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Abstract

This paper employs a standard asset pricing model with power utility to derive
volatility measures for the price-dividend ratio in a setting that allows for varying degrees
of investor information about future dividends. When comparing the model predictions
to the data, we �nd evidence of excess volatility in long-run U.S. stock price data for
relative risk aversion coe¢ cients below 5. For higher degrees of risk aversion, the evidence
for excess volatility is less clear. We also examine the degree to which movements
in the model price-dividend ratio can be accounted for by movements in either: (1)
future dividend growth rates, (2) future risk-free rates, or (3) future excess returns
on equity. We show that the theoretical variance decomposition depends crucially on
the risk aversion coe¢ cient, but di¤ers in important ways from the data. Speci�cally,
even though the model can account for the observed volatility of the price-dividend
ratio, it does so by generating an implausibly volatile risk-free rate combined with an
insu¢ ciently forecastable excess return on equity.
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1 Introduction

The variance-bounds tests of stock price volatility reported in the mid-1970s and later raised
doubts about whether stock prices could be accurately represented as the present value of
expected future dividends with a constant discount factor. Volatility in the data appeared to
vastly exceed the levels implied by the model. A number of econometric problems with the
variance-bounds tests were unearthed, but it turned out that correcting these problems did
not eliminate the appearance of excess volatility.1

The debate ended� somewhat abruptly� in the 1990s when economists using analytical
methods unrelated to those employed in the variance-bounds tests began reaching conclusions
that reversed those of the earlier e¢ cient-markets literature. Campbell and Shiller (1988),
for example, employed a log-linear decomposition of the equity return identity that turned
out to be extremely fruitful. Using this decomposition, they showed that observed stock
price volatility can be attributed mainly to the fact that future returns contain a predictable
component, contrary to the implications of the constant discount factor model employed in
the variance-bounds literature. Predictable future returns imply stochastic discount rates,
indicative of risk aversion, whereas the constant discount rate model re�ected the assumption
of risk neutrality. Hence, a �nding of apparent excess volatility could be induced by the
misspeci�cation of constant discount rates.
Early studies by Grossman and Shiller (1981) and LeRoy and LaCivita (1981) recognized

that risk aversion could increase the volatility of stock prices relative to the risk-neutral case.
Their arguments, however, were incomplete. Establishing that risk aversion may a¤ect stock
price volatility does not, by itself, have implications for the presence or absence of excess
volatility. This is so because risk aversion also a¤ects the upper-bound volatility measure
computed from �perfect foresight�(or �ex post rational�) stock prices. Consequently, while
high risk aversion may imply high stock price volatility, it may or may not imply excess
volatility. It remained unclear whether the existence of risk aversion could alter the proposition
that the variance computed from perfect foresight prices represents an upper bound for the
variance computed from actual prices.
This paper, like that of Campbell and Shiller (1988), makes use of log-linear methods to

examine the connection between risk aversion and stock price volatility. However, rather than
log-linearizing the return identity, we compute a log-linear approximation of the representative
investor�s �rst-order condition. This approximation incorporates a model speci�cation for the
stochastic discount factor and a process for consumption/dividends. Given the model�s vari-
ance predictions, we are then able to map our results into the Campbell-Shiller decomposition
framework, as discussed further below.

1For summaries of this literature, see West (1988a), Gilles and LeRoy (1991), Shiller (2003), and LeRoy
(2010).
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A fact that is often glossed over in discussions of stock market e¢ ciency is that the propo-
sition being tested is a compound null hypothesis. Stock prices are taken to equal the present
value of future dividends with the univariate (i.e., marginal) process for dividends taken as
given, but the null hypothesis is silent about how much information investors condition on
when forming their expectations of future dividends. LeRoy and Porter (1981) thought of div-
idends as being generated jointly with other variables by a multivariate ARMA process, which
leaves open the possibility that other variables (current earnings, for example) could serve as
predictors of future dividends. Existence of such auxiliary information variables has impli-
cations for volatility. These implications are ignored in many asset pricing models, but they
play a major role in the variance-bounds tests. Interestingly, recent research on business cycle
models has focused on �news shocks�as an important source of business cycle �uctuations.
In these models, news shocks provide agents with information about future fundamentals, i.e.,
technology innovations.
In a simple setting with risk neutral investors and stationary dividends, it is straightfor-

ward to show that an increase in the amount of investors�auxiliary information about future
dividend innovations will raise the unconditional variance of stock prices but lower the vari-
ance of excess payo¤s or price changes.2 The upper bound on unconditional price variance,
corresponding to a lower bound of zero on payo¤ variance, is reached when investors are as-
sumed to have perfect foresight about the entire future path of dividends. In contrast, the
upper bound on payo¤ variance is reached in the opposite case when investors have no aux-
iliary information about future dividend innovations, i.e., when investors only know current
and past dividends. Since the unconditional variance of excess payo¤s is nearly the same as
the conditional variance of prices, the variance bounds test is e¤ectively a joint test on the
unconditional and conditional variances implied by the present-value model.
The point is that a comparison of actual and perfect foresight stock prices, as is inherent

in the variance-bounds tests, forces the analyst to focus on the degree to which investors pos-
sess information over and above that contained in current and past dividends. The variance
bounds are generated by imposing extreme hypothetical speci�cations for investors�informa-
tion. Given the explicit focus on information assumptions, variance-bounds tests remain a
useful analytical tool for assessing the success or failure of the present-value model. Of course,
we do not suggest restricting attention to these methods.
When economists talk about stock price volatility it is not clear whether unconditional or

conditional variance best corresponds to what they have in mind.3 The frequent use of terms
like �choppiness� or �smoothness� in describing stock prices suggests that the conditional
variance is the appropriate concept, since these terms are taken to refer to short-term price

2This basic result is established in LeRoy and Porter (1981), West (1988b), and LeRoy (1996).
3LeRoy (1984) and Kleidon (1986) use numerical examples to illustrate the idea that di¤erent conclusions

may be drawn from considering conditional variances rather than unconditional variances.
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volatility. The fact just noted that the unconditional and conditional variances are a¤ected
in opposite directions by variables measuring the extent of investors�auxiliary information
implies that this lack of clarity is an important problem. We do not take the position here
that either of these variance measures is superior to the other; instead we will determine the
implications of the present-value model for both.
This paper compares volatility measures computed from actual data to model-predicted

volatility measures in a setting that allows for risk aversion and varying degrees of investor
information about future dividends which are assumed to grow over time. Using variance
bounds tests based on the price-dividend ratio (a stationary variable), we �nd evidence of
excess volatility in long-run U.S. stock price data for risk aversion coe¢ cients below about 5.
For higher degrees of risk aversion, we �nd that volatility is not excessive if we assume that
investors can accurately predict dividends into the distant future. To the extent that this
assumption is viewed as implausible, it follows that price volatility is excessive in that case as
well.
In settings with exponentially-growing dividends, return variance is the analog to the

concept of excess payo¤ variance or price-change variance examined by LeRoy and Porter
(1981), West (1988b), and LeRoy (1996). We show by counterexample that when investors
are risk averse, the return variance analogs to the earlier LeRoy-Porter-West results may not
apply; equity return variance is not necessarily a monotone decreasing function of investors�
information. Therefore, the extreme hypothetical speci�cations of investors�information do
not necessarily provide bounds on equity return variance. We demonstrate that, despite the
absence of theoretical variance bounds for equity returns, the present-value model can match
the observed volatility of log stock returns in long-run U.S. data for risk-aversion coe¢ cients
around 4, provided that investors possess some auxiliary information about future dividend
innovations.
Last, we derive a theoretical variance decomposition for the model price-dividend ratio

under di¤erent information sets. Much of the previous work in this area is empirical. Speci�-
cally, we examine the degree to which movements in the price-dividend ratio can be accounted
for by movements in either: (1) future dividend growth rates, (2) future risk-free rates, or
(3) future excess returns on equity. In this way, we are able to map our theoretical results to
the empirical �ndings of Campbell and Shiller (1988), Campbell (1991), and Cochrane (1992,
2005, 2008). We believe we are the �rst to show that the theoretical variance decomposition in
this class of models depends crucially (and almost exclusively) on the risk aversion coe¢ cient.
As risk aversion increases, the representative investor�s stochastic discount factor becomes
more volatile, which in turns raises the variance contribution from future risk-free rates and
lowers the contribution from future dividend growth rates.
The variance contribution from future excess returns in the power utility model turns out

to be either zero, or close to zero, depending on the information set. This is so because
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future excess returns in the model are generally not predictable using the current price-
dividend ratio. In contrast, the empirical decomposition shows that the bulk of the variance
in the observed price-dividend ratio is attributable to future excess returns on equity, in
stark contrast with the model�s predictions. Recent contributions to the theoretical literature
that go beyond the power utility model have achieved more success in matching the empirical
variance decomposition by employing time-varying risk aversion and/or time-varying volatility
of consumption growth.4 However, these models must still rely on the assumption very high
risk aversion. Overall, we conclude that it remains di¢ cult to justify the observed volatility
of stock prices using moderate levels of risk aversion.
The remainder of the paper is organized as follows. Section 2 reviews theoretical variance

bounds under the assumption of risk neutrality and staitionary dividends. Sections 3, 4,
and 5 expand the analysis to consider risk aversion in the context of a standard asset pricing
model with power utility and exponentially-growing dividends. Section 6 maps our theoretical
results to the empirical framework used by Campbell and Shiller (1988) and others. Section
7 concludes. An appendix provides the details for all derivations.

2 Variance Bounds with Risk Neutrality and Stationary
Dividends

The section brie�y reviews the variance bounds that obtain in a simple setting where investors
are risk neutral and dividends are generated by a stationary linear process. The absence of
arbitrage implies that the equilibrium stock price pt obeys pt = E(p�t jIt); where It represents
investors�information about future dividend realizations and p�t is the perfect foresight price.
As originally set forth in Shiller (1981) and LeRoy and Porter (1981), the fact that pt equals
the conditional expectation of p�t implies that the variance of p

�
t is an upper bound for the

variance of pt: As LeRoy and Porter (1981) showed, we can also establish a lower bound on
the variance of pt. De�ne Ht = fdt; dt�1; dt�2; ...g as the information set consisting only of
current and past dividends, and de�ne bpt = E(p�t jHt); where bpt is the appropriate stock price
for an econometrician who has no information useful in forecasting p�t other than current and
past dividends.5

Suppose that investors�information It contains at least Ht; so that Ht � It; but investors
may also have auxiliary information over and above current and past dividends that is useful
in predicting p�t : For example, current earnings or forecasts of future earnings are likely to help

4The most notable examples are Campbell and Cochrane (1999) and Bansal and Yaron (2004).
5Throughout the paper, we adopt the notation of using stars ���to denote perfect foresight variables, hats

�b�to denote variables computed using information set Ht; overbars ���to denote variables computed using
information set Jt = Ht [ dt+1; and unmarked variables (such as pt) to denote variables computed using the
unspeci�ed information set It.
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predict future dividends even given current and past dividends. The simplest characterization
of this idea (to be employed below) de�nes Jt = Ht [ dt+1; so that investors can see dividends
without error one period ahead. Thus It is a generic characterization of information sets
that are at least as �ne as Ht; but coarser than perfect information about the future, and
Jt is a speci�c example of It that is intermediate between Ht and perfect information about
the future. The fact that Jt is a re�nement of Ht implies that V ar(bpt) is a lower bound for
V ar(pt), where pt � E(p�t jJt): Thus we have

V ar(bpt) � V ar(pt) � V ar(p�t ); (1)

where the upper and lower variance bounds can be calculated from a univariate model for
dividends. The theoretical variance bounds can thus be derived without explicitly specifying
the extent of investors�auxiliary information.
We de�ne the �excess payo¤�under information set It as

�t+1 � pt+1 + dt+1 � ��1pt; (2)

which represents next-period�s cash value from the stock investment minus the payo¤ from an
equal investment in the risk-free asset. Under the risk-neutral utility function

P1
t=0 �

tct; where
� 2 (0; 1) is the subjective time discount factor and ct is consumption, it is straightforward
to show that the gross risk-free rate equals ��1. From the investor�s �rst-order condition for
equity holdings, we have pt = �E f(pt+1 + dt+1) jItg ; which implies that the excess payo¤ (2)
is simply the one-period-ahead forecast error, which is iid over time under all information
speci�cations. Multiplying successive iterations of equation (2) by � i for i = 1; 2; 3; ::: and
then summing across the resulting equations yields

��t+1 + �
2�t+2 + �

3�t+3 + ::: = �pt + �dt+1 + �2dt+2 + �3dt+3 + :::| {z }
p�t

: (3)

Solving equation (3) for p�t and then taking the variance of both sides yields

V ar(p�t ) = V ar(pt) +
�2

1� �2
V ar(�t); (4)

where we have assumed that dividends are generated by a stationary linear process so that
the variances are constant. The perfect-foresight version of the �rst-order condition is p�t =
�
�
p�t+1 + dt+1

�
; which shows that the excess payo¤ under perfect foresight is zero for all t

such that V ar(��t ) = 0: Since V ar(p
�
t )� V ar(pt) � 0 from equation (1), the above expression

establishes that V ar(�t) � 0 = V ar(��t ):
Similarly, we de�ne the excess payo¤under information setHt as b�t+1 � bpt+1+dt+1���1bpt:

Following the same methodology as above, we obtain

V ar(p�t ) = V ar(bpt) + �2

1� �2
V ar(b�t): (5)
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Substituting for V ar(p�t ) from equation (4) into equation (5) and noting that V ar(pt) �
V ar(bpt) � 0 from equation (1) establishes that V ar(b�t) � V ar(�t): Thus, if investors are risk
neutral and dividends are generated by a stationary linear process, then we have the following
bounds on excess payo¤ variance previously derived in LeRoy (1996):

V ar(��t ) = 0 � V ar(�t) � V ar(b�t): (6)

In the above example, the more information agents have about future dividend innovations,
the higher is the variance of prices and lower is the variance of excess payo¤s. The maintained
lower bound on investors�information is represented by Ht: The payo¤ variance associated
with Ht represents an upper bound for the payo¤ variance associated with It:

3 Allowing for Risk Aversion and Growing Dividends

We now extend the variance bounds analysis to a more realistic environment with risk averse
investors and exponentially-growing dividends. Equity shares are priced as in the frictionless
pure exchange model of Lucas (1978). A representative investor can purchase shares to transfer
wealth from one period to another. Each share pays an exogenous stream of stochastic
dividends in perpetuity. The representative investor�s problem is to maximize

E

( 1X
t=0

� t
c1��t � 1
1� � jI0

)
; (7)

subject to the budget constraint

ct + ptst = (pt + dt) st�1; ct; st > 0; (8)

where ct is the investor�s consumption in period t; � is the coe¢ cient of relative risk aversion
and st is the number of shares held in period t: The �rst-order condition that governs the
investor�s share holdings is

pt = E

(
�

�
ct+1
ct

���
(pt+1 + dt+1) jIt

)
: (9)

The �rst-order condition can be iterated forward to substitute out pt+j for j = 1; 2; ::. Ap-
plying the law of iterated expectations and imposing a transversality condition that excludes
bubble solutions yields the following expression for the equilibrium stock price:

pt = E

( 1X
j=1

Mt; t+j dt+jjIt

)
; (10)
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where Mt;t+j � � j (ct+j=ct)�� is the stochastic discount factor. The perfect foresight price is
given by

p�t =
1X
j=1

Mt; t+j dt+j: (11)

Equity shares are assumed to exist in unit net supply. Market clearing therefore implies
ct = dt for all t:
We assume that the growth rate of dividends xt � log (dt=dt�1) is governed by the following

AR(1) process:

xt+1 = �xt + (1� �)�+ "t+1;
"t+j � N (0; �2") ; iid;
j�j < 1: (12)

In the special case of � = 0; the above speci�cation implies that the level of real dividends
follows a geometric random walk with drift, as in LeRoy and Parke (1992). The geometric
random walk model provides a reasonable representation of dividends in the data. However,
we do not want to restrict our results to the case where dividend growth rates are iid, so we
allow for serially correlated dividend growth (� 6= 0) :
The speci�cation (12) implies that the unconditional moments of dividend growth are

given by

E (xt) = �; (13)

V ar (xt) =
�2"

1� �2 ; (14)

Cov (xt+j; xt) = �
j V ar (xt) : (15)

4 Volatility of the Price-Dividend Ratio

Since dividends and equilibrium stock prices trend upward, variance measures conditional
on some initial date will increase with time. To avoid this time-varying volatility result, a
trend correction must be imposed. The solution adopted by Shiller (1981) was to assume
that dividends and prices are stationary around a time trend. In the presence of a unit root,
specifying reversion to a time trend leads to a downward-biased volatility estimate for the
variable in question. Moreover, the trend speci�cation employed by Shiller is not realistic for
some variables and sample periods; mean-reversion to a time trend induces negative autocor-
relation in growth rates, which con�icts with what we see in U.S. data for the growth rates
of real dividends, real stock prices, and post-World War II real per capita consumption. We
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note, however, that data on real per capita consumption over the period 1890 to 2008 does
exhibit weak negative autocorrelation in growth rates.6

LeRoy and Porter (1981) corrected for nonstationarity by reversing the e¤ect of earnings
retention on dividends and stock prices, but that procedure appeared to produce series that
were not stationary.7 Current practice, particularly when using a homothetic utility speci�-
cation like the function (7), is to correct for trend by working with intensive variables, such
as the price-dividend ratio or the rate of return, as these variables will be stationary in the
models of interest (see, for example, Cochrane 1992 and LeRoy and Parke 1992). This is the
procedure we follow here.
The price-dividend ratios implied by the information sets Ht and Jt are denoted by byt �bpt=dt and yt � pt=dt, respectively, while the perfect foresight price-dividend ratio is denoted

by y�t � p�t=dt: By substituting the equilibrium condition ct = dt into the �rst-order condition
(9), the �rst-order condition under the various information assumptions can be written as

byt = E f� exp [(1� �)xt+1] (byt+1 + 1) jHtg ; (16)

yt = E
�
� exp [(1� �)xt+1]

�
yt+1 + 1

�
jJt
�
; (17)

y�t = � exp [(1� �)xt+1]
�
y�t+1 + 1

�
: (18)

The fact that byt and y�t are ratios with the same denominator dt; together with the fact
that dt is measurable under all information speci�cations, immediately implies

V ar (byt) � V ar (yt) � V ar (y�t ) : (19)

Hence, the basic form of the variance bound derived in the earlier literature under risk neu-
trality, i.e., V ar (bpt) � V ar (pt) � V ar (p�t ) ; carries over to the case of risk aversion when
the price-dividend ratio (an intensive variable) is substituted for the stock price (an extensive
variable).

4.1 Variance under Information Set Ht

We next obtain an approximate analytical solution for the variance of byt under information
set Ht: This involves solving the �rst-order condition (16) subject to the dividend growth
process (12). To do so, it is convenient to de�ne the following nonlinear change of variables:

bzt � � exp [(1� �)xt] (byt + 1) ; (20)

6Otrok, Ravikumar, and Whiteman (2002) document the shifting autocorrelation properties of U.S. con-
sumption growth.

7West (1988a, p. 641) summarizes the various assumptions made in the literature regarding the stochastic
process for dividends and prices.
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where bzt represents a composite variable that depends on both the growth rate of dividends
and the price-dividend ratio. The �rst-order condition (16) becomes

byt = E(bzt+1jHt); (21)

implying that byt is simply the rational forecast of the composite variable bzt+1; conditioned on
Ht: Combining (20) and (21), the composite variable bzt is seen to be governed by the following
equilibrium condition: bzt = � exp [(1� �)xt] [E(bzt+1jHt) + 1] ; (22)

which shows that the value of bzt in period t depends on the conditional forecast of the next-
period value of that same variable.
The following proposition presents an approximate analytical solution for the composite

variable bzt:
Proposition 1. An approximate analytical solution for the equilibrium value of the composite
variable bzt under information set Ht is given by

bzt = a0 exp [a1 (xt � �)] ;

where a1 solves

a1 =
1� �

1� �� exp
�
(1� �)�+ 1

2
(a1)

2 �2"
�

and a0 � exp fE [log (bzt)]g is given by
a0 =

� exp [(1� �)�]
1� � exp

�
(1� �)�+ 1

2
(a1)

2 �2"
� ;

provided that � exp
�
(1� �)�+ 1

2
(a1)

2 �2"
�
< 1:

Proof : See Appendix A.1.

Two values of a1 satisfy the nonlinear equation in Proposition 1. The inequality restric-
tion selects the value of a1 with lower magnitude to ensure that a0 is positive.8 Given the
approximate solution for the composite variable bzt, we can recover byt as follows:

byt = E(bzt+1jHt) �= a0 exp

�
a1� (xt � �) +

1

2
(a1)

2 �2"

�
: (23)

As shown in Appendix A.2, the approximate fundamental solution can be used to derive the
following unconditional variance of the log price-dividend ratio:

V ar [log (byt)] = (a1�)
2 V ar (xt) ; (24)

8Lansing (2010) compares the approximate solution from Proposition 1 to the exact theoretical solution
derived by Burnside (1998). The approximate solution is extremely accurate for low and moderate levels
of risk aversion (� ' 2) : But even for high levels of risk aversion (� ' 10) ; the approximation error for the
equilibrium price-dividend ratio remains below 5 percent.
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which in turn can be used to derive an expression for V ar (byt) :9
From equation (23), the direction of the e¤ect of dividend growth �uctuations on byt de-

pends on the sign of a1; which in turn depends on the values of � and the coe¢ cient of relative
risk aversion �: Suppose �rst that � < 0; so that agents expect that high current dividend
growth will be followed by low growth. Assuming � < 1 such that a1 > 0; we have a1� < 0
which causes stocks to trade at a lower-than-average multiple of current dividends today, i.e.,
a lower value of byt, if current dividend growth is high. On the other hand when � > 1 such
that a1 < 0; we have a1� > 0: In this case, the expected lower dividend growth in the following
period is more than o¤set by a high realization of the stochastic discount factor, leading to a
higher value of byt today. All of these e¤ects are reversed when � > 0:
In the special case of logarithmic utility where � = 1, �uctuations in dividend growth do

not a¤ect log (byt), which is therefore constant. This result obtains because the income and
substitution e¤ects of a shock to dividend growth are exactly o¤setting. From equation (24),
it is easy to see intuitively how di¤erent levels of � a¤ect the variance of log (byt) :When � < 1,
increases in � shrink the magnitude of a1 which moves the variance of log (byt) toward zero.
This happens because �uctuations in dividend growth are increasingly o¤set by �uctuations
in their marginal utility; the closer � is to unity, the greater is the o¤set. When � > 1; an
increase in � raises the magnitude of a1: In this case, higher risk aversion raises the extent to
which the magnitude of �uctuations in marginal utility exceed the magnitude of �uctuations
in inverse consumption, thereby increasing the variance of log (byt).
4.2 Variance under Information Set Jt = Ht [ dt+1
In the preceding subsection we assumed that investors have no auxiliary information that
would help predict future dividends. We now relax that assumption by allowing investors to
see dividends one period ahead, as in LeRoy and Parke (1992). This setup seems particularly
realistic in light of company-provided guidance about future �nancial performance which is
typically disseminated to the public via quarterly conference calls. The expanded information
set is de�ned as Jt = Ht [ dt+1 = fdt+1; dt; dt�1; dt�2; ...g : The set Jt is an example of an
investor information set that is strictly �ner than Ht but strictly coarser than the perfect
information underlying p�t :
As shown in Appendix B.1, the expanded information set Jt implies the following rela-

9Given the unconditional mean E [log (byt)] = log (a0)+(a1)2 �2"=2 and the expression for V ar [log (byt)] from
equation (24), the unconditional variance of byt itself can be computed by making use of the following expres-
sions for the mean and variance of the log-normal distribution: E (byt) = exp

�
E [log (byt)] + 1

2V ar [log (byt)]	
and V ar (byt) = E (byt)2 fexp (V ar [log (byt)])� 1g :
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tionships:

pt = Mt;t+1 (dt+1 + bpt+1) ; (25)

yt = � exp [(1� �) xt+1] (1 + byt+1)
= bzt+1: (26)

As speci�ed above, pt and yt are the price and price-dividend ratio under Jt; while bpt and byt
are their counterparts underHt. Under information set Jt; the discount factorMt; t+1 is known
to investors at time t: From equations (21) and (26), it follows directly that byt = E(ytjHt);
which in turn implies V ar (byt) � V ar (yt) :
From equations (26) and Proposition 1, the approximate law of motion for yt = bzt+1

implies the following unconditional variance:

V ar [log (yt)] = (a1)
2 V ar (xt) : (27)

Comparing the above expression to V ar [log (byt)] from equation (24) shows that V ar [log (byt)] �
V ar [log (yt)] since j�j < 1:

4.3 Variance under Perfect Foresight

The assumption of perfect foresight represents an upper bound on investors� information
about future dividends. The perfect foresight price-dividend ratio y�t is governed by equation
(18), which is a nonlinear law of motion. To derive an analytical expression for the perfect
foresight variance, we approximate equation (18) using the following log-linear law of motion
(Appendix C.1):

log (y�t )�E [log (y�t )] ' (1��) (xt+1 � �)+� exp [(1� �)�]
�
log
�
y�t+1

�
� E [log (y�t )]

	
: (28)

The approximate law of motion (28) and the dividend growth process (12) can be used to
derive the following unconditional variance (Appendix C.2):

V ar [log (y�t )] =
(1� �)2�

1� �2 exp [2(1� �)�]
	 �1 + �� exp [(1� �)�]

1� �� exp [(1� �)�]

�
V ar (xt) ; (29)

which is more complicated than either V ar [log (byt)] from equation (24) or V ar [log (yt)] from
equation (27).

4.4 Model Calibration

Given that the Lucas model implies ct = dt in equilibrium, we calibrate the stochastic process
for xt in equation (12) using U.S. annual data for the growth rate of per capita real consump-

11



tion from 1890 to 2008.10 We choose parameters to match the mean, standard deviation,
and autocorrelation of consumption growth in the data. Using the moment formulas given
by equations (13) through (15), our calibration procedure yields � = 0:0203; �" = 0:0351;

and � = �0:1: For each value of �; we calibrate the subjective time discount factor � so as
to achieve E [log (byt)] = 3:18 in the model, consistent with the sample average value of the
log price-dividend ratio for the S&P 500 stock index from 1871 to 2008.11 When � exceeds a
value of about 3, achieving the target value of E [log (byt)] in the model requires a value of �
that is greater than unity. Nevertheless, for all values of � examined, the mean value of the
stochastic discount factor E

�
� (ct+1=ct)

��� remains below unity.12
4.5 Quantitative Analysis

The top panel of Figure 1 compares the variance of the log price-dividend ratio for the S&P
500 index (cross-hatched green line) with the model-computed volatilities for log (byt) (solid
blue line), log (yt) (dotted grey line), and log (y

�
t ) (dashed red line).

The standard deviation of log (byt) is close to zero for all values of �. This low �gure
re�ects the fact that the calibrated autocorrelation of dividend growth � = �0:1 is close to
zero, corresponding to a near-geometric random walk in the level of dividends. The model-
predicted volatility for log (byt) is much lower than the standard deviation of the log price-
dividend ratio in U.S. data for the period 1871 to 2008, which is 0.41.13 The model-predicted
volatility for log (yt), which is based on the assumption that investors see dividends one
period ahead, is noticeably higher than the volatility of log (byt), but still well below the value
observed in the data. These �ndings suggest the presence of excess volatility in the data,
but do not conclusively demonstrate its existence because real-world investors may possess
additional information about future dividend growth innovations which would serve to increase
the volatility of the U.S. price-dividend ratio.
According to the variance bounds, a �nding of excess volatility requires V ar[log(yust )] >

V ar [log (y�t )] : Figure 1 shows that excess volatility prevails for � < 5: In contrast, for � >
5; we have V ar[log(yust )] < V ar [log (y�t )], so we cannot make a de�nitive �nding of excess
volatility. The interpretation is that the volatility of log(yust ) is consistent with the present-
value model if real-world investors are risk averse and have access to very good information
about future dividend growth. The �nding that the theoretical variance inequality is not

10Long-run annual data for U.S. real consumption, real dividends, and real stock prices are from Robert
Shiller�s website: <www.econ.yale.edu/~shiller/>.
11Cochrane (1992) employs a similar calibration procedure. For a given discount factor �, he chooses the

risk aversion coe¢ cient � to match the mean price-dividend ratio in the data.
12Kocherlakota (1990) shows that a well-de�ned competitive equilibrium with positive interest rates can

still exist in growth economies when � > 1.
13The standard deviation of the U.S. price dividend ratio in levels (as opposed to logarithms) is 13.8, with

a corresponding mean value of 26.6.
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satis�ed when risk aversion is low is consistent with the early variance-bounds tests, which
found excess volatility under the assumption of risk neutrality. A conclusion that observed
volatility is excessive depends on whether risk aversion coe¢ cients around 5 can be viewed as
realistic (most empirical estimates are more like 2), and also on whether it is reasonable to
assume that investors can predict dividends into the distant future.

5 Return Volatility

We observed in the introduction that notions of price volatility can be connected either with
unconditional variance measures, corresponding to a long-run interpretation of volatility, or
with conditional variance measures, corresponding to a short-run concept. We also noted that,
based on earlier research assuming risk neutrality, the present-value model has implications
for both measures of volatility. Speci�cally, the variance-bounds tests involve determining
whether the joint restrictions implied by the present-value model for both types of volatility
measures are satis�ed. So far we have concentrated on bounds for unconditional volatility as
embodied in V ar [log (byt)] and V ar [log (y�t )] :
We now turn to measures of short-run price volatility. There are several ways to gauge

short-run volatility: the variance of one-period excess payo¤s, the unconditional variance of
the log price change, or the unconditional variance of the rate of return. Since these measures
are highly correlated, it does not matter much for the substantive results which measure
is used.14 It turns out that, just as the variance of one-period excess payo¤s is the most
convenient measure of short-run volatility when dividends are governed by a stationary linear
process, the variance of log returns is the most convenient in the setting considered here.
The gross rates of return on equity under the various information assumptions can be

14Over the period 1871 to 2008, the correlation coe¢ cient between log real equity returns and log real price
changes in U.S. data is 0.994. LeRoy (1984, p. 186) shows that the conditional price variance is numerically
very close to the unconditional variance of price changes in a calibrated asset pricing model.

13



written as

bRt+1 =
bpt+1 + dt+1bpt = exp (xt+1)

�byt+1 + 1byt
�

= ��1 exp (�xt+1)

� bzt+1
E(bzt+1jHt)

�
; (30)

Rt+1 =
pt+1 + dt+1

pt
= exp (xt+1)

�
yt+1 + 1

yt

�

= ��1 exp (�xt+1)

�
zt+1

E(zt+1jJt)

�
; (31)

R�t+1 =
p�t+1 + dt+1

p�t
= exp (xt+1)

�
y�t+1 + 1

y�t

�
= ��1 exp(�xt+1): (32)

In the expression for bRt+1; we have eliminated byt using the equilibrium condition (21) and
eliminated byt+1 + 1 using the de�nitional relationship

byt+1 + 1 = ��1 exp [�(1� �)xt+1] bzt+1; (33)

which follows directly from equation (20). To obtain a similar return expression for infor-
mation set Jt, we de�ne the composite variable zt+1 � � exp [(1� �)xt+1]

�
yt+1 + 1

�
and use

this de�nitional relationship and the corresponding equilibrium condition yt = E(zt+1jJt) to
eliminate yt and yt+1 + 1 from equation (31). In the expression for R�t+1; we have substituted
in
�
y�t+1 + 1

�
=y�t = �

�1 exp [�(1� �)xt+1] from the nonlinear law of motion (18). Notice that
the three return measures di¤er only by the terms bzt+1=E(bzt+1jHt) and zt+1=E(zt+1jJt); which
represent the investor�s proportional forecast errors under the di¤erent information assump-
tions. This feature is similar to the excess payo¤ expressions derived in Section 2 under risk
neutrality, which also di¤ered only in terms of the size of the investor�s forecast errors.
In Appendix A.2, we show that the approximate law of motion for log( bRt+1) is

log( bRt+1)� E[log( bRt+1)] = � (xt+1 � �) + a1"t+1 (34)

where a1 is given by Proposition 1. In Appendix B.2, we show that under Jt = Ht [ dt+1; the
approximate law of motion for log(Rt+1) is

log(Rt+1)� E
�
log(Rt+1)

�
= n1 (xt+2 � �) + (1� a1) (xt+1 � �) ; (35)
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where n1 = a0 a1= (1 + a0) is a Taylor-series coe¢ cient with a0 and a1 from Proposition 1. In
Appendix C.2, we show that the exact law of motion for log(R�t+1) is

log
�
R�t+1

�
� E

�
log
�
R�t+1

��
= � (xt+1 � �) : (36)

Given the above laws of motion for log returns, it is straightforward to compute the
following unconditional variances:

V ar[log( bRt+1)] = �2 V ar (xt) + a1 [a1 + 2�] �
2
"; (37)

V ar
�
log(Rt+1)

�
=

�
(n1)

2 + (1� a1)2 + 2n1 (1� a1) �
�
V ar (xt) ; (38)

V ar
�
log
�
R�t+1

��
= �2 V ar (xt) : (39)

5.1 Results for Special Cases

LeRoy and Parke (1992) considered the special case of risk neutrality and iid dividend growth:
In the present setting, under � = � = 0; Proposition 1 implies a1 = 1 and equation (14) implies
V ar (xt) = �

2
". The variance expressions imply the following inequality:

V ar
�
log(R�t+1)

�| {z }
=0

� V ar
�
log(Rt+1)

�| {z }
=(n1)

2�2"

� V ar[log( bRt+1)]| {z }
=�2"

; when � = � = 0; (40)

where a1 = 1 implies n1 = a0= (1 + a0) < 1: In this example where Jt = Ht[dt+1; the variance
of the log return under perfect foresight represents a lower bound of zero while the variance
of the log return under information set Ht represents an upper bound. This �nding agrees
with that of LeRoy and Parke (1992) in a similar (but not identical) setting.
However, it is straightforward to show by counterexample that similar bounds do not

extend to the case where investors are risk averse. Consider the following counterexample
when � = 0 but � 6= 0: We have

V ar
�
log(R�t+1)

�| {z }
=�2�2"

� V ar
�
log(Rt+1)

�| {z }
= [�2+(n1)2]�2"

Q V ar[log( bRt+1)]| {z }
=�2"

; (41)

where the direction of the second inequality depends on the magnitude of � and n1. Starting
from information set Ht corresponding to log( bRt+1); an increase in investor information can
either increase or decrease the log return variance, depending on parameter values.
In the special case of log utility, we have � = 1 such that a1 = n1 = 0: This case is not a

counterexample because it implies

V ar
�
log(R�t+1)

�| {z }
=V ar(xt)

= V ar
�
log(Rt+1)

�| {z }
=V ar(xt)

= V ar[log( bRt+1)]| {z }
=V ar(xt)

; when � = 1; (42)
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for every speci�cation of It: Since the price-dividend ratio is constant under log utility re-
gardless of the representative investor�s information, return variance is driven solely by the
exogenous stochastic process for dividends.
From equations (37) and (39), equality of V ar[log( bRt+1)] and V ar �log(R�t+1)� can also

occur when a1 + 2� = 0: We will verify below that at least for some parameter speci�cations
there exists a positive value of � that satis�es this equation. The critical value of � de-
�nes a crossing point at which the size ordering between V ar[log( bRt+1)] and V ar �log(R�t+1)�
reverses. Further, it turns out that at the critical value of � we have V ar[log(Rt+1)] >
V ar[log( bRt+1)] = V ar

�
log(R�t+1)

�
; where V ar[log(Rt+1)] is the return variance based on

Jt = Ht [ dt+1: We therefore conclude that V ar[log( bRt+1)] and V ar �log(R�t+1)� cannot be
bounds for return volatility. This result should not be surprising. Unlike the situation with
price-dividend ratios, the returns that prevail under information sets Ht; Jt and It cannot be
represented as conditional forecasts of the return that prevails under perfect foresight.

5.2 Quantitative Analysis

Solving for the critical value of � where V ar[log( bRt+1)] = V ar
�
log(R�t+1)

�
can be accom-

plished analytically using the following approximate expression for the solution coe¢ cient
a1 in Proposition 1: a1 ' (1� �) = (1� ��). The approximate expression for a1 is derived
by assuming exp

�
(1� �)�+ (a1)2 �2"=2

�
' 1 which holds exactly when � = 1 and remains

reasonably accurate for � < 10: Substituting the approximate expression for a1 into the vari-
ance equality condition a1 + 2� = 0 and then solving for � yields a second value for � for
which V ar[log( bRt+1)] = V ar

�
log(R�t+1)

�
: This second value is � ' 1= (2�� � 1) : Positivity

of � requires that the model parameters satisfy �� > 0:5: This counterexample establishes
that V ar

�
log(R�t+1)

�
cannot be a lower bound because it may be greater than or less than

V ar[log( bRt+1)] depending on the value of �.
Figure 2 plots the volatilities of log returns for two di¤erent calibrations of the model.

In the top panel, we employ the same calibration as Figure 1 with � = �0:1 to match the
autocorrelation of U.S. consumption growth from 1890 to 2008. We see that the volatility
of log( bRt+1) is equal to the volatility of log(R�t+1) only when � = 1: When agents have no
auxiliary information about future dividend realizations (that is, under the information set
Ht) the model underpredicts return volatility in comparison with the data for any reasonable
level of relative risk aversion. The low variance of returns under Ht re�ects the speci�cation
of near-zero autocorrelation of dividend growth. However, if agents can predict dividends
either one period or an in�nite number of periods in the future then the model underpredicts
return volatility for relative risk aversion less than 4, but overpredicts it for relative risk
aversion greater than 4. Thus if one were using return volatility to calibrate the model, and
were willing to accept either of these characterizations of investors� information, then one
would conclude that relative risk aversion is about 4. Incidentally, it is surprising that the
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dependence of return volatility on risk aversion is about the same whether investors can see
ahead one period or an in�nite number of periods.
In the bottom panel, we set � = 0:7 and recalibrate the value of �" to maintain the same

standard deviation of consumption growth as in the top panel. This calibration is unrealistic
empirically; we consider it only to illustrate the point made above that for general parameter
values the extreme speci�cations of investors� information do not de�ne bounds on return
volatility. In this case, the model parameters satisfy �� > 0:5 so the two return volatilities
are equal not only when � = 1; but also when � ' 1= (2�� � 1) = 2:9: As � crosses the
values 1 and 2.9, the direction of the variance inequality comparing the volatility of log( bRt+1)
to that of log(R�t+1) reverses direction. As observed above, such reversals demonstrate that
V ar

�
log(R�t+1)

�
cannot be a lower bound for all �:15

6 Mapping to the Campbell-Shiller Framework

Up to this point we have shown that the present-value model with power utility and AR(1)
dividend/consumption growth will satisfy the variance bounds for the log price-dividend ratio
when the risk aversion coe¢ cient is around 5 or higher. This result contrasts with the �nding of
excess volatility in the original variance-bounds literature, where risk neutrality was assumed.
In this section, we examine some other predictions of the power utility model and show that
they di¤er in important ways from the data.
Campbell and Shiller (1988), Campbell (1991), and Cochrane (1992, 2005) show that

a log-linear approximation of the equity return identity (dividend yield plus capital gain)
implies that the variance of the log price-dividend ratio must equal the sum of the ratio�s
covariances with: (1) future dividend growth rates, (2) future risk free rates, and (3) future
excess returns on equity. This variance decomposition, being derived from an identity rather
than a theoretical model, cannot be used to ascertain the theoretical connection between
risk aversion and stock price volatility. Its use up to now in the �nance literature has been
to determine the relative empirical importance of dividend growth, risk free interest rates,
and excess returns in explaining the volatility of real-world stock prices relative to dividends.
However, since the return identity is valid in theoretical models, it is possible to evaluate our
model by performing the variance decomposition analytically and then using the calibrated
model to compute the contributions from each of the three sources noted above for comparison
with the results obtained from real-world data.
Following the methodology of Campbell and Shiller (1988), the de�nition of the log equity

15Lansing (2011) shows that a similar variance inequality involving price changes (rather than returns) can
also be reversed, depending on parameter values. Moreover, he shows that the price-change variance bounds
derived by Engel (2005) for the case of risk-neutrality and �cum-dividend�stock prices do not extend to the
case of ex-dividend stock prices.
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return under information set Ht given by equation (30) can be approximated as follows:

log( bRt+1) � log (byt+1 + 1) + xt+1 � log (byt) ; (43)

' �0 + �1 log (byt+1) + xt+1 � log (byt) ;
where �0 is a constant and �1 = exp [E log (byt)] = f1 + exp [E log (byt)]g is a Taylor-series coe¢ -
cient. Solving equation (43) for log (byt) and then successively iterating the resulting expression
forward to eliminate log(byt+1+j) for j = 0; 1; 2::: yields the following approximate identity:

log (byt) ' �0
1� �1

+
1P
j=0

(�1)
j
h
xt+1+j � log( bRt+1+j)i ; (44)

assuming that the summation converges. The convergence assumption, which implies that the
determinants of the log price-dividend ratio are not pushed o¤to the in�nite future, is satis�ed
in our model. It follows that movements in the log price-dividend ratio must be accounted
for by movements in either future dividend growth rates or future log equity returns. Similar
accounting identities can be derived for log(yt) and log(y

�
t ); under information sets Jt and

perfect foresight, respectively.
The variables in the approximate identity (44) can be expressed as deviations from their

unconditional means while the means are consolidated into the constant term. Multiplying
both sides of the resulting expression by log (byt)�E [log (byt)] and then taking the unconditional
expectation of both sides yields

V ar [log (byt)] = Cov

"
log (byt) ; 1P

j=0

(�1)
j xt+1+j

#
� Cov

"
log (byt) ; 1P

j=0

(�1)
j log( bRt+1+j)#

= Cov

"
log (byt) ; 1P

j=0

(�1)
j xt+1+j

#
� Cov

"
log (byt) ; 1P

j=0

(�1)
j log( bR f

t+1+j)

#

� Cov
"
log (byt) ; 1P

j=0

(�1)
j log( bRt+1+j= bR f

t+1+j)

#
: (45)

Here, the second version of the expression breaks up the log equity return into two parts:
the log risk free rate, denoted by log( bR f

t+1+j); and the log excess return on equity, given by
log( bRt+1+j= bR f

t+1+j). Analogous decompositions can be derived for V ar [log (byt)] and V ar [log (y�t )]
which involve covariance terms with log(Rt+1+j)] and log(R�t+1+j), respectively. The above
equation states that the variance of the log price-dividend ratio must be accounted for by the
covariance of the log price-dividend ratio with future dividend growth rates, future risk free
rates, or future excess returns on equity. The magnitude of each covariance term is a measure
of the predictability of future values of dividend growth, risk free rates, or excess returns when
the current price-dividend ratio is employed as a regressor.
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For our model, the approximate laws of motion for the log equity return under each
information set are given by equations (34) through (36). In the appendix, we show that the
corresponding laws of motion for the log risk-free rate are given by

log( bR f
t+1)� E[log( bR f

t+1)] = �� (xt � �) ;
= � (xt+1 � �)� � "t+1; (46)

log(R
f

t+1)� E[log(R
f

t+1)] = � (xt+1 � �) ; (47)

log(R� ft+1)� E[log(R
� f
t+1)] = � (xt+1 � �) : (48)

Using the approximate laws of motion for the relevant variables, we can analytically com-
pute the three covariance terms in the applicable version of equation (45) for each information
set. Details are provided in the appendix. The results of the theoretical variance decomposi-
tion are as follows:

V ar [log (byt)] = a1�2V ar(xt)
1���1 � �a1�2V ar(xt)

1���1 � 0; (49)

V ar [log (yt)] = a1V ar(xt)
1���1 � �a1V ar(xt)

1���1 �
h
a1(1��)
1���1 � (a1)

2
i
V ar (xt) ; (50)

V ar [log (y�t )] = (1��)(1+��1)V ar(xt)
[1�(�1)2](1���1)

� �(1��)(1+��1)V ar(xt)
[1�(�1)2](1���1)

� 0; (51)

where the three terms in each equation correspond to the three possible sources of variation:
(1) future dividend growth rates, (2) future risk free rates, and (3) future excess returns on
equity. It should be noted that the expression for the Taylor-series coe¢ cient �1 di¤ers slightly
across information sets because the unconditional mean of the log price-dividend ratio (the
point of approximation for the return identity) depends on the information set.
Equations (49) and (51) show that the variance contribution from excess returns is exactly

zero under information sets Ht and perfect foresight. This result can be understood by
examining the laws of motion for excess returns on equity which are derived in the appendix
and reproduced below:

log( bRt+1)� log( bR f
t+1) = (a1 + �) "t+1 � 1

2

�
(a1)

2 � �2
�
�2"; (52)

log(Rt+1)� log(R
f

t+1) = (1� �� a1 + �n1) (xt+1 � �) + n1 "t+2; (53)

log(R�t+1)� log(R
� f
t+1) = 0: (54)
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Equation (52) shows that excess returns are iid under information set Ht; while equation (54)
shows that excess returns are identically zero under perfect foresight.16 In both cases, the
covariance between future excess returns and the log price-dividend ratio at time t is zero.
In contrast, equation (53) shows that excess returns under information set Jt are not iid but
instead will inherit the persistence properties of dividend/consumption growth xt+1: When
� = 0; we have xt+1 � � = "t+1 and excess returns under information set Jt will also be iid
such that the variance contribution from excess returns will be zero. In this case, the third
term in equation (50) will also be zero. But even when � 6= 0; the contribution from the third
term turns out to be numerically very small for information set Jt:
The theoretical variance decomposition in equations (49) through (51) can be expressed

more concisely by dividing both sides of the decomposition by the variance of the log price-
dividend ratio for that information set (assuming the variance is non-zero). In this way,
the contributions to variance from each source can be expressed as fractions that sum to
unity. Details are provided in the appendix. The results of the fractional decomposition are
summarized in Table 1.

Table 1: Theoretical variance decomposition for the log price-dividend ratio

Fraction of variance attributable to:

Information
Set

Future
Dividend Growth

Future
Risk-Free Rates

Future
Excess Returns

Ht
1

1�� � �
1�� 0

Jt
1

a1(1���1) � �
a1(1���1) �

h
(1��)

a1(1���1) � 1
i

Perfect
Foresight

1
1�� � �

1�� 0

Note: For information set Jt; a0 and a1 are de�ned by Proposition 1 and �1 = a0= (1 + a0).

While the variance of the log price-dividend ratio can di¤er substantially across the three
information sets (as shown previously in Figure 1), the fractions of the variance attributable to
each of the three possible sources are exactly the same under information sets Ht and perfect
foresight, and turn out to be only slightly di¤erent for information set Jt. Under information
sets Ht and perfect foresight, the variance decomposition depends only on the risk aversion
coe¢ cient �: However, for information set Jt; the persistence parameter for dividend growth �
also plays a role in the decomposition. For our baseline calibration with � = �0:1; the results
for information set Jt are numerically very close to the results for the other two information
sets, as discussed further below.

16The latter result is directly analogous to our earlier demonstration in equation (6) that excess payo¤s are
identically zero under the joint assumptions of perfect foresight and risk neutrality.
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Recall that under Ht and perfect foresight, future excess returns are either iid or zero and
hence are not predictable using the log price-dividend ratio at time t: This explains why future
excess returns contribute nothing to the variance of the log price-dividend ratio in these two
cases. The situation is slightly di¤erent for information set Jt: In this case, investors have
perfect knowledge of dividends at time t+1; but they do not have perfect knowledge of equity
returns at time t + 1 because they do not know equity prices at t + 1: The investor does
have perfect knowledge of the risk-free rate at t + 1 because this depends only on dividend
growth from time t to t+ 1; which is known under Jt: The log price-dividend ratio at time t
helps to predict the excess return at t+1 because it shows the deviation of the ratio from its
unconditional mean, which in turn helps to predict the equity price at t+ 1:
Under all information sets, the fraction of the variance attributable to future risk free rates

is increasing in the risk aversion coe¢ cient �: The intuition for this result is straightforward.
The risk aversion coe¢ cient in�uences the volatility of the stochastic discount factor, which in
turn in�uences the volatility of the risk-free rate. Under risk neutrality with � = 0; equations
(46) through (48) show that the risk-free rate is constant and thus contributes nothing to the
variance of the log price-dividend ratio. But as � increases, a larger fraction of the variance
is attributable to this source. When � = 1; the log price-dividend ratio is constant under all
information sets and hence there is no variance to be decomposed.
When � = 5; we have 1= (1� �) = �0:25 and ��= (1� �) = 1:25. In this case, under Ht

and perfect foresight, �25% of the variance of the log price dividend ratio is attributable to
changing forecasts of future dividend/consumption growth, 125% is attributable to changing
forecasts of future risk free rates, and 0% is attributable to changing forecasts of future excess
returns.17 Under information set Jt with � = 5 and � = �0:1; the percentages are the same
up to two decimal points. If instead we set � = 0:7; then the contribution from excess returns
is 0.38% while the contributions from future dividend growth and future risk free rates are
�24:91% and 124.53%, respectively. Thus, even a wide variation in the calibrated value of
� results in a negligible di¤erence between the variance decomposition under information Jt
and the (common) variance decomposition under Ht and perfect foresight.
The variance decomposition computed analytically from the power-utility model can be

compared to the decomposition obtained from real-world data without imposing any particular
model. Cochrane (2005, p. 400) presents an empirical variance decomposition of the log price-
dividend ratio for the value-weighted basket of stocks traded on the New York Stock Exchange
using annual data for the period 1928 to 1988. The data show that�34% of the variance of the
log price-dividend ratio is attributable to changing forecasts of future dividend growth, while
138% is attributable to changing forecasts of future equity returns (i.e., the sum of future risk
free rates and future excess returns). As just noted, with � = 5 the corresponding percentages

17Since the variance decomposition does not require the sources of variation to be orthogonal to one another,
the percentage from each source may fall outside the range of 0% to 100%.
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from the power-utility model are �25% and 125%; respectively, which are not too di¤erent.
Our model can match the �34% �gure from Cochrane�s decomposition by setting � = 3:9;

and can match the 138% �gure from Cochrane�s decomposition by setting � = 3:6. Given the
empirical uncertainty surrounding the decomposition in the data, these results are consistent
with our earlier �nding (plotted in Figure 1) that a risk aversion coe¢ cient of around 5 is
needed for the power-utility model to match the volatility of the log price-dividend ratio in
the data. So far, so good.
However, if the variance contribution from future equity returns is broken down into

separate contributions from future risk-free rates and future excess returns, then the results
obtained from the power-utility model are very di¤erent from those in the data. In the data,
more than 100% of the variation in the log price-dividend ratio is attributable to future excess
returns, i.e., the third term in equation (45), while almost nothing can be attributed to future
risk-free rates. The power-utility model generates the opposite result: more than 100% of the
variation in the log price-dividend ratio is attributable to future risk-free rates, while nothing
(or almost nothing, depending on the information set) is attributable to future excess returns.
One way in which empirical decomposition manifests itself in the data is the fact that the

dividend yield (the inverse of the price-dividend ratio) forecasts excess returns on equity over
long horizons, whereas empirical proxies for the risk-free rate do not predict future excess
returns, as shown originally by Campbell and Shiller (1988). More recently, Cochrane (2008,
p. 1545) obtains a statistically signi�cant long-horizon regression coe¢ cient of 1.23 when
forecasting excess returns using the current dividend yield. His result implies that 123% of
the dividend yield variance in the data is coming from future excess returns. The power-utility
model attributes zero percent (or close to zero percent) of the variance in the dividend yield
to future excess returns.

7 Conclusion

Our �rst conclusion is that for low levels of risk aversion, the volatility of observed price-
dividend ratios in U.S. data greatly exceeds the upper bound implied by the present-value
model. Thus we reproduce the result found in the earlier variance-bounds literature. However,
the �nding of excess volatility disappears under the assumption that investors have moderately
high risk aversion; for risk aversion coe¢ cients around 5, we �nd that the volatility of the
log price-dividend ratio in long-run U.S. data is reasonably close to the volatility predicted
by the power utility model under perfect foresight.18 In other words, the volatility of stock
prices is about as one would expect under the assumption that investors can forecast future
dividends accurately into the distant future. To be sure, the assumption that investors have
such foresight may be viewed as implausible. If one includes in the null hypothesis the more

18Mehra and Prescott (1985) argue that risk aversion coe¢ cients below 10 are plausible.
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realistic assumption that investors can forecast dividend growth at most only a few years into
the future, then actual stock price volatility appears excessive for any level of risk aversion.
The foregoing conclusion is reminiscent of that of Mehra and Prescott (1985), who found

that they could not explain the equity premium in a power-utility model with low or moderate
levels of risk aversion, but could do so with extremely high levels of risk aversion� on the order
of 50. Similarly, habit formation speci�cations for utility, such as that employed by Campbell
and Cochrane (1999) to match the equity premium and other features of the data, imply
extremely high coe¢ cients of relative risk aversion. Our analysis shows that much lower levels
of risk aversion will serve the purpose of explaining the volatility of the log price-dividend
ratio in long-run U.S. data.
We also demonstrate that the bounds on excess payo¤ variance derived under the as-

sumptions of risk neutrality and a stationary linear process for dividends do not extend to
analogous bounds on log equity returns in a environment with risk aversion and exponentially
growing dividends, except in some special cases.
Further analysis of the power utility model raises doubts about whether observed stock

price volatility can be explained with reasonable levels of risk aversion. According to the
power utility model, the main source of variation in the log price dividend ratio is predictable
variation in future risk-free returns. In contrast, an empirical (model-free) analysis �nds that
the main source of variation in the log price-dividend ratio is predictable variation in future
excess returns on equity. Thus even though the model can account for the observed volatility
of the price-dividend ratio, it does so by generating an implausibly volatile risk-free rate
combined with an insu¢ ciently forecastable excess return on equity. Again, the conclusion is
reminiscent of what other investigations using consumption-based asset pricing theory have
found. For example, Weil (1989) noted that a su¢ ciently high risk aversion coe¢ cient can
succeed in explaining the equity premium, but at the cost of generating a counterfactually
high and volatile risk-free rate.
Progress on this issue requires a theoretical model that generates variance decompositions

similar to those observed in the data. From the tremendous amount of research in the area
it appears that such a model must incorporate either time-varying risk aversion and/or time-
varying volatility of consumption growth. In this way, excess returns can be made to exhibit
signi�cant persistence and volatility, in contrast to equations (52) through (54). For example,
Campbell and Cochrane (1999) introduce time-varying risk aversion via habit formation. The
law of motion for the habit stock in their model is reverse-engineered to deliver a constant
risk-free rate, thereby allowing excess returns to make a large contribution to the variance
of the log price-dividend ratio, as in the data. However, their calibrated model requires an
extremely high coe¢ cient of relative risk aversion to match the various empirical facts�
around 80 in the model steady state. Bansal and Yaron (2004) introduce exogenous time-
varying volatility in the stochastic processes for consumption and dividend growth which also
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share a persistent component. In addition, they consider Epstein-Zin preferences which allow
the intertemporal elasticity of substitution to be varied independently of the risk aversion
coe¢ cient. Nevertheless, their model continues to underpredict the volatility of the log price-
dividend ratio in the data even when the risk aversion coe¢ cient is set equal to 10.19 It
therefore remains a challenge for theoretical asset pricing models to explain the volatility
of observed stock prices relative to dividends, as well as other features of the data, using
reasonable values for risk aversion.

19See Bansal and Yaron (2004), Table IV, p. 1495.
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Appendix

A Solution under Information Set Ht

A.1 Proof of Proposition 1

Iterating ahead the law of motion for bzt speci�ed in Proposition 1 and taking the conditional
expectation implied by the information set Ht yields

E(bzt+1jHt) = byt = a0 exp ��a1 (xt � �) + 1
2
(a1)

2 �2"
�
: (A.1)

Substituting the above expression into the �rst-order condition (22) and then taking loga-
rithms yields

log (bzt) = F (xt) = log (�) + (1� �)xt
+ log

�
a0 exp

�
�a1 (xt � �) + 1

2
(a1)

2 �2"
�
+ 1
	

' log (a0) + a1 (xt � �) ; (A.2)

where the Taylor-series coe¢ cients a0 and a1 are given by

log (a0) = F (�) = log (�) + (1� �)�+ log
�
a0 exp

�
1
2
(a1)

2 �2"
�
+ 1
	

(A.3)

a1 =
@F

@xt

����
�

= 1� � +
�a1a0 exp

�
1
2
(a1)

2 �2"
�

a0 exp
�
1
2
(a1)

2 �2"
�
+ 1

: (A.4)

Solving equation (A.3) for a0 yields

a0 = exp fE [log (bzt)]g = � exp [(1� �)�]
1� � exp

�
(1� �)�+ 1

2
(a1)

2 �2"
� ; (A.5)

which can be substituted into equation (A.4) to yield the following nonlinear equation that
determines a1:

a1 = 1� �+ �a1� exp
�
(1� �)�+ 1

2

�
a21
�
�2"
�
: (A.6)

Rearranging equation (A.6) yields the expression shown in Proposition 1. There are two
solutions, but only one solution satis�es the condition � exp

�
(1� �)�+ 1

2
(a1)

2 �2"
�
< 1; which

is veri�ed after solving (A.6) using a nonlinear equation solver. �
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A.2 Asset Pricing Moments

This section brie�y outlines the derivation of equations (24) and (37). Taking the uncondi-
tional expectation of log (byt) in equation (23) yields

E [log (byt)] = log (a0) +
1
2
(a1)

2 �2": (A.7)

We then have
log (byt)� E [log (byt)] = a1� (xt � �) ; (A.8)

which in turn implies
V ar [log (byt)] = (a1�)

2 V ar (xt) : (A.9)

As described in the text, the equity return (30) implied by the information set Ht can be
rewritten as bRt+1 = ��1 exp (�xt+1)

� bzt+1
E(zt+1jHt)

�
: (A.10)

Substituting in E(zt+1jHt) from equation (A.1) and bzt+1 = a0 exp [a1 (xt+1 � �)] from Propo-
sition 1 and then taking the unconditional mean of log( bRt+1) yields

E[log( bRt+1)] = � log (�) + �� � 1
2
(a1)

2 �2": (A.11)

We then have
log( bRt+1)� E[log( bRt+1)] = � (xt+1 � �) + a1"t+1; (A.12)

which in turns implies

V ar[log( bRt+1)] = �2V ar (xt) + (a1)
2 �2" + 2�a1Cov (xt+1; "t+1)| {z }

=�2"

: (A.13)

The log risk free rate is determined by the following �rst-order condition

log( bR f
t+1) = � log

(
E

"
�

�
ct+1
ct

���
jHt

#)
;

= � log fE [� exp (��xt+1) jHt]g ;
= � log (�) + � [�xt + (1� �)�]� 1

2
�2 �2"; (A.14)

where we have made the substitution ct+1=ct = dt+1=dt = exp (xt+1) and then inserted the law
of motion for xt+1 from equation (12) before taking the conditional expectation. Taking the
unconditional mean of log( bR f

t+1) and then subtracting the unconditional mean from equation
(A.14) yields the law of motion (46).
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A.3 Variance Decomposition

For information set Ht; we have

�1 =
exp [E log (byt)]

1 + exp [E log (byt)] = a0 exp
�
1
2
(a1)

2 �2"
�

1 + a0 exp
�
1
2
(a1)

2 �2"
� = � exp �(1� �)�+ 1

2
(a1)

2 �2"
�
; (A.15)

where we have made use of equations (A.5) and (A.7).
Using the law of motion for log (byt) given by (A.8) and the law of motion for xt+1 given

by (12), we can compute the following covariance which is the �rst term in equation (45):

Cov

"
log (byt) ; 1P

j=0

(�1)
j xt+1+j

#
= E fa1� (xt � �) (xt+1 � �) + �1a1� (xt � �) (xt+2 � �)

+ (�1)
2 a1� (xt � �) (xt+3 � �) + :::

	
;

= a1�
2V ar (xt)

�
1 + ��1 + (��1)

2 + (��1)
3 + :::

	
;

=
a1�

2V ar (xt)

1� ��1
: (A.16)

Similarly, using the law of motion for log( bR f
t+1) given by (46) we can compute the following

covariance which is the second term in equation (45):

�Cov
"
log (byt) ; 1P

j=0

(�1)
j log( bR f

t+1+j)

#
= �E fa1� (xt � �)�� (xt � �)

+ �1a1� (xt � �)�� (xt+2 � �)
+ (�1)

2 a1� (xt � �)�� (xt+3 � �) + :::
	
;

= �� a1�2V ar (xt)
�
1 + ��1 + (��1)

2 + (��1)
3 + :::

	
;

= �� a1�
2V ar (xt)

1� ��1
: (A.17)

The law of motion for excess returns (52) shows that excess returns are iid under informa-
tion setHt: Hence, the third covariance term in equation (45) is identically zero. Dividing both
sides of equation (45) by V ar [log (byt)] from (A.9) and then substituting in the appropriate
moments yields

1 =
1

a1 (1� ��1)
� �

a1 (1� ��1)
� 0;

=
1

1� � � �

1� � � 0; (A.18)

where we make use of (1� ��1) = (1� �) =a1 from equations (A.6) and (A.15).
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B Solution under Information Set Jt = Ht [ dt+1
B.1 Characterizing yt
Iterating ahead the �rst-order condition (9) and then imposing the equilibrium relationship
ct = dt for all t yields

pt = �

�
dt+1
dt

���
| {z }

Mt; t+1

(dt+1 + bpt+1) ; (B.1)

where bpt+1 is the equilibrium price conditional on the information set Ht+1:
Dividing both sides of equation (B.1) by dt yields the following expression for yt � pt=dt :

yt = � exp [(1� �) xt+1] (1 + byt+1) ;
= bzt+1; (B.2)

where the second equality follows directly from the de�nition (20).
Given that yt = bzt+1 from equation (B.2) and byt = E(bzt+1jHt) from equation (A.1), we

then have byt = E(ytjHt) which implies V ar (byt) � V ar (yt) :
B.2 Asset Pricing Moments

This section outlines the derivation of equations (27) and (38). From equations (A.2) and
(B.2) we have the following approximate law of motion for yt

yt = bzt+1 ' a0 exp [a1 (xt+1 � �)] ; (B.3)

which implies E [log (yt)] = log (a0) < E [log (byt)] : The above expression implies
V ar [log (yt)] = (a1)

2 V ar (xt) : (B.4)

The equity return (31) implied by the information set Jt can be rewritten as

Rt+1 = exp (xt+1)

�bzt+2 + 1bzt+1
�
; (B.5)

where we have eliminated both yt and yt+1 using equation (B.2). The approximate law of
motion for bzt+1 is given by equation (B.3). An approximate law of motion for bzt+2+1 is given
by bzt+2 + 1 ' n0 exp [n1 (xt+2 � �)] ; (B.6)

where n0 = 1 + a0 and n1 = a0 a1= (1 + a0) are Taylor-series coe¢ cients.
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Substituting equations (B.3) and (B.6) into (B.5) and then taking the unconditional mean
of log(Rt+1) yields

E
�
log(Rt+1)

�
= log (n0=a0) + �;

= � log (�) + �� (B.7)

We then have

log(Rt+1)� E
�
log(Rt+1)

�
= n1 (xt+2 � �) + (1� a1) (xt+1 � �) : (B.8)

Squaring both sides of equation (B.8) and taking the unconditional mean yields the expression
for V ar

�
log(Rt+1)

�
shown in equation (38).

The log risk free rate is determined by the following �rst-order condition

log(R
f

t+1) = � log
(
E

"
�

�
ct+1
ct

���
jJt

#)
;

= � log f� exp (��xt+1)g ;
= � log (�) + �xt+1; (B.9)

where we have made the substitution ct+1=ct = dt+1=dt = exp (xt+1) :Given that Jt = Ht[dt+1;
the investor has perfect knowledge of xt+1 at time t so we may drop the conditional expec-
tation. Taking the unconditional mean of log(R

f

t+1) and then subtracting the unconditional
mean from equation (B.9) yields the law of motion (47).

B.3 Variance Decomposition

For information set Jt; we have

�1 =
exp [E log (yt)]

1 + exp [E log (yt)]
=

a0
1 + a0

= � exp[(1��)�]
1+� exp[(1��)�]�� exp[(1��)�+ 1

2
(a1)

2�2"]
; (B.10)

where we have made use of equations (A.5) and (B.3). Note that �1 here di¤ers from that
under information set Ht; as shown in equation (A.15).
Using the law of motion for log (yt) given by (B.3) and the law of motion for xt+1 given

by (12), we can compute the following covariance which is the �rst term in the variance
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decomposition:

Cov

"
log (yt) ;

1P
j=0

(�1)
j xt+1+j

#
= E fa1 (xt+1 � �) (xt+1 � �) + �1a1 (xt+1 � �) (xt+2 � �)

+ (�1)
2 a1 (xt+1 � �) (xt+3 � �) + :::

	
;

= a1V ar (xt)
�
1 + ��1 + (��1)

2 + (��1)
3 + :::

	
;

=
a1V ar (xt)

1� ��1
: (B.11)

Similarly, using the law of motion for log(R
f

t+1) given by (47) we can compute the following
covariance which is the second term in the variance decomposition:

�Cov
"
log (yt) ;

1P
j=0

(�1)
j log(R

f

t+1)

#
= �E fa1 (xt+1 � �)� (xt+1 � �)

+ �1a1 (xt+1 � �)� (xt+2 � �)
+ (�1)

2 a1 (xt+1 � �)� (xt+3 � �) + :::
	
;

= � a1V ar (xt)
�
1 + ��1 + (��1)

2 + (��1)
3 + :::

	
;

=
� a1V ar (xt)

1� ��1
: (B.12)

Using the law of motion for excess returns (53), the third term in the variance decompo-
sition is given by

�Cov
"
log (yt) ;

1P
j=0

(�1)
j log

�
Rt+1+j

R
f
t+1

�#
= �E fa1 (xt+1 � �) (1� �� a1 + �n1) (xt+1 � �)

+ �1a1 (xt+1 � �) (1� �� a1 + �n1) (xt+2 � �) + :::g ;

= a1 (1� �� a1 + �n1)V ar (xt)
�
1 + ��1 + (��1)

2 + :::
	
;

=
a1 (1� �� a1 + �n1)V ar (xt)

1� ��1

=
a1 [1� �� a1 (1� ��1)]V ar (xt)

1� ��1
(B.13)

where we note that n1 = �1a1:
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Dividing both sides of the variance decomposition by V ar [log (yt)t] from equation (B.4)
and then substituting in the appropriate moments yields

1 =
1

a1 (1� ��1)
� �

a1 (1� ��1)
�
�

(1� �)
a1 (1� ��1)

� 1
�
; (B.14)

where equations (A.6) and (B.10) imply (1� ��1) ' (1� �) =a1 only when � ' 0:

C Solution under Perfect Foresight

C.1 Log-linearized Law of Motion

Taking logarithms of the nonlinear law of motion (18) yields

log (y�t ) = G
�
xt+1; log

�
y�t+1

��
= log (�) + (1� �) xt+1 + log

�
exp

�
log
�
y�t+1

��
+ 1
	

' log (b0) + b1 (xt+1 � �) + b2
�
log
�
y�t+1

�
� log (b0)

�
; (C.1)

where the Taylor-series coe¢ cients b0; b1; and b2 are given by

log (b0) = G [�; log (b0)] = log (�) + (1� �)�+ log [b0 + 1] ; (C.2)

b1 =
@G

@xt

����
�; log(b0)

= 1� �; (C.3)

b2 =
@G

@ log
�
y�t+1

������
�; log(b0)

=
b0

b0 + 1
: (C.4)

Solving equation (C.2) for the unconditional mean b0 yields

b0 = exp fE [log (y�t )]g =
� exp [(1� �)�]

1� � exp [(1� �)�] ; (C.5)

which can be substituted into equation (C.4) to obtain the following expression for b2 :

b2 = � exp [(1� �)�] : (C.6)

Subtracting log (b0) = E [log (y�t )] from both sides of the approximate law of motion (C.1)
and then substituting for b1 and b2 from (C.3) and (C.6) yields equation (28).
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C.2 Asset Pricing Moments

This section outlines the derivation of equations (29) and (39). Squaring both sides of equation
(28) and then taking the unconditional mean to obtain the variance yields

V ar [log (y�t )] =
(1� �)2 V ar (xt) + 2 (1� �) � exp [(1� �)�] Cov [log (y�t ) ; xt]

1� �2 exp [2 (1� �)�]
:

(C.7)

The next step is to compute Cov [log (y�t ) ; xt] which appears in equation (C.7). Starting
from equation (28), we have

Cov [log (y�t ) ; xt] = (1� �)Cov (xt+1; xt)| {z }
=Cov(xt; xt�1)

+ � exp [(1� �)�]Cov
�
log
�
y�t+1

�
; xt
�
; (C.8)

Cov
�
log
�
y�t+1

�
; xt
�
= (1� �)Cov (xt+1; xt�1)| {z }

= �Cov(xt; xt�1)

+� exp [(1� �)�]Cov
�
log
�
y�t+2

�
; xt
�
; (C.9)

and so on forCov
�
log
�
y�t+j

�
; xt
�
; j = 1; 2; 3; ::: By repeated substitution to eliminateCov

�
log
�
y�t+j

�
; xt
�

and then applying a transversality condition, we obtain the following expression:

Cov [log (y�t ) ; xt] = (1� �)Cov (xt; xt�1)
1X
j=0

f�� exp [(1� �)�]gj

=
(1� �)Cov (xt; xt�1)
1� �� exp [(1� �)�] =

(1� �) �V ar (x)
1� �� exp [(1� �)�] ; (C.10)

where the in�nite sum converges provided that �� exp [(1� �)�] < 1: Substituting equation
(C.10) into equation (C.7), then simplifying yields equation (29).
The perfect foresight return (32) can be rewritten as

R�t+1 = �
�1 exp (�xt+1) ; (C.11)

where we have substituted in
�
y�t+1 + 1

�
=y�t = �

�1 exp [�(1� �)xt+1] from the exact nonlinear
law of motion (18). Taking the unconditional expectation of log

�
R�t+1

�
yields

E
�
log
�
R�t+1

��
= � log (�) + ��: (C.12)

We then have
log
�
R�t+1

�
� E

�
log
�
R�t+1

��
= � (xt+1 � �) ; (C.13)
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which in turns implies the unconditional variance (39).
The log risk free rate is determined by the following perfect-foresight version of the �rst-

order condition

log(R� ft+1) = � log
(
�

�
ct+1
ct

���)
;

= � log f� exp (��xt+1)g ;
= � log (�) + �xt+1; (C.14)

where we have made the substitution ct+1=ct = dt+1=dt = exp (xt+1) : Taking the unconditional
mean of log(R� ft+1) and then subtracting the unconditional mean from equation (C.14) yields
the law of motion (48).

C.3 Variance Decomposition

Under perfect foresight, we have

�1 =
exp fE [log (y�t )]g

1 + exp fE [log (y�t )]g
=

b0
1 + b0

= � exp [(1� �)�] ; (C.15)

where we have made use of equation (C.5).
Using the law of motion for log (y�t ) given by (C.1) and the law of motion for xt+1 given

by (12), we can compute the following covariance which is the �rst term in the variance
decomposition:

Cov

"
log (y�t ) ;

1P
j=0

(�1)
j xt+1+j

#
= E

�
(1� �) (xt+1 � �) (xt+1 � �) + b2

�
log
�
y�t+1=b0

��
(xt+1 � �)

+ �1 (1� �) (xt+1 � �) (xt+2 � �) + �1b2 log
�
y�t+1=b0

�
(xt+2 � �)

+ (�1)
2 (1� �) (xt+1 � �) (xt+3 � �)

+ (�1)
2 b2 log

�
y�t+1=b0

�
(xt+3 � �) + :::

	
= (1� �)V ar (xt)

�
1 + ��1 + (��1)

2 + :::
	

+ (�1)
2 (1� �)V ar (xt)

�
1 + ��1 + (��1)

2 + :::
	

+ (�1)
4 (1� �)V ar (xt)

�
1 + ��1 + (��1)

2 + :::
	
+ :::

+ �1Cov [log (y
�
t ) ; xt]

�
1 + (�1)

2 + (�1)
4 + :::

	
=

(1� �)V ar (xt)
1� ��1

�
1 + (�1)

2 + (�1)
4 + :::

	
+
�1Cov [log (y

�
t ) ; xt]

1� (�1)2
;

=
(1� �) (1 + ��1)V ar (xt)�
1� (�1)2

�
(1� ��1)

; (C.16)
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where we have substituted in Cov [log (y�t ) ; xt] from equation (C.10).
Following the same methodology and using the law of motion for log(R� ft+1) given by

(48), we can compute the following covariance which is the second term in the variance
decomposition:

�Cov
"
log (byt) ; 1P

j=0

(�1)
j log( bR f

t+1+j)

#
= �� (1� �) (1 + ��1)V ar (xt)�

1� (�1)2
�
(1� ��1)

(C.17)

The law of motion for excess returns (54) shows that excess returns are identically zero
under perfect foresight. Hence, the third term in the variance decomposition is identically
zero. Dividing both sides of the variance decomposition by V ar [log (y�t )] from equation (29)
and then substituting in the appropriate moments yields

1 =
1

1� � � �

1� � � 0; (C.18)

where we make use of �� exp [(1� �)�] = ��1 and �2 exp [2(1� �)�] = (�1)2 from equation
(C.15).
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Figure 1: The log price-dividend ratio in U.S. data exhibits excess volatility for � < 5:
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Figure 2: The present-value model does not impose bounds on returns in general settings
involving risk aversion.
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