = -2.320. If the assumption isthat €.,
~ N(0O,h,4), then

VaR: =-2.32\h,,

whereﬁ[+1 istheassumed varianceat timet + 1. Using these
assumptions, f(C,) can then be constructed viasimulation
by forming, say, 1,000 values of the numerical score C,,
each based on 250 draws from the assumed distribution of
€1 and its corresponding VaR estimates.’®

Once f(G,,) has been generated, the empirical quantile
Om = F(C), where F(C,) is the cumulative distribution
function of f(C,), can be calculated for the observed value
C.,. Thisempirical quantile provides a performance bench-
mark, based on the distributional assumptions, that can be
incorporated into the regulatory evaluation of the underly-
ing VaR estimates. In order to make this benchmark oper-
ational, the regulator should select a threshold quantile
above which concerns regarding the performance of the
VaR estimates are raised. This decision should be based
both on the regulators’ preferences and the severity of the
distributional assumptions used. If g, is below the thresh-
old that regulatorsbelieveisappropriate, say, below 80 per-
cent, then C, is “typica” under the assumptions made
about the portfolio returns and given the regulators’ pref-
erences. If g, is above the threshold, then C;, can be con-
sidered atypical given their preferences, and the regulators
should take a closer look at the underlying VaR model.

Note that this method for evaluating VaR estimates does
not replace the hypothesi s-testing methods but, instead, pro-
vides complementary information, especially regarding the
magnitude of the exceptions. In addition, the flexibility of
this method permits many other concerns to be incorpo-
rated into the analysis via the choice of the loss function.

14. The negative impact of misspecified dependence in the data on the
construction of f(C,) relativeto that of theiid assumption isnot known;
further research is necessary.

15. Note that although a closed form solution for f(C,) should be avail-
able if a parametric assumption is made, simulation methods will be
used in this paper.
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The example below illustrates how this method might be
employed in an actual case; it can be seen that, in certain
cases, the loss function method flags important informa-
tion not captured in the standard binomial analysis.

Detailed Example

For this detailed example, the performance of three sets
of VaR estimates is examined using the three evaluation
methods. Aswill be shown, inferences about the accuracy
of the VaR estimates based on the loss function method
match those drawvn from the hypothesis-testing methods.
However, since it incorporates additional information on
the magnitude of the exceptions, the loss function method
permits regulators to draw further inferences.
Theunderlying returns processise,, | Q; ~t(h.1,6) with
hup = 0.075 + 0.10€?+ 0.85h;. VaR estimates are generated
from three VaR models: the true GARCH-t(6) model; the
historical simulation model based on arolling window of

FIGURE 2

SMULATED SERIES FOR THE |LLUSTRATION

the 500 previous observations; and the calibrated normal

model with A = 0.94. The models are henceforth denoted
asthetrue, historical, and calibrated models, respectively.

The 1,250 generated observations are analyzed over thefive
contiguous but non-overlapping periods of 250 observa-
tions. Two periods of simulated dataand the corresponding
VaR estimates are plotted in Figure 2.

Table 6 contains the evaluation results for the two hy-
pothesis-testing methods. Panel A reports the number of
exceptions in each of the five periods for the three sets of
VaR estimates, and PanelsB and C report the LR . and LR
statistics, respectively. The occasionsfor which thenull hy-
pothesis is rejected at the 5 percent significance level are
noted. For thetrue model, both tests correctly do not reject
the null hypothesisthat the VaR estimates exhibit the spec-
ified properties, and the S, multiplier would remain at
three. For the historical model, the number of exceptions
isparticularly largein the second and third periods, and the
corresponding test statistics reject the null hypotheses. In
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Note: The solid line represents the simulated negative returns. The dotted line represents the corresponding VaR estimates from each of the three
models. The points at which the solid line crosses the dotted line are the exceptionsin the sample. Note that, for the true and calibrated models, VaR
estimates that are more negative than permitted by the specified y-axis are not shown.
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these periods, S, increases to its maximum value of four.
However, for the other time periods, this VaR model is*“ac-
ceptably accurate,” even though the hypothesis tests indi-
cate a problem in the fifth period when no exceptions
occurred. For the calibrated model, the null hypotheses are
rejected in only one case, and S, is above three in all but

TABLE 6

HypPoTHESIS-TESTING RESULTS
FOR THE DETAILED EXAMPLE

one period. These results present atangible example of the
poor power characteristics of these tests.

Turning to the proposed loss function method, in Table
7, Panel A containsthe C;,, numerical scoresunder the mag-
nitudelossfunction. Asmentioned, these scoresalonedo not
provideavery useful basisfor evaluating the VaR estimates.

TABLE 7

M acGNITUDE Loss FuncTion REsULTS
FOR THE DETAILED EXAMPLE

MopEL MobpEL
PerioD True Historical Calibrated PerIOD True Historical Calibrated
A. NUMBER OF EXCEPTIONS A. NUMERICAL SCORES
1 1 2 5 1 1.1287 2.0803 7.1048
2 3 11 6 2 3.8180 58.3150 15.8955
3 1 14 3 3 1.4854 507.5814 24.7188
4 1 1 6 4 200.1094 71.4351 243.8740
5 2 0 5 5 15.6136 0.0 16.9524
B. EMPIRICAL QUANTILES
B. LR, Sramistics UNDER THE TRUE DGP (%)
1 1.1765 0.1084 1.9568 1 137 290 541
3
2 0.0949 15.8906 3.5554 5 2.0 89.6 646
%
3 1.1765 25.7803 0.0949 3 113 86.9 376
4 1.1765 1.1765 3.5554 4 95.9 86.1 970
%
5 0.1084 5.0252 1.9568 5 53.8 0.0 56.1
C. LR SramisTics C. EMPIRICAL QUANTILES UNDER
1 1.1846 0.1408 2.1617 THE NormAL DistriBUTION (%)
2 0.1681 16.9078* 3.8517 1 174 29.0 88.6
3 1.1846 30.1907* 5.5202* 2 44.0 100.0 91.7
4 1.1846 1.1846 3.8517 3 105 99.8 46.5
5 0.1408 5.0252* 2.1617 4 100.0 99.8 100.0
5 82.7 0.0 84.3
Note: Thetime periods are based on adivision of the entire ssimulation
. . . . ) D. EMPIRICAL QUANTILES UNDER THE
run of 1,250 observationsinto five contiguous, but non-overlapping pe- CaLIBRATED NoRMAL DISTRIBUTION (%)
riods of 250 observations. Thetrue model is€,,4 | Q; ~ t(h.1,6) with hy,;
=0.075 + 0.102+ 0.85h,. The historical simulation model is based on 1 20.5 331 90.1
the 500 previous observations. The calibrated model usesthe calibrated 2 529 996 93.4
variance parameter of A = 0.94 and the normal distribution. ' ' '
The asterisk indicatesthat the nuil hypothesisisrejected at the 5% sig- 136 93 622
nificance level using thefinite-sample critical values presented in Table 1. 4 99.9 98.8 99.9
5 86.7 0.0 88.5

Note: See note to Table 6.
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However, by making assumptions about the distribution of
the observed returns, an approximate distribution of the
numerical scores, f(C,), can be generated via simulation
and used to provide a benchmark for evaluation.

Since, in this example, the true DGP is known, the ac-
tual f(C,) can begenerated. In Table 7, Panel B reportsthe
empirical quantiles g, under f(C,). Three results are im-
mediately clear. First, the inference drawvn from the loss
function method generally matchesthat drawn from thetwo
hypothesis-testing methods; i.e., the g,s are generally low
(below the threshold 80 percent), except in a few distinct
cases. Second, the gy,s for the historical model in the sec-
ond and third periods are high (above 80 percent) due to
the large number of exceptions. Third, the g, sfor all of the
models are high in thefourth period, even though the num-
ber of exceptions is low. Recall that the two hypothesis-
testing methods indicated that these three sets of VaR
estimates were “ acceptably accurate” for that period.

The reason for the relatively high scores and gy, sin the
fourth period can be seen in Figure 2. Observation hum-
ber 217 isaparticularly large negative number; in terms of
relative magnitudes, it exceeds the VaR estimates by about
120 percent for the true model, 50 percent for the histori-
cal model and 144 percent for the calibrated model. This
result clearly indicates the advantages of the loss function
evaluation. By incorporating additional information on the
magnitude of the exceptionsinto the eval uation, this method
can alert theregulator when an extraordinary event, not de-
tectable by the hypothesis-testing methods, has occurred.

In an actual implementation of the loss function evalu-
ation method, the true DGPis not known. Hence, PanelsC
and D of Table 7 contain the .S under two different as-
sumed f(Cm) distributions. In Panel C, f(Cm) isformed un-
der the assumption that the returns are independent and
normally distributed; i.e., €., ~ N(0,62). In Panel D, f(Cm
| Q) is formed under the assumption that &,; ~ N(0,h,,),
where h,,, follows an exponentially weighted moving av-
erage of squared observed returns with a calibration para-
meter of 0.94.1% The empirical quantiles under these two
assumed distributions are higher than those under the true
DGP, which causes a form of Type | error; that is, under
these assumed distributions and for afixed threshold quan-
tile, the observed C,;swill indicate more instances of pos-
sibly large exceptions than are called for under the true
DGP. The reason for this upward bias is that under these

16. Note that, in forming the h;,, series for each simulation run, an ini-
tial value h; must be chosen. The results presented in Table 7, Panel D
are based on setting h, equal to the estimated variance of the simulated
sample. An dternative specification, in which h, = &,2, generates qual-
itatively similar results.

distributional assumptions, the expected value of C;.q
conditional on an exception having occurred will be lower
than under thetrue DGP, skewing f(C,) and f(G,,| Q,) more
towards zero than thetrue f(C,,) distribution.” Thus, when
the C,,sarecomparedtof(C,) and f(Cm | Q)), they will gen-
erally be in a higher quantile than under f(C,).

Although this upward bias is present in the q,s, useful
inferences can till be drawn. If the threshold quantile re-
mainsat 80 percent, the previously noted instances are also
found to indicate concern under the two assumed distri-
butions.’® In addition, four new instances arise: the cali-
brated model in thefirst, second, and fifth periods, and the
true model in the fifth period.

For the calibrated model in the first period depicted in
Figure 2, the five observed exceptions range from about 9
percent to 27 percent morethan their stated VaR estimates,
which arerelatively low compared to the magnitudes cited
by Hendricks (1996). Thus, the “high” s for these VaR
estimates under the two assumed distributions are based
moreon the number of exceptionsthan on their magnitude.
In this case, inferences based on the loss function method
provide additional detail, but do not change our overall eval-
uation of the VaR estimates. For the calibrated model inthe
second period, the six exceptions are still within the yel-
low zone setinthe MRA, but thelossfunction method high-
lightsthat their magnitudes, which range from 5 percent to
45 percent beyond the observed return, may be a concern.

For the fifth period, the number of exceptions are again
acceptable at two, zero, and fivefor thetrue, historical, and
calibrated models, respectively. Although thelossfunction
method cannot provide additional information on the his-
torical model due to the lack of exceptions (an acceptable
outcome under this regulatory loss function), the q,s for
the other two models are between 80 percent and 90 per-
cent. The reason for these high q;,s is that the exceptions

17. Note that this upward bias in the gr.s is brought about by distri-
butional assumptions that generate returns that, conditional on being
exceptions, are not as negative as those actually observed. If the distri-
butional assumptionswere to generate returnsthat were generally more
negative than actually observed, the bias would go in the opposite di-
rection and cause a form of Type Il error, i.e., not indicate concerns
when they truly may be present. Although such distributional assump-
tions could be made, the general concernin practiceisthat observed re-
turns are being generated from DGPs with fatter, not thinner, tailsthan
empirically observed.

18. Note that an alternative way to conduct this type of evaluation isto
recognize the upward biasimparted by the assumptions and use ahigher
threshold quantile, say, 90 percent. Thisrouteiscomplicated by the fact
that the proper alternative threshold is not readily apparent. It issimpler
to set the threshold quantile quite high at 80 percent and examine the
flagged cases with care.
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in both cases are relatively large. The true model’s two ex-
ceptions are both over 50 percent of the observed returns,
and the calibrated model’s five exceptions range from 1
percent to 50 percent over the corresponding returns. Thus,
even though both models are “ acceptably accurate” under
the MRA guidelines, the loss function method based on
thesedistributional assumptionsprovidesuseful, additional
(though biased) information on the performance of the VaR
estimates. Regulators may use this additional information
to evaluate these VaR estimates in a manner that is more
directly in line with their specific concerns.

V. ConcLUSION

As implemented in the U.S, the market risk amendment
(MRA) tothe Basle Capital Accord requiresthat large com-
mercial banks with significant trading activities provide
their regulators with VaR estimates from their own internal
models. The VaR estimates are used to determine the banks
market risk capital requirements. This devel opment clearly
indicatestheimportance of eval uating the accuracy of VaR
estimatesfrom aregulatory perspective. Inthispaper, three
methods for evaluating VaR estimates are discussed.

Thebinomia methaod, currently the quantitative standard
intheMRA, and theinterval forecast method are both based
on ahypothesis-testing framework and are used to test the
null hypothesisthat the reported VaR estimates are “ accept-
ably accurate,” where accuracy is defined by the test con-
ducted. As shown in the simulation exercise, the power of
these tests can be low againgt reasonable aternative VaR
models. This result does not negate their usefulness, but it
does indicate that the inference drawn from them should
be questioned and examined more carefully for regulatory
purposes.

Theloss function method is based on assigning numer-
ical scores to the performance of the VaR estimates under
aloss function that reflects the concerns of the regulators.
As shown in the simulation exercise, this loss function
method can distinguish between VaR estimates from the
actual and alternative VaR models. Furthermore, it allows
the evaluation to be tailored to specific interests that reg-
ulators may have, such as the magnitude of the observed
exceptions. Although this evaluation method introduces
certain biases due to necessary distributional assumptions,
the analytical resultsprovide useful additional information
on the performance of the VaR estimates. Sincethesethree
methods provide complementary information, they should
al be useful inthe regulatory evaluation of VaR estimates.

REFERENCES

Basle Committee on Banking Supervision. 1996. “ Supervisory Frame-
work for the Use of ‘ Backtesting’ in Conjunction with the Internal
Models Approach to Market Risk Capital Requirements.” Manu-
script, Bank for International Settlements.

Berkowitz, J 1999. “ Eval uating the Forecasts of Risk Models.” Finance
and Economic Discussion Series 99-12, Federal Reserve Board of
Governors.

Christoffersen, PF. 1998. “Evaluating I nterval Forecasts.” International
Economic Review 39, pp. 841-862.

Crnkovic, C., and J Drachman. 1996. “Quality Control.” Risk 9, pp.
139-143.

Diebold, F.X., T.A. Gunther, and A.S Tay. 1998. “Evaluating Density
Forecasts with Applications to Financial Risk Management.” In-
ternational Economic Review 39, pp. 863—883.

Diebold, FX., and JA. Lopez. 1996. “ Forecast Evaluation and Combi-
nation.” In Handbook of Statistics, Volume 14: Satistical Methods
in Finance, eds. G.S. Maddala and C.R. Rao, pp. 241- 268. Ams-
terdam: North-Holland.

Federal Register. 1996. “Risk-Based Capital Sandards: Market Risk”
61, pp. 47, 357-47, 378.

Granger, CW.J, and M.H. Pesaran. 1996. “A Decision-Theoretic Ap-
proach to Forecast Evaluation.” Discussion Paper 96-23, Depart-
ment of Economics, University of California, San Diego.

Hendricks, D. 1996. “Evaluation of Value-at-Risk Models Using His-
torical Data.” Federal Reserve Bank of New York Economic Pol-
icy Review 2, pp. 39-69.

Hendricks, D, and B. Hirtle. 1997. “Bank Capital Requirements for
Market Risk: The Interna Models Approach.” Federal Reserve
Bank of New York Economic Policy Review (December) pp. 1-12.

JP. Morgan. 1996. RiskMetrics Technical Document (4th ed.). New
York.

Kearns, P, and A. Pagan. 1997. “ Estimating the Density Tail Index for
Financial Time Series.” Review of Economicsand Statistics 79, pp.
171-175.

Kupiec, P. 1995. “ Techniques for Verifying the Accuracy of Risk Meas-
urement Models.” Journal of Derivatives 3, pp. 73-84.

Kupiec, P, and JM. O’ Brien. 1995. “A Pre-Commitment Approach to
Capital Requirementsfor Market Risk.” FEDS Working Paper #95-
36, Board of Governors of the Federal Reserve System.

Lopez, JA. 1999. “Regulatory Evaluation of Value-at-Risk Models.”
Journal of Risk 1, pp. 37-64.

Pritsker, M. 1997. “ Evaluating Value-at-Risk Methodol ogies: Accuracy
versus Computational Time.” Journal of Financial Services Re-
search 12, pp. 201-42.

Silverman, B.W. 1986. Density Estimation for Satistics and Data
Analysis. London: Chapman and Hall.

Stahl, G. 1997. “Three Cheers.” Risk 10, pp. 67-69.



