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Abstract

Previous research has emphasized the portfolio balance effects of Federal Reserve bond

purchases, in which a reduced bond supply lowers term premia. In contrast, we find

that such purchases have important signaling effects that lower expected future short-

term interest rates. Our evidence comes from a model-free analysis and from dynamic

term structure models that decompose declines in yields following Fed announcements

into changes in risk premia and expected short rates. To overcome problems in measur-

ing term premia, we consider bias-corrected model estimation and restricted risk price

estimation. We also characterize the estimation uncertainty regarding the relative im-

portance of the signaling and portfolio balance channels.
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1 Introduction

During the recent financial crisis and ensuing deep recession, the Federal Reserve reduced its

target for the federal funds rate—the traditional tool of U.S. monetary policy—essentially to

the lower bound of zero. In the face of deteriorating economic conditions and with no scope

for further cuts in short-term interest rates, the Fed initiated an unprecedented expansion of

its balance sheet by purchasing large amounts of Treasury debt and federal agency securities

of medium and long maturities.1 Other central banks in comparable circumstances have taken

broadly similar actions. Notably, the Bank of England also purchased longer-term debt during

the financial crisis, and the Bank of Japan, when confronted over a decade ago with stagnation

and near-zero short-term rates, purchased debt securities in its program of Quantitative Easing

(QE).2

The goal of the Fed’s large-scale asset purchases (LSAPs) of bonds was to put downward

pressure on longer-term yields in order to ease financial conditions and support economic

growth. Using a variety of approaches, several studies have concluded that the Fed’s LSAP

program was effective in lowering various interest rates below levels that otherwise would have

prevailed (D’Amico and King, 2010; Gagnon et al., 2011; Hamilton and Wu, 2012a; Krishna-

murthy and Vissing-Jorgensen, 2011). However, researchers do not yet fully understand the

underlying mechanism and causes for the declines in long-term interest rates. Based on the

usual decomposition of yields on safe long-term government bonds, there are two potential

elements that central bank bond purchases could affect: the term premium and the average

level of short-term interest rates over the maturity of the bond, also known as the risk-neutral

rate. The term premium could have fallen because the Fed’s LSAPs reduced the amount of

longer-term bonds in private-sector portfolios—which is loosely referred to as the portfolio

balance channel. Alternatively, the LSAP announcements could have led market participants

to revise down their expectations for future short-term interest rates, lengthening, for exam-

ple, the expected period of a near-zero federal funds rate target. Such a signaling channel

for LSAPs would reduce yields by lowering the average expected short-rate (or risk-neutral)

component of long-term rates.

Much discussion of the financial market effects of the Fed’s bond purchases treats the

portfolio balance channel as the key channel for that impact. For example, Chairman Ben

Bernanke (2010) described the effects of the Fed’s bond purchases in this way:

1The federal agency securities were debt or mortgage-backed securities that had explicit or implicit credit
protection from the U.S. government.

2The Fed’s actions led to a larger central bank balance sheet and higher bank reserves much like the Bank
of Japan’s QE; however, the Fed’s purchases were focused on longer-maturity assets.
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I see the evidence as most favorable to the view that such purchases work primarily

through the so-called portfolio balance channel, which holds that once short-term

interest rates have reached zero, the Federal Reserve’s purchases of longer-term

securities affect financial conditions by changing the quantity and mix of financial

assets held by the public. Specifically, the Fed’s strategy relies on the presumption

that different financial assets are not perfect substitutes in investors’ portfolios, so

that changes in the net supply of an asset available to investors affect its yield and

those of broadly similar assets.

Along with central bank policy makers, researchers have also favored the portfolio balance

channel in accounting for the effects of LSAPs. The most influential evidence supporting a

portfolio balance channel has come from event studies that examine changes in asset prices

following announcements of central bank bond purchases. Notably, Gagnon et al. (2011),

henceforth GRRS, examine changes in the ten-year Treasury yield and Treasury yield term

premium.3 They document that after eight key LSAP announcements, the ten-year yield fell

by a total of 91 basis points (bps), while their measure of the ten-year term premium, which is

based on the model of Kim and Wright (2005), fell by 71 bps. Based largely on this evidence,

the authors argue that the Fed’s LSAPs primarily lowered long-term rates through a portfolio

balance channel that reduced term premia.

In this paper, we reexamine the notion that the signaling of lower future policy rates

through LSAP announcements played a negligible role in lowering Treasury yields. First, we

argue that the estimated contribution of policy expectations to decreases in long-term yield

is likely a conservative measure of the importance of the signaling channel. For example,

conventional monetary policy actions that signal lower future short rates tend to lower term

premia as well. Therefore, assuming that all changes in term premia can be attributed to the

portfolio balance channel is likely to underestimated the signaling effects of LSAPs.

We also provide model-free evidence suggesting that the Fed’s actions lowered yields to

a considerable extent by changing policy expectations about the future path of the federal

funds rate. Under a market segmentation assumption that LSAPs primarily affected security-

specific term premia in Treasury markets, changes after LSAP announcements in spreads

between Treasury yields and money market and swap rates of comparable maturity illuminate

the contribution of the portfolio balance channel. Joyce et al. (2011), for example, argue that

increases in spreads between U.K. Treasury and swap yields following Bank of England QE

announcements support a portfolio balance channel. In contrast, in the United States, we find

3Other event studies include Joyce et al. (2011), Neely (2010), Krishnamurthy and Vissing-Jorgensen (2011),
and Swanson (2011).
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that a large portion of the observed yield changes was also reflected in lower money market

and swap rates. This suggests that the expectations component may make an important

contribution to the declines in yields.

Our main contribution is to provide new model-based evidence that addresses two key

statistical problems in decomposing the yield curve in previous studies—namely, small-sample

bias and statistical uncertainty. We reconsider the GRRS results that are based on the Kim-

Wright decompositions of yields into term premia and risk-neutral rates using a conventional

arbitrage-free dynamic term structure model (DTSM). Although DTSMs are the workhorse

model in empirical fixed income finance, they have been very difficult to estimate and are

plagued by biased coefficient estimates as described by previous studies (e.g., Duffee and

Stanton, 2004; Kim and Orphanides, 2005; and Bauer et al., forthcoming, henceforth BRW).

Therefore, to get better measures of the term premium, we examine two alternative estimates

of the DTSM. The first is obtained from a novel estimation procedure—following BRW—

that directly adjusts for the small-sample bias in estimation of a maximally flexible DTSM.

Since conventional biased DTSM estimates—like the Kim-Wright model that GRRS rely on—

overstate the speed of mean reversion of the short rate, the model-implied forecast of the short

rate is too close to the unconditional mean. Consequently, too much of the variation in forward

rates is attributed to the term premium component. Intuitively then, conventional biased

DTSM estimates understate the importance of the signaling channel. Indeed, we find that an

LSAP event study using term premia obtained from DTSM estimates with reduced bias finds

a larger role for the signaling channel. Our second estimation approach imposes restrictions on

the risk pricing as in Bauer (2011). Intuitively, under restricted risk pricing, the cross-sectional

interest rate dynamics, which are estimated very precisely, are being used to pin down the

time series parameters. This reduces both small-sample bias and statistical uncertainty, so that

short rate forecasts and term premium estimates are more reliable (Cochrane and Piazzesi,

2008; Joslin et al., 2010; Bauer, 2011). Here, too, we find a more substantial role for the

signaling channel than is commonly acknowledged.

Importantly, we quantify the statistical uncertainty surrounding the DTSM-based esti-

mates of the relative contributions of the portfolio balance and signaling channels. In par-

ticular, we take into account the parameter uncertainty that underlies estimates of the term

premium and produce confidence intervals that reflect this estimation uncertainty. Our confi-

dence intervals reveal that with a largely unrestricted DTSM, as is common in the literature,

definitive conclusions about the relative importance of term premia and expectations effects

of LSAPs are difficult. For the results based on unrestricted DTSMs, both of the extreme

views of “only term premia” and “only expectations” effects are statistically plausible. How-
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ever, under restrictions on the risk pricing in the DTSM, statistical uncertainty is reduced.

Consequently, our decompositions of the LSAP effects using DTSM estimates under restricted

risk prices not only point to a larger role of the signaling channel, but also allow much more

precise inference about the respective contribution of signaling and portfolio balance. Taken

together, our results indicate that an important effect of the LSAP announcements was to

lower the market’s expectation of the future policy path, or, equivalently, to lengthen the

expected duration of near-zero policy rates.

Our paper is most closely related to GRRS, since we also use a DTSM to decompose

long-term Treasury yields in the context of an event study. Our results are not only quanti-

tatively but also qualitatively different in that we show that the role of the signaling channel

is not negligible, and in fact economically and statistically significant. The methodological

differences that lead us to this conclusion are the use of alternative empirical DTSMs and,

importantly, the construction of interval estimates. Another closely related paper is Krish-

namurthy and Vissing-Jorgensen (2011, henceforth KVJ), which argues based on changes in

money market futures and other model-free evidence, that signaling likely was an important

channel through which LSAPs can affect safe and risky assets. Our new model-free results

point to the same conclusion; furthermore, because rather strong auxiliary assumptions are

needed for disentangling different LSAP channels without a formal model, we go beyond this

model-free analysis.4

The paper is structured as follows. In Section 2, we describe the portfolio balance and

signaling channels for LSAP effects on yields and discuss the event study methodology that

we use to estimate the effects of the LSAPs. Section 3 presents model-free evidence on the

importance of the signaling and portfolio balance channels. Section 4 describes the econometric

problems with existing term premium estimates and outlines our two approaches for obtaining

more appropriate decompositions of long rates. In Section 5, we present our model-based event

study results. Section 6 concludes.

2 Identifying portfolio balance and signaling channels

Here we describe the two key channels through which LSAPs can affect interest rates and

discuss how their respective importance can be quantified, albeit imperfectly, through an

event study methodology.

4Christensen and Rudebusch (2012) also provide a model-based event study of the Fed’s LSAPs. We differ
from their approach in that we use a new and different set of DTSM specifications, and importantly provide
interval estimates for changes in policy expectations and term premia.
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2.1 Portfolio balance channel

In the standard asset-pricing model, changes in the supply of long-term bonds do not affect

bond prices. In particular, in a pricing model without frictions, bond premia are determined by

the risk characteristics of bonds and the risk aversion of investors, both of which are unaffected

by the quantity of bonds available to investors. In contrast, to explain the response of bond

yields to central bank purchases of bonds, researchers have focused their attention exactly

on the effect that a reduction in bond supply has on the risk premium that investors require

for holding those securities. The key avenue proposed for this effect is the portfolio balance

channel.5 As described by GRRS:

By purchasing a particular asset, a central bank reduces the amount of the security

that the private sector holds, displacing some investors and reducing the holdings

of others, while simultaneously increasing the amount of short-term, risk-free bank

reserves held by the private sector. In order for investors to be willing to make

those adjustments, the expected return on the purchased security has to fall. (p. 6)

The crucial departure from a frictionless model for the operation of a portfolio balance chan-

nel is that bonds of different maturities are not perfect substitutes. Instead, risk-averse ar-

bitrageurs are limited in the market and there are “preferred-habitat” investors who have

maturity-specific bond demands.6 In this setting, the maturity structure of outstanding debt

can affect term premia.

The precise portfolio balance effect of purchases on term premia in different markets will

vary depending on the interconnectedness of markets. To be concrete, consider the decompo-

sition of the ten-year Treasury yield, y10t , into a risk-neutral component,7 Y RN10
t , and a term

premium, Y TP 10
t :

y10t = Y RN10
t + Y TP 10

t (1)

= Y RN10
t + Y TP 10

risk,t + Y TP 10
instrument,t. (2)

5Like most of the literature, we focus on the portfolio balance channel to account for term premia effects of
LSAPs. Some recent papers have also discussed a liquidity/market functioning channel through which LSAPs
could affect bond premia, including, for example, GRRS, Krishnamurthy and Vissing-Jorgensen (2011), and
Joyce et al. (2010). This channel would seem most relevant for limited periods of market dislocation.

6Recent work on the theoretical underpinnings of the portfolio balance channel includes Vayanos and Vila
(2009) and Hamilton and Wu (2012a).

7The risk-neutral yield equals the expected average risk-free rate over the lifetime of the bond under the
real-world, or P, probability measure (plus a negligible convexity term). The risk-neutral yield is the interest
rate that would prevail if all investors were risk neutral. It is not calculated under the risk-neutral, or Q,
probability measure.
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The term premium is further decomposed in equation (2) into a maturity-specific term pre-

mium, Y TP 10
risk,t, that reflects the pricing of interest risk and an idiosyncratic instrument-

specific term premium, Y TP 10
instrument,t, that captures, for example, demand and supply im-

balances for that particular security.8

Some researchers have focused on a market segmentation version of the portfolio balance

channel (Joyce et al., 2011). Market segmentation between the government bond markets and

other fixed income markets could reflect the specific needs of pension funds, other institutional

investors, and foreign central banks to hold safe government bonds, and arbitrageurs that are

institutionally constrained or simply too small in comparison to such huge demand flows.

Changes in the bond supply then would have direct price effects through Y TP 10
instrument,t on

the securities that were purchased. Because of market segmentation, the change in the price

of a given security would depend on how much of that security was purchased. The effects

through this type of portfolio balance channel on securities that were not purchased would be

small. Notably, for the U.K., Joyce et al. (2011) find that the price effects on those securities

purchased by the Bank of England were much larger than for other securities that were not

purchased (e.g., swap contracts), which points to significant market segmentation.

Alternatively, markets for securities may be somewhat connected because of the presence

of arbitrageurs. For example, GRRS have emphasized the case of investors that prefer a

specific amount of duration risk along with a lack of maturity-indifferent arbitrageurs with

sufficiently deep pockets. In this case, changes in the bond supply affect the aggregate amount

of duration available in the market and the pricing of the associated interest rate risk term

premia, Y TP 10
risk,t. In this duration removal version of the portfolio balance channel, central

bank purchases of even a few specific bonds can affect the risk pricing and term premia for a

wide range of securities. Notably, in the absence of further frictions, all fixed income securities

(e.g., swaps and Treasuries) of the same duration would be similarly affected. Furthermore, if

the Fed were to remove a given amount of duration risk from the market by purchasing ten-

year securities or by purchasing (a smaller amount of) 30-year securities, the effect through

the duration removal version of the portfolio balance channel would be the same.

Thus, there are two ways in which bond purchases can affect term premia in Treasury yields:

First, if markets for Treasuries and other assets (including Treasuries of varying maturity)

are segmented, bond purchases can reduce Treasury-specific (or maturity-specific) premia.

Second, by lowering aggregate duration risk, purchases can reduce term premia in all fixed-

income securities.

8Also, any safety or liquidity premium, as discussed by KVJ, would be in this final term.
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2.2 Signaling channel

The portfolio balance channel, which emphasizes the role of quantities of securities in asset

pricing, runs counter to at least the past half century of mainstream frictionless finance theory.

That theory, which is based on the presence of pervasive, deep-pocketed arbitrageurs, has no

role for financial market segmentation or movements in idiosyncratic, security-specific term

premia like Y TP 10
instrument,t. Moreover, the duration removal version of the portfolio balance

channel and its associated shifts in Y TP 10
risk,t would also be ignored in conventional models. In

particular, the scale of the Fed’s LSAP program—$1.725 trillion of debt securities—is arguably

small relative to the size of bond portfolios. The U.S. fixed income market is on the order of

$30 trillion, and the global bond market—arguably, the relevant one—is several times larger.

In addition, other assets, such as equities, also bear duration risk.

Instead, the traditional finance view of the Fed’s actions would focus on the new infor-

mation provided to investors about the future path of short-term interest rates, that is, the

potential signaling channel for central bank bond purchases to affect bond yields by changing

the risk-neutral component of interest rates. In general, LSAP announcements may signal to

market participants that the central bank has changed its views on current or future economic

conditions. Alternatively, they may be thought to convey information about changes in the

monetary policy reaction function or policy objectives, such as the inflation target. In such

cases, investors may alter their expectations of the future path of the policy rate, perhaps by

lengthening the expected period of near-zero short-term interest rates. According to such a

signaling channel, announcements of LSAPs would lower the expectations component of long-

term yields. In particular, throughout 2009 and 2010, investors were wondering how long the

Fed would leave its policy interest rate unchanged at essentially zero. The language in the var-

ious FOMC statements in 2009 that economic conditions were ”likely to warrant exceptionally

low levels of the federal funds rate for an extended period,” provided some guidance, but the

zero bound was terra incognita. In such a situation, the Fed’s unprecedented announcements

of asset purchases with the goal of putting further downward pressure on yields might well

have had an important signaling component, in the sense of conveying to market participants

how bad the economic situation really was, and that extraordinarily easy monetary policy was

going to remain in place for some time.

2.3 Event study methodology

The few studies to consider the relative contributions of the portfolio balance and signaling

channels, specifically GRRS and KVJ for the U.S. and Joyce et al. (2011) for the U.K., have
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used an event study methodology.9 This methodology focuses on changes in asset prices over

tight windows around discrete events. We also employ such a methodology to assess the effects

of LSAPs on fixed income markets.

In the portfolio balance channel described above, it is the quantity of asset purchases that

affects prices; however, forward-looking investors will in fact react to news of future purchases.

Therefore, because changes in the expected maturity structure of outstanding bonds are priced

in immediately, credible announcements of future LSAPs can have the immediate effect of

lowering the term premium component of long-term yields. In our event study, we focus on

the eight LSAP announcements that GRRS include in their baseline event set, which are

described in Table 1.

In calculating the yield responses to these announcements, there are two competing re-

quirements for the size of the event window so that price changes reflect the effects of the

announcements. First, the window should be large enough to encompass all of an announce-

ment’s effects. Second, the window should be short enough to exclude other events that might

significantly affect asset prices. Following GRRS, we use one-day changes in market rates to

estimate responses to the Fed’s LSAP announcements.10 A one-day window appears to be a

workable compromise. First, for large, highly liquid markets such as the Treasury bond mar-

ket, and under the assumption of rational expectations, new information in the announcement

about economic fundamentals should quickly be reflected in asset prices. Second, the LSAP

announcements appear to be the dominant sources of news for fixed income markets on the

days under consideration. On these announcement days, the majority of bond and money

market movements appeared to be due to new information that markets received about the

Fed’s LSAP program.

On two of the LSAP event dates, the FOMC press release also contained direct statements

about the path for the federal funds rate. On December 16, 2008, the FOMC decreased the

target for the policy rate to a range from 0 to 1/4 percent, and indicated that it expected

the target to remain there “for some time.” On March 18, 2009, the FOMC changed the

language about the expected duration of a near-zero policy rate to “for an extended period.”

Hence there were some conventional monetary policy actions, taking place at the same time as

LSAP announcements. Our analysis will not be able to distinguish this direct signaling from

the signaling effects through the LSAP announcements themselves. However, leaving out these

9GRRS also provide evidence on the portfolio balance channel from monthly time-series regressions of the
Kim-Wright term premium on variables capturing macroeconomic conditions and aggregate uncertainty, as
well as a measure of the supply of long-term Treasury securities. However, our experience with these regressions
suggests the results are sensitive to specification (see also Rudebusch, 2007).

10Our results are robust to using the two-day change following announcements.
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two dates from our event study analysis in fact increases the estimated relative contribution

of the expectations component to the yield declines (see discussion below of Tables 6 and 7).

Hence our empirical analysis is robust to this caveat.

Of course, if news about LSAPs is leaked or inferred prior to the official announcements,

then the event study will underestimate the full effect of the LSAPs. The inability to ac-

count for important pre-announcement LSAP news makes us wary of analyzing later LSAP

announcements after the eight examined. For example, expectations of a second round of asset

purchases (QE2) were incrementally formed before official confirmation in fall 2010, which is a

possible reason for why studies like KVJ find small effects on financial markets in their event

study of QE2. For the events we consider, one can argue that markets mostly did not expect

the Fed’s purchases ahead of the announcements.11

2.4 Changes in risk-neutral rates and the role of signaling

How can an event study can distinguish between the portfolio balance and signaling channels?

A simple conventional view would associate these two channels, respectively, with changes

in term premia and risk neutral rates following LSAP announcements. However, there is an

important complication in this empirical assessment: As a theoretical matter, the split between

the portfolio balance and signaling channels is not the same as the decomposition of the long

rate into expectations and risk premium components. In fact, because of second-round effects

of the portfolio balance and signaling channels, estimated changes of risk-neutral rates are

likely a lower bound for the contribution of signaling to changes in long-term interest rates.

To illustrate the mapping between the two channels and the long rate decomposition, first

consider a scenario with just a portfolio balance channel and no signaling. In this case, LSAPs

reduce term premia, which would act to boost future economic growth.12 However, the im-

proved economic outlook will also reduce the amount of conventional monetary policy stimulus

needed because to achieve the optimal stance of monetary policy, the more policymakers add

of one type of stimulus, the less they need to add of another. Thus, the operation of a portfolio

balance channel would cause LSAPs to increase risk-neutral rates as well as reducing the term

premium. In this case, we would measure higher policy expectations despite the absence of

any direct signaling effects. The changes in risk-neutral rates following LSAP announcements

will include both the direct signaling effects (presumably negative), as well as the indirect

portfolio balance effects on future policy expectations (positive). Hence, this would mean that

11On the issue of the surprise component of monetary policy announcements during the recent LSAP period
see Wright (2011) and Rosa (2012).

12On this connection, see Rudebusch et al. (2007).
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the true signaling effects on risk-neutral rates are likely larger than the estimated decreases

in risk-neutral rates.

Conversely, consider the case with no portfolio balance effects but a signaling channel that

operates because LSAP announcements contain news about easier monetary policy in the

future. This news could take various forms, such as, (1) a longer period of near-zero policy

rate, (2) lower risks around a little-changed but more certain policy path, (3) higher medium-

term inflation and potentially lower real short-term interest rates, and (4) improved prospects

for real activity, including diminished prospects for Depression-like outcomes. Taken together,

it seems likely that this news, and the demonstration of the Fed’s commitment to act, would

reduce the likelihood of future large drops in asset prices and hence lower the risk premia

on financial assets. Indeed, although the effects of easier expected monetary policy on term

premia could in general go either way, during the previous Fed easing cycle from 2001 to 2003,

lower risk-neutral rates were accompanied by lower term premia. Table 2 shows changes in the

actual, fitted, and risk-neutral ten-year yield, and in the corresponding yield term premium

(according to the Kim-Wright model) for those days with FOMC announcements during 2001

to 2003 when the risk-neutral rate decreased.13 That is, on days on which the average expected

future policy rate was revised downward by market participants—comparable to the potential

signaling effects of LSAP announcements—the term premium usually fell as well. Over all

such days, the cumulative change in the term premium was -21 bps, which has the same sign

and more than half the magnitude of the cumulative change in the risk-neutral yield (-35 bps).

Thus, during this episode, easing actions that lowered policy expectations at the same time

lowered term premia. Arguably, the signaling effect of LSAPs on term premia would be even

larger in the recent episode given the potential curtailment of extreme downside risk.

Both of these second-round effects work in the same direction of making the decomposition

into changes in risk-neutral rates and term premia a downwardly biased estimate for the

importance of the signaling channel. Therefore, the event study results should be considered

conservative ones, with the true signaling effects likely larger than the estimated decreases in

risk-neutral rates.

3 Model-free evidence

One possible approach to evaluate how an LSAP program affected financial markets is to

consider model-free event-study evidence. A prominent example is the study by KVJ which

13The data for actual (fitted) yields and the Kim-Wright decomposition of yields are both available at
http://www.federalreserve.gov/econresdata/researchdata.htm (accessed August 30, 2011). Similar qualitative
conclusions are obtained when we use our preferred term premium measures described later.
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attempts to disentangle different channels of LSAPs exclusively by studying different market

rates, without using a model. In this section we do the same, focusing on just the portfolio

balance and signaling channels. We use interest rate data on money market futures, overnight

index swaps (OIS), and Treasury securities.

What can we learn about changes in policy expectations and risk premia from considering

such interest rates without a formal model? Of course, these interest rates also contain a

term premium and thus do not purely reflect the market’s expectations of future short rates.

Hence we need auxiliary assumptions, and there are two kinds of plausible assumptions in

this context. First, at short maturities, the term premium is likely small, because short-term

investments do not have much duration risk. Thus, changes in near-term rates are plausibly

driven by the expectations component. This argument can be used to interpret changes at the

very short end of the term structure of interest rates, such as movements in near-term money

market futures rates (see below) or in short-term yields (see, for example, GRRS, p. 24).

Second, we can make assumptions related to market segmentation, which we now discuss in

more detail.

3.1 Market segmentation

If markets are segmented to the extent that the portfolio balance effects of LSAPs operate

mostly on instrument-specific premia, Y TP n
instrument,t, then the responses of futures and OIS

rates mainly reflect the signaling effects of the announcements. Specifically, changes in the

spreads between these interest rates and the rates on the purchased securities reflect portfolio

balance effects on yield-specific term premia. For example, Joyce et al. (2011) assume that

the Bank of England’s asset purchases only affect the term premium specific to gilts and

neither the instrument-specific term premium in OIS rates (which were not part of the asset

purchases) nor the general level of the term premium, Y TP n
risk,t. This market segmentation

assumption enables them to draw inferences about the importance of signaling and portfolio

balance purely from observed interest rates in OIS and bond markets: Movements in OIS rates

reflect signaling effects, and movements in yield-OIS spreads reflect portfolio balance effects.

They find that the responses of spreads are large, accounting for the majority of the responses

of yields. This points to an important role for the portfolio balance channel in the U.K. It

also indicates that the market segmentation assumption is plausible in their context, because

a duration-removal story could not explain the differential effects on rates with similar risk

characteristics.

Here we produce evidence similar to that of Joyce et al. (2011) for the U.S., considering

both money market futures and OIS rates. We do not claim that the market segmentation as-
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sumption is entirely plausible for the Treasury and OIS/futures markets, since these securities

are close substitutes. To a reader that questions the effects on duration risk compensation and

prefers the market segmentation story, the results below will be evidence about the importance

of signaling and portfolio balance effects. More generally though, without the identifying as-

sumption that changes in Y TP n
risk,t are negligible, the changes in the spreads reflect changes

in both Y RNn
t and Y TP n

risk,t, and thus constitute an upper bound for the magnitude of shifts

in policy expectations.

3.2 Money market futures

Money market futures are bets on the future value of a short-term interest rate, and they

are used by policymakers, academics, and practitioners to construct implied paths for future

policy rates. Federal funds futures settle based on the federal funds rate, and contracts for

maturities out to about six months are highly liquid. Eurodollar futures pay off according

to the three-month London interbank offered rate (LBOR), and the most liquid contracts

have quarterly maturities out to about four years. While LBOR and the fed funds rate do not

always move in lockstep, these two types of futures contracts are typically used in combination

to construct a policy path over all available horizons.

How has the futures-implied policy path has changed around LSAP dates? Figure 1 shows

the futures-implied policy paths around the first five LSAP events, based on futures rates on

the end of the previous day and on the end of the event day.14 On almost all days, the policy

paths appear to have shifted down significantly at horizons of one year and longer in response

to the LSAP announcements.15 Table 3 displays the changes at specific horizons on all eight

LSAP event days. Also shown are total changes over all event days, as well as cumulative

changes and standard deviations of daily changes over the LSAP period. At the short end, the

path has shifted down by about 20-40 bps, while at longer horizons of one to three years the

total decrease is around 50 bps. Because the decreases in short-term futures rates are arguably

driven primarily by expectations, these results indicate that markets revised their near-term

policy expectations downward around LSAP announcements by about 20-40 bps.16 Note that

14The policy paths are derived using federal funds futures contracts for the current quarter and two quarters
beyond that. For longer horizons, we use Eurodollar futures, which are adjusted by the difference between
the last quarter of the federal funds futures contracts and the overlapping Eurodollar contract. Beginning five
months out, a constant term premium adjustment of 1bp per month of additional maturity is applied.

15The FOMC statement for January 28, 2009, contrary to the other announcements, actually caused sizable
increases in yields and other market interest rates, as documented in GRRS and in our results below. Anecdotal
evidence indicates that market participants were disappointed by the lack of concrete language regarding the
possibility and timing of purchases of longer-dated Treasury securities.

16One minor confounding factor is that on December 16, 2008, markets also were surprised by the target
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this analysis is parallel to KVJ’s assessment of the importance of the signaling channel.

What about policy expectations at longer horizons? The last three columns of the table

show the changes in the average futures-implied policy path over the next three years, the

changes in the three-year yield, and the spread between the yield and the futures-implied

rate.17 The futures-implied three-year yield declined by 43 bps, which corresponds to 54 per-

cent of the decline in the yield. With the exception of March 2009, every LSAP announcement

had a much larger effect on the futures-implied yield than on the Treasury yield. Under a mar-

ket segmentation assumption, this evidence suggests that lower policy expectations accounted

for more than half of the decrease in the three-year yield.

3.3 Overnight index swaps

In an overnight index swap (OIS), one party pays a fixed interest rate on the notional amount

and receives the overnight rate, i.e., the federal funds rate, over the entire maturity period.

Under absence of arbitrage, OIS rates reflect risk-adjusted expectations of the average policy

rate over the horizon corresponding to the maturity of the swap. Intuitively, while futures are

bets on the value of the short rate at a future point in time, OIS contracts are essentially bets

on the average value of the short rate over a certain horizon.

Table 4 shows the results of an event study analysis of changes in OIS rates with maturities

of two, five, and ten years, yields of the same maturities, and yield-OIS spreads. We consider

the same set of event dates as before.18 The responses of yields to the Fed’s LSAP announce-

ments are similar to the responses of OIS rates. For certain days and maturities, OIS rates

respond even more strongly than yields, and at the ten-year maturity, the cumulative change

of the OIS rate is larger than the yield change, which results in an increasing OIS spread. In

those instances where the OIS spread significantly decreased, its relative contribution to the

yield change is typically still much smaller than the contribution of the OIS rate change. The

March 2009 announcement is the only one that significantly lowered spreads. On the other

event days, yield-OIS spreads barely moved or increased, suggesting that large decreases in

term premia are unlikely.

Clearly, yields and OIS rates moved very much in tandem in response to the LSAPs. Our

evidence in this section is consistent with the finding of GRRS “that LSAPs had widespread

rate decision—expectations were for a new target of 25 bps, however the Federal Open Market Committee
decided on a target range of 0-25 bps. Changes in short-term rates on this day reflect also reflect the effects
of conventional monetary policy.

17Yields are zero-coupon yields from a smoothed yield curve data set constructed in Gürkaynak et al. (2007).
See http://www.federalreserve.gov/econresdata/researchdata.htm (accessed July 29, 2011).

18OIS rates are taken from Bloomberg.
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effects, beyond those on the securities targeted for purchase” (p. 20). Under a market seg-

mentation identifying assumption, the evidence that OIS rates showed pronounced responses

suggests an important contribution of lower policy expectations to the decreases in inter-

est rates. Without such an assumption, it just indicates that instrument-specific premia in

Treasuries did not move much around announcements.

Some readers might find our result unsurprising: Safe government bonds and swap con-

tracts have similar risk characteristics, are likely to be close substitutes, and could therefore

be expected a priori to respond similarly to policy actions. This of course simply amounts to

not accepting the market segmentation assumption for these securities. However, there are

two important points to keep in mind in response to this critique: First, the evidence for the

U.K. has shown that yields and OIS rates do not necessarily need to respond similarly. For

the case of the U.K., these instruments are not very close substitutes and there is considerable

market segmentation, thus one might be inclined to find this plausible for the U.S. as well.

Second, the same results hold for securities that are less close substitutes. Specifically, the

evidence in KVJ as well as our own calculations using different data sources (results omit-

ted) show that highly-rated corporate bonds responded about as much as Treasury yields to

LSAPs.19 Clearly a Treasury bond and, say, a AA-rated corporate bond are not close substi-

tutes, thus market segmentation is more plausible, and the fact that they respond in tandem

is evidence that signaling played an important role.

However plausible one finds the necessary auxiliary assumptions, model-free analysis can

only go so far. Thus, we now turn to model-based evidence to address whether Treasuries

were affected by the LSAPs through downward shifts in the expected policy path and through

shifts in a their term premium.

4 Term premium estimation

A theoretically rigorous decomposition of interest rates into expectations and term premium

components requires a DTSM, which have generally proven difficult to estimate. Therefore,

we consider several different model estimates to ensure robustness.

4.1 Econometric problems: bias and uncertainty

To estimate the term premium component in long-term interest rates, researchers typically

resort to DTSMs. Such models simultaneously capture the cross section and time series

19Changes in default-risk premia do not account for this response, based on KVJ’s evidence that incorporates
credit default swap data.
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dynamics of interest rates, and impose absence of arbitrage, which ensures that the two are

consistent with each other. Term premium estimates are obtained by forecasting the short rate

using the estimated time series model, and subtracting the average short rate forecast (i.e.,

the risk-neutral rate) from the actual interest rate. The very high persistence of interest rates,

however, causes major problems with estimating the time series dynamics. The parameter

estimates typically suffer from small-sample bias and large statistical uncertainty, which makes

the resulting estimated risk-neutral rates and term premia inherently unreliable.

The small-sample bias in conventional estimates of DTSMs stems from the fact that the

largest root in autoregressive models for persistent time series is generally underestimated.

Therefore the speed of mean reversion is overestimated, and the model-implied forecasts for

longer horizons are too close to the unconditional mean of the process. Consequently, risk-

neutral rates are too stable, and too much of the variation in long-term rates is attributed

to the term premium component.20 In the context of LSAP event studies, this bias works

in the direction of attributing too large a share of changes in long-term interest rates to

the term premium. Hence, the relative importance of the portfolio balance channel will be

overestimated. Because of this concern, we conduct an event study using term premium

estimates that correct for this bias.

Large statistical uncertainty underlies any estimate of the term premium, due to both spec-

ification and estimation uncertainty. The former reflects uncertainty about different plausible

specifications of a DTSM, which might lead to quite different economic implications.21 We

address this issue in a pragmatic way by presenting alternative estimates based on different

specifications. Estimation uncertainty exists because the parameters governing the time series

dynamics in a DTSM are estimated imprecisely, due to the high persistence of interest rates.22

Consequently, large statistical uncertainty underlies short rate forecasts and term premia cal-

culated from such parameter estimates. Despite this fact, studies typically report only point

estimates of term premia.23 In our event study, we report interval estimates of changes in

risk-neutral rates and of changes in the term premium.

20This problem has been pointed out by Ball and Torous (1996) and discussed in subsequent studies including
BRW.

21This issue has been highlighted, for example, by Rudebusch et al. (2007) and Bauer (2011).
22The slow speed of mean reversion of interest rates makes it difficult to pin down the unconditional mean

and the persistence of the estimated process. See, among others, Kim and Orphanides (2005).
23Exceptions are the studies by Bauer (2011) and Joslin et al. (2010), who present measures of statistical

uncertainty around estimated risk-neutral rates and term premia.
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4.2 Alternative term premium estimates

We now briefly describe the alternative term premium estimates that we include in our event

study. Details are provided in appendices. The data used in the estimation of our models

consist of daily observations of interest rates from January 2, 1985, to December 30, 2009.

We include T-bill rates at maturities of 3 and 6 months from the Federal Reserve H.15 release

and zero-coupon yields at maturities of 1, 2, 3, 5, 7, and 10 years.

4.2.1 Kim-Wright

The term premium estimates used by GRRS are obtained from the model of Kim and Wright

(2005). What distinguishes their model from an unrestricted, i.e., maximally flexible, affine

Gaussian DTSM is the inclusion of survey-based short rate forecasts and some slight restric-

tions on the risk pricing. While Kim and Orphanides (2005) argue that incorporating addi-

tional information from surveys might help alleviate the problems with DTSM estimation, it

is unclear to what extent bias and uncertainty are reduced. Survey expectations are problem-

atic because on the one hand they are available only at low frequencies (monthly/quarterly),

and on the other hand they might not represent rational forecasts of short rates (Piazzesi

and Schneider, 2008). In terms of risk price restrictions, the model imposes only very few

constraints, so the link between cross-sectional dynamics and time series dynamics is likely to

be weak.

4.2.2 Ordinary least squares

As a benchmark, we estimate a maximally-flexible affine Gaussian DTSM. The risk factors

correspond to the first three principal components of yields. We use the normalization of

Joslin et al. (2011). The estimation is a two-step procedure: First, the parameters of the

vector autoregression (VAR) for the risk factors are estimated using ordinary least squares

(OLS). Second, we obtain estimates of the parameters governing the cross-sectional dynamics

using the minimum-chi-square method of Hamilton and Wu (2012b). Because the model is

exactly identified, these are also the maximum likelihood (ML) estimates. Details on the

estimation can be found in Appendix B.1.

To account for the estimation uncertainty underlying the decompositions of long-term

interest rates, we obtain bootstrap distributions of the VAR parameters. We can thus calculate

risk-neutral rates and term premia for each bootstrap replication of the parameters, and

calculate confidence intervals for all objects of interest. Details on the bootstrap procedure

are provided in Appendix B.3.
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4.2.3 Bias-corrected

One way to deal with the small-sample bias in DTSM estimates is to directly correct the

estimates of the dynamic system for bias. Starting from the same model, we perform bias-

corrected (BC) estimation of the VAR parameters in the first step and proceed with the second

step of finding cross-sectional parameters as before. Our methodology, which closely parallels

the one laid out in BRW, is detailed in Appendix B.2. We also obtain bootstrap replications

of the VAR parameters.

The resulting estimates imply interest rate dynamics that are more persistent and short

rate forecasts that revert to the unconditional mean much more slowly than is implied by the

biased OLS estimates. Therefore, one would expect a larger contribution of the expectations

component to changes in long-term rates around LSAP announcements. Because this esti-

mation method only addresses the bias problem and not the uncertainty problem, confidence

intervals cannot be expected to be any tighter than for OLS.

4.2.4 Restricted risk prices

The no-arbitrage restriction can be a powerful remedy for both the bias and the uncertainty

problem if the risk pricing is restricted.24 The intuition is that cross-sectional dynamics are

precisely estimated and can help pin down the parameters governing the time series dynamics,

reducing both bias and uncertainty in these parameters and leading to more reliable estimates

of risk-neutral rates and term premia. There is a large set of possible restrictions on the risk

pricing in DTSMs, and alternative restrictions may lead to different economic implications.

To deal with these complications, we use a Bayesian framework parallel to the one suggested

in Bauer (2011) for estimating our DTSM with restricted risk prices. This allows us to select

those restrictions that are supported by the data and to deal with specification uncertainty by

means of Bayesian model averaging. Another advantage is that interval estimates naturally

fall out of the estimation procedure, because the Markov chain Monte Carlo (MCMC) sampler

that we use for estimation, described in Appendix C.2, produces posterior distributions for

any object of interest.

First, we estimate a maximally flexible model where risk price restrictions are absent using

MCMC sampling. These estimates will be denoted by URP (Unrestricted Risk Prices). The

point estimates of the model parameters are almost identical to OLS.25 With regard to interval

24This has been argued, for example, by Cochrane and Piazzesi (2008), Bauer (2011), and Joslin et al.
(2010).

25With uninformative priors, the Bayesian posterior parameter means are the same as the OLS/maximum
likelihood estimates. In our case, differences between the two sets of point estimates, which could result from
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estimation, there will however be some numerical differences, because the Bayesian credibility

intervals (which we will for simplicity also call confidence intervals) for URP are conceptually

different from the bootstrap confidence intervals for OLS. Because of potential differences

between OLS and URP we include the URP estimates as a point of reference.

The estimates under Restricted Risk Prices will be denoted by RRP. To be clear, here

parameters and the objects of interest such as term premium changes are estimated by means

of Bayesian model averaging, since in this setting the MCMC sampler provides draws across

model and parameter space. Because of the averaging over the set of restricted models, the

inference takes into account both estimation and model uncertainty.

Because of the risk price restrictions, and in light of the results in Bauer (2011), one would

expect a larger role for the expectations component in driving changes in long-term rates

around LSAP announcements, as well as tighter confidence intervals around point estimates,

i.e., more precise inference about the respective roles of the signaling and portfolio balance

channels.

5 Changes in policy expectations and term premia

We now turn to model-based event study results to assess the effects of the Fed’s LSAP

announcements on the term structure of interest rates. We decompose changes in Treasury

yields around LSAP events into changes in risk-neutral rates, i.e., in policy expectations, and

term premia using alternative DTSM estimation approaches.

5.1 Cumulative changes in long-term yields

Let us first consider cumulative changes in long-term Treasury yields over the LSAP events

and how they are decomposed into expectations and risk premium components. The results

are shown in Table 5. In addition to point estimates, we present 95%-confidence intervals for

the changes in risk-neutral rates and premia. We decompose changes in the ten-year yield as

in GRRS, and also include results for the five-year yield. Cumulatively over these eight days,

the ten-year yield decreased by 89 bps, and the five-year yield decreased even more strongly

by 97 bps.26

The Kim-Wright decomposition of the change in the fitted ten-year yield of -102 bps

results in a decrease in the risk-neutral yield (YRN) of 31 bps and a decrease in the yield term

the priors and from approximation error, turn out to be negligibly small.
26GRRS consider the constant-maturity ten-year yield, which decreased by 91 bps, whereas we focus through-

out on zero-coupon yields obtained from the GSW data set.
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premium (YTP) of 71 bps. Notably, the cumulative change in the DTSM’s fitting error of -13

bps is contained in the term premium, which is calculated as the difference between the fitted

yield and YRN. This is not made explicit in the GRRS study, and the authors compare the

71 bps decrease in the term premium to the 91 bps decrease in the actual (constant-maturity)

ten-year yield. However, based on model-fitted results, the contribution of the term premium

is not −71
−91

≈ 78% but instead −71
−102

≈ 70%, with the risk-neutral component contributing 30%

to the decrease. For the five-year yield, the relative contributions of expectations and term

premium components are 32 percent and 68 percent, respectively.

The decomposition based on the OLS estimates leads to a slightly larger contribution of

the expectations component than for the Kim-Wright decomposition, particularly for the five-

year yield. For the ten-year yield, the contributions are 35 and 65 percent, respectively, and

for the five-year yield they are 43 and 57 percent. The bootstrapped confidence intervals (CIs)

reveal tremendous uncertainty attached to these point estimates. Based on these estimates,

it is equally plausible that the entire yield change was driven by the term premium or by the

expectations component. Similarly, these results suggest that the magnitude of the change in

the Kim-Wright term premium is very uncertain.

The BC estimates imply a larger role for the expectations component, which now accounts

for about 50 percent of the yield change, both at the five-year and ten-year maturity. The CIs

are even wider than for the OLS estimates. Addressing the bias problem in term premium

estimation via direct bias correction increases the estimated contribution of the signaling

channel, but the inference is still very imprecise, since the uncertainty problem remains.

The last two decompositions are for the URP and RRP estimates. The URP point esti-

mates are almost identical to the OLS results and indicate that both components contributed

to the decrease in yields.27 The URP confidence intervals, which are conceptually different

as mentioned above, are slightly narrower than the OLS ones. However, there still is con-

siderable statistical uncertainty: The contribution of risk-neutral rates could plausibly be

anywhere between −7
−94

≈ 7% and −71
−94

≈ 76%. With restricted risk prices, the point estimates

for the five-year yield closely correspond to the BC results, with a contribution of expecta-

tions that is slightly larger than the contribution of the term premium. The split between

changes in expectations and premia here is 52 and 48 percent. For the ten-year yield, the

RRP decomposition also attributes more, if only by a little, to the expectations component

than the Kim-Wright and OLS results—with an expectation and term premium split of 38

and 62 percent. Importantly, the confidence intervals around the RRP estimates are much

27Slight differences are due to the fact that the decompositions for URP are posterior means of the object
of interest, whereas for OLS the decompositions are calculated at the point estimates of the parameters.
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tighter than for unrestricted DTSM estimates. The intervals clearly indicate that both the

expectations and term premium components have played an important role in lowering yields.

For the ten-year yield, the relative contribution of risk-neutral rates is estimated to be between
−29
−94

≈ 30% and −53
−94

≈ 56%.

5.2 Shifts in the forward curve and policy expectations

To understand these decompositions of yield changes and to get a more comprehensive per-

spective of the effects of the LSAP announcements on the term structure, it is useful to look

at forward rates and the expected policy path in Figures 2 and 3. Based on our four alter-

native DTSM estimates, the figures show the cumulative change over the LSAP event days

in instantaneous forward rates out to ten years maturity, as well as cumulative changes in

expected policy rates with 95%-confidence intervals.

The shift in forward rates, shown as a solid line, is common to all four decompositions

because fitted rates are essentially identical across DTSM estimates. The shift is hump-

shaped, with the largest decrease, about -110 bps, occurring at a horizon of three years. At

the short end, the change is about -45 bps for the six-month horizon, and about -80 bps for

the twelve-month horizon. At the long end, forward rates decreased by approximately 80

bps. The decreases at the short end are particularly interesting, because the size of the term

premium is presumably small at short horizons. Based on this argument, most of the drop in

the six-month forward rate and a significant portion of the drop in the one-year rate would

be attributed to a lowering of policy expectations. This is confirmed by our model-based

decompositions.

Figure 2 contrasts the OLS (left panel) and BC results (right panel). The decompositions

at the short end are very similar, with essentially all of the decrease in the six-month rate

and a sizable fraction of the decrease in other near-term rates attributed to the expectations

component. The difference between OLS and BC is most evident in the decompositions

of changes in long-term rates with horizons of five to ten years. The OLS estimates imply a

rather small contribution for the expectations component, whereas the BC estimates attribute

around half of the decrease in forward rates to lower expectations. The very large estimation

uncertainty underlying these decompositions is also apparent. For either decomposition, at

horizons longer than five years, the forward rate curve and the zero line are both within the

confidence bands for the changes in expectations. Neither the “all expectations” hypothesis—

that these forward rates decreased solely because of lower policy expectations—nor the “all

term premia” hypothesis—that expectations did not change and only term premia drove long

rates lower—can be rejected.
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Figure 3 shows the decompositions resulting from the URP (left panel) and RRP estimates

(right panel). Again, the improved decomposition in the right panel leads to a larger role for

expectations. The main difference between the two panels is that under restricted risk prices

a larger share of the decrease in short- and medium-term forward rates is attributed to lower

expectations, whereas decompositions of changes in long-term forward rates are rather similar.

Thus, the economic implications for changes in term premia are somewhat different under our

BC and RRP estimates. These differences reinforce the need to include more than one set of

estimates to draw robust conclusions.

Figure 3 also shows how imposing risk price restrictions greatly increases the precision of

inference. In the left panel, the confidence bands around the estimated downward shift in

expectations are quite large. In the right panel, the RRP confidence bands are comparably

tight, and our conclusions about the role of expectations are a lot more precise. In a maximally-

flexible DTSM, the estimation uncertainty is so large that we cannot really be sure about the

relative contribution of changes in policy expectations. However, plausible restrictions on risk

prices lead to the conclusion that both components, expectations as well as premia, played an

important role for lowering rates around LSAP events.

5.3 Day-by-day results

To drill down further into the shifts in the term structure, Tables 6 and 7 show the decom-

positions of ten-year and five-year yield changes on each of the eight event days. In the top

panels of each table, we compare the Kim-Wright decompositions of daily changes to the OLS

and BC results. In the bottom panels, we compare Kim-Wright to the URP and RRP results.

In the bottom three rows of each panel, we show total changes over the event days (which

correspond to the point estimates in Table 5), as well as cumulative changes and standard

deviations of daily changes over the LSAP period.

The tables show in detail how the event days differ from each other. The first three days,

in 2008, show very similar decreases in yields and decompositions. In contrast, as discussed

above, rates increased on January 28, 2009, because market participants were disappointed

by the lack of concrete announcements of Treasury purchases. On March 18, 2009, the most

dramatic decrease occurred, with the long-term yield falling by half a percentage point. This

announcement seems to have had the largest impact on term premia. The last three days

showed only minor movements, which when compared to the standard deviations of daily

changes are not significant.28

28As noted above, the December 16, 2008, and the March 18, 2009, FOMC statements also contained direct
signaling of future interest rate policy. However, excluding these two dates does not weaken our overall results.
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The typical pattern is that the estimated contribution of risk-neutral rates to the changes

in yields is larger for BC/RRP than for OLS/URP. Notably, the RRP decompositions always

have the same signs as the Kim-Wright decompositions. The OLS and BC decompositions,

on the other hand, differ from Kim-Wright and RRP in that they imply decreases in the

risk-neutral yield on every day, due to the downward movement of the short-end of the term

structure.

5.4 Summary of model-based evidence

Previous findings in GRRS were based on the Kim-Wright decomposition of long-term rates

and seemed to show a large contribution of term premium changes. In addition to the caveat

that the decrease in the estimated term premium also included a sizable pricing error compo-

nent, there are two other important reasons why these results need to be taken with a large

grain of salt. First, in terms of point estimates, the decomposition of rate changes based on

alternative DTSM estimates imply a larger contribution of the expectations component to

rate changes around LSAP announcements than the Kim-Wright decomposition. And sec-

ond, putting confidence intervals around the estimated changes in risk-neutral rates and term

premia reveals that large changes in policy expectations around LSAP announcements are

consistent with the data. Increasing the precision by restricting the risk pricing of the DTSM

leads to a statistically significant role for both the expectations component and the term

premium component in lowering yields.

In terms of quantitative conclusions, one would take away from the GRRS study that

only 1 − 71
91

≈ 22% of the cumulative decrease in the ten-year yield around LSAP events

was due to changing policy expectations. Our model estimates and the resulting confidence

intervals, however, suggest that this number is too low, and that the true contribution of policy

expectations to lower long-term Treasury yields is more likely to be around 40-50 percent.

6 Conclusion

In this paper, we have challenged the common wisdom that the Fed’s LSAP program mostly

worked through a portfolio balance channel. Evidence from different sources, both model-free

and based on DTSM estimates, points to a larger role of the signaling channel than previous

studies have acknowledged.29 Our results suggest that changes in the expectations component

of long-term interest rates were both economically and statistically significant. Furthermore,

29Similar evidence using additional alternative measures of term premia, constructed from an arbitrage-free
Nelson-Siegel DTSM, is provided in Christensen and Rudebusch (2012).
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we argue that because of second-round effects of signaling and portfolio balance, the relative

contribution of expectations to changes in interest rates are conservative estimates of the

importance of the signaling channel.

Therefore, it appears that the Fed affected long rates not only by changing the risk premium

in long-term interest rates, but also to an important extent by altering market expectations of

the future path of monetary policy. The plausible interpretation is that, through announcing

and implementing LSAPs, the FOMC signaled to market participants that it would maintain

an easy stance for monetary policy for a longer time than previously anticipated. This result

raises the question: If the FOMC wants to move interest rate expectations, why doesn’t it

simply communicate its intentions directly to the public? Of course, central banks have long

been reluctant to directly reveal their views on likely future policy actions (see Rudebusch and

Williams, 2008). This reluctance arises from the belief that financial markets would tend to

interpret any central bank statements about the likely future path of policy as commitments

to future action, as opposed to projections based on existing information and subject to

considerable change. Thus, central banks have in the past given only indirect hints or used

coded language about future interest rate inclinations. Since the start of the financial crisis,

the FOMC has been more forthcoming and provided direct signals; however, bond purchases

may provide some advantage as an additional reinforcing indirect signaling device about future

interest rates.

The effectiveness of LSAPs will typically be judged based on whether they lowered various

borrowing rates and not only government bond yields.30 After all, private borrowing rates—

corporate bond rates, bank and loan rates, and, importantly, mortgage rates—are the most

relevant interest rates for the transmission of monetary policy. While we study only Treasury

yields in this paper, our results have a close connection to the question whether LSAPs lowered

effective lending rates: Signaling effects will lower rates in all fixed income markets, because all

interest rates depend on the expected future path of policy rates. Portfolio balance effects, on

the other hand, are not guaranteed to affect various markets in a similar fashion. Our finding

that signaling was important during QE1 is consistent with the widespread effects of LSAPs

that other studies have found. In this way, our paper explains how these policy actions have

been successfully in lowering the interest rates most relevant for consumption and investment.

As directions for future research, one important issue is to account for the zero lower bound

on the nominal short-term interest rate. Affine DTSMs ignore this restriction, and incorporat-

ing it might lead to slightly different results. However, the most promising models that ensure

30For non-Treasury markets, LSAPs can improve market functioning and liquidity when these markets are
under distress (such as the agency MBS market in 2008). In this way, LSAPs can in some circumstances be
more effective than forward guidance alone.
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a non-negative short rate, such as the shadow rate models estimated in Kim and Singleton

(2012), lack analytical bond pricing formulas and are computationally too expensive.31 There

is much work to be done about the ZLB constraint. Another interesting avenue for exploration

is to augment our event study approach with information about the quantity of outstanding

Treasury debt (actual or announced), which can be incorporated into DTSMs (see Li and Wei,

2012), or with other additional risk factors (such as market-based uncertainty measures, or

higher order yield-curve factors). Finally, there is a need for measures of LSAP expectations,

particularly for the analysis of subsequent programs of the Federal Reserve, which have to

some extent been anticipated.32
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Appendices

A Model specification

We use a discrete-time affine Gaussian DTSM. A vector of N pricing factors, Xt, follows a
first-order Gaussian VAR:

Xt+1 = µ+ ΦXt + Σεt+1, (3)

where εt
iid
∼ N(0, IN) and Σ is lower triangular. The short rate, rt, is an affine function of the

pricing factors:
rt = δ0 + δ′1Xt. (4)

The stochastic discount factor (SDF) is of the form

− log(Mt+1) = rt +
1

2
λ′

tλt + λ′

tεt+1,

where the N -dimensional vector of risk prices is affine in the pricing factors,

Σλt = λ0 + λ1Xt,

for N -vector λ0 and N × N matrix λ1. Under these assumptions Xt follows a first-order
Gaussian VAR under the risk-neutral pricing measure Q,

Xt+1 = µQ + ΦQXt + ΣεQt+1, (5)

and the prices of risk determine how VAR parameters under the objective measure and the Q
measure are related:

µQ = µ− λ0 ΦQ = Φ− λ1. (6)

Furthermore bond prices are exponentially affine functions of the pricing factors:

Pm
t = eAm+BmXt ,

and the loadings Am = Am(µ
Q,ΦQ, δ0, δ1,Σ) and Bm = Bm(Φ

Q, δ1) follow the recursions

Am+1 = Am + (µQ)′Bm +
1

2
B′

mΣΣ
′Bm − δ0

Bm+1 = (ΦQ)′Bm − δ1

with starting values A0 = 0 and B0 = 0. Model-implied yields are determined by ymt =
−m−1 logPm

t = Am + BmXt, with Am = −m−1Am and Bm = −m−1Bm. Risk-neutral yields,
the yields that would prevail if investors were risk-neutral, can be calculated using

ỹmt = Ãm + B̃mXt, Ãm = −m−1Am(µ,Φ, δ0, δ1,Σ), B̃m = −m−1Bm(Φ, δ1).
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Risk-neutral yields reflect policy expectations over the life of the bond, m−1
∑m−1

h=0 Etrt+h, plus
a convexity term. The yield term premium is defined as the difference between actual and
risk-neutral yields, ytpmt = ymt − ỹmt .

Denote by Ŷt the vector of observed yields on day t. The number of observed yield ma-
turities is J = 8. We take the risk factors Xt to be the first N = 3 principal components of
observed yields. That is, if W denotes the N × J matrix with rows corresponding to the first
three eigenvectors of the covariance matrix of Ŷt, we have Xt = WŶt.

We parameterize the model using the canonical form of Joslin et al. (2011). Thus, the free
parameters of the model are rQ∞ = EQ(rt), the risk-neutral long-run mean of the short rate,
λQ, the eigenvalues of ΦQ, and the VAR parameters µ, Φ, and Σ. For the canonical model
this leaves 1 + 3 + 3 + 9 + 6 = 22 parameters to be estimated, apart from the measurement
error specification. To see how µQ, ΦQ, δ0, and δ1 are calculated from (W,λQ, rQ∞,Σ) refer to
Proposition 2 in Joslin et al. (2011).

B Frequentist estimation

B.1 Ordinary least squares

First we use OLS to obtain the VAR parameters in equation (3). The mean-reversion matrix Φ
is estimated using a demeaned specification without intercept, and then the intercept vector
is calculated as µ = (IN − Φ)X̄ , where X̄ is the unconditional sample mean vector. The
innovation covariance matrix is estimated from the residuals in the usual way. Denote these
OLS estimates by µ̂, ˆPhi and Ω̂.

We obtain estimates of the cross-sectional parameters rQ∞ and λQ using the approach
of Hamilton and Wu (2010, henceforth HW). As cross-sectional measurements, Y 2

t in HW’s
notation, we use the fourth principal component of yields. Write the corresponding eigenvector
as the row vector W2, then we have Y 2

t = W2Ŷt. The reduced-form equations in the first step
of the HW approach are the VAR for Y 1

t = Xt and the single measurement equation, which
we write as

Y 2
t = a+ bY 1

t + ut, (7)

for scalar a and row vector b, where ut is a measurement error. The reduced-form parameters
are (µ,Φ,Ω, a, b, σ2

u), where σ
2
u = V ar(ut). The second step of the HW approach is to find the

structural parameters that result in a close match for the reduced-form parameters, to be found
by minimizing a chi-square distance statistic. A simplification is possible because we have exact
identification, where the number of reduced-form parameters equals the number of structural
parameters. Because the chi-square distance of the HW’s second step reaches exactly zero,
the weighting matrix is irrelevant and the problem separates into simpler, separate analytical
and numerical steps, particularly simple in our case. The parameters for the VAR for Y 1

t

are directly available, namely (µ̂, Φ̂, Ω̂), because these parameters are both reduced-form and
structural parameters. The parameters for the cross-sectional equation, a and b are found by
choosing rQ∞ and λQ so that the distance between the least squares estimates, (â, b̂), and the
model-implied values (W2Am,W2Bm) is small. Here the J-vector Am and the J×N matrix Bm

contain the model-implied yield loadings. In addition to a dependence on Ω, Bm is determined
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only by λQ, and Am depends both on rQ∞ and λQ. Therefore we can first search over values
for λQ to minimize the distance between b̂ and W2Bm – we use the Euclidean norm as the
distance metric – and then pick rQ∞ to minimize the distance between â and W2Am. Denote
the resulting estimates by r̂Q∞ and λ̂Q.

Because OLS does most of the work in this estimation procedure, it is very fast even for a
daily model. We have 6245 observations and the estimation takes only seconds.

The table shows the OLS estimates in the left column. The estimated intercept and the
risk-neutral mean are scaled up by 100n, where n = 252 is the number of periods (business
days) per year. Thus these numbers correspond to annualized percentage points.

The estimated persistence is high: The largest eigenvalue of Φ̂, .999484, is close to one.
The half life calculated from Φ̂ of the level factor in response to a level shock is 4.6 years.

OLS BC
µ · 100n -0.0276 0.0022 0.0076 -0.0223 0.0046 0.0073
Φ 0.9995 -0.0004 0.0251 0.9998 0.0000 0.0249

-0.0004 0.9982 -0.0168 -0.0003 0.9986 -0.0167
-0.0001 -0.0001 0.9876 -0.0001 -0.0002 0.9883

λ 0.999484 0.998266 0.987565 0.999770 0.998824 0.988035
rQ∞ · 100n 12.37 12.38
λQ 0.999774 0.998069 0.994425 0.999774 0.998069 0.994425

Note: Parameter estimates from frequentist estimation, obtained using OLS and BC. λ are the
eigenvalues of Φ, λQ are the eigenvalues of ΦQ.

B.2 Bias-corrected estimation

The intuition for our bias-corrected estimation procedure is to find parameters for the VAR
that yield a median of the OLS estimator equal to the OLS estimates from the data. We
use the indirect inference estimator detailed in Bauer et al. (2012). A residual bootstrap
is used for every attempted value of Φ to generate data and find the median of the OLS
estimator. In successive iterations, the attempted parameter values are adjusted using an
updating scheme based on stochastic approximation, until the median of the OLS estimator on
the generated data is sufficiently close to Φ̂. Denote the resulting estimate by Φ̃unr, indicating
the unrestricted bias-corrected estimate.

In working with daily data, where the persistence is extremely high, our bias-corrected
estimation procedure can lead to estimates for Φ with eigenvalues that are either greater than
one or below but extremely close to one. This is unsatisfactory because it implies VAR dynam-
ics that are either explosive or display mean reversion that is so slow as to be unnoticeable.
Therefore we impose a restriction on our bias-corrected estimates, ensuring that the largest
eigenvalue does not exceed the largest eigenvalue under the pricing measure. This seems to us
a useful and intuitively appealing restriction, since from a finance perspective the far-ahead
real-world expectations (under the physical measure) should not be more variable than the
far-ahead risk-neutral expectations (under Q).33 To obtain our bias-corrected estimate of Φ,
we thus shrink Φ̃unr toward Φ̂ using the adjustment procedure of Kilian (1998), until its largest

33This intuition is also built into other models in the DTSM literature, such as Christensen et al. (2011)
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eigenvalue is smaller, in absolute value, than the largest eigenvalue of Φ̂. The final adjusted
bias-corrected estimate is denoted by Φ̃.

Based on our estimate Φ̃, we calculate the intercept µ̃ and the innovation covariance matrix
Ω̃, as well as the cross-sectional parameters r̃Q∞ and λ̃Q in analogous fashion as for OLS.

B.3 Bootstrap

To infer changes in risk-neutral rates and term premia, we construct a bootstrap distribution
for the parameters of the DTSM. The focus is on the VAR parameters, since these crucially
affect the characteristics of risk-neutral rates and premia. Because the cross-sectional param-
eters are estimated very precisely and re-estimating them on each bootstrap sample would be
computationally costly, we only produce bootstrap distributions for Φ, µ, and Ω. As is evident
from the estimation results, different values of the VAR parameters essentially have no effect
on the estimated values for the cross-sectional parameters, so this simplification is completely
innocuous.

By definition of the BC estimates, if we generate bootstrap samples (indexed by b =
1, . . . , B) using Φ̃unr, the OLS estimator has a median equal to Φ̂. The realizations of the
OLS estimator on these samples thus provide a bootstrap distribution around Φ̂, which is
conveniently obtained as a by-product of the bias correction procedure. We denote these
bootstrap values by Φ̂b.

To obtain a bootstrap distribution around the BC estimates Φ̃, we shift the OLS bootstrap
distribution by the estimated bias. That is, we set Φ̃b = Φ̂b + Φ̃− Φ̂, with the result that the
values of Φ̃b are centered around Φ̃.

To ensure that the resulting VAR dynamics are stationary for every bootstrap replication,
we again apply a stationarity adjustment similar to the one suggested by Kilian (1998). For
the BC bootstrap replications, we shrink non-stationary values of Φ̃b toward Φ̃. We also apply
such a stationarity adjustment if values of Φ̂b have non-stationary roots, in that case shrinking
toward Φ̂. These stationarity adjustments have no impact on the median.

For each value of Φ̂b and Φ̃b we calculate the corresponding estimates of µ and Ω as
described earlier.

In terms of computing time, these bootstrap distributions are very quick to obtain. They
naturally fall out of the bias-corrected estimation procedure. The only time-consuming task
is the stationarity adjustment, which, however, has manageable computational cost.

Having available bootstrap distributions for the VAR parameters allows us to obtain boot-
strap distributions for every object of interest, for example for the ten-year risk-neutral rate at
a specific point in time, or for the cumulative changes in the ten-year yield term premium over
a set of days. While our methodology is in some respects ad hoc, it has the unique advantage
of enabling us to account in a relatively straightforward and computationally efficient way for
the underlying estimation uncertainty of our inference about policy expectations and term
premia.

where the largest Q-eigenvalue is unity and the VAR is stationary, or Joslin et al. (2010) where the largest
eigenvalues under the two measures are restricted to be equal.
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C Bayesian estimation

We employ Markov chain Monte Carlo (MCMC) methods to perform Bayesian estimation.
Specifically, we obtain a sample from the joint posterior distribution of the model parameters
using a block-wise Metropolis-Hastings (MH) algorithm. Other papers that have used MCMC
methods for estimation of DTSMs include Ang et al. (2007), Ang et al. (2011) and Chib and
Ergashev (2009). Our methodology is closely related to the one in Bauer (2011).

First we estimate the canonical model, and then, in a second step, we estimate over-
identified models with zero restrictions on elements of λ0 and λ1. For this purpose it is
convenient to parameterize the model in terms of (λ0, λ1,Ω, r

Q
∞, λQ).

The prior for the elements of λ0 and λ1 is independent normal, with mean zero and standard
deviation .01. This prior cannot be too diffuse because that would affect the model selection
exercise in the direction of favoring parsimonious models (the Lindley-Bartlett paradox; see
Bartlett, 1957). In light of the magnitude of the frequentist estimates that we have obtained,
this prior is not overly informative.

The priors for Ω and rQ∞ are taken to be completely uninformative. The elements of λQ

are a priori assumed to be independent, uniformly distributed over the unit interval.
For the measurement equations, we deviate slightly from our previous specification and

simply take all J yields individually as the measurements, as in Joslin et al. (2011). The
measurement errors are assumed to have equal variance, denoted by σ2

u. Notably, there are
only J − N independent linear combinations of these measurement errors, because N linear
combinations of yields, namely the first three principal components, are priced perfectly by
the model. We specify the prior for σ2

u to be uninformative.

C.1 Maximally-flexible model

Denote the parameters of the model as θ = (λ0, λ1,Ω, r
Q
∞, λQ, σ2

u). There are five blocks of
parameters which we draw successively in our MCMC algorithm.

The likelihood of the data factors into the likelihood of the risk factors, denoted by P (X|θ),
and the cross-sectional likelihood, written as P (Y |X, θ) – X stands for all observations of
Xt and Y stands for the data, i.e., all observations of Ŷt. The factor likelihood function
is simply the conditional likelihood function of a Gaussian VAR.34 It depends on the VAR
parameters, which in this parameterization are determined by (λ0, λ1,Ω, r

Q
∞, λQ). The cross-

sectional likelihood function depends on (Ω, rQ∞, λQ, σ2
u). Thus we have

P (Y |θ) = P (X|θ) · P (Y |X, θ)

= P (X|λ0, λ1,Ω, r
Q
∞, λQ) · P (Y |X,Ω, rQ∞, λQ, σ2

u).

The sampling algorithm allows us to draw from the joint posterior distribution

P (θ|Y ) ∝ P (Y |θ) · P (θ),

where P (θ) denotes the joint prior over all model parameters, despite the fact that this dis-

34We always condition on the first observation.

32



tribution is only known up to a normalizing constant. This, of course, is the underlying idea
of essentially all MCMC algorithms employed in Bayesian statistics.

As starting values of the chain, we use OLS estimates for µ, Φ, and Ω, the sample mean
of all yields for rQ∞, the eigenvalues of Φ̂ for λQ, and a tenth of the standard deviation of all
yields for σu (since yield pricing errors have smaller variance than yields).

We run the sampler for 50,000 iterations. We discard the first half as a burn-in sample and
then take every 50’th iteration of the remaining sample. This constitutes our MCMC sample,
which approximately comes from the joint posterior distribution of the parameters.

To ensure that the MCMC chain has converged, we closely inspect trace plots and make
sure that our starting values have no impact on the results. In addition, we calculate conver-
gence diagnostics of the type reviewed in Cowles and Carlin (1996).

C.1.1 Drawing (λ0, λ1)

Every element of λ0 and λ1 is drawn independently, iterating through them in random order,
using a random walk (RW) MH step. For the conditional posterior distribution of these
parameters we have

P (λ0, λ1|θ−, X, Y ) ∝ P (Y |θ,X)P (X|θ)P (θ)

∝ P (X|θ)P (θ),

where θ− denotes all parameters except for λ0 and λ1. The second line follows because the
likelihood of the data for given risk-neutral dynamics does not depend on the prices of risk, as
noted earler. For each parameter, we use a univariate random walk proposal with t2-distributed
innovations that are multiplied by scale factors to tune the acceptance probabilities to be in the
range of 20-50 percent. After obtaining the candidate draw, the restriction that the physical
dynamics are non-explosive is checked, and the draw is rejected if the restriction is violated.
Otherwise the acceptance probability for the draw is calculated as the minimum of one and
the ratio of the factor likelihood times the ratio of the priors for the new draw relative to the
old draw.

C.1.2 Drawing Ω

For the conditional posterior of Ω we have

P (Ω|θ−, X, Y ) ∝ P (Y |θ,X)P (X|θ)P (θ)

where θ− denotes all parameters except Ω. Since we need successive draws of Ω to be close to
each other—otherwise the acceptance probabilities will be too small—independence Metropolis
is not an option. Element-wise RW MH does not work particularly well either. A better
alternative in terms of efficiency and mixing properties is to draw the entire matrix Ω in one
step. We choose a proposal density for Ω that is Inverse-Wishart (IW) with mean equal to
the value of the previous draw and scale adjusted to tune the acceptance probability, which
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is equal to

α(Ω(g−1),Ω(g)) = min

{

P (X|Ω(g), θ−)P (Ω(g), θ−)q(Ω
(g),Ω(g−1))

P (X|Ω(g−1), θ−)P (Ω(g−1), θ−)q(Ω(g−1),Ω(g))
, 1

}

,

where g is the iteration. Here q(A,B) denotes the transition density, which in this case is the
density of an IW distribution with mean A. The ratio of priors is equal to one since we assume
an uninformative prior, unless the draw would imply nonstationary VAR dynamics, in which
case the prior ratio is zero. The reason that some draws of Ω can imply nonstationary VAR
dynamics is that in our normalization, the value of Ω matters for the mapping from rQ∞ and
λQ into µQ and ΦQ, which together with λ0 and λ1 determine the VAR parameters.

C.1.3 Drawing rQ∞

Both factor likelihood and cross-sectional likelihood depend on rQ∞, thus

P (rQ∞|θ−, X, Y ) ∝ P (Y |θ,X)P (X|θ)P (θ),

where θ− denotes all parameters except rQ∞. We use an RWMH step, with proposal innovations
from a t-distribution with two degrees of freedom, multiplied by a scaling parameter to tune the
acceptance probabilities. The ratio of priors is equal to one, because we have an uninformative
prior, if the implied VAR dynamics are stationary and zero otherwise, in which case the prior
ratio is zero. The acceptance probability is equal to the minimum of one and the product of
prior ratio, the ratio of cross-sectional likelihoods, and the ratio of factor likelihoods.

C.1.4 Drawing λQ

Again both likelihoods depend on this parameter, so we have

P (λQ|θ−, X, Y ) ∝ P (Y |θ,X)P (X|θ)P (θ),

where θ− denotes all parameters except λQ. We draw all three elements in one step, using an
RW proposal with independent t-distributed innovations, each with two degrees of freedom
and multiplied to tune acceptance probabilities. The prior ratio is one if all three proposed
values are within the unit interval and the implied VAR dynamics are stationary, and zero
otherwise. We implement the requirement that the three elements of λQ are in descending
order by rejecting draws that would change this ordering. Again the acceptance probability
is equal to the minimum of one and the product of prior ratio, the ratio of cross-sectional
likelihoods, and the ratio of factor likelihoods.

C.1.5 Drawing σ2
u

In this block the conditional posterior distribution of σ2
u is known in close form. The problem

of drawing this error variance corresponds to drawing the error variance of a pooled regression.
The condition posterior distribution is inverse gamma, because an uninformative prior on this
parameter is conjugate.
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C.2 Restricted risk prices

We closely follow the methodology laid out in Bauer (2011), where Gibbs variable selection
(Dellaportas et al., 2002) is applied to the context of DTSM estimation. Let λ denote a vector
stacking all elements of λ0 and λ1. For the purpose of model selection, we introduce a vector
of indicator variables, γ, that describes which risk price parameters, i.e., which elements of λ,
are restricted to zero. The parameters of the model are now (γ, θ) = (γ, λ,Ω, rQ∞, λQ, σ2

u). The
goal of course is to sample from the joint posterior

P (γ, θ|Y ) ∝ P (Y |γ, θ)P (θ|γ)P (γ).

The likelihood P (Y |γ, θ) is the product of factor likelihood and cross-sectional likelihood, as
before. The difference is that here it is evaluated by treating those elements of λ as zero for
which the corresponding element in γ is zero. The priors for the parameters conditional on
the model indicator P (θ|γ) are specified as before. The prior for the model indicators P (γ) is
such that all elements are independent Bernoulli random variables with .5 prior probability.

The parameters Ω, rQ∞, λQ, and σ2
u are drawn exactly as in the estimation algorithm for the

URP model. What is different here is we sample the vector indicating the model specification,
γ, and the parameter vector γ, which all models have in common.

For each iteration g of the MCMC sampler, we draw the block (γ, λ) by drawing pairs
(γi, λi), going through the N +N2 = 12 risk price parameters in random order.

C.2.1 Drawing λi

For each pair we first draw λ
(g)
i conditional on γ

(g−1)
i and all other parameters. If the parameter

is currently included (unrestricted), i.e., if γi = 1, we draw from the conditional posterior. If
the parameter is currently restricted to zero (γi = 0) the data is not informative about the
parameter and we draw from a so-called pseudo-prior (Carlin and Chib, 1995; Dellaportas et
al., 2002). That is,

P (λi|λ−i, γi = 1, γ−i, θ−, X, Y ) ∝ P (X|θ, γ)P (λi|γi = 1) (8)

P (λi|λ−i, γi = 0, γ−i, θ−, X, Y ) ∝ P (λi|γi = 0), (9)

where θ− denotes all parameters in θ other than λ, and λ−i (γ−i) contains all elements of λ (γ)
other than λi (γi).

35 We assume prior conditional independence of the elements of λ given γ,
and the prior for each price of risk parameter, P (λi|γi = 1), is taken to be standard normal.
The conditional posterior in equation (8) is not known analytically and we use an RW MH
step to obtain the draws, with a fat-tailed RW proposal and scaling factor as before. For the
pseudo-prior P (λi|γi = 0) we use a normal distribution, with moments corresponding to the
marginal posterior moments from our estimation of the URP model.

35These conditional distributions parallel the ones in equations (9) and (10) of Dellaportas et al. (2002).
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C.2.2 Drawing γi

When we get to the second element of the pair, the indicator γi, the conditional posterior
distribution is known and we can directly sample from it without the MH step. It is Bernoulli,
and the success probability is easily calculated based on the ratio:

q =
P (γi = 1|γ−i, θ, X, Y )

P (γi = 0|γ−i, θ, X, Y )
=

P (X|γi = 1, γ−i, θ)

P (X|γi = 0, γ−i, θ)

P (λi|γi = 1)

P (λi|γi = 0)

P (γi = 1, γ−i)

P (γi = 0, γ−i)
. (10)

The first factor in the numerator and the denominator is the factor likelihood. The second
factor in the numerator is the parameter prior, and in the denominator it is the pseudo-prior.
The third factor cancels out, since we use an independent, uninformative prior with prior
inclusion probability of each element of 0.5, putting equal weight on γi = 1 and γi = 0. The
conditional posterior probability for drawing γi = 1 is given by q/(q + 1).36

C.2.3 Bayesian model averaging

As output from the MCMC algorithm, we have available a sample that comes approximately
from the joint posterior distribution of (γ, θ). When we want to calculate the posterior dis-
tribution of any object of interest, such as for the value of the ten-year term premium on a
certain day, we simply calculate it for every iteration of the MCMC sample. In each iteration
that we use from this sample – as before we discard the first half and then only use every
50’th iteration – different elements might be restricted to zero. By effectively sampling across
models and parameter values we are taking into account model uncertainty in our posterior
inference. This technique is called Bayesian model averaging: the model specification is effec-
tively averaged out, and the inference is not conditional on a specific model but instead takes
into account model uncertainty.

36A subtlety, which is ignored in the above notation, is that the joint prior P (γ, θ) imposes that the physical
dynamics resulting from any choice of γ and λ1 can never be explosive. This is easily implemented in the
algorithm: If including a previously excluded element would lead to explosive dynamics then we simply do not
include it, i.e., we set γi = 0, and vice versa.
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Table 1: LSAP announcements

Date Announcement Description
25 November 2008 initial LSAP announcement Federal Reserve announces purchases of up

to $100 billion in agency debt and up to
$500 billion in agency MBS.

1 December 2008 Chairman’s speech Chairman states that the Federal Reserve
“could purchase longer-term Treasury se-
curities [...] in substantial quantities.”

16 December 2008 FOMC statement Statement indicates that the FOMC is con-
sidering expanding purchases of agency se-
curities and initiating purchases of Trea-
sury securities.

28 January 2009 FOMC statement Statement indicates that the FOMC “is
prepared to purchase longer-term Treasury
securities.”

18 March 2009 FOMC statement Statement announces purchases “up to an
additional $750 billion of agency [MBS],”
$100 billion in agency debt, and $300 bil-
lion in Treasury securities.

12 August 2009 FOMC statement Statement drops “up to” language and an-
nounces slowing pace for purchases of Trea-
sury securities.

23 September 2009 FOMC statement Statement drops “up to” language for pur-
chases of agency MBS and announces grad-
ual slowing pace for purchases of agency
debt and MBS.

4 November 2009 FOMC statement Statement declares that the FOMC would
purchase “around $175 billion of agency
debt.”



Table 2: Easing actions and term premium changes, 2001-2003

Change in Change in 10y yield
Date FFR target Actual YRN YTP
01/31/2001 -50 -4 -3 0
03/20/2001 -50 -3 -2 -1
04/18/2001 -50 -6 -5 -1
08/21/2001 -25 -3 -2 -1
10/02/2001 -50 -2 -2 1
11/06/2001 -50 -2 -3 1
12/11/2001 -25 -3 -2 -2
05/07/2002 0 0 -1 0
06/26/2002 0 -12 -4 -7
08/13/2002 0 -9 -4 -5
09/24/2002 0 -1 -1 -1
11/06/2002 -50 -3 -3 1
05/06/2003 0 -8 -3 -6
Cumulative -350 -56 -35 -21

Note: Changes, in basis points, in the fed funds rate (FFR) target, actual ten-year yield, and the
Kim-Wright estimated risk-neutral yield and yield term premium, on days with FOMC meetings
during the 2001-2003 easing cycle that also had a decline in the risk-neutral yield. Changes in YRN
and YTP do not always sum up to actual yield changes because the DTSM does not fit yields
perfectly.



Table 3: Changes in futures-implied policy paths around LSAP announcements

Date 1m 6m 1y 2y 3y avg. 3y 3y yld. diff.
11/25/2008 -5 -6 -10 -13 -22 -12 -18 -7
12/1/2008 1 -4 -7 -18 -21 -11 -16 -5
12/16/2008 -17 -16 -12 -11 -16 -12 -13 -1
1/28/2009 0 0 5 11 15 7 8 0
3/18/2009 -1 -4 -11 -10 -11 -8 -35 -27
8/12/2009 -1 -6 -8 -3 -1 -4 -1 3
9/23/2009 0 -3 -5 -6 -2 -4 -4 0
11/4/2009 0 -2 -1 1 5 1 0 -1
Total -23 -40 -49 -49 -53 -43 -80 -37
Cum. changes -33 -27 28 107 122 62 24 -38
Std. dev. 1 2 5 8 9 6 7 4

Note: Changes, in basis points, of futures-implied policy paths at fixed horizons. Paths are linearly
interpolated if no futures contract is available for required horizon. The last three columns show
the change of the average policy path over the next three years, the change in the three-year zero
coupon yield, and the difference between the yield change and the change in the average policy
path. The bottom two rows show the cumulative changes and standard deviations of daily changes
over the period 11/24/08 to 12/30/09.

Table 4: Changes in yields, OIS rates, and spreads around LSAP announcements

OIS rates yields yield-OIS
Date 2y 5y 10y 2y 5y 10y 2y 5y 10y
11/25/2008 -14 -25 -28 -14 -22 -21 -1 2 7
12/1/2008 -13 -21 -19 -12 -21 -22 1 -1 -2
12/16/2008 -15 -29 -32 -11 -16 -17 5 12 14
1/28/2009 6 11 14 5 10 12 -1 -1 -2
3/18/2009 -12 -27 -38 -26 -47 -52 -14 -20 -14
8/12/2009 -1 -2 1 -1 1 6 0 3 5
9/23/2009 -5 -6 -5 -4 -4 -2 1 3 3
11/4/2009 -3 1 5 -1 3 7 2 2 2
Total -58 -97 -102 -65 -97 -89 -7 0 14
Cum. changes -8 19 59 2 31 16 10 11 -43
Std. dev. 5 8 10 6 8 9 3 3 4

Note: Changes, in basis points, in OIS rates, zero-coupon yields, and yield-OIS spreads around
LSAP announcements. The bottom two rows show the cumulative changes and standard deviations
of daily changes over the period 11/24/08 to12/30/09.



Table 5: Decomposition of LSAP effect on long-term yields

ten-year yield five-year yield
yield YRN YTP yield YRN YTP

actual -89 -97
Kim-Wright -102 -31 -71 -94 -30 -64
OLS -93 -33 -60 -93 -40 -53
OLS UB -90 -3 -85 -9
OLS LB 9 -102 0 -94
BC -93 -46 -47 -93 -48 -46
BC UB -141 48 -112 19
BC LB 0 -93 -3 -90
URP -94 -31 -62 -93 -39 -53
URP UB -71 -23 -69 -24
URP LB -7 -86 -14 -78
RRP -94 -36 -58 -93 -48 -44
RRP UB -53 -40 -59 -33
RRP LB -29 -65 -41 -51

Note: Alternative decompositions of yield changes, in basis points, on announcement days. The
first line shows actual yield changes, the following lines show changes in fitted yields, risk-neutral
yields (YRN) and yield term premia (YTP) for alternative DTSM estimates. Also shown are upper
bounds (UB) and lower bounds (LB) for the change in the term premium, based on bootstrap
confidence intervals (for OLS and BC) or quantiles of posterior distributions (for URP and RRP).



Table 6: Ten-year yield, decompositions of day-by-day changes

Kim-Wright OLS BC
Date act. yld. YRN YTP yld. YRN YTP yld. YRN YTP

11/25/2008 -21 -24 -7 -17 -23 -6 -17 -23 -8 -15
12/1/2008 -22 -24 -7 -17 -22 -5 -17 -22 -7 -15
12/16/2008 -17 -18 -7 -12 -17 -5 -13 -17 -6 -11
1/28/2009 12 12 3 9 13 -2 15 13 -2 15
3/18/2009 -52 -56 -16 -40 -53 -7 -46 -53 -10 -43
8/12/2009 6 4 1 3 5 -3 8 5 -4 8
9/23/2009 -2 -2 -1 -1 -2 -3 1 -2 -4 3
11/4/2009 7 7 2 5 7 -3 10 7 -4 11

Total -89 -102 -31 -71 -93 -33 -60 -93 -46 -47

Cum. changes 16 24 -7 31 30 -10 40 30 -12 42
Std. dev. 9 9 3 7 9 4 9 9 5 9

Kim-Wright URP RRP
Date act. yld. YRN YTP yld. YRN YTP yld. YRN YTP

11/25/2008 -21 -24 -7 -17 -23 -6 -17 -23 -9 -14
12/1/2008 -22 -24 -7 -17 -22 -6 -17 -22 -9 -14
12/16/2008 -17 -18 -7 -12 -17 -5 -13 -17 -7 -10
1/28/2009 12 12 3 9 13 -1 14 13 5 8
3/18/2009 -52 -56 -16 -40 -54 -9 -44 -54 -21 -32
8/12/2009 6 4 1 3 5 -2 7 5 2 3
9/23/2009 -2 -2 -1 -1 -2 -3 1 -2 -1 -1
11/4/2009 7 7 2 5 7 -2 9 7 2 4

Total -89 -102 -31 -71 -94 -34 -60 -94 -37 -56

Cum. changes 16 24 -7 31 30 -7 37 30 10 20
Std. dev. 9 9 3 7 9 3 8 9 4 6

Note: Decompositions of yield changes, in basis points, on each LSAP announcement day. The first
column shows actual yield changes, the following columns show changes in fitted yields, risk-neutral
yields (YRN) and yield term premia (YTP) for alternative DTSM estimates. The bottom three
rows show the total changes over all events, as well as cumulative changes and standard deviations
of daily changes over the period 11/24/08 to 12/30/09.



Table 7: Five-year yield, decompositions of day-by-day changes

Kim-Wright OLS BC
Date act. yld. YRN YTP yld. YRN YTP yld. YRN YTP

11/25/2008 -22 -22 -7 -15 -21 -7 -15 -21 -8 -13
12/1/2008 -21 -21 -6 -15 -21 -6 -15 -21 -7 -14
12/16/2008 -16 -16 -6 -10 -16 -5 -11 -16 -6 -10
1/28/2009 10 9 3 7 9 -2 12 9 -3 12
3/18/2009 -47 -47 -13 -34 -46 -8 -39 -46 -9 -37
8/12/2009 1 2 0 2 2 -4 6 2 -4 7
9/23/2009 -4 -3 -1 -2 -3 -4 1 -3 -5 1
11/4/2009 3 4 1 3 4 -4 8 4 -5 8

Total -97 -94 -30 -64 -93 -40 -53 -93 -48 -46

Cum. changes 31 20 -10 29 19 -14 33 19 -16 35
Std. dev. 8 8 3 6 8 5 7 8 5 7

Kim-Wright URP RRP
Date act. yld. YRN YTP yld. YRN YTP yld. YRN YTP

11/25/2008 -22 -22 -7 -15 -21 -7 -14 -21 -11 -10
12/1/2008 -21 -21 -6 -15 -21 -6 -14 -21 -10 -10
12/16/2008 -16 -16 -6 -10 -16 -6 -11 -16 -9 -8
1/28/2009 10 9 3 7 9 -1 10 9 5 5
3/18/2009 -47 -47 -13 -34 -46 -10 -36 -46 -24 -22
8/12/2009 1 2 0 2 2 -3 5 2 1 1
9/23/2009 -4 -3 -1 -2 -3 -4 0 -3 -2 -1
11/4/2009 3 4 1 3 4 -3 7 4 1 2

Total -97 -94 -30 -64 -93 -40 -53 -93 -49 -44

Cum. changes 31 20 -10 29 19 -11 30 19 7 24
Std. dev. 8 8 3 6 8 4 7 8 4 5

Note: See Table 6.



Figure 1: Shifts of futures-implied policy paths around key LSAP dates
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Note: Policy paths before and after five key LSAP announcements that are implied by market rates
of federal funds futures and Eurodollar futures. For details on calculation, refer to main text.



Figure 2: Shift of forward curve and policy path: OLS vs. BC
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Note: Cumulative changes, in basis points, on announcement days in fitted forward rates (solid
line) and policy expectations (dashed line) together with 95%-confidence intervals for changes in
expectations (dotted lines). Left panel shows decomposition based on OLS estimates, right panel
for BC estimates.



Figure 3: Shift of forward curve and policy path: URP vs. RRP
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Note: Cumulative changes, in basis points, on announcement days in fitted forward rates (solid
line) and policy expectations (dashed line) together with 95%-confidence intervals for changes in
expectations (dotted lines). Left panel shows decomposition based on URP estimates, right panel
for RRP estimates.
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