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1 Introduction

In theory, the price of a stock represents the market�s consensus forecast of the discounted

sum of future dividends that will accrue to the owner of the stock. One characteristic of a

rational forecast is that it should be less variable than the object being forecasted. Numerous

empirical studies starting with Shiller (1981) and LeRoy and Porter (1981) have argued that

this rationality principle appears to be violated in the case of stock prices. In particular,

observed stock prices (the forecast) appear to be much more variable than the discounted

sum of subsequent realized dividends (the object being forecasted).1

As noted originally by Marsh and Merton (1986) and Kleidon (1986), empirical tests

based on the observed volatility of stock prices are misspeci�ed if prices are nonstationary.

The unconditional variance of the fundamental equilibrium stock price does not exist when

real dividends are growing over time, as in long-run U.S. data. To retain validity, empirical

tests for excess volatility must be applied to stationary variables, such as the price-dividend

ratio, the price change, or the equity return.2

Engel (2005) derives a theoretical variance inequality involving the change in stock prices�

a variable that remains stationary even when dividends exhibit a unit root.3 Assuming that

stock prices are �cum-dividend�and that investors are risk neutral, he shows that the vari-

ance of the equilibrium price change must be greater than or equal to the variance of the

�perfect foresight�(or �ex post rational�) price change computed from the discounted stream

of subsequent realized dividends. Also assuming risk neutrality, LeRoy (1984) previously

demonstrated a similar result numerically using a calibrated model where stock prices are

�ex-dividend.�4 The price-change variance is closely related to the conditional variance of

the price level. Either statistic can be interpreted as a measure of the �smoothness�of the

underlying price series. Indeed, LeRoy (1984, p. 186) provides numerical examples where the

conditional variance of the equilibrium stock price is greater than the conditional variance

of the perfect foresight price. The foregoing results would appear to help reconcile the high

volatility of observed stock prices with the smooth behavior of discounted realized dividends.

This paper expands the foregoing analysis to consider both �ex-dividend�prices and risk

aversion in a standard Lucas (1978) type asset pricing model. I show that the direction of

the price-change variance inequality can be reversed, depending on the values assigned to

1For an overview of this large literature, see Gilles and LeRoy (1991), Shiller (2003), and LeRoy (2010).
2West (1988a, p. 641) summarizes the various assumptions made in the literature regarding the stochastic

process for dividends and prices.
3Engel assumes that dividends evolve as an arithmetic random walk or remain stationary.
4In LeRoy�s model, dividends are highly persistent but stationary. This result is also discussed by Gilles

and LeRoy (1991, p. 771).
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some key parameters of the model, namely the dividend AR(1) parameter �, the investor�s

subjective time discount factor �; and the coe¢ cient of relative risk aversion �:

Following LeRoy (1984) and Engel (2005), I initially consider an economy where the rep-

resentative investor is risk neutral (� = 0). Dividends are assumed to follow an arithmetic

AR(1) process that allows for a unit root as a special case. For this environment, it is pos-

sible to derive exact analytical expressions for both the variance of the equilibrium price

change V ar (�pt) and the variance of the perfect foresight price change V ar (�p�t ). I show

that V ar (�pt) can be greater or less than V ar (�p�t ), depending on the values assigned

to � and �. The two variance statistics are exactly equal when the parameters satisfy the

condition � (1 + �) = 1. For a typical model calibration where dividends are a close to a

random walk and the discount factor is close to unity, we have � (1 + �) > 1 which in turn

yields V ar (�pt) > V ar (�p�t ) ; con�rming the results obtained by LeRoy (1984) and Engel

(2005). LeRoy�s numerical computations employ values for � and � which satisfy the condition

� (1 + �) > 1: Engel employs a setup where pt is de�ned as a cum-dividend price rather than

an ex-dividend price. His model can be interpreted as imposing the parameter restriction

�� ' 1 such that the condition � (1 + �) > 1 is satis�ed. If dividends are less persistent or
the future is more heavily discounted such that � (1 + �) < 1; then the variance inequality is

reversed, yielding V ar (�pt) < V ar (�p�t ).

The explanation for the variance inequality reversal is linked to the discounting mechanism.

The parameters � and � both a¤ect the degree to which future dividend innovations (which

are known ex post) in�uence the perfect foresight price p�t via discounting from the future

to the present. The future dividend innovations have no e¤ect the equilibrium stock price

pt because the rational expected value of future innovations is zero. When dividends are

highly persistent and the investor�s discount factor is close to unity such that � (1 + �) > 1,

the discounting weights applied to successive future dividend innovations decay gradually.

By taking the �rst-di¤erence of the perfect foresight price series, the terms involving future

innovations tend to cancel out. However, the current dividend innovation continues to have

a impact� but one that acts di¤erently on the current- versus prior-period values of the

perfect foresight price. This di¤erential impact of the current innovation serves to shrink

the magnitude of �p�t , resulting in a lower value for V ar (�p
�
t ) relative to V ar (�pt) : In

contrast, when � (1 + �) < 1; the discounting weights applied to successive future innovations

decay rapidly, so these terms do not tend to cancel out when taking the �rst di¤erence of the

perfect foresight price series. In this case, the positive impact of the future innovations on the

variance dominates the negative impact of the current innovation, resulting in a higher value

for V ar (�p�t ) relative to V ar (�pt) :
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In the model with risk aversion, I adopt a more-general speci�cation for dividends. I

specify the growth rate of dividends (and consumption) as an ARMA(1, 1) process that al-

lows for either a stochastic or a deterministic growth trend. Within this framework, I derive

approximate analytical expressions for the variance of the equilibrium price change (in log-

arithms), i.e., V ar [� log (pt)] ; and its perfect foresight counterpart V ar [� log (p�t )]. I show

that V ar [� log (pt)] can be greater or less than V ar [� log (p�t )], depending on the value as-

signed to the coe¢ cient of relative risk aversion �. Assuming plausible parameter values

for the dividend growth process, I show that two variance statistics are exactly equal when

� = 1, representing logarithmic utility. When � < 1, the model yields V ar [� log (pt)] >

V ar [� log (p�t )] ; analogous to the risk-neutral result obtained by LeRoy (1984) and Engel

(2005). When the � > 1, the variance inequality is reversed such that V ar [� log (pt)] <

V ar [� log (p�t )] :

When the investor�s utility function is logarithmic, the income and substitution e¤ects of

dividend growth innovations exactly cancel, regardless of the stochastic process for dividend

growth. As a result, both the equilibrium price-dividend ratio pt=dt and the perfect foresight

price-dividend ratio p�t=dt are constant under logarithmic utility. Given that the price-dividend

ratios are constant, any variation in the two price series pt and p�t must be driven solely by

variations in the common stream of exogenous dividends. This explains why V ar [� log (pt)] =

V ar [� log (p�t )] under log utility.

The explanation for the variance inequality reversal in the model with risk aversion is

also linked to the discounting mechanism. When the risk aversion coe¢ cient is below unity,

the stochastic discount factors applied to successive future dividend growth innovations decay

gradually. By taking the �rst-di¤erence of the perfect foresight price series (in logarithms), the

terms involving future innovations tend to cancel out. The di¤erential impact of the current

innovation serves to shrink the magnitude of � log (p�t ), thus resulting in a lower value for

V ar [� log (p�t )] relative to V ar [� log (pt)]. When the risk aversion coe¢ cient is above unity,

the stochastic discount factors applied to successive future innovations decay rapidly, so these

terms do not tend to cancel out when taking the �rst di¤erence of the log price series. In this

case, the positive impact of the future innovations on the variance dominates the negative

impact of the current innovation, resulting in a higher value for V ar [� log (p�t )] relative to

V ar [� log (pt)] :

The fact that a variance inequality involving price changes (or log price changes) can

reverse direction depending on parameters should perhaps not be surprising. Unlike the

situation with prices themselves, the equilibrium price-change cannot be represented as a

conditional forecast of the price-change that would prevail under perfect foresight. In other
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words, while the present-value model implies pt = Etp�t ; this relationship between prices does

not imply �pt = Et�p
�
t nor does it imply � log (pt) = Et� log (p

�
t ) : It turns out that the

present-value model does not impose theoretical bounds on price-change volatility except in

some special cases.

2 Asset Pricing Model

Equity shares are priced using the frictionless pure exchange model of Lucas (1978). There

is a representative investor who can purchase shares to transfer wealth from one period to

another. Each share pays an exogenous stream of stochastic dividends in perpetuity. The

investor�s problem is to maximize

E0

1X
t=0

�t
�
c1��t � 1
1� �

�
; (1)

subject to the budget constraint

ct + ptst = (pt + dt) st�1; ct; st > 0 (2)

where ct is the investor�s consumption in period t and � is the coe¢ cient of relative risk

aversion (the inverse of the intertemporal elasticity of substitution), dt is the dividend, and

st is the number of shares held in period t: The symbol Et is the mathematical expectation

operator, conditional on information available at time t: For simplicity, throughout the pa-

per, I assume that the representative investor�s information set consists only of current and

past dividends. The symbol pt denotes the equilibrium ex-dividend price conditional on the

investor�s information.5

The �rst-order condition that governs the investor�s share holdings is given by

pt = Et

"
�

�
ct+1
ct

���
(pt+1 + dt+1)

#
: (3)

The �rst-order condition can be iterated forward to substitute out pt+1+j for j = 0; 1; 2; :::

Applying the law of iterated expectations and imposing a transversality condition yields the

following expression for the fundamental equilibrium stock price

pt = Et

1X
j=1

Mt+j dt+j; (4)

5Speci�cally, the price pt corresponds to the information set Ht = fdt; dt�1; dt�2; ...g : Engel (2005) and
West (1988b) make a distinction between Ht and an unspeci�ed larger information set It that contains at
least Ht: They use the symbol bpt for the price conditional on Ht and the symbol pt for the price conditional
on It. For simplicity, I assume that Ht and It are identical here such that bpt = pt:
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where Mt+j � � j (ct+j=ct)�� is the stochastic discount factor. The perfect foresight price is
given by

p�t =

1X
j=1

Mt+j dt+j: (5)

Equity shares are assumed to exist in unit net supply. Market clearing therefore implies

st = 1 for all t: Substituting this equilibrium condition into the budget constraint (2) yields,

ct = dt for all t:

3 Risk-Neutral Investor

When � = 0; the representative investor is risk neutral and the pricing equations can be

written as follows

pt = Et � (pt+1 + dt+1)

= Et
�
�dt+1 + �

2dt+2 + �
3dt+3 + :::

	
; (6)

p�t = �
�
p�t+1 + dt+1

�
= �dt+1 + �

2dt+2 + �
3dt+3 + :::; (7)

To facilitate an analytical solution for both pt and p�t ; I assume that dividends are governed

by the following AR(1) process

dt+1 = � dt + (1� �) d+ "t+1;
"t+j � N (0; �2") ;
j�j � 1; ; (8)

which allows for a unit root when � = 1:

Repeated substitution of equation (8) into equation (6) and then imposing Et"t+j = 0 for

j = 1; 2; ::: yields the following expression for the fundamental equilibrium stock price

pt = dt
�
��+ (��)2 + (��)3 + :::

	
+ d

�
� (1� �) + �2

�
1� �2

�
+ �3

�
1� �3

�
+ :::

	
;

= dt

�
��

1� ��

�
+ d

�
� (1� �)

(1� �) (1� ��)

�
; (9)

which shows that the equilibrium price-dividend ratio pt=dt is constant when � = 1 or d = 0:

Repeated substitution of equation (8) into equation (7) yields the following expression for

the perfect foresight price

p�t = dt

�
��

1� ��

�
+ d

�
� (1� �)

(1� �) (1� ��)

�
| {z }

pt

+
�

1� ��

1X
j=1

� j�1"t+j; (10)
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which satis�es the relationship pt = Etp�t : Since pt is the rational forecast of p
�
t ; Shiller (1981)

argued that market e¢ ciency requires V ar (pt) � V ar (p�t ) : Marsh and Merton (1986) and

Kleidon (1986) later pointed out that neither variance will exist if dividends (and hence

prices) are nonstationary. Shiller�s derivation assumed that prices and dividends were rendered

stationary by removing a common deterministic time trend. However, in the present model

with � = 1; the trend in prices and dividends is stochastic, so Shiller�s detrending procedure

would not eliminate the unit root. To analyze the � = 1 case, we can detrend prices by taking

the �rst di¤erence of the respective price series. Taking the �rst di¤erence of equation (10)

yields

�p�t = �pt �
�

�

1� ��

�
"t +

�
� (1� �)
1� ��

� �
"t+1 + �"t+2 + �

2"t+3 + :::
�
: (11)

Proposition 1. When the representative investor is risk neutral and dividends are governed

by the AR(1) process (8), then:

V ar (�pt) � V ar (�p�t ) if � (1 + �) � 1;

V ar (�pt) < V ar (�p�t ) if � (1 + �) < 1:

Proof : Taking the variance of both sides of equation (11) yields

V ar (�p�t ) = V ar (�pt) +
�2�2"

(1� ��)2
� 2� Cov (�pt; "t)

(1� ��)

+
�2 (1� �)2 �2"
(1� ��)2

�
1 + �2 + �4 + �6 + :::

�
:

From equations (8) and (9), we have Cov (�pt; "t) = �� �2"= (1� ��) : The in�nite sum inside
the square brackets of the above expression is equal to 1=

�
1� �2

�
: Inserting these results

into the variance expression and then simplifying yields the following result

V ar (�p�t ) = V ar (�pt) +
2�2�2"

(1� ��)2 (1 + �)
[1� � (1 + �)] ;

which shows that the direction of the variance inequality is governed by the sign of the term

[1� � (1 + �)] : �

Proposition 1 shows that when � (1 + �) > 1; we have V ar (�pt) > V ar (�p�t ) ; con�rming

the results obtained by LeRoy (1984) and Engel (2005). But when � (1 + �) < 1; the variance
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inequality is reversed such that V ar (�pt) < V ar (�p�t ) : The numerical examples in LeRoy

(1984, p. 186) employ the values � 2 (0:8; 0:99) and � = 0:9; which satisfy the condition

� (1 + �) > 1:

Engel (2005) employs a cum-dividend pricing equation where the stock price at time t

includes a guaranteed dividend, unlike the Lucas-model setup where prices are ex-dividend.

Speci�cally, Engel employs the following asset pricing equation:

pt = dt + Et �pt+1: (12)

The above pricing equation can be obtained from the ex-dividend pricing equation (6) by

substituting in for dt+1 from (8) and then imposing �� ' 1: By e¤ectively imposing �� ' 1;
the cum-dividend pricing equation ensures that the condition � (1 + �) > 1 is satis�ed.

Starting instead with cum-dividend pricing equation (12) and its perfect foresight coun-

terpart and then following the same methodology described above, it is straightforward to

show that the result is

V ar (�p�t ) = V ar (�pt) �
2��2"

(1� ��)2 (1 + �)
(13)

which implies V ar (�pt) > V ar (�p�t ) ; in agreement with Proposition 2 in Engel (2005).
6

The reason for the variance inequality reversal can be understood from equations (10) and

(11). When the parameters � and � are both close to unity, the discounting weights applied

to future dividend innovations in the solution for p�t decay gradually, as shown by equation

(10). By taking the �rst-di¤erence of the p�t series to obtain �p
�
t , the terms involving future

innovations tend to cancel each other out, as can be seen from equation (11), where these

terms are multiplied by the coe¢ cient � (1� �) = (1� ��) : However, equation (11) shows
that the current dividend innovation "t continues to have a strong impact on �p�t . A positive

value of "t serves to shrink �p�t relative to �pt; whereas positive future innovations "t+j;

j = 1; 2; :::serve to magnify �p�t relative to �pt: The negative in�uence of "t on the variance

of �p�t dominates the positive in�uence of "t+j; j = 1; 2; :::when the discounting weights in

the solution for p�t decay su¢ ciently gradually, as measured by the condition � (1 + �) > 1:

Given that a typical calibration satis�es � (1 + �) > 1; the model would predict V ar (�pt) >

V ar (�p�t ) ; in agreement with the results obtained by LeRoy (1984) and Engel (2005).

6Proposition 1 in West (1988b) derives a related variance inequality involving price changes that also makes
use of the cum-dividend pricing equation (12).
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4 Risk Averse Investor

In this section, I allow for risk aversion and consider a more-general speci�cation for dividends

I assume that the growth rate of dividends xt � log (dt=dt�1) is governed by the following

ARMA (1,1) process

xt+1 = x+ � (xt � x) + "t+1 � �"t;
"t+j � N (0; �2") ;
j�j < 1;
� 2 f0; 1g ;

(14)

where � = 0 implies a stochastic trend in log dividends, while � = 1 implies a deterministic

trend.7 The unconditional moments of dividend growth are given by

E (xt) = x; (15)

V ar (xt) =

�
1 + �2 � 2��

�
�2"

1� �2 ; (16)

Corr (xt; xt�1) =
(�� �) (1� ��)
1 + �2 � 2��

: (17)

The fundamental equilibrium price-dividend ratio is denoted by yt � pt=dt: The perfect

foresight counterpart is denoted by y�t � p�t=dt. By substituting the equilibrium condition

ct = dt into the �rst-order condition (3), the �rst-order condition and its perfect foresight

counterpart can now be written as

yt = Et [� exp (�xt+1) (yt+1 + 1)] ; (18)

y�t = � exp (�xt+1)
�
y�t+1 + 1

�
; (19)

where � � 1� �.
The corresponding expressions for the log price change can be written as follows:

� log (pt) = � log (yt) + xt; (20)

� log (p�t ) = � log (y�t ) + xt; (21)

7The � = 1 case corresponds to the following speci�cation for dividends: log(dt) = � log(dt�1) + �t+ "t;
where �t is the the deterministic time trend. Lagging this equation by one period and then subtracting one
equation from the other yields equation (14) with � = 1, where (1� �)x = �:
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4.1 Fundamental Equilibrium Solution

The fundamental equilibrium is obtained by solving the �rst-order condition (18), subject

to the dividend growth process (14). To facilitate an approximate analytical solution, it is

convenient to transform the �rst-order condition using a nonlinear change of variables to

obtain

zt = � exp (�xt) [Etzt+1 + 1] ; (22)

where zt � � exp (�xt) (yt + 1) : Under this formulation, zt represents a composite variable

that depends on both the growth rate of dividends and the price-dividend ratio. Equation

(22) shows that the value of zt in period t depends on the investor�s conditional forecast of

that same variable. By making use of the de�nition of zt; the �rst-order condition (18) can

be written as yt = Etzt+1: Hence, the fundamental equilibrium price-dividend ratio is simply

the rational forecast of the composite variable zt+1:

The following proposition presents an approximate analytical solution for zt:

Proposition 2. An approximate analytical solution for the fundamental equilibrium value of

the composite variable zt � � exp (�xt) (yt + 1) is given by

zt = exp [a0 + a1 (xt � x) + a2 "t] ;

where a1 and a2 solve the following system of nonlinear equations

a1 =
�

1� �� exp
�
� x+ 1

2
(a1 + a2)

2 �2"
� ;

a2 = � a1�� exp
�
� x+

1

2
(a1 + a2)

2 �2"

�
and a0 � E [log (zt)] is given by

a0 = log

(
� exp (� x)

1� � exp
�
� x+ 1

2
(a1 + a2)

2 �2"
�) ;

provided that � exp
�
� x+ 1

2
(a1 + a2)

2 �2"
�
< 1:

Proof : See appendix.

Two values of a1 satisfy the nonlinear system in Proposition 2. The inequality restric-

tion selects the value of a1 with lower magnitude to ensure that the point of approximation
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exp (E [log (zt)]) is positive. Given the solution for the composite variable zt, we can recover

the fundamental equilibrium price-dividend ratio as follows

yt = Etzt+1 = exp

�
a0 + a1� (xt � x)� a1� "t +

1

2
(a1 + a2)

2 �2"

�
: (23)

Lansing (2010) compares the approximate solution from Proposition 2 to the exact theo-

retical solution derived by Burnside (1998) for the case of � = 0; which implies a stochastic

trend in log dividends. The approximate solution is extremely accurate for low and mod-

erate levels of risk aversion (� ' 2) : But even for high levels of risk aversion (� ' 10) ; the
approximation error for yt remains below 5 percent.

As shown in the appendix, the approximate solution can be used to derive the following

unconditional moments of the equilibrium asset pricing variables:

E [log (yt)] = log

(
� exp

�
� x+ 1

2
(a1 + a2)

2 �2"
�

1� � exp
�
� x+ 1

2
(a1 + a2)

2 �2"
�) ; (24)

V ar [log (yt)] =
[a1 (�� �)]2 �2"

1� �2 ; (25)

E [� log (pt)] = x (26)

V ar [� log (pt)] =
�
(a1�)

2 + (1 + a1�)
2 � 2a1� (1 + a1�)Corr (xt; xt�1)

�
V ar (xt)

�2a1� [a1 (�� �) + (1� �+ �) (1 + a1�)] �2" (27)

where V ar (xt) and Corr (xt; xt�1) are given by equations (16) and (17).

From Proposition 2, the magnitude of the solution coe¢ cient a1 increases as the risk

aversion coe¢ cient � rises above unity. An increase in the magnitude of a1 serves to magnify

the volatility of the price-dividend ratio, as shown by equation (25).8 For the case of log

utility (� = 1) ; we have � = 1� � = 0; such that a1 = a2 = 0. In this case, the fundamental
equilibrium price-dividend ratio is constant at the value yt = �= (1� �) : This result obtains
because the income and substitution e¤ects of an innovation to dividend growth are exactly

o¤setting.

8LeRoy and LaCivita (1981) demonstrate that risk aversion magni�es the volatility of the price-dividend
ratio in a Lucas-type model where the level of dividends is governed by a two-state Markov process.
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4.2 Perfect Foresight Solution

The perfect foresight price-dividend ratio is governed by equation (19), which is a nonlinear

law of motion. To derive analytical expressions for the perfect foresight variances, I approxi-

mate equation (19) using the following log-linear law of motion (details are contained in the

appendix):

log (y�t )� E [log (y�t )] ' � (xt+1 � x) + � exp (� x)
�
log
�
y�t+1

�
� E [log (y�t )]

	
: (28)

As shown in the appendix, the approximate law of motion (28) and the dividend growth

process (14) can be used to derive the following unconditional moments

E [log (y�t )] = log

�
� exp (� x)

1� � exp (� x)

�
; (29)

V ar [log (y�t )] =
�2 V ar (xt) f1 + � exp (� x) [2Corr (xt; xt�1)� �]g

[1� �� exp (� x)]
�
1� �2 exp (2� x)

� ; (30)

E [� log (p�t )] = x; (31)

V ar [� log (p�t )] = [1� � exp (� x)]2 V ar [log (y�t )]

+

�
�2 +

2�� [1� � exp (� x)]Corr (xt; xt�1)
[1� �� exp (� x)]

�
V ar (xt) ; (32)

where V ar (xt) and Corr (xt; xt�1) are again given by equations (16) and (17).

4.3 Volatility Comparison

Given the complexity of the variance expressions for the log price change it is not immediately

obvious whether the equilibrium price-change variance given by equation (27) is greater or

less than the perfect foresight variance given by equation (32). To gain some insight, it is

helpful to consider some special cases.

Proposition 3. For the special case of logarithmic utility (� = 1), we have:

V ar [� log (pt)] = V ar [� log (p�t )] = V ar (xt) ;

Proof : With log utility, we have � = 1 � � = 0: Proposition 1 then implies a1 = a2 = 0 for
any values of � and �. Plugging these values into the appropriate expressions yields the above

result. �
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When the utility function is logarithmic, the income and substitution e¤ects of dividend

growth innovations exactly cancel, regardless of the stochastic process for dividend growth.

As a result, the price-dividend ratios yt and y�t are both constant, as can be seen from the

variance expressions (25) and (30) when a1 = 0 and � = 0; respectively. Given that the

price-dividend ratios are constant, any variation in the price series must be driven solely by

variations in the common stream of exogenous dividends.

Proposition 4. For the special case of iid dividend growth (� = � = 0), we have V ar [� log (pt)] >
V ar [� log (p�t )] when � < 1; versus V ar [� log (pt)] � V ar [� log (p�t )] when � � 1:

Proof : When � = � = 0; Proposition 1 implies a1 = � and a2 = 0: From equations (27) and

(32), we then have

V ar [� log (pt)] = V ar (xt) ;

V ar [� log (p�t )] =

�
�2 + �2

�
1� � exp (� x)
1 + � exp (� x)

��
V ar (xt) ;

where � � 1 � �: By inspection, when � < 1; the perfect foresight variance is less than

equilibrium variance. When � = 1; both variance expressions collapse to V ar (xt). By

inspection, when � > 1; the perfect foresight variance exceeds the equilibrium variance. �

When � < 1; Proposition 4 shows V ar [� log (pt)] > V ar [� log (p�t )] ; analogous to the

risk-neutral result obtained by LeRoy (1984) and Engel (2005). When � > 1, the price-change

variance inequality is reversed such that V ar [� log (pt)] < V ar [� log (p�t )] : As noted in the

introduction, the price-change variance can be interpreted as a measure of the �smoothness�

of the underlying price series. According to Proposition 4, a risk aversion coe¢ cient above

unity is needed to cause the equilibrium stock price (the forecast) to appear smoother than

the discounted sum of subsequent realized dividends (the object being forecasted).

Intuition for the variance inequality reversal in Proposition 4 can be obtained by writing

out equations (18) and (19) for the case of iid dividend growth, which implies xt+j = x+ "t+j
for j = 1; 2; ::: We have

pt = dtEt
�
� exp [�x+ �"t+1] + �

2 exp (2�x+ �"t+1 + �"t+2) + :::
�

(33)

p�t = dt
�
� exp [�x+ �"t+1] + �

2 exp (2�x+ �"t+1 + �"t+2) + :::
�
: (34)

Since Et exp (�"t+j) = exp
�
�2�2"=2

�
for j = 1; 2; :::; the equilibrium price-dividend ratio pt=dt

is constant in this case. If we neglect the higher-order terms in the above expression for p�t ,

13



then the corresponding log price changes can be compared directly as follows

� log (pt) = log (dt)� log (dt�1)
= x+ "t (35)

� log (p�t ) ' log (dt)� log (dt�1) + �"t+1 � �"t
' � log (pt) + (1� �) "t+1 � (1� �) "t: (36)

where I have made use of the de�nition � � 1� �: The above expressions imply

V ar [� log (p�t )] ' V ar [� log (pt)] + 2 (1� �)2 �2" � 2 (1� �)Cov [� log (pt) ; "t]| {z }
�2"

;

' V ar [� log (pt)]� 2 (1� �)��2"; when � = � = 0: (37)

The two variance statistics are equal when � = 1: When � < 1; the covariance term

involving the current innovation "t serves to shrink the magnitude of V ar [� log (p�t )] relative

to V ar [� log (pt)] ; whereas the variance of the future innovation "t+1 always serves to magnify

V ar [� log (p�t )] relative to V ar [� log (pt)] : The negative in�uence of "t dominates the positive

in�uence of "t+1 when � < 1: The di¤erential impact of current versus future innovations is

similar to the e¤ect noted earlier in describing the intuition for Proposition 1. Recall that the

above approximation neglects the variance impact of the higher order terms which involve the

future innovations "t+2; "t+3; ::. etc. But when � < 1, the stochastic discount factors applied

to these future innovations decay gradually in equation (34). By taking the log-di¤erence of

p�t in equation (34) to obtain � log (p
�
t ) ; the terms involving the future innovations tend to

cancel out, rendering the above approximation valid.

5 Quantitative Analysis

Figure 1 plots the volatility (standard deviation in percent) of � log (pt) and � log (p�t ) as a

function of the risk aversion coe¢ cient �: For each value of �; I calibrate the subjective time

discount factor � so as to achieve E (yt) = 26:6 in the model, consistent with the average

value of the price-dividend ratio for the S&P 500 stock index going back to 1871.9 When �

exceeds a value of about 2.8, achieving the target value of E (yt) in the model requires a value

9Cochrane (1992) employs a similar calibration procedure. For a given discount factor, he chooses the risk
coe¢ cient � to match the mean price-dividend ratio in the data.
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of � that is greater than unity. Nevertheless, for all values of � examined, the mean value of

the stochastic discount factor E
�
� (ct+1=ct)

��� remains below unity.10
Given that the Lucas model implies ct = dt in equilibrium, I calibrate the stochastic

process for xt in equation (14) using U.S. annual data for the growth of real consumption

from 1890 to 2004.11 Given a value for �; the remaining parameters are set to match the

mean, standard deviation, and autocorrelation of consumption growth in the data using the

moment equations (15) through (17). For the case of a stochastic trend in log dividends

(� = 0), the parameter values are x = 0:0206; �" = 0:0354; and � = �0:1: For the case of a
deterministic trend (� = 1), the parameter values are x = 0:0206; �" = 0:0338; and � = 0:8:

The top panel in Figure 1 shows the results for a stochastic trend in log dividends (� = 0)

while the bottom panel shows the results for a deterministic trend (� = 1). In each panel,

the volatility of � log (pt) (solid blue line) is compared to the volatility of � log (p�t ) (dotted

red line). The solid green line at 18 percent marks the standard deviation of changes in the

logarithm of the real S&P 500 stock price index going back to 1871.

Both panels illustrate the reversal in the price-change variance inequality as the risk aver-

sion coe¢ cient crosses unity. These are the same basic patterns described in Proposition 4

for the special case of iid dividend growth. Numerical experiments with the model con�rm

that a single variance inequality reversal occurs at � = 1 when the parameters of the dividend

growth process are set reasonably close to those implied by the U.S. data calibration. It turns

out, however, that if dividend growth exhibits strong positive serial correlation (in contrast to

U.S. data), then a second variance inequality reversal occurs at higher levels of risk aversion.

For example, when � = 0 and � & 0:6; a second variance inequality reversal occurs as �

increases above unity, yielding the result V ar [� log (pt)] > V ar [� log (p�t )] : The value of �

at the second reversal depends on the value of �: Given the intuition from the risk neutral

case, it is perhaps not surprising that the dividend growth AR(1) parameter can in�uence the

direction of the variance inequality in the model with risk aversion.12

The top panel (� = 0) shows that the volatility of � log (pt) in the model remains well

below the U.S. data value of 18 percent for plausible values of risk aversion. This is because

the calibration for this case implies � ' � = 0 such that consumption growth is close to iid,
resulting in a nearly constant price-dividend ratio yt in equilibrium. In contrast, the � = 1 case

10Kocherlakota (1990) shows that a well-de�ned competitive equilibrium with positive interest rates can
still exist in growth economies when � > 1.
11Long-run annual data for U.S. real consumption, real dividends, and real stock prices are from Robert

Shiller�s website: http://www.econ.yale.edu/~shiller/.
12A similar reversal pattern occurs when plotting the variance of log returns, as shown by Lansing and

LeRoy (2010).
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shown in the bottom panel generates much more volatility in� log (pt) and can actually match

the U.S. data value when the risk aversion coe¢ cient � is around 5.5. A deterministic trend

in dividends generates much more volatility in the equilibrium price-dividend ratio because

the representative investor knows that a high current realization of dividends will be reversed

in the future as dividends return to the trend. It should be noted, however, that the � = 1

case cannot be calibrated to match the moments of U.S. consumption growth after World

War II because observed consumption growth exhibits positive autocorrelation, whereas the

� = 1 case admits only negative autocorrelation in growth rates.13

6 Conclusion

This paper demonstrates that the direction of a theoretical variance inequality involving the

change in equilibrium stock prices (or log stock prices) relative to the change in their perfect

foresight counterpart can be reversed, depending on the values of some key parameters of

the underlying asset pricing model. In the risk neutral case, the direction of the theoretical

variance inequality depends on the values assigned to the dividend AR(1) parameter � and

the investor�s subjective time discount factor �: In the model with risk aversion, the direction

of the variance inequality depends on the value assigned to the coe¢ cient of relative risk

aversion �: Overall, the results demonstrate that a generalized version of the present-value

model does not impose theoretical bounds on price-change volatility.

13From equation (17) with � = 1 we have Corr (xt; xt�1) = � (1� �) =2:
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A Appendix: Fundamental Equilibrium Solution

A.1 Proof of Proposition 2

Iterating ahead the conjectured law of motion for zt and taking the conditional expectation

yields

Etzt+1 = exp
�
a0 + �a1 (xt � x)� a1� "t + 1

2
(a1 + a2)

2 �2"
�
: (A.1)

Substituting the above expression into the �rst order condition (22) and then taking logarithms

yields

log (zt) = F (xt; "t) = log (�) + �xt

+ log
�
exp

�
a0 + �a1 (xt � x)� a1� "t + 1

2
(a1 + a2)

2 �2"
�
+ 1
	
;

' a0 + a1 (xt � x) + a2 "t; (A.2)

where the Taylor-series coe¢ cients a0 � E [log (zt)] ; a1; and a2 are given by

a0 = F (x; 0) = log (�) + � x+ log
�
exp

�
a0 +

1
2
(a1 + a2)

2 �2"
�
+ 1
	

(A.3)

a1 =
@F

@xt

����
x; 0

= � +
�a1 exp

�
a0 +

1
2
(a1 + a2)

2 �2"
�

exp
�
a0 +

1
2
(a1 + a2)

2 �2"
�
+ 1

: (A.4)

a2 =
@F

@"t

����
x; 0

=
�a1� exp

�
a0 +

1
2
(a1 + a2)

2 �2"
�

exp
�
a0 +

1
2
(a1 + a2)

2 �2"
�
+ 1

(A.5)

Solving equation (A.3) for a0 yields

a0 = log

(
� exp (� x)

1� � exp
�
� x+ 1

2
(a1 + a2)

2 �2"
�) ; (A.6)

which can be substituted into equations (A.4) and (A.5) to yield the following system of

nonlinear equations that determines a1 and a2:

a1 = � + �a1� exp
�
� x+ 1

2
(a1 + a2)

2 �2"
�

(A.7)

a2 = �a1�� exp
�
� x+ 1

2
(a1 + a2)

2 �2"
�

(A.8)
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Solving equation (A.7) for a1 yields the expression shown in Proposition 1. When � 6= 0; the
above equations can be combined to obtain the following explicit expression for a2

a2 = � (� � a1) =�; (� 6= 0) ; (A.9)

which can be substituted back into equation (A.7). There are two solutions, but only one

solution satis�es the condition � exp
�
� x+ 1

2
(a1 + a2)

2 �2"
�
< 1: �

A.2 Asset Pricing Moments

This section brie�y outlines the derivation of equations (24) through (27). Equation (24)

follows directly from equation (23) by taking the unconditional expectation of log (yt) : We

then have

log (yt)� E [log (yt)] = a1� (xt � x) � a1� "t; (A.10)

which in turn implies

V ar [log (yt)] = (a1�)
2 V ar (xt) + (a1�)

2 �2" � 2 (a1)
2 � � Cov (xt; "t)| {z }

=�2"

: (A.11)

The above expression can be simpli�ed to obtain equation (25).

Taking the unconditional expectation of the log price change (20) yields equation (26).

Substituting for yt and yt�1 from the fundamental equilibrium solution (23) yields

� log (pt)� E [� log (pt)] = (1 + a1�) (xt � x) � a1� (xt�1 � x)

�a1� "t + a1� "t�1: (A.12)

Taking the square of the above expression and then taking the unconditional expectation

yields equation (27).

B Appendix: Perfect Foresight Solution

B.1 Log-linearized Law of Motion

Taking logarithms of the nonlinear law of motion (19) yields

log (y�t ) = G
�
xt+1; log

�
y�t+1

��
= log (�) + �xt+1 + log

�
exp

�
log
�
y�t+1

��
+ 1
	

' b0 + b1 (xt+1 � x) + b2
�
log
�
y�t+1

�
� b0

�
; (B.1)
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where the Taylor-series coe¢ cients b0 � E [log (y�t )] ; b1; and b2 are given by

b0 = G (x; b0) = log (�) + � x+ log [exp (b0) + 1] ; (B.2)

b1 =
@G

@xt

����
x; b0

= �; (B.3)

b2 =
@G

@ log
�
y�t+1

������
x; b0

=
exp (b0)

exp (b0) + 1
: (B.4)

Solving equation (B.2) for b0 yields

b0 = log

�
� exp (� x)

1� � exp (� x)

�
; (B.5)

which can be substituted into equation (B.4) to obtain b2 = � exp (� x) :

B.2 Asset Pricing Moments

This section brie�y outlines the derivation of equations (29) through (32). Equation (29)

follows directly from equation (B.5), where b0 � E [log (y�t )] : From equation (B.1), we then

have

log (y�t )� E [log (y�t )] = � (xt+1 � x) + � exp (� x)
�
log
�
y�t+1

�
� E [log (y�t )]

	
; (B.6)

which in turn implies

V ar [log (y�t )] =
�2V ar (xt) + 2�� exp (� x) Cov [log (y

�
t ) ; xt]

1� �2 exp (2� x)
: (B.7)

The next step is to compute Cov [log (y�t ) ; xt] which appears in equation (B.7). Starting

from equation (B.6), we have

Cov [log (y�t ) ; xt] = �Cov (xt; xt�1) + � exp (� x)Cov
�
log
�
y�t+1

�
; xt
�| {z }

=Cov[log(y�t ); xt�1]

; (B.8)

Cov [log (y�t ) ; xt�1] = � Cov (xt; xt�2)| {z }
=�Cov(xt; xt�1)

+� exp (� x)Cov
�
log
�
y�t+1

�
; xt�1

�| {z }
=Cov[log(y�t ); xt�2]

; (B.9)
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where we use repeated substitution to eliminate Cov [log (y�t ) ; xt�j] for j = 1; 2; ::: Applying

a transversality condition yields

Cov [log (y�t ) ; xt] = �Cov (xt; xt�1)

1X
j=0

[�� exp (� x)]j

=
�Cov (xt; xt�1)

1� �� exp (� x) : (B.10)

where the in�nite sum converges provided that �� exp (� x) < 1: Substituting equation (B.11)

into equation (B.7), together with Cov (xt; xt�1) = Corr (xt; xt�1)� V ar (xt) and then sim-
plifying yields equation (30).

Taking the unconditional expectation of the perfect foresight log price change (21) yields

equation (31). Substituting for y�t�1 using the approximate law of motion (B.6) yields

� log (p�t )� E [� log (p�t )] = � (xt � x) + [1� � exp (� x)] flog (y�t )� E [log (y�t )]g :
(B.11)

Taking the square of the above expression, followed by the unconditional expectation and

then once again making use of equation (B.10) yields equation (32).
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Figure 1: Variance inequality reversal occurs at � = 1 for both dividend speci�cations.
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