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This paper exploits an observed business cycle asymme-
try, namely, a systematic shift in the dynamic relationship
between output growth and an index for financial market
conditions across expansionary and contractionary peri-
ods, to forecast monthly growth in industrial production.
A bivariate model of monthly industrial production and the
spread between the yield on 10-year Treasury notes and
the federal funds rate is used as an example. This paper’s
method does not require a forecaster to make an exact ex
ante determination of turning points in the output series
being forecasted. A comparison of the forecast perfor-
mance of various two-regime nonlinear and conventional
linear models suggests that a measurable gain can be made
by considering models which explicitly incorporate asym-
metry in data.

There has been ongoing interest in forecasting turning
points of business cycle phases (Fels and Hinshaw 1968,
Zarnowitz 1972, Zarnowitz and Moore 1982, Wecker 1979,
Kling 1987). One method of detecting turning points which
has received considerable attention is credited to Neftci
(1982). This method uses changes in the Department of
Commerce’s index of leading indicators, which exhibits
different behavior over expansion and contraction periods,
as a signal of imminent change in business cycle phases.
The methodology has been extended further by Diebold
and Rudebusch (1989, 1991). The basic idea behind their
methodology has been further elaborated by many re-
searchers (Neftci 1984, Hamilton 1989, Boldin 1992, French
and Sichel 1993, Potter 1992, Sichel 1993, and Filardo
1994). 

Despite much interest and effort in predicting turning
points, there has been little work that extends and applies
the methodological innovations and findings on business
cycle asymmetry to a conventional multivariate forecasting
exercise.1 This paper offers such an application. The basic
idea is that if information about asymmetry in business cy-
cle variables is useful in predicting turning points, then
models incorporating that information should produce more
accurate forecasts. 

In this paper, a bivariate model of the monthly industrial
production (IP) series and the spread between the yield on
10-year Treasury notes and the federal funds rate is used as
an example.2 The exercise compares the one-month-ahead

1. A notable exception is Granger, Terasvirta, and Anderson (1993).
They consider bivariate regression models of real GNP and the Depart-
ment of Commerce’s leading indicator, whose coefficients change
smoothly between expansion and contraction regimes. However, these
nonlinear models’ out-of-sample performances are noticeably worse
than an alternative linear model. In addition, the economic motivation
for positing a shift in the bivariate relationship (real GNP-leading in-
dex) is not clear (see Harvey (1993) in the same volume).

2. For reference on the usefulness of interest rate and spread variables,
see Stock and Watson (1989), Bernanke (1990), Bernanke and Blinder
(1992), and Friedman and Kuttner (1992). The choice of the model is
based on an earlier work (Huh 1994) that found evidence of asymmetry
in the bivariate relationship over expansionary and contractionary busi-
ness cycle phases.
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forecast performance of two-regime nonlinear models and
a conventional single-regime linear model. The method
employed to generate forecasts from the nonlinear models
does not require the exact placement of actual turning
points in the IP series, which are always determined ex
post. Rather, an ex ante rule is estimated from the data on
when to anticipate lower growth in output, which in turn
determines how best to combine forecasts from the con-
traction and expansion models to yield a single forecast.
The nonlinear models are found to outperform the con-
ventional models for both in-sample and out-of-sample
forecasting exercises; in some cases, the improvement in
forecast accuracy is statistically significant. 

The nonlinear model is based on the switching regres-
sion model of Goldfeld and Quandt (1972), and consists of
two regressions, one specific to an expansion and one spe-
cific to a contraction. They are initially estimated from the
sample period 1956–1974, using NBER business cycle dates.
To make an out-of-sample forecast with such a model, one
has to determine the regime in place at any given time. Two
alternative approaches are employed. 

The first relies on the recent behavior of an econom-
ically relevant variable. I use information on the recent
growth of IP. For example, the contraction regime is likely
to be in place if the IP growth rate over the most recent
three months is less than a certain value and if it is signif-
icantly less than the average IP growth rate during the ac-
tual previous contractionary periods. Methodologically,
this is analogous to determining an index variable that reg-
ulates the way different regimes in nonlinear models come
into play (e.g., the transition variable of smooth transition
regression (STR) models (Granger, Terasvirta, and An-
derson 1993) and the threshold and delay parameters for
the self-exciting threshold (SETAR) models (Potter 1992)).

Once the likely regime is determined, the nonlinear
model’s forecast is constructed by taking a probability-
weighted average of the forecasts from the two-regime
regressions. The probability weights are calculated by
comparing a phase-specific model’s recent forecast errors
to the known past forecast error distributions of the model
in different business cycle phases. It can be thought of as an
approximate measure of a conditional transition probability.

The second approach employs a Markov regime-switch-
ing (MS) model (à la Hamilton 1989). The MS model of uni-
variate IP is estimated, as in Boldin (1992). This type of
model provides probabilistic information about the likeli-
hood that a particular regime, which is unobservable, is in
place. Furthermore, the MS model provides estimates of
transition probabilities for the 2 × 2 transition matrix be-
tween two regimes. Once these probabilities are obtained,
an unconditional forecast of the nonlinear model is con-

structed by taking a probability-weighted average of the
forecasts from the different phase-specific regressions.
This is identical to the second step of the first approach ex-
cept that the probabilities have a more direct and transpar-
ent interpretation.

The sample period from 1975:01 to 1989:12 is used as
an intermediate period during which various optimal deci-
sion rules of the two approaches are estimated. The period
from 1990:01 to 1993:03 is then used to gauge the out-of-
sample forecast performance of the various models.3

The rest of the paper is organized as follows. Section I
provides the results of the nonlinearity diagnostic tests, as
well as a description of the various linear and nonlinear
models. Section II describes how the optimal combining
rules for the nonlinear models are estimated. Section III of-
fers a comparison of the performances of the various mod-
els. Section IV concludes.

I. ESTIMATION

Motivation and Diagnostic Tests 

Intuitively, a systematic shift over expansionary and con-
tractionary periods in a bivariate relationship between out-
put and financial market prices (i.e., interest rates) is
plausible. For example, the interest elasticity of investment
might be smaller when overall economic activity is slug-
gish because heightened short-run uncertainty makes post-
poning new projects economically justifiable. Models in
which investment is irreversible give rise to such a predic-
tion (e.g., Pindyck 1990). Indeed, Huh (1994) provides ev-
idence of a systematic change across expansions and
contractions in the dynamic cross-variable patterns between
the growth rate in aggregate IP and various interest rates
and rate spreads. They include the spread between the
yield on 10-year Treasury notes and the federal funds rate
(T10–FF) used in this exercise. However, whether such
shifts in the bivariate relationships can be exploited to im-
prove forecasts is an open question.

To characterize the nature of the shift further, two diag-
nostic tests are carried out using a full-sample bivariate
model of the growth rate of IP and the interest rate spread

3. Sample periods are divided so that there are approximately the same
number of business cycles in the subsamples for the initial estimate of
each model and for fine-tuning decision rules. The out-of-sample pe-
riod was chosen to contain the most recent recession period. The sam-
ple period ends in March 1993 because rebenchmarking made data after
that date less compatible with data before that date; for more details
about the data revision, see Raddock 1993.
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(denoted as ∆IP and R, respectively). The first is the CUSUM
linearity test proposed by Ploberger and Kramer (1992),
based on the OLS residuals (also known as the CUSUM-O
test). Though not designed for any particular nonlinear
models, it is a useful linearity test against an alternative
such as switching regressions with two regimes, which 
is the type to be considered in this paper (Granger and
Terasvirta 1993). The second test is based on exclusion
tests of business cycle phase-specific dummy variables.

Tables 1 and 2 present the results for both types of di-
agnostic tests. They strongly suggest the presence of non-
linear dynamics in the bivariate relationship between IP
and the interest rate spread. First, the CUSUM-O test re-
jects the null hypothesis of linearity at a significance level
of less than 5 percent for both four-lag and twelve-lag spec-

ifications. Thus, considering regression models with two
regimes is well justified.4

The results of the exclusion tests of the NBER dummy
variables also indicate a systematic shift in the dynamic re-
lationship between output and the interest rate spread. In-
terestingly, the exclusion test results suggest the possibility
of a non-trivial shift in the cross-variable dynamics across
the expansion and contraction periods. That is, a strong
rejection of the coefficient dummies for R in the ∆IP equa-
tion indicates that there is a systematic shift in the rela-
tionship between the two variables, in addition to that in

4. The test result is somewhat sensitive to changes in the sample period.
For example, the CUSUM result weakens when data from the 1950s are
added.

TABLE 1

CUSUM-O TEST OF LINEARITY BASED ON

THE OLS RESIDUALS (1961:01–1992:12)

SPECIFICATION TEST STATISTICS (u) CRITICAL VALUES

m = 12 1.5757 ** α = 1% u = 1.63   

α = 5% u = 1.36   

m = 4 1.4498 ** α = 10% u = 1.22 

NOTE: The test statistics are calculated as follows:

Let 

where is the OLS residual, and σ is the standard error of the 
residuals. 

Then the test statistic is 

Asymptotically, the following holds: 

The test is carried out by computing the above expression for u = UT.  If
p(UT) < α, the null hypothesis of linearity is rejected at the significance
level of α, as shown above. For more detail, see Ploberger and Kramer
(1992), or Granger and Terasvirta (1993), pp. 86–87. 

** denotes significant cases at the 5 percent level. 

limT→∞ Pr(UT > u) = 2 (–1)k+1 exp(–2k2u2 ) = 1– p(u) .
k=0

∞

∑

UT = max1/T≤r≤1 T −1/2BrT .

ε∧ jT

BrT =
ε∧ jT

j=1/T

r

∑
σ∧

∆IPt = α + βi
i=1

m

∑ ∆IPt−i + γ i
i=1

m

∑ Rt−i + ε t

TABLE 2

DUMMY VARIABLE EXCLUSION TEST RESULTS

R = FYGT10 – FYFF 4 LAGS 12 LAGS

(m = 4) (m = 12)

H0 : θcon = θ∆IP
i = θR

i = 0, for all i 8.143 *** 4.815 ***

H0 : θ∆IP
i = θR

i = 0, for all i 3.855 ***    3.082 ***

H0 : θ∆IP
i = 0, for all i 2.991**     3.733 ***

H0 : θR
i = 0, for all i 3.986 *** 2.940 ***

Note:  Monthly data for the sample period from 1961:1 to 1992:12 were
used. The dummies (dumt) take a value of one during the NBER con-
tractionary period and zero otherwise.  The numbers denote the F test
statistics.

***, ** denote significant cases at 1 and 5 percent, respectively.

+ (γ i
i=1

m

∑ + θi
Rdumt )Rt−i + ε t

∆IPt = α + θcondumt + (βi
i=1

m

∑ + θi
∆IPdumt )∆IPt−i
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the univariate autoregressive structure of the ∆IP series
over different phases of business cycles. The joint exclusion
restriction is strongly rejected. The individual exclusion re-
strictions are significant for both lagged IP and the inter-
est rate spread. Thus, the shift in the bivariate dynamic
pattern is due to a combined effect of the changes in both
the autoregressive component and the dynamic cross-vari-
able component.5 Based on the results of the diagnostic
tests together, I proceed to consider two-regime regression
models with two business cycle regimes.

The Model 

The basic model consists of the monthly growth rate in IP
(i.e., first difference of the log of IP) and the spread be-
tween the yield on the 10-year Treasury note and the fed-
eral funds rate. The level of the spread is denoted as R. The
following equation (1) describes the model: 

(1)

Here j is the index for the different types of models to be
estimated.6 A linear model based on a single regime is in-
dexed by f. The two-regime model consists of two separate
equations, each estimated from the expansion and contrac-
tion samples and indexed by e and c. The lag length for
each model is determined by the index m. For example, the
linear model with a lag length of 12 is denoted as m(f) =
12. The last term, εt , denotes white noise errors. 

In the following analysis, various combinations of model
specifications are used. Two linear single-regime models
are considered as benchmark cases. The two are different
in the lag length specifications. Lag lengths of 4 and 12 are
used (i.e., m(f) = 4 and 12). These will be denoted as lin-
ear 1 and linear 2 models. 

For phase-specific equations of the two-regime models,
two different lag specifications are considered. In one, a

∆IPt
j = α j + βt−i

j

i=1

m( j)

∑ ∆IPt−i
j + γ t−i

j

i=1

m( j)

∑ Rt−i
j + εt

j .

uniform lag length of 4 is used for both models (i.e., m(e)
= m(c) = 4), and uneven lag lengths of 12 and 4 are used
for expansion and contraction models in the other (i.e.,
m(e) = 12, m(c) = 4). The nonlinear model based on the
first and the second set of equations will be denoted as non-
linear 1 and nonlinear 2. The uneven lag specification re-
flects the difference in the average durations of postwar
expansions and contractions. An estimation of the initial
two phase-specific models requires an explicit breakdown
of the historical data into business cycle phases. For this
purpose, the NBER business cycle dating is used.

Forecast Strategy 
and Benchmark Linear Model

The strategy for the forecasting exercise is as follows: 
First, the data period is partitioned into three subperiods:
1956:02–1974:12, 1975:01–1989:12, and 1990:01–1993:03.
The first period is used for an initial estimation of the lin-
ear full-sample model, as well as of expansion and con-
traction regime equations. It includes five episodes each of
recessions and expansions according to NBER dating.
There are 42 and 185 monthly observations for the con-
tractionary and expansionary observations, respectively.

The second period is used to estimate decision rules for
various models’ forecasts. Once the three initial models
(m(f), m(e), m(c)) are estimated, they are used to generate
a one-period-ahead forecast for the second period; for
brevity, only the one-month-ahead forecasting horizon is
considered. So, the goal is how best to forecast the growth
in monthly IP over the current and the next month. The
forecast error statistics of the two full-sample linear mod-
els for the sample period of 1975:01–1989:12 are given in
Table 3. 

The third sample period from 1990:01 to 1993:03 is then
used for out-of-sample forecast comparisons. 

II. DESIGNING AND IMPLEMENTING
A FORECASTING RULE

Given the forecasts generated from the two-regime models
described above, the next question is how to devise a rule
that combines the forecasts from the distinct models in an
optimal way. This, in turn, raises two questions. One is how
to determine the regime in place at any given time. The
other is how to determine the weights for the two distinct
forecasts in generating a combined forecast. If a significant
business cycle asymmetry exists in the data, then match-
ing forecasts from the contraction (expansion) model with
contractionary (expansionary) periods should provide an
improvement in forecasting accuracy over using a conven-

5. Another reason to prefer the bivariate system of output and the inter-
est rate to a univariate output equation in a forecasting context is the
practical consideration about the timing of data availability. That is,
contemporaneous information on almost all interest rate variables is
available at any given time, while the IP series is released with a lag of
about one month. Even though the current exercise does not incorpo-
rate this point, adding contemporaneous interest rates would likely en-
hance the forecast accuracy of all the models considered here.

6. This specification is different from that of Table 2 in that it allows the
error terms in the two regressions to behave differently. Using the spec-
ification given in Table 2 would amount to imposing that restriction. A
shift in the behavior of the residual terms across different business cy-
cle phases is potentially important in light of findings that suggest a pos-
sible heteroskedasticity in the error term (e.g., French and Sichel 1993).
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tional single-regime model. However, it is difficult to tell
on a real-time basis which phase the economy is in, be-
cause there always is a considerable lag between the time
of the initial release of data and the NBER dating of the
business cycle phase of the series. Thus, it is necessary for
any forecasting procedure based on a two-phase model to
take such uncertainty into consideration. 

The strategy followed here in incorporating this uncer-
tainty is to calculate the combination forecast by taking a
probability-weighted average of the two forecasts of the
expansion and contraction models at any given time. The
probability weight is calculated by comparing a phase-spe-
cific model’s recent forecast errors to the known, past fore-
cast error distributions of the model. It can be thought of
as an approximate measure of a conditional transition
probability. A more detailed description will be given later.

The first method is in the two traditions of combining
forecasts from alternative models (e.g., Bates and Granger
1969, Engel, Granger, and Kraft 1984) and fitting regime-
switching regression models to data (e.g., Goldfeld and
Quandt 1972). Deutsch, Granger, and Terasvirta (1992) is
one recent example that mixes features of the two method-
ologies. They alternatively consider information on both
the lagged forecast errors and a pattern of relevant eco-
nomic variables to determine the relative weights on the al-
ternative forecasts in approximating the current regime. I
use both types of information jointly in constructing fore-
casts from both nonlinear 1 and nonlinear 2 models. 

To be specific, I use monthly IP growth over the past sev-
eral months to judge which of the two (contraction and ex-
pansion) regimes will be in place in the next month. If the
output growth has been noticeably sluggish in recent
months, it is more likely that the next period’s growth
would be sluggish also. Forecasts from each of the con-
traction and expansion models are multiplied by relative
weights which are based on past forecast errors of the re-
spective models. 

The second approach is directly linked to the Markov
regime-switching models developed by Hamilton (1989).
To implement this approach, a univariate equation of the
growth in IP that switches between two regimes is esti-
mated. The maximum likelihood estimation procedure of
Boldin (1994) is followed.7 This provides a set of proba-
bilities that measure the likelihood that the current period
is in a particular state, as well as 2 × 2 transition probabil-
ities between states. Thus, these offer natural candidates as
weights to be used in combining the forecasts of the con-
traction and expansion regime equations. The two-regime
Markov switching model will be denoted as the MS model. 

In devising these rules, the data from the intermediate
period from 1975:01 to 1989:12 is used for testing and fine-
tuning the candidate rules. Of particular interest is whether
it is feasible to devise a simple rule that improves the fit 
of the combination model beyond that of the full-sample
model given in Table 3. 

A Model that Uses Information on Lagged 
Forecast Errors and Lagged IP Growth 

Notation. It is necessary that the rules utilize only infor-
mation available up to the time any particular forecast is
made. In our case, the behavior of the models during the
initial estimation period (1956–1974) is admissible infor-
mation. To utilize such information, some relevant distri-
butions and notations are defined as follows. First, let us
denote an index variable I which equals c in a contraction
and e in an expansion. For the initial sample period
1956:02–1974:12, we can pool the growth rates of IP into
contraction and expansion groups, ∆IP(I = c|t = 1974:12)
and ∆IP(I = e|t = 1974:12). The means and standard errors

7. For a detailed description, see Boldin (1994), pp. 128–129.

TABLE 3

ONE-PERIOD-AHEAD INDUSTRIAL PRODUCTION GROWTH RATE

FORECAST ERROR STATISTICS FOR LINEAR MODELS

(FROM 1975:01 TO 1989:12, 180 OBSERVATIONS)

MODEL MEAN ERROR MEAN ABS. ERROR R.M.S. ERROR THEIL U

Linear 1 (m( f) = 4) –0.069 0.655 0.875 0.956

Linear 2 (m( f) = 12) –0.089 0.717 1.016 1.110

Note:  All statistics except Theil U need to be multiplied by 10-2 to convert them to growth rates. 
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of each group as of time t are denoted as mean (I = c|t),
s.e. (I = c|t) and mean (I = e|t), s.e. (I = e|t), respectively. 

Next, the residuals from equation (1) of the contraction
model during the initial sample period are pooled into two
groups. The first group includes the contraction model’s
residuals during actual contractionary periods up to 1974,
and it is denoted as ε(c, I = c|1974:12). The second group
includes the residuals of the contraction model during ex-
pansionary periods, and is denoted as ε(c, I = e|1974:12).
The corresponding notations for the residual pools of the
expansion models are ε(e, I = c|1974:12) and ε(e, I =
e|1974:12), respectively, for the contractionary and expan-
sionary periods. Furthermore, let us denote the means and
standard errors of each series as µ̄ε(x|I = y) and σ̄ε(x|I = y)
for each of the four residual pools (ε(c, I = c), ε(c, I = e),
ε(e, I = e), and ε(e, I = c)). Here x is the model index, that
is, either c (contraction) or e (expansion), and y indicates
the business cycle phase index from which the residual
pool is drawn. Thus, for example,  µ̄ε(c|I = e) and  σ̄ε(c|I =
e), respectively, denote the mean and the standard error of
the residuals of the contraction model during the expan-
sionary period. Equivalently, they are the mean and stand-
ard error of the one-period forecast errors from using the
contraction model during the expansionary period.

For further systematic application of this information, it
is useful to fit normal distributions to these four pools of
residuals with respective means and standard deviations.
Let CDFε(⋅|x,y) denote the conditional density function for
the forecast errors of type x model (x = c or e) during a pe-
riod y (y = c or e). Then CDFε(d|c,e) represents the con-
ditional probability of observing a forecast error of size
greater than or equal to d if the contraction model is used
for forecasting when, in fact, the economy is in an expan-
sionary phase.

The statistics and forecast error distributions described
here are updated occasionally during the forecasting peri-
ods as ex post information on business cycle dating becomes
available. For example, as of November 1983, which is one
year after the last month (trough) of the 1982 recession, the
actual data on the monthly growth in IP during the reces-
sionary periods is added to the ∆IP(I = c|t = 1983:11) pool.
Subsequently, mean (I = c|⋅) and s.e. (I = c|⋅) change val-
ues from those which were calculated using the actual con-
traction period data prior to 1975 to ones calculated from
the newly expanded pool of ∆IP(I = e|⋅) which includes the
data from the 1981 and 1982 recessions. In all of the fol-
lowing procedures, such updating is carried out on four oc-
casions (1976:07, 1983:11, 1989:12, and 1992:03). 

Design of a Forecast Combination Rule. The conditional
rule given below determines when to use the forecast based
on the contraction model’s forecast for period t + 1:

(2) [∆IP(t – 2) + ∆IP(t – 1) + ∆IP(t)] < 

[mean(I = c|t) + s.e.(I = c|t)] + γ ,

and 

either ∆IP(t) < ∆IP(t – 1), 
or ∆IP(t) < mean(I = c|t) × (1 + θ) .

First, (2) utilizes information about recent growth trends
in the IP series to determine whether the next period will
be contractionary or not. The first part of (2) identifies a
stretch of time during which output growth is sluggish.
That is, the sum of output growth for three consecutive
months is less than the average monthly output growth dur-
ing the historical contractionary periods plus one standard
deviation. The second part of the condition additionally re-
quires that the most recent two periods be contracting,
and/or that the contraction in the most recent period be sig-
nificant based on history. The parameters γ and θ of (2) are
free parameters that are used in fine-tuning the decision
rule for the intermediate forecasting period from 1975:01
to 1989:12. 

Although the motivation for the design of this rule is nar-
rowly defined as the forecast accuracy of the model, it is
conceptually closely related to other business cycle dating
rules. Figure 1 compares the business cycle datings result-
ing from (2), with both γ and θ set equal to zero, with those
from the NBER and from Romer (1992). The Romer dates
are determined based solely on the levels of IP series
around business cycles, whereas the NBER dates are based
on examining cyclical patterns of a host of indicator vari-
ables of the aggregate economy. The periods selected by
(2), shown in the middle panel, exhibit a pattern of general
coherence with the recession dates of both the NBER and
Romer, though they are noticeably more choppy. This di-
vergence is due to the fact that (i) the rule is based on the
behavior of the IP series over a relatively short duration (3
months) and (ii) the growth rate of IP is much less persis-
tent than IP measured in levels.

When (2) is met, the economy is likely to be in a sluggish
phase currently and is likely to remain in that phase in the
next period. Thus, one could do better forecasting growth
in IP next period by relying on the contraction model’s
forecast. However, there also is some non-negligible prob-
ability that the economy might switch to expansionary
mode next period. Taking this into consideration, I adopt
a forecast rule (3) which takes a probability-weighted av-
erage of the forecasts from the contraction and expansion
models, with the contraction model forecast getting more
weight than the expansion model forecast: 

(3) f∆IP(comb,t+1) = f∆IP(c,t+1) × P⋅weight(c) + 
f∆IP(e,t+1) × (1 – P⋅weight(c))



HUH / FORECASTING INDUSTRIAL PRODUCTION USING MODELS WITH BUSINESS CYCLE ASYMMETRY 35

where

and 

f∆IP(e,t+1), f∆IP(c,t+1) denote the forecast from the m(e)
and m(c) equations, respectively. Additionally,

P⋅weight(c) is an approximate conditional transition prob-
ability of regime-switching. The calculation is based on
the recent forecast errors from the contraction model. Each
CDFε(⋅) measures the area under the forecast error density
function as defined earlier. For example, εt(c,c) denotes the
actual forecast error of the contraction model (i.e., m(c))
in period t. Consequently, CDFε[εt(c,c)|c,c] measures the
conditional probability of making a forecast error that is
the same size as or larger than εt(c,c) during the actual con-
tractionary period according to historical experience.

It is instructive to think in terms of the ratio of the first
component of the numerator and denominator

(CDFε[εt(c,c)|c,c] and ),

since the second component is common to the numerator
and the denominator. The numerator term measures the
probability of making a forecast error as large as, or larger
than, that which is actually made in period t when the econ-
omy is indeed in a contraction. The denominator term is
the sum of the same probability and the probability of re-
lated conditional complementary events. That is, the sec-
ond part (CDFt[εt(c,e)|c,e]) measures the probability that
the current month is actually in an expansionary period,
and the contraction model makes a forecast error of the ob-
served size or larger. The second ΣCDFε(⋅) part which en-
ters both the numerator and denominator commonly is the
same measure for the previous period (i.e., t – 1). The key
consideration for including the lagged CDFs is to make
sure that the second weight (1 – P⋅weight(c)) is smaller
than the first. Together, the ratio measures a likelihood of
the economy being in a contractionary period conditional
on the forecast errors made by the contraction model.

Alternatively, if (2) is not true, that is, if the economy is
more likely to be in an expansionary phase, (4) would be
the forecast of the combination model instead: 

CDFε[εt (c, I) c, I]
I=e,c
∑

CDFε[εt (c, I) c, I]
I=e,c
∑ ≡ CDFε[εt (c,e) c,e] + CDFε[εt (c,c) c,c] ,

CDFε[εt−1(c, I) c, I]
I=e,c
∑ ≡ CDFε[εt−1(c,e) c,e] + CDFε[εt−1(c,c) c,c] .

P ⋅weight(c) =
CDFε[ε t (c,c) c,c] + CDFε[ε t−1(c, I) c, I]

I=e,c
∑

CDFε[ε t (c, I) c, I]
I=e,c
∑ + CDFε[ε t−1(c, I) c, I]

I=e,c
∑
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(4)

where 

The explanation for the contractionary forecast of (3) given
above applies symmetrically to the expansionary case.8

A Model that Uses Markov 
Transition Probabilities

Preliminaries. The second strategy is to use information
that is more directly linked to the two-regime setup as
posited in this exercise. A separate Markov switching model
(MS) that includes four lags for ∆IPt over the 1956–89 pe-
riod is estimated with the maximum likelihood estimation
method of Boldin (1994). The estimation yields two par-
ticularly useful sets of probabilities for the purpose of this
exercise. One is a time series of the probability that any
given period is in a contraction regime. To use the index I
defined earlier, it can be written as Pr(It = c|∆IPk , k = t, 
t – 1, . . ., 2,1). Also available are two first-order transition
probabilities that estimate the odds of switching from one
regime to the other. Let Qij denote the probability of
switching from regime i to regime j next period. As a re-
sult of the estimation, we obtain the four elements of the
transition probabilities (i.e., Qee, Qec, Qcc, and Qce). 

Implementing MS Probabilities to the Forecasting Model.
At any given period t, we have two distinct forecasts for the
next period from the contraction and expansion regime
models. Since we have information about the relative like-
lihood of which regime is going to be in place, one natural
way of combining forecasts is to take a conditional expec-
tation by taking a weighted average of the forecasts from
the contraction and expansion regime models. Using the

P ⋅weight(e) =
CDFε[ε t (e,e) e,e] + CDFε[ε t−1(e, I) e, I]

I=e,c
∑

CDFε[ε t (e, I) e, I]
I=e,c
∑ + CDFε[ε t−1(e, I) e, I]

I=e,c
∑

.

f∆IP(c,t +1) × (1− P ⋅weight(e))

f∆IP(comb,t +1) = f∆IP(e,t +1) × P ⋅weight(e) + earlier notation, these conditional forecasts can be written
as follows:

(5) f∆IP(comb,t+1|It= e) = f∆IP(e,t+1) × Qee +
f∆IP(c,t+1) × Qec

(6) f∆IP(comb,t+1|It= c) = f∆IP(e,t+1) × Qce +
f∆IP(c,t+1) × Qcc .

Notice that both (5) and (6) are conditional on the un-
observable regime of period t. Since the probabilities of
each regime being in place are known, we could compute
the unconditional forecast by further combining (5) and (6)
in the same fashion. That is,

(7) f∆IP(comb,t+1) = f∆IP(comb,t+1|It= c) × Pr(It = c) +
f∆IP(comb,t+1|It= e) × Pr(It = e).

By substituting (5) and (6) into (7) and rearranging terms, 
it can be rewritten using f∆ IP(e,t+1) and f∆ IP(c,t+1) as
follows:

(8) f∆IP(comb,t+1) = 
f∆IP(e,t+1) × [Pr(It = e) × Qee + Pr(It = c) × Qce] +
f∆IP(c,t+1) × [Pr(It = c)Qcc + Pr(It = e) × Qec] .

In addition to (8), I consider an alternative specification
with a smoothing hyperparameter, ω. Namely, the first and
the second terms are multiplied by (1 + ω)/2, (1 – ω)/2, re-
spectively. Thus (8) can be rewritten as follows:

(9)

There are two justifications for this. First, this allows an
additional lever for the MS model to improve the forecast
performance, as was done in the earlier nonlinear cases.
Second, Markov regime-switching models of monthly IP
tend to produce quite jumpy and discontinuous regime
switches. Such properties translate into the terms Pr(It = c)
and Pr(It = e), switching from values close to 1 to near
zero, both Qcc and Qee being close to one in terms of the
formula.9

f∆IP(e, t + 1) × [Pr(It = e) × Qee + Pr(It = c) × Qce ]
1 + ω

2
+

f∆IP(c, t + 1) × [Pr(It = c) × Qcc + Pr(It = e) × Qec ]
1 − ω

2
.

f∆IP(comb,t +1) =

8. In actual implementation of the estimation, a minor change was made
in how the two phase model forecasts were combined. In formula (3),
f∆ IP(e,t) is used in place of f∆ IP(e,t+1), the second term of the equa-
tion. It turns out that the contemporaneous forecast errors of the two
phase models (i.e., ∆ IPt – f∆ IP(c,t) and ∆ IP – f∆ IP(e,t)) have a high
positive correlation. However, the correlation between forecast errors of
the two models becomes negligible or negative when a one-period
lagged forecast is used (i.e., ∆ IPt – f∆ IP(c,t) and ∆ IP – f∆ IP(e,t–1)).
Hence, the substitution is made in the formula to reduce the forecast er-
ror variance. The second term of expression (4) was similarly replaced
(i.e.,  f∆ IP(c,t) instead of f∆ IP(c,t+1)) for the same reason.

9. The forecast accuracy (in terms of the RMSE) of the MS model is
better than either the linear 1 or linear 2 model even without the hyper-
parameter. However, it is further enhanced with the introduction of the
hyperparameter. Hence, only results from the specification with the hy-
perparameter will be considered in the rest of the paper.
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Determination of the Parameters 
of the Decision Rules 

There are three parameters to be determined: γ and θ for
the forecast error combination models (nonlinear 1 and
nonlinear 2) and for the MS model, to be determined. This
is done by minimizing the metric of the sum of the square
of the one-period forecast errors (i.e., ∆IPt – f∆IP(comb,t))
for each model for the intermediate sample period from
1975:01 to 1989:12. 

The grid search is carried out for the 1,000 × 1,000
equally spaced points spanning the parameter space that
includes the (0, 0) point for γ and θ. For the forecast error
combination models, the grid search yielded –0.0415 (for
γ) and 0.32 (for θ) for the nonlinear 1, and –0.081 (for γ)
and 0.9 (for θ) for the nonlinear 2. 

In the MS case, the model based on the m(e) = m(c) = 4
specification is considered. A similar grid search is carried
out for 3,000 points for the interval [–0.5, 0.5], and the pa-
rameter ω is set equal to 0.223. For the out-of-sample fore-
cast exercise, the MS model of the ∆IPt is reestimated at
each date, and the resulting estimates of probabilities are
used for each new date. 

III. FORECAST PERFORMANCE
OF THE MODELS

The Forecast Accuracy for 1975:01–1989:12

The forecast error statistics of the forecasts based on two-
regime models for the intermediate period are shown in
Table 4. The improvement in the forecast accuracy is quite
obvious when compared to the results in Table 3. The use

of the rule and the associated ∆IPt improves the accuracy
measured in terms of root mean square errors (RMSE) be-
tween 12 percent (MS model over the linear 1 model) and
19 percent (nonlinear 2 over linear 2). The improvement is
statistically significant according to a formal statistical com-
parison of forecast accuracy in terms of the RMSEs of dif-
ferent models.10 For example, the test statistic for the null
hypothesis that the variance of the forecast errors of the
nonlinear 1 model (RMSE of 0.741) is greater than that of
the linear 1 (RMSE of 0.875) is –4.813 (with 167 degrees
of freedom). The corresponding one-sided marginal sig-
nificance level is 0.15 × 10-5; thus it can be rejected at a 1
percent significance level. In other words, the improvement
in the forecast accuracy of using the nonlinear 1 model over
the linear 1 model is statistically highly significant.

In most pair-wise comparisons between the nonlinear
and the conventional linear models, the former improves
the forecast accuracy of the latter models at a significance
level of 5 percent or less. The only exception is the case be-
tween the nonlinear 2 and the linear 1 model. The difference
in the RMSEs of the respective models (0.875 vs. 0.823) is
not statistically significant at the conventional levels. 

10. The test assumes that the forecast errors have zero-mean, and are se-
rially uncorrelated and normally distributed. Suppose {ε1} and {ε2} are
the forecast error series with length T from the two models 1 and 2,
which meet these conditions. Define two transformed error terms which
are orthogonal as ν1t = ε1t – ε2t and ν2t = ε1t + ε2t. Then the following
test statistic is distributed as Student’s t with T–1 degrees of freedom:
ρ(T–1)1/2/(1–ρ2)1/2, where ρ is the correlation coefficient between ν1t

and ν2t . See, for example, Meese and Rogoff (1988) and Diebold and
Mariano (1991). The forecast errors of the models examined here gen-
erally satisfy these conditions.

TABLE 4

ONE-PERIOD-AHEAD INDUSTRIAL PRODUCTION GROWTH RATE

FORECAST ERROR STATISTICS FOR TWO-REGIME MODELS

(FROM 1975:01 TO 1989:12, 180 OBSERVATIONS)

MODEL MEAN ERROR MEAN ABS. ERROR R.M.S. ERROR THEIL U

TWO-REGIME MODELS

WITH THE LAGGED FORECAST ERROR RULE

Nonlinear 1 (m(e) = 4, m(c) = 4) –0.038 0.560 0.741 0.810

Nonlinear 2 (m(e) = 12, m(c) = 4) –0.095 0.619    0.824 0.900

TWO-REGIME MODEL WITH THE MARKOV

SWITCH TRANSITION PROBABILITY RULE

MS nonlinear (m(e) = 4, m(c) = 4) 0.032 0.577 0.768 0.839
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One interesting question is whether the source of the
forecast improvement using the nonlinear models is con-
centrated in any particular business cycle phase. Table 5
shows the RMSEs for the business cycle phase samples for
the linear and the two-regime models. A noticeable pattern
across Tables 4 and 5 is that the fit of all the models wors-
ens during contractionary periods. However, the forecasts
from the two-regime models as a group do not deteriorate
as much as those of the linear models. That is, the RMSEs
during contractionary periods of the combination models
are smaller than those for the full-sample models. 

The pattern of relative improvement of nonlinear mod-
els over linear ones is not obviously concentrated. Using
the nonlinear 2 over the linear 2 model brings a 22 percent
reduction in the RMSE in the expansion sample compared
to 12 percent for the contraction sample. The comparable
figures for the MS and the linear 1 models are 14 percent
for the expansion and 9 percent for the contraction sam-
ples. However, in the case of the nonlinear 1 and linear 1
models, the improvement for the contraction and the ex-
pansion sample are 25 and 12 percent, respectively. Thus,
the nonlinear models improve forecast accuracy in both
contractionary as well as expansionary periods.

Out-of-sample Forecast Accuracy:
1990:01–1993:03 

The comparison in the previous section is not entirely fair,
for the design of the forecast rule for the combination
model hinges on the forecast performance itself. Thus, in
this section the out-of-sample performance of the differ-
ent models is examined. To this end, the same comparison
of the previous section is applied to the 1990:01 to 1993:03
period (39 observations), which contains one recession in
1990–1991. 

The linear models are reestimated using data up to
1989:12, and these estimates in turn are used for one-
month-ahead forecasts from 1990:01 to 1993:03. The non-
linear models are also reestimated using all available data
on the expansion and contraction episodes up to 1989:12,
and the decision rule with the parameter values found with
the earlier grid searches is used to generate the combina-
tion forecasts. The MS model is updated by repeatedly
reestimating the MS model of IP for each period beyond
1990:01, in a truly real-time updating fashion.

Table 6 compares various forecast error statistics for the
one period forecasts from all three types of models for 
the period 1990–1993. As a group, the nonlinear models
unmistakably improve upon the linear models. In terms of
the RMSE, the improvement is 4 and 5 percent for the
lagged forecast error combination models (i.e., nonlinear

1 and nonlinear 2). For the MS model, it ranges from 9 to
11 percent over the linear models. 

It is interesting to note that the forecast performance of
the nonlinear models does not deteriorate in the out-of-
sample period. This can be seen by comparing Table 4 to
Table 6. For example, measured in terms of Theil’s U, fore-
casts from the nonlinear 2 and MS perform better in the
second period (out-of-sample) than the in-sample. 

However, the improvement is not as significant as in the
case of the 1975–1989 sample results. The most significant
improvement is obtained when the forecasts from the MS
model are compared to those of the linear models. The
marginal significance level is 6 and 9 percent in the linear
1 and linear 2 cases, respectively. 

Dynamic Comparison of Forecast Accuracy 
of Different Models 

Since the forecast accuracy measures of Tables 3 through
6 are static, they provide little information regarding the
stability of the relative fit of single-regime versus multiple-
regime models over time. For this information, the dy-
namic changes in the forecast accuracy of selected linear
and nonlinear models over time are examined. Such an ex-
amination could also offer an opportunity to see how “un-
usual” the output and interest rate bivariate behavior was
near and during the most recent recession in the context of
the historically observed pattern of forecast performance. 

Figure 2A compares the relative forecast accuracy of the
linear 1 and linear 2 models. The former outperforms the lat-
ter in the RMSE sense for the fixed sample periods 1975:01
–1989:12 and 1990:01–1993:03. However, the figure shows

TABLE 5

RMSES FOR THE NBER BUSINESS CYCLE

PHASE-SPECIFIC SAMPLES (1975:01-1989:12)

MODELS RMSE

EXPANSION CONTRACTION

(155 OBS.) (25 OBS.)

Linear 1 0.805 1.222

Linear 2 0.906 1.529

Nonlinear 1 0.709 0.917

Nonlinear 2 0.706 1.338

MS Nonlinear 0.696 1.113
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the evolution of the statistical measure of relative forecast
accuracy. The procedure is as follows: a rolling forecast ac-
curacy t-test for an interval of 36 months is carried out from
1978:01 to 1993:03. For example, the t-test is applied to 
the two groups of 36 one-month-ahead forecast errors of the
linear 1 and linear 2 models for the sample interval from
1975:01 to 1977:12, and the resulting marginal significance
level (for H0:σ2

linear 1 ≥ σ2
linear 2, where σ2

i is the forecast er-
ror variance of model i) is 0.213. That value is plotted for
the horizontal coordinate of 1978:01 in Figure 2A. Next, the
observation for 1975:01 is dropped, and that for 1978:01 is
added to the pool of 36 one-month-ahead forecasts (now
1975:02–1978:01) and the test is repeated. This procedure
is repeatedly applied up to 1993:03, which is the last date
for the last 36-month interval (i.e., 1991:04–1993:03) to
give rise to Figure 2A. It shows that the linear 1 was sig-
nificantly more accurate than the linear 2 model for the
sample periods straddling the 1981–1982 recession, but
otherwise the improvement is not significant. One possi-
ble reason for the improvement is that the linear 1 model,
with a 4-lag specification, is more flexible and quicker to
adjust to shifts than the linear 2 model with 12 lags. Thus,
to focus on forecast accuracy of the nonlinear model ex-
clusively, I compare the linear 1 model with the nonlinear
1 model, since both are based on four-lag specifications.

Figure 2B shows the marginal significance levels for the
rolling 36-month interval as in the earlier case. Until about
1988, the forecast from the nonlinear 1 model is significantly
more accurate than that of the linear 1 model. Especially

compared to Figure 2A, the improvement is quite notice-
able for the period leading up to and throughout the 1980
recession. 

In contrast, no comparable gain in terms of improve-
ment in the forecast accuracy is obtained near the most re-
cent 1990–1991 recession, as in the earlier case. Though
not shown, a similar pattern was seen when the nonlinear
2 model’s forecast was compared to that of the linear 2 for
the most recent recession. This suggests that it is unclear
how much improvement could have been gained by using
the nonlinear 1 and nonlinear 2 models during the sample
period that includes the most recent recession. Thus, in this
context, the comovement pattern between the growth in IP
and the interest rate spread has become unusual near the
recent recession. 

However, the next figure conveys quite a different im-
pression with regard to the gain of using the nonlinear model
during the most recent recession. Figure 2C shows the
comparison between the MS and the linear 1 models. The
MS appears to increase the significance of the forecast ac-
curacy even more. Furthermore, there is no visible deteri-
oration in the relative forecast performance of the MS
model compared to the linear 1 model in the period lead-
ing up to and through the 1990–1991 recession. The non-
linear model’s performance appears to have deteriorated
during the period that immediately followed the recent re-
cession. Hence, in the context of the MS model, the usual
bivariate comovement pattern was clearly observed for the
period leading up to the 1990–1991 recession. Thus, it could

TABLE 6

OUT-OF-SAMPLE INDUSTRIAL PRODUCTION GROWTH RATE FORECAST ERROR STATISTICS

(FROM 1990:01 TO 1992:12, 39 OBSERVATIONS)

MODEL MEAN ERROR MEAN ABS. ERROR R.M.S. ERROR THEIL U

LINEAR MODELS

Linear 1 –0.326 0.529 0.662 0.917

Linear 2 –0.357 0.544 0.678   0.940  

TWO-REGIME MODELS

WITH THE LAGGED FORECAST ERROR RULE

Nonlinear 1 –0.294 0.512 0.638 0.884

Nonlinear 2 –0.323 0.520 0.646 0.895

TWO-REGIME MODEL WITH THE MARKOV

SWITCH TRANSITION PROBABILITY RULE

MS nonlinear –0.164 0.496 0.602 0.835
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be the failure of a single-regime model to account for the
asymmetry in the bivariate pattern which underlies the ob-
servation that the behavior of financial variables vis-à-vis
output was “unusual” before the most recent recession.11

IV. CONCLUSION

This paper demonstrates a practical forecasting applica-
tion of a modeling exercise that posits multiple regimes.
An important advantage of this approach is that it does not
require a forecaster to make an explicit ex ante determina-
tion of a turning point in the series that is being predicted.
Both the static and dynamic results indicate that a notice-
able improvement in the forecast fit can be obtained by
using such a model compared to more conventional single-
regime forecasting equations. 

The main conclusion from this exercise is that there are
measurable gains to be made by considering models that
explicitly incorporate asymmetry in the data. Also this re-
sult is supporting evidence for the existence of business cy-
cle phase-related asymmetry in the bivariate relationship
between output and interest rates. 

11. It is noteworthy that the design of the decision rules for the forecast
error nonlinear models was taken from a previous exercise based on a
different interest rate variable (i.e., 6-month commercial paper and the
federal funds rate spread). The overall results were very similar. How-
ever, compared to the current case, the improvement in forecast per-
formance using the nonlinear models was more concentrated in the
contractionary periods.

FIGURE 2A

RELATIVE FORECAST FIT OF LINEAR 1 
AND LINEAR 2 MODELS
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FIGURE 2B

RELATIVE FORECAST FIT OF NONLINEAR 1 
AND LINEAR 1 MODELS
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FIGURE 2C

RELATIVE FORECAST FIT OF MS NONLINEAR

AND LINEAR 1 MODELS
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