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1. Introduction

An increasing number of authors have found the standard log-linearization procedure in

macroeconomics insufficient for solving interesting problems. For example, Kim and Kim

(2002) and Kollmann (2002, 2003) show the importance of second-order approximations for

measuring welfare gains from trade or from international monetary policy coordination.

Gaspar and Judd (1997), Judd (1999), and Woodford (2003) show the importance of

second-order approximations for the law of motion of the economy when one is calculating

the optimal policy in many interesting problems that arise in practice.

In this paper, we present an algorithm and software routines that compute an nth-

order Taylor series approximation to the solution of a dynamic, discrete-time set of rational

expectations equations around a nonstochastic steady state. Such approximate solutions

are referred to as “perturbation method” solutions by Judd (1999). Our routines repre-

sent an improvement over other authors’ work in this area in that we can approximate

the true solution to arbitrarily high order, we can consider models with arbitrary shock

distributions, and we can compute the coefficients in the Taylor series solution to a given

level of numerical precision, thereby ensuring that the coefficients we calculate at higher

orders are accurate.

We will present examples below that show the usefulness of all of the above features,

but the first deserves special emphasis. The primary advantage of nth-order (as opposed to

first- or second-order) approximations is that, so long as the true solution is analytic, the

nth-order approximation is guaranteed to converge to the true solution everywhere within

the domain of convergence (the multidimensional analog of the radius of convergence)

of the Taylor series. Moreover, given a compact set of any size within the domain of

convergence, there exists a finite n such that the nth-order approximation achieves any

given level of accuracy over the entire compact set. Thus, there is a very rigorous sense in

which a higher-order approximation is globally—and not just locally—valid.1

To demonstrate some of the potential applications of our solution algorithm and rou-

tines, we compute the first- through seventh-order approximate solutions to two widely-

1The advantage of perturbation methods over alternative procedures (such as projection methods or
discretization methods) is that they are generally much faster and capable of handling larger models, as
discussed by Gaspar and Judd (1997) and Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (2005). We
will focus on higher-order perturbation solutions in this paper; readers who are interested in comparisons
across methods are referred to the work by those authors.
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studied macroeconomic models: a stochastic growth model and a life-cycle consumption

model with non-normally-distributed shocks to income. We show that the solution to the

first model is close to linear and extremely close to quadratic for standard parameteriza-

tions, while the solution to the second model has much more important nonlinearities due

to the greater role played by uncertainty. We discuss the quality and global properties of

our solutions to these models.

The remainder of the paper proceeds as follows. Section 2 presents our algorithm for

computing nth-order approximate solutions to dynamic, discrete-time rational expecta-

tions models. Section 3 presents our “PerturbationAIM” software implementation of the

algorithm and discusses its advantages. Section 4 works through the solution to the two ex-

amples described above. Section 5 concludes. Three appendices provide the mathematical

proof of the global validity of our approximation, the source code for our Perturbation-

AIM software routine, and the third-order approximate solution to all the variables of the

stochastic growth model as a benchmark.

2. The Algorithm

2.1 Model Setup and Notation

We consider a system of dynamic, discrete-time rational expectations equations of the

form:

Et F (xt−θ, . . . , xt−1, xt, xt+1, . . . , xt+θ ; εt, εt+1, . . . , εt+φ) = 0 (1)

where F , xt, and εt are vectors of dimensions nF , nx, and nε, respectively, Et denotes

the mathematical expectation conditional on all variables dated t and earlier, {εt} is an

exogenous stochastic process, and it is understood that the system of equations (1) is

satisfied at each time t, t + 1, t + 2, etc., but not necessarily at time t − 1 or earlier.

The parameters θ, θ, and φ denote the maximum lag length and lead lengths required to

describe the equations in system (1).2

2Stochastic shocks dated t−1 and earlier can be incorporated into (1) by defining an auxiliary variable
in x—e.g., by setting at = εt, and considering at−1. Lagged expectation operators can be incorporated by

setting bt = Etxt+1 and then considering bt−1. In most macroeconomic models, φ is typically either 0 or

1—i.e., no shocks dated later than t + 1—but our algorithm and software routines are valid for general φ.
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We will assume that the stochastic shocks εt are i.i.d. across time and that the compo-

nents of εt (denoted εit, i = 1, . . . , nε) are mutually independent as well. In other words,

any cross-sectional or intertemporal correlation of the {εt} process must be explicitly spec-

ified by the modeler as sums of individual components εit. We assume that E[εit] = 0, and

we let Momn(εit) denote E[εn
it], the nth moment of εit. When an nth moment is specified,

we require that it exists. We require no other distributional assumptions regarding the εt,

and denote the distribution function for εt by Ψ(z).

We look for time-invariant, analytic, ergodic solutions to (1) of the form:3

xt = b(xt−θ, . . . , xt−1 ; εt) (2)

In other words, variables dated t−1 and earlier are regarded as having been observed, and

the vector xt is to be solved as a function of these lagged values and the observed value

of the stochastic shock εt. Of course, the solution (2) also depends on the coefficients

and parameters of the model (1), and in particular on the moments of the stochastic

disturbances εt.

It is worth noting that we do not require the modeler to specify some components of

xt as being “state” or “predetermined” variables and the remaining components as being

“co-state” or “jump” variables.4

Following Fleming (1971) and Judd (1999), we let σ ∈ [0, 1] denote an auxiliary,

“scaling” parameter for the distribution of the stochastic shocks εt in (1). In particular,

we consider a continuum of auxiliary models (1)′, parameterized by σ ∈ [0, 1], each identical

to (1) in every respect except that the distribution function for εt in these auxiliary models

is given by Ψ(z/σ) instead of by Ψ(z). Thus, σ = 1 corresponds to the original model (1),

which is to be solved, while small values of σ correspond to versions of the model with

relatively little uncertainty. The case σ = 0 is taken to mean εt = 0 with probability 1—i.e.,

a deterministic version of the model.

3By time-invariance of b, we require that xt+k = b(xt+k−θ, . . . , xt+k−1; εt+k) for all k ≥ 0 (note that
we do not require b to have held for k < 0). We require b to be analytic in order for the Taylor series to
converge to b as n → ∞. The ergodicity requirement rules out “bubbles” and solution functions b that
are globally explosive. The use of the letter b to denote the solution function generalizes Anderson and
Moore’s (1985) AIM algorithm for linear models, which produces a solution matrix denoted by B.

4This is just as in the linear case: see Anderson and Moore (1985) and Sims (2000). Intuitively, the
computer can figure out what linear combinations of variables are “predetermined” from the fact that
variables dated t − 1 or earlier are known. For example, a clearly “predetermined” variable, such as
Kt = (1 − δ)Kt−1 + It−1, falls out of the solution algorithm into the form (2) trivially.
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Thus, we are considering a family of models of the form:

Et F (xt−θ, . . . , xt−1, xt, xt+1, . . . , xt+θ ; εt, εt+1, . . . , εt+φ ; σ) = 0

εs ∼ iid Ψ(z/σ), s > t

or, equivalently,

Et F (xt−θ, . . . , xt−1, xt, xt+1, . . . , xt+θ ; εt, σεt+1, . . . , σεt+φ ; σ) = 0 (1)′

εs ∼ iid Ψ(z), s > t

to which we are looking for a family of solutions indexed by σ:

xt = b(xt−θ, . . . , xt−1 ; εt ; σ) (2)′

We have recycled the letters F and b here, but there is no risk of confusion as we will

henceforth only refer to the generalized family of equations (1)′ and (2)′, and specify σ = 1

when we wish to refer to the original model (1) and solution (2).

Note in particular that we do not scale the time-t realization of the shock εt in (1)′

and (2)′ by σ, because εt is known at time t and because it is often the case in practice that

the modeler wishes to shock a deterministic or “perfect foresight” model—i.e., a model for

which σ = 0. Specifications (1)′ and (2)′ are the proper parameterizations that allow the

researcher to perform this kind of counterfactual experiment in which agents are completely

surprised by a shock that they did not think could occur.5

2.2 Approximate Solutions to the Model

Finding the nonlinear solution function b is difficult in general. As is standard practice,

we assume that the modeler can solve (1)′ for a nonstochastic steady state x:

F (x, . . . , x, . . . , x ; 0, . . . , 0 ; 0) = 0 (3)

so that we have:

x = b(x, . . . , x ; 0 ; 0) (4)

5There is an earlier literature on “perfect foresight” solutions of nonlinear rational expectations models
(e.g., Anderson (1993), Fuhrer and Madigan (1997), and the Troll software package), which solve the model
to numerical precision imposing the constraint that σ = 0. In these algorithms, the modeler can still see
how the perfect foresight solution reacts to a shock to the system, graph impulse responses to a shock,
and so on. Our perturbation approach nests this older literature very naturally.



5

We then assume that there exists a neighborhood of this steady state for which the solution

function b exists and is unique and on which F and b are sufficiently smooth. We substitute

the relationships:

xt = b(xt−θ, . . . , xt−1 ; εt ; σ) (2)′

xt+1 = b
(
xt+1−θ, . . . , xt−1, b(xt−θ, . . . , xt−1; εt; σ) ; σεt+1 ; σ

)
(2)′′

etc.

into (1)′ and use the implicit function theorem to compute the second- and higher-order

derivatives of the unknown function b with respect to xt−θ, . . . , xt−1, εt, and σ at the

known point (x, . . . , x ; 0 ; 0).

Like log-linearization, then, our approximate solution to (1)′ for any fixed order of

approximation n (such as the now-popular quadratic approximation, n = 2) would only

be valid in general when the lagged values xt−θ, . . . , xt−1 lie within a sufficiently small

neighborhood of x, and εt and σ lie within a sufficiently small neighborhood of 0. It is

crucial to note, however, that so long as F and b are analytic, the algorithm above is

guaranteed to converge to b everywhere within the domain of convergence of the Taylor

series expansion of b around the point (x, . . . , x ; 0 ; 0). This domain is potentially very

large—in some models it can even be all of R
θnx+nε+1. Even better, the convergence is

uniform on compact subsets.

The importance of these global properties of the algorithm are generally underappre-

ciated in the profession. We thus formally state and prove the key point as a proposition:

Proposition 1: Let Ω ⊆ R
m be a domain and b : Ω → R

h be analytic at the point x ∈ Ω.
Let bn denote the nth-order Taylor series expansion of b about the point x and let D ⊆ Ω
be the domain of convergence of the Taylor series expansion. Then for any given K ⊆ D

compact and ε ∈ R
+, there exists an integer N such that |bn(x) − b(x)| < ε uniformly for

all x ∈ K and all n ≥ N .

Proof: See Appendix A for technical discussion and proof.

The proposition emphasizes that, for any given problem with an analytic solution b

and any (potentially very large) compact set K within the domain of convergence of the

Taylor series for b about the point x, there exists a finite N such that the Taylor series

approximation is as accurate as desired over the entire set K. Thus, there is a very rigorous

sense in which our algorithm is globally—and not just locally—valid.
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In contrast to other researchers (Schmitt-Grohe and Uribe (2004), Kim, Kim, Schaum-

berg and Sims (2002)), our algorithm and software routines allow for approximation of the

function b to arbitrarily high order n, as opposed to simply the second order. We are

indebted to Judd (1999) for making the essential point that, once the first derivatives of b

have been calculated, one needs only to solve a straightforward, recursive linear problem

to calculate the derivatives of b to each successive order. To solve for the first derivatives

of b, we use AIM, a generalization of the Blanchard-Kahn (1980) algorithm developed by

Anderson and Moore (1985).6

2.3 Limitations of Perturbation Methods

Perturbation methods are in general significantly faster than alternatives such as projection

methods or discretization methods, as discussed by Gaspar and Judd (1997) and Aruoba,

Fernandez-Villaverde, and Rubio-Ramirez (2005). As emphasized by Proposition 1 in the

previous section, they are also globally valid for many interesting problems. Nonetheless,

there are many models which are not amenable to this type of solution procedure. For

example, the system of equations F must be free of inequality constraints and must be

globally analytic over the domain of interest.7 To the extent that the user is interested in

inequality or other non-smooth constraints F , and is not willing to approximate them with

an analytic penalty function or analytic approximation to the non-smooth constraints, then

alternative procedures, such as projection or discretization methods, must be employed.

3. Software Implementation of the Algorithm: PerturbationAIM

We implemented the solution procedure described above in Mathematica and refer to the

software implementation as “PerturbationAIM.”

6Anderson (2001) shows that AIM is faster and more numerically robust than the numerous other
alternatives available. Like all of these first-order procedures, AIM requires that the solution function b
be first-order stable, or at least not too explosive, local to the nonstochastic steady state. AIM treats unit
roots as stable by default, so unit roots in the first-order approximation satisfy this stability requirement.
Users can also modify the Blanchard-Kahn stability requirement in AIM to be satisfied by eigenvalues less
than λ in absolute value, where the user may choose λ < 1 or λ > 1 as well as the standard λ = 1.

7 If F is analytic locally but not globally, then the nth-order approximations will generally converge to
b locally (including σ very close to zero), but this near-perfect-foresight solution is typically of much less
interest than the true stochastic solution, which corresponds to the nonlocal case σ = 1.
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3.1 General Advantages of PerturbationAIM

While second-order approximations can be done fairly easily in any computer language,

generalization to higher orders is dramatically simpler in Mathematica, owing to its large

library of built-in routines for symbolic differentiation, symbolic manipulation, and solution

of large-scale systems of linear equations. In particular, the use of Mathematica:

A. Allows for much simpler and intuitive code (less than 200 lines), making the
implementation of the algorithm more transparent and more likely to be free of
human coding error (bugs).

B. Allows the algorithm to manipulate symbolic expressions and thus proceed
in the same way and produce the same output as if the user were performing it
by hand, making the implementation of the algorithm and the generated output
more intuitive.

C. Eliminates the need for user-written differentiation or linear solution routines,
which are likely to be more amateur than built-in Mathematica routines and
hence more likely to suffer from human coding error and numerical inaccuracies.

D. Allows the use of symbolic differentiation, improving numerical accuracy, par-
ticularly at higher orders.

E. Allows the computation of all coefficients to arbitrarily high precision, eliminat-
ing inaccuracies from machine-precision computations that cumulate with each
recursive step of the algorithm.

Our experience has shown that point E is surprisingly relevant in practice as well

as in principle. Errors in machine-precision arithmetic were observed quite frequently at

higher orders or for larger models, probably due to the fact that the recursive nature of

the algorithm implies that a few digits of accuracy are lost with each successive iteration.

We will return to this issue in the specific context of the stochastic growth model, below.

3.2 Modeling Advantages of PerturbationAIM

In addition to the general, internal advantages of PerturbationAIM discussed above, the

software has a number of advantages from the economic modeler’s point of view, as follows:

1. No need to categorize variables as “predetermined” or “non-predetermined.”
Knowing that all variables dated t − 1 or earlier are observed and all variables
dated t are to be solved is sufficient for the computer to determine which linear
combinations of variables are “predetermined” and which “non-predetermined.”
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Anderson and Moore (1985), Sims (2000), and Collard and Juillard (2001) also
make this observation. This feature of the code becomes increasingly convenient
as the number of variables in the model increases.

2. No need for the modeler to substitute out identities. The computer is com-
pletely capable of making these substitutions.

3. Ability to solve models with arbitrarily long lags and leads (including shocks
dated later than t or t + 1), with no need for the modeler to transform the
model by hand. Note also that the usual trick for linear models of defining an
auxiliary variable zt ≡ Etxt+1, and then considering zt+1, fails for nonlinear
models because F (Etxt+1) �= EtF (xt+1) in general. PerturbationAIM handles
multiple leads correctly in the nonlinear as well as the linear case.

4. Ability to solve models with non-normally distributed shocks. Perturbation-
AIM allows the modeler to substitute in any set of moments for the stochastic
shocks of the model, allowing consideration of models with any shock distribution
for which the moments are finite.

3.3 Outline of PerturbationAIM

The software implementation of the algorithm proceeds as follows:

1. Find the nonstochastic steady state solution (x, . . . , x, . . . , x ; 0, . . . , 0 ; 0) to
(1)′ using a standard nonlinear equation solver.

2. Define the (unknown) solution function bxi for each element xi of x, i =
1, . . . , nx, with arguments (xt−θ, . . . , xt−1 ; εt ; σ). Let b denote (bx1 , . . . , bxnx )′.

3. Compute the first derivatives of b at the point (x, . . . , x ; 0 ; 0) using AIM, as
follows: Differentiate the function F with respect to each of its arguments and
evaluate these derivatives at (x, . . . , x, . . . , x ; 0, . . . , 0 ; 0). Write out the first-
order Taylor series approximation to F as a linear model in its arguments and
find the solution to this linear model using AIM. The AIM solution matrix yields
the desired first derivatives of b.

In preparation for computing the second- and higher-order derivatives of b:

4. Substitute out for xt+k, k > 0, in (1)′ using the relationships (2)′, (2)′′, etc.
For notational simplicity, denote the result by:

Et (F ◦ b) = 0 (5)

Note that F ◦ b has arguments (xt−θ, . . . , xt−1 ; εt, . . . , εt+max(θ,φ) ; σ).
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Now, for each order n ≥ 2, calculate the nth derivatives of b as follows:

5. Calculate all the nth-order derivatives of F ◦ b with respect to its arguments,
as follows: The derivatives of F are known (and are symbolic), the derivatives
of b up through degree n − 1 are unknown in general (and are symbolic) but are
known at the steady state (and are numerical). The nth-order derivatives of b

are unknown in general (and are symbolic) and are unknown at the steady state
(and are undetermined numbers).

6. Compute the nth-order Taylor series approximation to F ◦ b at the steady
state, as follows: The (known) derivatives of F evaluated at steady state yield
numerical values, the (known) derivatives of b up through degree n− 1 at steady
state yield numerical values, and the (unknown) nth derivatives of b at steady
state are denoted by a set of (unknown) symbolic constants. Write out the nth-
order Taylor series approximation to F ◦ b with the nth derivatives of b left as
undetermined coefficients.

7. Take the expectation implied by equation (5) for the nth-order Taylor series
approximation to F ◦ b by sending terms involving εt+k, k ≥ 1, into the (known)
corresponding moments.

8. Solve for the nth-order derivatives of b using the method of undetermined
coefficients: Set each coefficient of the nth-order Taylor series of F ◦ b equal to
zero (as implied by equation (5)) and solve the resulting linear system of equations
for the undertermined nth derivatives of b.

Repeat steps 5–8 for each successive order n, as desired.

3.4 Algorithmic Enhancements

The PerturbationAIM source code closely follows the outline above, but also contains

a few algorithmic enhancements that considerably increase computational efficiency and

accuracy. Two of these in particular are worth discussing in greater detail.

3.4.1 Parsimonious Definition of the Economic State

Recall our definition of the solution function for xt in equation (2)′ as:

xt = b(xt−θ, . . . , xt−1 ; εt ; σ)

Note that in this definition, we have implicitly defined the economic state vector to be

all of (xt−θ, . . . , xt−1 ; εt), as well as the auxiliary scaling parameter σ. In fact, the state
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of the model at time t can typically be defined much more parsimoniously than this, as

follows.

Let xi
t, i = 1, . . . , nx, denote the nx components of the vector xt. For each i, let θi

denote the longest lag with which the ith component of x appears in the original system of

equations F in (1)—i.e., the maximum k for which xi
t−k appears in F . Note that θi may

be zero for some i (if xi does not appear in F with a lag at all). Then, when we consider

the system F at dates t, t + 1, t + 2, . . . , the variables xi
t−θi , xi

t−θi+1
, xi

t−θi+2
, . . . , will

all appear, but xi
t−k for any k > θi will not appear. Thus, we may vary xi

t−k, k > θi,

freely without affecting any of the constraints on the vector xt (and xt+1, xt+2, . . . ). It

follows that the inherited economic state of the model at date t is completely described

by the set of variables
⋃nx

i=1{xi
t−k}θi

k=1 which do appear in F with a lag (where if θi = 0

the quantity in braces is taken to be the empty set). Note that this set of variables is in

general smaller than {xt−θ, . . . , xt−1}, with equality if and only if θi = θ for each i; in

practice,
⋃

i{xi
t−k}θi

k=1 is typically much smaller than {xt−θ, . . . , xt−1}.
Characterizing the economic state more succinctly as

⋃
i{xi

t−k}θi

k=1 typically yields

large gains in computational speed and accuracy, since any reduction in the number of

arguments of b dramatically reduces the number of derivatives of F ◦ b that must be

computed and the number of derivatives of b that must be solved at each step.

3.4.2 Intermediate Computation of a Certainty-Equivalent Solution

In solving for the nth-order derivatives of b, the problem is separable into two stages:

a certainty-equivalent stage and a stochastic stage. In particular, we may consider a

certainty-equivalent version of model (1)′ by setting σ = 0 in (1)′. The solution to this

model is given by :

xCE
t = b(xt−θ, . . . , xt−1 ; εt ; 0)

Thus, it is possible to solve for all of the nth-order certainty-equivalent derivatives (i.e,

those that do not involve σ) of the true, stochastic solution function b by restricting

attention first to the case of F ◦ b with σ = 0. Once we have computed the nonstochastic

derivatives of b by implicit differentiation of F ◦ b evaluated at σ = 0 and solving, we may

then return to the computation of the remaining derivatives of b (i.e., those involving σ)

by computing the derivatives of F ◦ b that involve σ and considering the case σ > 0.
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It turns out that this two-step procedure is more computationally efficient than solving

for all of the nth-order derivatives of b simultaneously. No extra computation is performed,

because all of the derivatives of F ◦ b are computed once and only once by either method,

and efficiency is gained because it is faster to solve the resulting linear system of equations

in the block-recursive manner that is imposed by the two-step procedure.

3.5 Source Code

The complete Mathematica source code for PerturbationAIM is very succinct (less than

200 lines, excluding comments) and is included in Appendix B for reference. Copies can

also be freely downloaded from http://www.ericswanson.pro, or are available from the

authors upon request. All that is required of the user is to specify a “model file” with the

equations of F written out in standard Mathematica notation, using time indices t, t − 1,

t + 1, etc. to convey to the software the correct intertemporal relationship of the variables

in the model. Simple examples and model file templates are available for download along

with the PerturbationAIM algorithm.

4. Examples

We illustrate some of the applications and potential benefits of PerturbationAIM by means

of two examples that are standard in the macroeconomics literature: a stochastic growth

model, and a life-cycle consumption model.

4.1 Stochastic Growth Model

A natural example that illustrates the features of the algorithm is a standard stochastic

growth model:

Yt = AtK
α
t−1 (6)

log At = ρ log At−1 + εt (7)

Kt = (1 − δ)Kt−1 + It (8)

Yt = Ct + It (9)

C−γ
t = βEt

[
(1 + rt+1) C−γ

t+1

]
(10)
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rt = αAtK
α−1
t−1 − δ (11)

Welft =
C1−γ

t

(1 − γ)
+ βEtWelft+1 (12)

We desire a solution to (6)–(12) for At, Ct, It, Kt, rt, Yt, and Welft as functions of

variables dated t − 1, εt, and σ.8

Equations (6)–(12) can be entered into a model file essentially exactly as they are

written above—as discussed in section 3.2, the researcher does not need to categorize

variables as being “predetermined” or “non-predetermined,” does not need to substitute

out identities such as (9), and is free to tack on auxiliary equations such as (12), which

do not affect the solution to equations (6)–(11) but nonetheless produce a result that is of

interest—in this case, the expected present discounted value of representative-agent utility

flows conditional on all information at time t.

4.1.1 Results

We apply PerturbationAIM to the stochastic growth model above and compute the first-

through seventh-order approximate solutions to each of the above variables. In computing

these numerical results, we set α = .3, β = .99, γ = 1.1, δ = .025, and ρ = .8, in line with

post-war quarterly U.S. data. We assume that the shocks εt are normally distributed with

a standard deviation of .01. Since there is some reason to think that several variables in

this model will be better approximated in logartihms than in levels, we have the software

transform the variables A, C, K, and Y into logarithms, but leave investment I, the net

interest rate r, and Welfare in levels, since I may be negative at times, r is close to zero,

and Welf is negative in steady state.

We compute the first- through seventh-order solutions for all of these variables around

the nonstochastic steady state of the model. Figure 1 provides a sense of these results by

graphing the solution for (the logarithm of) Ct as a function of (log) Kt−1, the primary

state variable of interest. To keep this graph simple, all of the other state variables in the

model are taken to be at their nonstochastic steady-state values, except for the auxiliary

scaling paremeter σ, which we set equal to 1 (corresponding to the original model of

interest). The horizontal axis of figure 1 denotes the deviation of kt−1 ≡ log Kt−1 from its

8 In fact, the economic state of this model can be characterized more parsimoniously by At−1, Kt−1,
εt and σ. See section 3.4 for a detailed discussion.
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Figure 1: Consumption in the Stochastic Growth Model, ct(kt−1)
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Log consumption at time t as a function of the inherited log capital stock. Other state variables are
assumed to be at their steady-state values and the auxiliary scaling parameter σ is set equal to 1. Red,
orange, yellow, green, blue, violet, and black lines depict, respectively, the first- through seventh-order
solutions. Horizontal axis is in (log) deviations from steady state; panel (b) considers a much wider range
of inherited capital stocks than panel (a).
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nonstochastic steady state value, and the vertical axis denotes the level of ct ≡ log Ct (i.e.,

not as a deviation from steady state). In figure 1(a), we consider a range for kt−1 from

about 50 percent below to about 50 percent above the nonstochastic steady-state level; in

figure 1(b), we effectively “zoom out” to consider a much wider range of values for kt−1

of ±5 natural logarithms from steady state, a factor of approximately 100 both above and

below the steady-state level. In both panels, the first- through seventh-order solutions are

graphed, respectively, in the colors red, orange, yellow, green, blue, violet, and black.

The most striking feature of figure 1 is just how well the second- and even first-order

approximate solutions do at capturing ct as a function of kt−1. The second- through

seventh-order solutions all lie virtually on top of one another and are essentially indistin-

guishable over the range of values in figure 1(a), and differ only very slightly even over the

vast range of capital stocks considered in figure 1(b). Evidently, the solution for ct is very

close to log-quadratic or even log-linear over plausible ranges for the state variables.

This qualitative conclusion holds not just for consumption, but for all of the possible

choices of dependent and independent variables one could consider. Figure 2 presents

the analogous graphs for the most nonlinear of the variables in the model, conditional

welfare Welft. Even for that variable, the second- through seventh-order approximations

are indistinguishable in panel (a), and the third- through seventh-order approximations

are difficult to distinguish in panel (b) despite the vast range of capital stocks considered.

Given the results in figures 1 and 2, it is somewhat surprising that the stochastic

growth model is so often used as a benchmark for computing nonlinear approximate so-

lutions. Indeed, the log-linear approximation does quite well, and the quadratic approxi-

mation to the solution of this model is excellent, even over extremely large ranges for the

inherited state variables. This is not true in general, as the life-cycle consumption model

below will demonstrate.

4.1.2 Potential Pitfalls of Machine-Precision Arithmetic

In theory, the coefficients of a Taylor series approximation can be computed to arbitrarily

high order. In practice, however, as one proceeds to higher and higher orders of approxi-

mation, the recursive computation of derivatives of each successive order from the previous

order compounds potential numerical inaccuracies in the computation at each step. An
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Figure 2: Welfare in the Stochastic Growth Model, Welft(kt−1)
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Expected present discounted value of period utility conditional on information at time t as a function of
the inherited log capital stock. Other state variables are assumed to be at their steady-state values and
the auxiliary scaling parameter σ is set equal to 1. Red, orange, yellow, green, blue, violet, and black lines
depict, respectively, the first- through seventh-order solutions. Horizontal axis is in (log) deviations from
steady state; panel (b) considers a much wider range of inherited capital stocks than panel (a).
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Figure 3: Decimal Places of Taylor Series Coefficient Accuracy
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advantage of implementing PerturbationAIM in Mathematica is that it there are built-in

procedures for reporting the accuracy of the computed results, and for increasing that

accuracy.

Figure 3 illustrates the issue by graphing the number of decimal places of accuracy in

the coefficients of the Taylor series approximation for each successive order of approxima-

tion to the stochastic growth model solution. The accuracy of the original model and of

the steady state are also reported. For this example, we specified that the parameters of

the model (α, β, etc.) were accurate to 75 decimal places. The model itself then has about

73 decimal places of accuracy—this is due to the presence of 1 − γ in the denominator of

equation (12), which reduces the accuracy of the model relative to the parameters because

(1 − γ)−1 has lower accuracy than γ, particulary since γ is not too different from unity.

The steady state of the model is successfully computed to about 70 decimal places (that

is, a minimum of 70 decimal places; some variables may have been computed to higher

accuracy than others, but all of them are accurate to 70 decimal places or more).

As is clear in figure 3, the accuracy of the computed Taylor series coefficients for each

order of approximation falls steadily as we compute each successive order, down to about

24 decimal places by the time we reach the seventh order. While the fall is greatest from the



17

Table 1: Number of Taylor Series Coefficients with Errors

Arising from Machine-Precision Arithmetic, Stochastic Growth Model

# nonzero coeffs # of machine-precision # of machine-precision
Order of in Taylor series coeffs with error > coeffs with relative error >
Approx. for Consumption 10−4 10−2 1% 10%

0 1 0 0 0 0
1 4 0 0 0 0
2 11 1 0 1 0
3 25 5 1 5 1
4 50 14 4 14 5
5 91 29 9 29 18
6 154 59 18 56 34
7 246 103 21 104 68

zeroth to the first order, due to the repeated swapping of adjacent Schur blocks that must

be performed to group the large eigenvalues together,9 the essential feature of figure 3—

that accuracy of the computed Taylor series coefficients falls steadily with each successive

order—is an unavoidable consequence of the recursive nature of the algorithm. For this

particular model, we seem to lose about five decimal places of accuracy in the computed

Taylor series coefficients as we progress to each successive order of approximation.10

In Table 1, we investigate to what extent a researcher could go wrong by work-

ing entirely with machine-precision numbers—which have about 16 decimal places of

accuracy—at each step of the above computation. We focus on the Taylor series solu-

tion for (log) consumption in particular, although the results are very similar for all of the

non-predetermined endogenous variables in the model. The table reports both absolute

errors—the raw difference between the machine-precision coefficients and the “true” values

of those coefficients computed out to 23 decimal places or more—and the relative errors,

which are the absolute errors divided by the true values.

While the errors from using machine-precision arithmetic are very small for the first

few orders, they contaminate a larger and larger number of coefficients and become pro-

gressively larger as we proceed to each higher order. Coefficient errors as large as 10%

9The accuracy of this part of the algorithm could be improved—it is not built-in to Mathematica
but was instead coded by us without great attention to numerical precision, since the arbitrary-precision
capabilities of Mathematica make this less necessary.

10Dropping welfare equation (12)—the most badly scaled equation—from the model improves the ac-
curacy of our first-order solution by a few decimal places relative to the version of the model with welfare
included; nonetheless, the loss of about five decimal places of accuracy with each successive order of
approximation remains true even when we drop welfare from the model.
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become quite common by about the fourth or fifth order and coefficient errors of about

1% are present even in the second-order solution.

Machine-precision arithmetic varies significantly from machine to machine, and even

from software package to software package. Thus, there is no guarantee that the results

above will be representative of other researchers’ experiences using different hardware

or different software packages. Nonetheless, the qualitative observations of table 1 are

unavoidable, and there are a number of reasons to think that they will be representative

of other researchers’ experiences: first, they have been computed on a standard PC with

32-bit Intel hardware, by far the most common platform in use in the profession; and

second, Mathematica’s internal numerical linear algebra procedures are all taken directly

from LAPACK, which is by far the most common underlying set of numerical linear algebra

routines in use today (these are the same procedures underlying Matlab, for example).

For future reference, the third-order solution to the stochastic growth model is pro-

vided in Appendix C to six significant digits, as a benchmark.

4.2 Life-Cycle Consumption Model

The stochastic growth model is a common benchmark in macroeconomics, but the rela-

tively small shocks and near-linearity of the solution to the model make it less interesting

for evaluating nonlinear numerical solution methods. We thus turn attention to a more

nonlinear—and thus more interesting for our purposes—model of life-cycle consumption.

Equations of the model are given by:

log Yt = log Yt−1 + α + εy
t + εx

t (13)

C−γ
t = β(1 + r)Et C−γ

t+1 (14)

At = (1 + r)At−1 + Yt − Ct (15)

where Yt denotes the agent’s exogenous income stream, Ct the agent’s choice of consump-

tion, At the agent’s end-of-period asset stock, α the expected growth rate of income from

one period to the next, r the risk-free real rate at which the agent can borrow and save,

β the agent’s discount rate, γ the inverse of the elasticity of substitution, and εy and εx

exogenous shocks to income, with:

εy
t ∼ N(0, σ2

y)
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and

εx
t ∼

{−X with probability p
X p/(1 − p) with probability 1 − p

We interpret εy
t as year-to-year variation in income conditional on staying in the same job,

and εx
t as the probability of the agent losing her job, resulting in a loss of annual income of

about X percent. The shock εx
t is thus substantially non-normally distributed, skewed to

the downside, and potentially very large, all of which make the implications of uncertainty

in the model more interesting than was the case for the stochastic growth model.

We choose parameter values to roughly correspond to annual data for a U.S. consumer:

r = .05, β = .97, γ = 1.1, σy = .03, and p = .05. For illustrative purposes, we will consider

values of X equal to .05 and to .3. The latter value is more realistic, we would argue, but

the former value offers insight by acting as an intermediate case that is closer to normally

distributed. We calibrate α in such a way as to ensure that the model has a nonstochastic

steady state, as follows.

Equations (13)–(15), as written, will typically not imply a nonstochastic steady state

for A, C, and Y since these variables will trend over time. In order to apply our perturba-

tion algorithm to the model, we require the model to have a nonstochastic steady state, so

we define the normalized variables yt ≡ Yt/Yt−1, ct ≡ Ct/Yt, and at ≡ At/Yt and rewrite

the system (13)–(15) as:

log yt = α + εy
t + εx

t (16)

c−γ
t = β(1 + r)Et c−γ

t+1y
−γ
t+1 (17)

atyt = (1 + r)at−1 + yt − ctyt (18)

Finally, we set α = γ−1 log[β(1 + r)] to ensure that the model has a nonstochastic steady

state.

Figure 4 reports the first- through seventh-order solutions for the cases of small neg-

ative income shocks arising from job loss (X = .05) in panel (a) and large income shocks

from job loss (X = .3) in panel (b). For the small shocks to income (panel (a)), the lin-

ear approximation clearly misses the precautionary savings motive that is evident in the

second- and higher-order solutions, which is not surprising given that the linearized model

is certainty-equivalent. There is some discernible difference between the second-order and

the higher-order approximate solutions, but nonetheless, the second-order approximation
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Figure 4: Consumption in the Life-Cycle Model, ct(at−1)
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Normalized consumption at time t as a function of the inherited normalized asset stock. Other state
variables are assumed to be at their steady-state values and the auxiliary scaling parameter σ is set equal
to 1. Red, orange, yellow, green, blue, violet, and black lines depict, respectively, the first- through
seventh-order solutions. Horizontal axis is in deviations from steady state. Panel (b) considers the case of
larger and more negatively skewed income shocks in the event of job loss (X = .3). See text for details.
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performs quite well, even over the relatively large range of asset stocks considered in the

figure (ranging from two times annual income below steady state up to six times annual

income above steady state).11 The third- through seventh-order solutions are all essentially

indistinguishable from one another, suggesting that convergence to the true solution for

this version of the model has virtually been achieved by the third or fourth order.

The advantages of the higher-order approximations become apparent when we begin

to consider less trivial, more realistic shocks to income in panel (b) (X = .3). In this

panel, a clear difference emerges between each order of approximation, and only by the

sixth or seventh order do we appear to be settling down to an extent that would suggest

we are close to the true solution. Compared to the first- or second-order solutions, the

third- and higher-order solutions are substantially steeper and more concave, indicating

that it is optimal for the agent to save more at the margin when assets are lower, all else

equal. The first-order solution, of course, misses all aspects of the precautionary savings

motive—a huge oversight in this model—and the second-order solution, while doing better

at low levels of assets, significantly overstates both the optimal level of savings and the

marginal propensity to save as the agent’s buffer stock of assets increases.

5. Conclusions

We have presented a specific algorithm and software routines for computing arbitrarily

high-order Taylor series approximations to the true solution for a set of user-specified

dynamic, discrete-time rational expectations equations.

Higher-order perturbation solutions may be of interest to a researcher for two rea-

sons. First, in many problems the higher-order features of the model are themselves of

interest, such as risk premia and time-varying risk premia in the asset pricing literature,

and precautionary savings and “prudence” in the consumption literature. Second, there

is a rigorous sense in which an nth-order solution is globally valid, which we specify and

discuss. Given the computational advantages of perturbation methods over alternatives

such as projection or discretization methods, the global validity of the procedure and avail-

11The steady-state level of the asset stock in the model is close to zero, so the deviations from steady
state reported on the horizontal axis are also essentially equal to the levels.
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ability of an off-the-shelf set of software routines may make these methods attractive to

researchers working on a variety of problems.

An additional advantage of our software implementation is the ability to compute the

Taylor series coefficients of the approximate solution to arbitrarily high numerical preci-

sion. Our experience has shown that numerical errors in these coefficient computations

cumulate relatively quickly as one progresses to the computation of higher-order deriva-

tives. Thus, our software routines should serve as a useful benchmark for other researchers

going forward.

It is also our hope that researchers will adapt, modify, and apply our software routines

in new and surprising ways to a much wider variety of models and problems than we have

considered here. The relative simplicity and robustness of these routines should, we hope,

make them amenable to such development.
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Appendix A: Proof of Proposition 1

Proposition 1: Let Ω ⊆ R
m be a domain and b : Ω → R

h be analytic at the point x ∈ Ω. Let bn

denote the nth-order Taylor series expansion of b about the point x and let D ⊆ Ω be the domain

of convergence of the Taylor series expansion. Then for any given K ⊆ D compact and ε ∈ R
+,

there exists an integer N such that |bn(x) − b(x)| < ε uniformly for all x ∈ K and all n ≥ N .

See Krantz (2001) for the definition of domain of convergence of a power series in the multivariable

context. Note that the requirement that b be defined on an open connected set Ω is not in conflict

with our assumption that the auxiliary scaling parameter σ ∈ [0, 1], since it is trivial to extend

the definition of the family of auxiliary equations F to the case σ > 1 and even to σ < 0 (where

the latter case performs a reflection as well as a scaling of the shocks ε).

Proposition 1 is a trivial application of the results in Krantz (2001), or those in Ahlfors

(1979) for the univariate case. To prove Proposition 1, we will make use of the following lemma:

Lemma 1: The family of functions {bn} is equicontinuous on K. That is, given ε ∈ R
+, there

exists a δ ∈ R
+ such that |bn(x1) − bn(x2)| < ε for all n and all x1, x2 ∈ K with |x1 − x2| < δ.

Proof of Lemma 1: The analyticity of b implies that the partial derivatives ∂bn/∂xi → ∂b/∂xi

on D (see, e.g., Krantz (2001)), where xi denotes the ith component of x. Moreover, ∂b/∂xi and

each ∂bn/∂xi are continuous, hence bounded on K. It follows that the derivatives of the {bn} are

uniformly bounded on K; that is, there exists an M ∈ R such that |∂bn/∂xi(x)| < M for all n,

all i, and all x ∈ K.

Then |bn(x1) − bn(x2)| < M |x1 − x2| for all n and all x1, x2 ∈ K. Choosing δ < ε/M

completes the proof.

Proof of Proposition 1: By equicontinuity of the {bn} and uniform continuity of b on K, we

may choose δ > 0 such that |x1 −x2| < δ implies |b(x1)− b(x2)| < ε/3 and |bn(x1)− bn(x2)| < ε/3

for all n and all x1, x2 ∈ K.

For every x ∈ K, let B(x, δ) denote the δ-ball {y ∈ D : |y−x| < δ}. The set of δ-balls B(x, δ),

x ∈ K, form an open cover of K; choose a finite sub-cover given by B(xi, δ), i = 1, . . . , M . For

each i = 1, . . . , M , there exists an integer Ni such that |bn(xi) − b(xi)| < ε/3 for all n ≥ Ni.

Define N = max{Ni}.
Now, consider x ∈ K. The point x lies in B(xi, δ) for some i, call it i0. Then, for n ≥ N , we

have |bn(x) − b(x)| ≤ |bn(x) − bn(xi0)| + |bn(xi0) − b(xi0)| + |b(xi0) − b(x)| < ε.
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Appendix B: PerturbationAIM Source Code

Print["This is Perturbation AIM Simple Version 2.4ets"] ;
(* *)
(* Credits: original algorithm designed by Gary Anderson, 2002-3; *)
(* corrected, optimized, and recoded by Eric Swanson, 2004. *)
(* Code is currently maintained by Eric Swanson, see *)
(* http://www.ericswanson.pro for most recent version and for *)
(* background, instructions, capabilities, examples, and tips. *)
(* This code will only work with Mathematica version 5. While it is not *)
(* too hard to modify the code to work in earlier versions of *)
(* Mathematica, those earlier versions are *much* slower at solving *)
(* linear systems of equations, and a few of the function calls are also *)
(* a bit more awkward. *)
(* This is the "simple" version of the code. A more complicated but *)
(* faster and more numerically stable version of the code is available *)
(* for download from the web site above. This "simple" version should *)
(* be completely adequate for most purposes, however, and will be much *)
(* easier for the user to understand and even tailor to his/her *)
(* individual needs. *)
(* *)

SetOptions["stdout",PageWidth->79] ; (* adjust this as you like *)

(* Load two standard Mathematica packages: *)

<<DiscreteMath‘Combinatorica‘ (* we’ll use the Compositions function *)
<<LinearAlgebra‘MatrixManipulation‘ (* we’ll use the BlockMatrix function *)

(* The AIMZeroTol parameter should be thought of as an "economic zero." *)
(* In other words, AIMZeroTol should be set to the smallest possible *)
(* value that a coefficient in the model (either in inputs or outputs) *)
(* could take on and still have economic meaning (as opposed to being *)
(* simply an artifact of finite-precision machine arithmetic). *)
(* The default value of AIMZeroTol is 10^-10, but you can change it and *)
(* in fact should play around with it for any given model to test the *)
(* numerical stability of the solution to the model. Note that when *)
(* working with arbitrary-precision numbers in Mathematica, you have *)
(* more freedom to set this parameter to smaller values, but you should *)
(* still think of it as being an "economic zero" rather than a "machine *)
(* numerical zero" (the latter is left to the internals of Mathematica *)
(* to handle appropriately). Thus, values like 10^-50 are probably *)
(* unnecessarily small and will only require you to input and compute *)
(* more digits of numerical precision than is really worthwhile. *)

AIMZeroTol=10^-10 ;

(* Useful utilities that we will repeatedly call. The syntax *)
(* FunctionName[vars]:= FunctionName[vars] = ... *)
(* tells Mathematica to remember the answer, so that it does not have *)
(* to be recomputed every time the function is called. *)

AIMGenericArgs[eqns ]:= AIMGenericArgs[eqns] = Table[Unique["arg"],{AIMNArgs[eqns]}] ;

AIMLagVars[eqns ]:= AIMLagVars[eqns] =
Flatten[Map[Table[#[t+i],{i,Min[Cases[eqns,#[t+j .]->j,Infinity]],-1}]&, AIMVarNames[eqns]]] ;

AIMMaxLag[eqns ]:= AIMMaxLag[eqns] = -Min[Cases[eqns,x Symbol[t+i .]->i,Infinity]] ;

AIMMaxLead[eqns ]:= AIMMaxLead[eqns] = Max[Cases[eqns,x Symbol[t+i .]->i,Infinity]] ;

AIMNArgs[eqns ]:= AIMNArgs[eqns] = Length[AIMStateVars[eqns]] ;

AIMNEqns[eqns ]:= AIMNEqns[eqns] = Length[Flatten[{eqns}]] ;

AIMNVars[eqns ]:= AIMNVars[eqns] = Length[AIMVarNames[eqns]] ;

AIMShocks[eqns ]:= AIMShocks[eqns] = Union[Cases[eqns,eps[x ][t],Infinity]] ;

AIMSSSubs={Sigma->0, eps[ ][ ]->0, x [t+ .]:>Symbol[SymbolName[x]<>"AIMSS"]}



25

AIMSSVars[eqns ]:= AIMSSVars[eqns] = Map[Symbol[SymbolName[#]<>"AIMSS"]&, AIMVarNames[eqns]] ;

AIMStateVars[eqns ]:= AIMStateVars[eqns] = Join[AIMLagVars[eqns], AIMShocks[eqns], {Sigma}] ;

AIMVarNames[eqns ]:= AIMVarNames[eqns] = Union[Cases[eqns,x Symbol[t+i .]->x,Infinity]] ;

(* Calculate the steady state *)

AIMSS[eqns , ,opts Rule]:= AIMSS[eqns,AIMZeroTol] =
Module[{ssguess,precision,sseqns,symbols,ss},
ssguess = AIMSSGuess /.{opts} /.AIMSSGuess->Table[0,{AIMNVars[eqns]}] ;
precision = AIMPrecision /.{opts} /.AIMPrecision->MachinePrecision ;
sseqns = Thread[(eqns /.Equal->Subtract /.AIMSSSubs)==0] ;
AIMModelDiagnostics[eqns] ;
Print["Finding steady state, AIMSSGuess->",InputForm[ssguess]] ;
symbols = Complement[Union[Cases[sseqns, Symbol,Infinity]], Join[AIMSSVars[eqns],{E}]] ;
If[Length[symbols]>0,Print["Warning: found symbols ",symbols," in equations"]];
ss = Chop[FindRoot[sseqns, Transpose[{AIMSSVars[eqns],ssguess}],
MaxIterations->1000, WorkingPrecision->precision], AIMZeroTol] ;
If[Head[ss]===FindRoot, $Failed, ss]
] ;

(* Front end that does error-checking and formats the output *)

AIMSeries[eqns ,deg Integer]:=
Module[{soln,const,argsubs},
If[AIMSS[eqns,AIMZeroTol] === $Failed || (soln=AIMSoln[eqns,deg,AIMZeroTol]) === $Failed, $Failed,
Print["Formatting output, time is ", Date[]] ;
const = AIMSSVars[eqns] /.AIMSS[eqns,AIMZeroTol] ;
argsubs = Thread[AIMGenericArgs[eqns]->AIMStateVars[eqns]] ;
Thread[Through[AIMVarNames[eqns][t]] == const + (soln /.argsubs)]
]] ;

(* Front end for Linear AIM *)

AIMSoln[eqns ,1,zerotol ]:= AIMSoln[eqns,1,zerotol] =
Module[{eqnseq0,allvars,hmat,epsmat,soln,cofb,s0inv,alllagvars},
eqnseq0 = Flatten[{eqns}] /.Equal->Subtract ;
allvars = Flatten[Map[Through[AIMVarNames[eqns] [t+#]]&,
Range[-Max[AIMMaxLag[eqns],1], AIMMaxLead[eqns]]]] ;
hmat = Outer[D,eqnseq0,allvars] /.AIMSSSubs /.AIMSS[eqns,zerotol] ;
epsmat = Outer[D,eqnseq0,AIMShocks[eqns]] /.AIMSSSubs /.AIMSS[eqns,zerotol] ;
If[(soln=AIMLinearSoln[hmat,AIMMaxLead[eqns]]) === $Failed, $Failed,
{cofb,s0inv} = soln ;
alllagvars = allvars[[Range[Max[AIMMaxLag[eqns],1]*AIMNVars[eqns]]]] ;
Chop[cofb .alllagvars - s0inv .epsmat .AIMShocks[eqns] /.
Thread[AIMStateVars[eqns]->AIMGenericArgs[eqns]], zerotol]
]] ;

(* This is the heart of the program. Derivatives are evaluated at steady *)
(* state, the expectation is taken, and coefficients are solved using *)
(* the method of undetermined coefficients. *)
(* The following two tricks are not strictly necessary and bloat the code *)
(* a bit, but increase speed and, more importantly, seem to reduce the *)
(* likelihood of numerical inaccuracies: *)
(* 1. Solve a certainty-equivalent version of the problem first (Sigma=0). *)
(* 2. Impose constraint that all terms linear in Sigma (even if nonlinear *)
(* in other variables) have zero coefficients, which is fairly easy to *)
(* show mathematically. *)

AIMSoln[eqns ,deg Integer,zerotol ]:= AIMSoln[eqns,deg,zerotol] =
Module[{args,drvindxs,cedrvindxs,stdrvindxs,cecoeffs,stcoeffs,nextceTerms,
nextstTerms,bsubs,ssderivs,cesystem,cesoln,dum,dropce,stsystem,stsoln},
args = AIMGenericArgs[eqns] ;
drvindxs = Compositions[deg,AIMNArgs[eqns]] ;
cedrvindxs = Select[drvindxs, #[[-1]]==0 &] ;
stdrvindxs = Select[drvindxs, #[[-1]] >1 &] ;
cecoeffs = Table[Unique[],{AIMNVars[eqns]},{Length[cedrvindxs]}] ;
stcoeffs = Table[Unique[],{AIMNVars[eqns]},{Length[stdrvindxs]}] ;
nextceTerms = cecoeffs .Map[Apply[Times,Power[args,#]]&, cedrvindxs] ;



26

nextstTerms = stcoeffs .Map[Apply[Times,Power[args,#]]&, stdrvindxs] ;
bsubs = Thread[Map[bFunc,AIMVarNames[eqns]] -> Map[Apply[Function,
{args,#}]&, AIMSoln[eqns,deg-1,zerotol] + nextceTerms + nextstTerms]] ;
Print["Differentiating eqns, time is ", Date[]] ;
ssderivs = Chop[AIMDerivatives[eqns,deg][0] /.bsubs, zerotol] ;
Print["Undetermined coefficients to solve: ", AIMNVars[eqns] *(Length[cedrvindxs]+Length[stdrvindxs])] ;
Print["Calculating CE solution, time is ", Date[]] ;
cesoln = If[AIMNArgs[eqns]===1, PrependTo[args,dum]; {},
cesystem = Flatten[Chop[Take[CoefficientArrays[ssderivs /.args[[-1]]->0, Drop[args,-1]],-1],zerotol]];
Chop[Flatten[NSolve[cesystem, Flatten[cecoeffs]]], zerotol]] ;

Print["Calculating Stoch solution, time is ", Date[]] ;
dropce = Flatten[Drop[CoefficientArrays[ssderivs, args[[-1]]], 2]] ;
stsystem = Chop[Expand[Flatten[CoefficientArrays[dropce, Drop[args,-1]]]] /.
eps[x ][ ]^n ->mom[x,n] /.eps[ ][ ]->0 /.cesoln, zerotol] ;
stsoln = Chop[Flatten[NSolve[stsystem, Flatten[stcoeffs]]], zerotol] ;
AIMSoln[eqns,deg-1,zerotol] + (nextceTerms /.cesoln) + (nextstTerms /.stsoln)
] ;

(* That’s essentially it. The following routine calculates derivatives *)
(* of the equations composed with the (unknown) solution functions b. *)
(* The trick of using univariate differentiation to calculate all the *)
(* multivariate derivatives of Fob speeds up the code considerably; in *)
(* particular, variations on the obvious Outer[D,eqns,vars] are *much* *)
(* slower. *)

AIMDerivatives[eqns ,0]:=
Function[tAIM, Evaluate[AIMSubBFuncsIntoEqns[eqns] /.
Thread[AIMStateVars[eqns]->tAIM*AIMGenericArgs[eqns]]]] ;

AIMDerivatives[eqns ,deg Integer]:= AIMDerivatives[eqns,deg] =
AIMDerivatives[eqns,deg-1]’ ;

AIMSubBFuncsIntoEqns[eqns ]:= AIMSubBFuncsIntoEqns[eqns] =
With[{deveqns = eqns /.x Symbol[t+i .]:>Symbol[SymbolName[x]<>"AIMSS"] +x[t+i]
/.Equal->Subtract /.AIMSS[eqns,AIMZeroTol]},
AIMSubOutLeadVars[eqns,deveqns,AIMMaxLead[eqns]]
] ;

AIMSubOutLeadVars[origeqns ,eqnssofar ,0]:=
eqnssofar /.x Symbol[t]->Apply[bFunc[x],AIMStateVars[origeqns]] /.eps[x ][t+i ]->Sigma*eps[x][t+i]

AIMSubOutLeadVars[origeqns ,eqnssofar ,lead Integer]:=
With[{fwdsv=AIMStateVars[origeqns] /.t->t+lead},
With[{reducedeqns=eqnssofar /.x Symbol[t+lead]->Apply[bFunc[x],fwdsv]},
AIMSubOutLeadVars[origeqns, reducedeqns, lead-1]
]] ; (* note how the use of recursion makes handling multiple leads simple *)

(* Print out model diagnostics (obviously) *)

AIMModelDiagnostics[eqns ] := (
Print["\nModel Diagnostics:"] ;
Print["Number of equations: ",AIMNEqns[eqns]] ;
Print["Number of variables: ",AIMNVars[eqns]] ;
Print["Number of shocks: ",Length[AIMShocks[eqns]]] ;
Print["Maximum lag: ",AIMMaxLag[eqns]] ;
Print["Maximum lead: ",AIMMaxLead[eqns]] ;
Print["Lagged variables: ",AIMLagVars[eqns]] ;
Print["Shocks: ",AIMShocks[eqns]] ;
Print[" together with Sigma, these yield ",AIMNArgs[eqns]," state variables\n"];
Print["List of all variables: ",AIMVarNames[eqns]] ;
Print["Treating steady state and final coeff values < ", N[AIMZeroTol], " as zero (AIMZeroTol)\n"] ;
) ;

(* Everything that follows is Linear AIM. See Anderson and Moore (1985) *)
(* for a description of the algorithm. There are ways to improve the *)
(* speed and numerical stability of this implementation for larger *)
(* models, at the cost of complicating the code. In particular, one can: *)
(* 1. Implement "exact" ShiftRights to reduce the number of calls to the *)
(* singular value decomposition. *)
(* 2. Use a Schur decomposition instead of eigenvectors to compute the *)
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(* left invariant subspace corresponding to the large eigenvalues of *)
(* AR1Form[shiftedh]. (This requires a user-written routine, because *)
(* Mathematica’s Schur implementation does not sort eigenvalues into *)
(* any order.) *)
(* These improvements are implemented in the more advanced version of the *)
(* code. *)

AIMLinearSoln[hmat ,nleads Integer] :=
Module[{hrows,hcols,shiftedh,qmat,ar1eigvals,stabconds,bmat,smat},
{hrows,hcols} = Dimensions[hmat] ;
{shiftedh,qmat} = NestWhile[AIMShiftRight, {hmat, {}},
MatrixRank[AIMLastBlock[#[[1]]]] <hrows &, 1, nleads*hrows] ;
Print["Lead matrix is full rank; computing stability conditions"] ;
ar1eigvals = Eigenvalues[AIMAR1Form[shiftedh]] ;
stabconds = Chop[Eigenvectors[Transpose[AIMAR1Form[shiftedh]],
Length[Cases[Abs[ar1eigvals],i /;i>1+AIMZeroTol]]], AIMZeroTol];
Print["Model has ",Length[stabconds], " unstable roots"] ;
qmat = Join[qmat,stabconds] ;
If[Length[qmat]<hrows*nleads, Print["Multiple Linear Solutions"]; $Failed,
If[Length[qmat]>hrows*nleads || MatrixRank[AIMLastBlock[qmat]]<hrows*nleads,

Print["No Linear Solutions"]; $Failed,
bmat = LinearSolve[AIMLastBlock[qmat],-AIMFirstBlocks[qmat]] ;
smat = hmat .BlockMatrix[{{IdentityMatrix[hcols-hrows*nleads]},
{ZeroMatrix[hrows*nleads,hrows],bmat}}] ;
Chop[{Take[bmat,hrows], Inverse[AIMLastBlock[smat]]}, AIMZeroTol]
]]] ;

AIMLinearSoln[hmat ,0] :=
With[{cofb=LinearSolve[AIMLastBlock[hmat],-AIMFirstBlocks[hmat]]},
Chop[{cofb, Inverse[AIMLastBlock[hmat]]}, AIMZeroTol]
] ;

AIMShiftRight[{hmatold ,qmatsofar }]:=
Module[{hrows=Length[hmatold],svdu,svdsig,hmatnew,zerorows,firstblocks},
{svdu,svdsig} = Take[SingularValueDecomposition[AIMLastBlock[hmatold]],2] ;
hmatnew = Transpose[svdu] .hmatold ;
zerorows = Map[List,Range[MatrixRank[svdsig]+1,hrows]] ;
Print["Shifting ",Length[zerorows]," linear combinations of equations forward"];
firstblocks = AIMFirstBlocks[hmatnew] ;
Chop[{ReplacePart[hmatnew,BlockMatrix[{{ZeroMatrix[hrows,hrows],firstblocks}}],zerorows,zerorows],
Join[qmatsofar,firstblocks[[Flatten[zerorows]]]]}, AIMZeroTol]

] ;

AIMAR1Form[shiftedh ]:= AIMAR1Form[shiftedh] =
With[{hrows=Length[shiftedh],hcols=Length[shiftedh[[1]]]},
Chop[BlockMatrix[{{ZeroMatrix[hcols-2*hrows,hrows], IdentityMatrix[hcols-2*hrows]},
{LinearSolve[AIMLastBlock[shiftedh],-AIMFirstBlocks[shiftedh]]}}],
AIMZeroTol]
] ;

AIMLastBlock[matrix ]:=
With[{dims=Dimensions[matrix]},
SubMatrix[matrix,{1,dims[[2]]-dims[[1]]+1},{dims[[1]],dims[[1]]}]
] ;

AIMFirstBlocks[matrix ]:=
With[{dims=Dimensions[matrix]},
SubMatrix[matrix,{1,1},{dims[[1]],dims[[2]]-dims[[1]]}]
] ;
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Appendix C: Detailed Solution to the Stochastic Growth Model

The third-order solution to equations (6)–(12) in the text is provided below. “Inv” is used instead
of “I” (to avoid confusion with the imaginary number i) and “eps[a]” instead of ε. The variables
A, C, K, and Y are transformed into natural logarithms before the approximation is computed.
Parameter values are α = .3, β = .99, γ = 1.1, δ = .025, and ρ = .8. Variables on the right-hand
side of each equation denote deviations from steady state (A, C, K, and Y denote log-deviations
from steady state). Variables on the left-hand side of each equation are in levels (log-levels for A,
C, K, and Y ). The term mom[a,n] refers to the (known) nth moment of ε. The output below
is in standard PerturbationAIM output format. Coefficients are accurate to at least 42 decimal
places (see table 1), but have only been reported to 6 significant digits to save space.

A[t] == 0.800000 A[-1 + t] + 1.00000 eps[a][t],

C[t] == 0.679145 + 0.128223 A[-1 + t] + 0.0242775 A[-1 + t]2 + 0.00323546 A[-1 + t]3 +
0.538516 K[-1 + t] - 0.0563800 A[-1 + t] K[-1 + t] - 0.00802382 A[-1 + t]2 K[-1 + t] +
0.0252054 K[-1 + t]2 + 0.00902121 A[-1 + t] K[-1 + t]2 + 0.000147704 K[-1 + t]3 +
0.263256 Sigma2 mom[a,2] + 0.0298985 Sigma2 A[-1 + t] mom[a,2] +
0.0997791 Sigma2 K[-1 + t] mom[a,2] - 0.0230988 Sigma3 mom[a,3] + 0.160279 eps[a][t] +
0.0606937 A[-1 + t] eps[a][t] + 0.0121330 A[-1 + t]2 eps[a][t] -
0.0704750 K[-1 + t] eps[a][t] - 0.0200595 A[-1 + t] K[-1 + t] eps[a][t] +
0.0112765 K[-1 + t]2 eps[a][t] + 0.0373731 Sigma2 mom[a,2] eps[a][t] +
0.0379335 eps[a][t]2 + 0.0151662 A[-1 + t] eps[a][t]2 - 0.0125372 K[-1 + t] eps[a][t]2 +
0.00631925 eps[a][t]3,

Inv[t] == 0.535902 + 1.75359 A[-1 + t] + 0.738497 A[-1 + t]2 + 0.200811 A[-1 + t]3 -
0.309629 K[-1 + t] + 0.576954 A[-1 + t] K[-1 + t] + 0.236344 A[-1 + t]2 K[-1 + t] -
0.222813 K[-1 + t]2 + 0.0893370 A[-1 + t] K[-1 + t]2 - 0.0671071 K[-1 + t]3 -
0.519191 Sigma2 mom[a,2] - 0.125538 Sigma2 A[-1 + t] mom[a,2] -
0.476376 Sigma2 K[-1 + t] mom[a,2] + 0.0455553 Sigma3 mom[a,3] + 2.19199 eps[a][t] +
1.84624 A[-1 + t] eps[a][t] + 0.753040 A[-1 + t]2 eps[a][t] +
0.721193 K[-1 + t] eps[a][t] + 0.590860 A[-1 + t] K[-1 + t] eps[a][t] +
0.111671 K[-1 + t]2 eps[a][t] - 0.156922 Sigma2 mom[a,2] eps[a][t] +
1.15390 eps[a][t]2 + 0.941300 A[-1 + t] eps[a][t]2 + 0.369288 K[-1 + t] eps[a][t]2 +
0.392208 eps[a][t]3,

K[t] == 3.06508 + 0.0818058 A[-1 + t] + 0.0311051 A[-1 + t]2 + 0.00673207 A[-1 + t]3 +
0.960556 K[-1 + t] - 0.0516639 A[-1 + t] K[-1 + t] - 0.0178403 A[-1 + t]2 K[-1 + t] +
0.0157721 K[-1 + t]2 + 0.0147636 A[-1 + t] K[-1 + t]2 - 0.00349273 K[-1 + t]3 -
0.0242205 Sigma2 mom[a,2] - 0.00387500 Sigma2 A[-1 + t] mom[a,2] +
0.00104197 Sigma2 K[-1 + t] mom[a,2] + 0.00212517 Sigma3 mom[a,3] + 0.102257 eps[a][t] +
0.0777626 A[-1 + t] eps[a][t] + 0.0252453 A[-1 + t]2 eps[a][t] -
0.0645798 K[-1 + t] eps[a][t] - 0.0446008 A[-1 + t] K[-1 + t] eps[a][t] +
0.0184545 K[-1 + t]2 eps[a][t] - 0.00484375 Sigma2 mom[a,2] eps[a][t] +
0.0486017 eps[a][t]2 + 0.0315566 A[-1 + t] eps[a][t]2 - 0.0278755 K[-1 + t] eps[a][t]2 +
0.0131486 eps[a][t]3,

r[t] == 0.0101010 + 0.0280808 A[-1 + t] + 0.0112323 A[-1 + t]2 + 0.00299529 A[-1 + t]3 -
0.0245707 K[-1 + t] - 0.0196566 A[-1 + t] K[-1 + t] - 0.00786263 A[-1 + t]2 K[-1 + t] +
0.00859975 K[-1 + t]2 + 0.00687980 A[-1 + t] K[-1 + t]2 - 0.00200661 K[-1 + t]3 +
0.0351010 eps[a][t] + 0.0280808 A[-1 + t] eps[a][t] + 0.0112323 A[-1 + t]2 eps[a][t] -
0.0245707 K[-1 + t] eps[a][t] - 0.0196566 A[-1 + t] K[-1 + t] eps[a][t] +
0.00859975 K[-1 + t]2 eps[a][t] + 0.0175505 eps[a][t]2 + 0.0140404 A[-1 + t] eps[a][t]2 -
0.0122854 K[-1 + t] eps[a][t]2 + 0.00585017 eps[a][t]3,

Welf[t] == -934.340 + 4.57011 A[-1 + t] + 0.752082 A[-1 + t]2 + 0.0961280 A[-1 + t]3 +
10.2581 K[-1 + t] - 1.16168 A[-1 + t] K[-1 + t] - 0.0980612 A[-1 + t]2 K[-1 + t] +
1.96600 K[-1 + t]2 - 0.000889657 A[-1 + t] K[-1 + t]2 + 0.184489 K[-1 + t]3 +
116.338 Sigma2 mom[a,2] + 0.499460 Sigma2 A[-1 + t] mom[a,2] -
2.97055 Sigma2 K[-1 + t] mom[a,2] + 18.5872 Sigma3 mom[a,3] + 5.71263 eps[a][t] +
1.88020 A[-1 + t] eps[a][t] + 0.360480 A[-1 + t]2 eps[a][t] -
1.45210 K[-1 + t] eps[a][t] - 0.245153 A[-1 + t] K[-1 + t] eps[a][t] -
0.00111207 K[-1 + t]2 eps[a][t] + 0.624325 Sigma2 mom[a,2] eps[a][t] +
1.17513 eps[a][t]2 + 0.450600 A[-1 + t] eps[a][t]2 - 0.153221 K[-1 + t] eps[a][t]2 +
0.187750 eps[a][t]3,

Y[t] == 0.919523 + 0.800000 A[-1 + t] + 0.300000 K[-1 + t] + 1.000000 eps[a][t]
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