Uncertainty and the Slow Labor Market Recovery: Technical Appendix

By Sylvain Leduc and Zheng Liu

This appendix provides technical details for *FRBSF Economic Letter* 2013-21. <u>http://www.frbsf.org/economic-research/publications/economic-letter/2013/july/us-labor-market-uncertainty-slow-recovery/</u>

The Beveridge curve, which describes the inverse relationship between unemployment (u) and the job vacancy rate (v), can be derived from a general matching function of the following form (see Pissarides 2000, chapter 5):

(1)
$$m_t = \mu (s_t u_t)^{\alpha} (a_t v_t)^{1-\alpha},$$

where m_t denotes new matches (hires) being formed, μ is a scale parameter capturing (**true**) match efficiency, s_t denotes the search intensity of unemployed workers, and a_t denotes firms' recruiting intensity (for example, advertising).

Imposing the steady-state relation that $m = \delta(1 - u)$, where δ denotes the job separation rate, we obtain the expression for the Beveridge curve

(2)
$$v = \Omega^{\frac{1}{1-\alpha}} \left(u^{-\alpha} - u^{1-\alpha} \right)^{\frac{1}{1-\alpha}},$$

where $\Omega \equiv \delta / (\mu s^{\alpha} a^{1-\alpha})$.

The term Ω is a reduced-form representation of all factors that can shift the Beveridge curve. We call Ω the "Beveridge curve shifter." An increase in Ω leads to an outward shift in the Beveridge curve.

We construct a time series for Ω using data for vacancies and unemployment, based on the Beveridge curve relation in equation (2), where α is set to 0.5 following the literature and the job separation rate δ is taken from the Job Openings and Labor Turnover Survey (JOLTS) of the U.S. Bureau of Labor Statistics.

To examine the effects of policy uncertainty on Ω , we estimate a four-variable vector autoregression (VAR) model that includes policy uncertainty, unemployment, vacancy, and the time series measure of Ω . We identify an uncertainty shock using a Cholesky scheme in which we order the uncertainty measure first. (Our results are similar if we instead order uncertainty last in the VAR.)

Reference

Pissarides, Christopher. 2000. Equilibrium Unemployment Theory. Cambridge, MA: MIT Press.