
FEDERAL RESERVE BANK OF SAN FRANCISCO 

WORKING PAPER SERIES 

Pricing Deflation Risk 
with U.S. Treasury Yields 

 

 

Jens H.E. Christensen 

Federal Reserve Bank of San Francisco 

 

Jose A. Lopez 

Federal Reserve Bank of San Francisco 

 

 

Glenn D. Rudebusch 

Federal Reserve Bank of San Francisco 

 

 

 

May 2012 

 
 

The views in this paper are solely the responsibility of the authors and should not be 

interpreted as reflecting the views of the Federal Reserve Bank of San Francisco or the 

Board of Governors of the Federal Reserve System.  

Working Paper 2012-07 
http://www.frbsf.org/publications/economics/papers/2012/wp12-07bk.pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://www.frbsf.org/publications/economics/papers/2012/wp12-07bk.pdf


Pricing Deflation Risk

with U.S. Treasury Yields

Jens H. E. Christensen

Jose A. Lopez

and

Glenn D. Rudebusch

Federal Reserve Bank of San Francisco

101 Market Street, Mailstop 1130

San Francisco, CA 94105

Abstract

We use an arbitrage-free term structure model with spanned stochastic volatility to

determine the value of the deflation protection option embedded in Treasury inflation-

protected securities (TIPS). The model accurately prices the deflation protection option

prior to the financial crisis when its value was near zero; at the peak of the crisis in late

2008 when deflationary concerns spiked sharply; and in the post-crisis period. During

2009, the average value of this option at the five-year maturity was 41 basis points on a

par-yield basis.
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1 Introduction

The U.S. Treasury first issued inflation-indexed bonds, which are now commonly known as

Treasury inflation-protected securities (TIPS), in 1997. TIPS bonds provide inflation protec-

tion since their coupons and principal payments are indexed to the headline Consumer Price

Index (CPI) produced by the Bureau of Labor Statistics.1 In addition, TIPS bonds provide

some protection against price deflation since their principal payments are not permitted to

decrease below their original par value.

This deflation protection option has received limited attention in the literature, most

likely since it has not been of much value in the U.S. inflationary environment since 1997.

However, the sharp drops in price indexes during the financial crisis that started in the

fall of 2008 increased deflationary concerns markedly, thus providing further motivation for

examining the value of this protection. Two recent papers have used different arbitrage-free

term structure models to assess the values of these deflation protection options.

Grishchenko et al. (2011) use a Gaussian affine model whose two factors are nominal

Treasury rates and the inflation rate observed at the monthly frequency. They found that the

option value is close to zero for most months, except for the deflationary periods observed in

2003-2004 and in 2008-2009. They calculate the maximum observed option value in December

2008 to be roughly $1.45 for every $100 par value of a five-year TIPS. On a par-yield basis,

assuming a duration of four years for a five-year TIPS, this translates into a yield spread of

approximately 36 basis points.

Christensen et al. (2011) use a “yields-only” approach based on a Gaussian affine model

developed by Christensen et al. (CLR, 2010) to value these deflation protection options.

That model uses four factors to capture the joint dynamics of the nominal and real Treasury

yield curves. The first three factors can be characterized as the level, slope, and curvature of

the nominal yield curve, while the fourth factor can be characterized as the level of the real

yield curve. The authors find that the option value, measured as a par-yield spread between

two TIPS bonds of similar remaining maturity but of differing vintages, reached a maximum

of almost 80 basis points in December 2008 for TIPS bonds maturing in 2013. This option

value series is labeled the “CV model“ in Figure 1. While the model-implied option value is

highly correlated with the observed TIPS spread chosen as a proxy for the deflation option

value, the implied values are mainly lower than the observed values. The authors suggest that

this shortcoming could be addressed by incorporating stochastic volatility into the model in

1The actual indexation has a lag structure since the Bureau of Labor Statistics publishes price index values
with a one-month lag; i.e., the index for a given month is released in the middle of the subsequent month. The
reference CPI is thus set to be a weighted average of the CPI for the second and third months prior to the
month of maturity. See Gürkaynak et al. (2010) for a detailed discussion as well as Campbell et al. (2009) for
an overview of inflation-indexed bonds.
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Figure 1: Yield spread between a pair of 2013 TIPS as a proxy for the value of the

embedded deflation protection option.

Illustration of the spread in the yield-to-maturity as reported by Bloomberg between the seasoned

ten-year TIPS that matures on July 15, 2013 and the newly issued five-year TIPS that matures on

April 15, 2013. Included are the model-implied five-year par-coupon yield spreads from the CV model

and the SV model introduced in this paper.

the hope of better characterizing the lower tail of the model-implied distribution of inflation

outcomes.

In this paper, we modify the latter model of nominal and real Treasury yields to incor-

porate spanned stochastic volatility.2 In particular, the volatility dynamics are specified to

be driven by the nominal and real level factors in the model. Using the same Treasury yield

data, the stochastic volatility (SV) model exhibits similar in-sample fit and out-of-sample

forecast performance relative to the constant volatility (CV) model. Specifically, the two

models’ transformations of their conditional mean specifications into such objects of interest

as five-year inflation expectations and inflation risk premiums exhibit similar dynamics. In

contrast, and more importantly for valuing the TIPS deflation protection option, the mod-

els exhibit important differences related to the transformations of their conditional volatility

dynamics into conditional distributions of headline CPI changes.

In particular, the one-year deflation probability forecasts generated by the SV model are

2Adrian and Wu (2010) also propose a model of nominal and real Treasury yields with spanned stochastic
volatility.
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generally higher than those generated by the CV model. As might be expected, the differing

deflation probabilities lead to important differences in the model-implied values of the TIPS

deflation protection option. Figure 1 shows the yield spread between a pair of TIPS bonds

with similar maturities in 2013, but differing degrees of accumulated inflation protection.

This spread is a proxy for the value of the embedded deflation protection option. As shown

in the figure, the SV model generates a yield spread that more directly captures the observed

spread in the last few months of 2008 and into 2009. In fact, while both sets of model-

implied spreads have correlations of nearly 0.9 with the observed spread, the SV model has

a root-mean squared error over 2009 of 9.5 basis points as compared to 28.7 basis points for

the CV model. In 2008 before the Lehman bankruptcy, the SV model-implied value of the

TIPS deflation option at the five-year maturity was 6.8 basis points. During the height of

the crisis period in late 2008, that value jumped to 89.1 basis points as deflationary concerns

rose markedly during the sharp economic contraction. For 2009 as a whole, the average value

of this option was 40.9 basis points on a par-yield basis, and that average value declined to

19.5 for 2010. These results suggest that the SV model is well equipped to measure and price

deflation risk within the Treasury market, and thus it should be well equipped to price the

inflation derivatives increasingly being traded in the United States.3

The paper is structured as follows. Section 2 introduces the general theoretical framework

for inferring deflation dynamics from nominal and real Treasury yield curves and details our

proposed methodology for deriving the model-implied value of the deflation protection option.

Section 3 describes the term structure model with constant volatility as developed by CLR

(2010) as well as the specification of the SV model used for this study. Section 4 contains

the data description and the empirical results for the two models. Section 5 concludes and

provides directions for future research. The appendices contain additional technical details.

2 Pricing Deflation Risk with TIPS Bonds

In this section we provide the theoretical foundation for the framework we use to price deflation

protection options.

2.1 Deriving Market-Implied Inflation Expectations and Risk Premiums

An arbitrage-free term structure model can be used to decompose the difference between

nominal and real Treasury yields, also known as the breakeven inflation (BEI) rate, into the

sum of inflation expectations and an inflation risk premium. We follow Merton (1974) and

assume a continuum of nominal and real zero-coupon Treasury bonds exist with no frictions

3See Christensen and Gillan (2011) for further discussion of U.S. inflation swaps and related liquidity issues.
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to their continuous trading. The economic implication of this assumption is that the markets

for inflation risk are complete in the limit. Define the nominal and real stochastic discount

factors, denoted MN
t and MR

t , respectively. The no-arbitrage condition enforces a consistency

of pricing for any security over time. Specifically, the price of a nominal bond that pays one

dollar in τ years and the price of a real bond that pays one unit of the defined consumption

basket in τ years must satisfy the conditions that

PN
t (τ) = EP

t

[
MN

t+τ

MN
t

]
and PR

t (τ) = EP
t

[
MR

t+τ

MR
t

]
,

where PN
t (τ) and PR

t (τ) are the observed prices of the zero-coupon, nominal and real bonds

for maturity τ on day t and EP
t [.] is the conditional expectations operator under the real-

world (or P -) probability measure. The no-arbitrage condition also requires a consistency

between the prices of real and nominal bonds such that the price of the consumption basket,

denoted as the overall price level Πt, is the ratio of the nominal and real stochastic discount

factors:

Πt =
MR

t

MN
t

.

We assume that the nominal and real stochastic discount factors have the standard dy-

namics given by

dMN
t /MN

t = −rNt dt− Γ′
tdW

P
t ,

dMR
t /MR

t = −rRt dt− Γ′
tdW

P
t ,

where rNt and rRt are the instantaneous, risk-free nominal and real rates of return, respectively,

and Γt is a vector of premiums on the risks represented by WP
t . By Ito’s lemma, the dynamic

evolution of Πt is given by

dΠt = (rNt − rRt )Πtdt.

Thus, with the absence of arbitrage, the instantaneous growth rate of the price level is equal

to the difference between the instantaneous nominal and real risk-free rates. Correspondingly,

we can express the price level at time t+τ as

Πt+τ = Πte
∫ t+τ
t

(rNs −rRs )ds.

The relationship between the yields and inflation expectations can be obtained by decom-
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posing the price of the nominal bond as follows.

PN
t (τ) = EP

t

[
MN

t+τ

MN
t

]
= EP

t

[
MR

t+τ/Πt+τ

MR
t /Πt

]
= EP

t

[
MR

t+τ

MR
t

Πt

Πt+τ

]

= EP
t

[
MR

t+τ

MR
t

]
× EP

t

[
Πt

Πt+τ

]
+ covPt

[
MR

t+τ

MR
t

,
Πt

Πt+τ

]

= PR
t (τ)× EP

t

[
Πt

Πt+τ

]
×
(
1 +

covPt

[
MR
t+τ

MR
t

, Πt
Πt+τ

]

EP
t

[
MR
t+τ

MR
t

]
× EP

t

[
Πt

Πt+τ

]
)
.

Converting this price into a yield-to-maturity using

yNt (τ) = −1

τ
lnPN

t (τ) and yRt (τ) = −1

τ
lnPR

t (τ), (1)

we obtain

yNt (τ) = yRt (τ) + πe
t (τ) + φt(τ), (2)

where the market-implied rate of inflation expected at time t for the period from t to t+ τ is

πe
t (τ) = −1

τ
lnEP

t

[
Πt

Πt+τ

]
= −1

τ
lnEP

t

[
e−

∫ t+τ
t

(rNs −rRs )ds
]

(3)

and the associated inflation risk premium for the same time period is

φt(τ) = −1

τ
ln

(
1 +

covPt

[
MR
t+τ

MR
t

, Πt
Πt+τ

]

EP
t

[
MR
t+τ

MR
t

]
× EP

t

[
Πt

Πt+τ

]
)
. (4)

2.2 The Value of the Deflation Protection Embedded in TIPS

The primary focus of this paper is the value of the deflation protection embedded in TIPS

bonds and how, during the financial crisis of 2008 and 2009, it affected the relative prices

of pairs of TIPS bonds differentiated only by their accrued inflation compensation. Under

standard inflationary conditions, the value of the deflation protection should not play an

important role in TIPS bond pricing since the probability of having negative net accrued

inflation compensation at maturity is negligible; that is, the option should be well out-of-the-

money. However, at the peak of the financial crisis in the fall of 2008, neither the perceived

nor the priced probability of deflation were negligible as we show in Section 4. Under these

circumstances, a wedge can develop between the prices of seasoned TIPS bonds with a signif-

icant amount of accrued inflation compensation and recently issued on-the-run TIPS bonds,
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which have no cumulated inflation compensation. As suggested by Wright (2009), this wedge

is a proxy for the value of the TIPS deflation protection option.

To examine the ability of the proposed models to price these deflation protection options,

we use the models’ implied yield curves and deflation probabilities. We calculate the deflation

protection option values by comparing the prices of a newly issued TIPS bond without any

accrued inflation compensation and a seasoned TIPS bond with sufficient accrued inflation

compensation under the risk-neutral (or Q-) pricing measure. First, consider a hypothetical

seasoned TIPS bond with T years remaining to maturity that pays an annual coupon C

semi-annually. Assume this bond has accrued sufficient inflation compensation so it is nearly

impossible to reach the deflation floor before maturity. Under the risk-neutral pricing measure,

the par-coupon bond satisfying these criteria has a coupon rate determined by the equation

2T∑

i=1

C

2
EQ

t

[
e−

∫ ti
t rRs ds

]
+ EQ

t

[
e−

∫ T
t

rRs ds
]
= 1. (5)

The first term is the sum of the present value of the 2T coupon payments using the model’s

fitted real yield curve at day t. The second term is the discounted value of the principal

payment. The coupon payment of the seasonal bond that solves this equation is denoted as

CS .

Next, consider a new TIPS bond with no accrued inflation compensation with T years to

maturity. Since the coupon payments are not protected against deflation, the difference is in

accounting for the deflation protection on the principal payment. For this bond, the pricing

equation has an additional term; i.e.,

2T∑

i=1

C

2
EQ

t

[
e−

∫ ti
t rRs ds

]
+ EQ

t

[
ΠT

Πt

· e−
∫ T
t

rNs ds1
{
ΠT
Πt

>1}

]
+ EQ

t

[
1 · e−

∫ T
t

rNs ds1
{
ΠT
Πt

≤1}

]
= 1.

The first term is the same as before. The second term represents the present value of the

principal payment conditional on a positive net change in the price index over the bond’s

maturity; i.e., ΠT
Πt

> 1. Under this condition, full inflation indexation applies, and the price

change ΠT
Πt

is placed within the expectations operator. The third term represents the present

value of the floored TIPS principal conditional on accumulated net deflation; i.e., when the

price level change is below one, ΠT
Πt

is replaced by a value of one to provide the promised

deflation protection.

Since
ΠT

Πt

= e
∫ T
t
(rNs −rRs )ds,

the equation can be rewritten as
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2T
∑

i=1

C

2
EQt [e

−
∫ ti
t rRs ds] + EQt

[

e−
∫
T
t
rRs ds

]

+

[

EQt

[

e−
∫
T
t
rNs ds1

{
ΠT
Πt

≤1}

]

− EQt

[

e−
∫
T
t
rRs ds1

{
ΠT
Πt

≤1}

]

]

= 1, (6)

where the last term on the left-hand side represents the net present value of the deflation

protection of the principal in the TIPS contract. The par-coupon yield of a new hypothetical

TIPS bond that solves this equation is denoted as C0. The difference between CS and C0 is a

measure of the advantage of being at the inflation adjustment floor for a newly issued TIPS

bond and thus of the value of the embedded deflation protection option.

3 Models of Nominal and Real Treasury Yield Curves

Given the theoretical framework introduced in the previous section, we briefly summarize

the affine term structure model of nominal and real Treasury yields with constant volatil-

ity developed by CLR (2010) and then introduce the modified version with stochastic yield

volatility. Please note that even though the models are not formulated using the canonical

form of affine term structure models introduced by Dai and Singleton (2000), both models

can be viewed as restricted versions of their respective canonical model.4 Furthermore, it

can be noted that most of the restrictions imposed are motivated by a desire to generate

a factor loading structure in the zero-coupon bond yield functions that closely matches the

Nelson-Siegel (1987) model.

3.1 The Constant Volatility Model

The joint four-factor constant volatility (CV) model of nominal and real yields is a direct

extension of the three-factor, arbitrage-free Nelson-Siegel (AFNS) model developed by Chris-

tensen, Diebold and Rudebusch (CDR, 2011) for nominal yields. In the CV model, the state

vector is denoted by Xt = (LN
t , St, Ct, L

R
t ), where LN

t is the level factor for nominal yields,

St is the common slope factor, Ct is the common curvature factor, and LR
t is the level factor

for real yields.5 The instantaneous nominal and real risk-free rates are defined as:

rNt = LN
t + St, (7)

rRt = LR
t + αRSt. (8)

4These restrictions can be derived explicitly, and the calculations are available upon request.
5Chernov and Mueller (2011) provide evidence of a hidden factor in the nominal yield curve that is observable

from real yields and inflation expectations. Our models accommodate this stylized fact.
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Note that the differential scaling of the real rates to the common slope factor is captured

by the parameter αR. To preserve the Nelson-Siegel factor loading structure in the yield

functions, the risk-neutral (or Q-) dynamics of the state variables are given by the stochastic

differential equations:6




dLN
t

dSt

dCt

dLR
t




=




0 0 0 0

0 −λ λ 0

0 0 −λ 0

0 0 0 0







LN
t

St

Ct

LR
t




dt+Σ




dWLN ,Q
t

dW S,Q
t

dWC,Q
t

dWLR,Q
t




, (9)

where Σ is the constant covariance (or volatility) matrix.7 Based on this specification of

the Q-dynamics, nominal Treasury zero-coupon bond yields preserve the Nelson-Siegel factor

loading structure as

yNt (τ) = LN
t +

(
1− e−λτ

λτ

)
St +

(
1− e−λτ

λτ
− e−λτ

)
Ct −

AN (τ)

τ
, (10)

where AN (τ)/τ is a maturity-dependent yield-adjustment term. Similarly, real TIPS zero-

coupon bond yields have a Nelson-Siegel factor loading structure expressed as

yRt (τ) = LR
t + αR

(
1− e−λτ

λτ

)
St + αR

(
1− e−λτ

λτ
− e−λτ

)
Ct −

AR(τ)

τ
. (11)

Note that AR(τ)/τ is another maturity-dependent yield-adjustment term. These two equa-

tions, when combined in state-space form, constitute the measurement equation needed for

Kalman filter estimation.

To complete the model, we define the price of risk, which links the risk-neutral and real-

world yield dynamics, using the essentially affine risk premium specification introduced by

Duffee (2002). The real-world dynamics of the state variables are then expressed as

dXt = KP (θP −Xt)dt+ΣdWP
t , (12)

6As discussed in CDR (2011), with unit roots in the two level factors, the model is not arbitrage-free with
an unbounded horizon; therefore, as is often done in theoretical discussions, we impose an arbitrary maximum
horizon.

7As per CDR (2011), Σ is a diagonal matrix, and θQ is set to zero without loss of generality.
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which in its most general form can be written as




dLN
t

dSt

dCt

dLR
t




=




κP11 κP12 κP13 κP14

κP21 κP22 κP23 κP24

κP31 κP32 κP33 κP34

κP41 κP42 κP43 κP44










θP1

θP2

θP3

θP4




−




LN
t

St

Ct

LR
t







dt+Σ




dWP,LN

t

dWP,S
t

dWP,C
t

dWP,LR

t




. (13)

This equation is the transition equation used in the Kalman filter estimation. Please note

that the model specification given by Equations (7), (8), (9), and (13) has 14 restrictions

relative to its canonical A0(4) model.

3.2 The Stochastic Volatility Model

Financial time series, such as interest rates and bond yields, have been shown to have time-

varying volatility, which is a feature not often incorporated into arbitrage-free term structure

models; see Andersen and Benzoni (2010) for further discussion. To address this concern,

CLR (2012) develop a general class of AFNS models that incorporate spanned stochastic

volatility. To distinguish between the various types of models, we use the notation outlined in

Dai and Singleton (2000) for classifying affine term structure models, such that the CV model

is within the A0(4) class of models that do not have volatility dynamics. As detailed in CLR

(2012), there are several possible volatility specifications within their three-factor framework,

and clearly, the introduction of the fourth factor within the CLR (2010) model generates an

even larger set of possible specifications.

For this paper, we chose an A2(4) volatility specification that incorporates stochastic

volatility based on the nominal and real level factors. This choice was motivated by a desire

to focus on the longer maturity TIPS yields, since observable proxies for the value of the

TIPS deflation protection option are most available near the five-year maturity point. For

the SV model, the state vector and instantaneous risk-free rates are the same as before. To

preserve the Nelson-Siegel factor loading structure and impose our volatility specification, the

Q-dynamics of the state variables are given by8

8While the modeling framework allows for the two level factors to directly affect the volatility of the common
slope and curvature factors, we fix the associated volatility sensitivity parameters to zero as per CLR (2012),
who report that these volatility sensitivity parameters are typically insignificant for U.S. Treasury data. This
choice leads to analytical bond pricing formulas that greatly facilitate model estimation and analysis.
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dLN
t

dSt

dCt

dLR
t




=




κQ
LN

0 0 0

0 λ −λ 0

0 0 λ 0

0 0 0 κQ
LR










θQ
LN

0

0

θQ
LR




−




LN
t

St

Ct

LR
t






dt (14)

+




σ11 0 0 0

0 σ22 0 0

0 0 σ33 0

0 0 0 σ44







√
LN
t 0 0 0

0
√
1 0 0

0 0
√
1 0

0 0 0
√

LR
t







dWLN ,Q
t

dW S,Q
t

dWC,Q
t

dWLR,Q
t




.

The representation of the nominal zero-coupon bond yield function becomes

yNt (τ) = gN
(
κQ
LN

)
LN
t +

(
1− e−λτ

λτ

)
St +

(
1− e−λτ

λτ
− e−λτ

)
Ct −

AN
(
τ ;κQ

LN

)

τ
, (15)

where gN
(
κQ
LN

)
is a modified loading on the nominal level factor.9 Note that the slope and the

curvature factor preserve their Nelson-Siegel factor loadings exactly, although the structure of

the yield-adjustment term AN
(
τ ;κQ

LN

)
/τ is different than before. Correspondingly, the real

zero-coupon bond yield function is now

yRt (τ) = gR
(
κQ
LR

)
LR
t + αR

(
1− e−λτ

λτ

)
St + αR

(
1− e−λτ

λτ
− e−λτ

)
Ct −

AR
(
τ ;κQ

LR

)

τ
, (16)

where gR
(
κQ
LR

)
is a modified loading on the real level factor and AR

(
τ ;κQ

LR

)
/τ is a modified

yield-adjustment term.10

To link the risk-neutral and real-world dynamics of the state variables, we here use the

extended affine risk premium specification introduced by Cheridito et al. (2007), as per CLR

(2012). The maximally flexible affine specification of the P -dynamics is thus11




dLN
t

dSt

dCt

dLR
t




=




κP11 0 0 κP14

κP21 κP22 κP23 κP24

κP31 κP32 κP33 κP34

κP41 0 0 κP44










θP1

θP2

θP3

θP4




−




LN
t

St

Ct

LR
t






dt (17)

9Analytical formulas for gN
(

κQ
LN

)

, gR
(

κQ
LR

)

, AN
(

τ ;κQ
LN

)

, and AR
(

τ ;κQ
LR

)

are provided in Appendix A.
10In our implementation, we fix κQ

LN
= κQ

LR
= 10−7 to get a close approximation to the uniform level factor

loading in the Gaussian CV model.
11The specification given by Equations (7), (8), (14), and (17) has 20 restrictions relative to its canonical

A2(4) model.
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+




σ11 0 0 0

0 σ22 0 0

0 0 σ33 0

0 0 0 σ44







√
LN
t 0 0 0

0
√
1 0 0

0 0
√
1 0

0 0 0
√

LR
t







dWLN ,P
t

dW S,P
t

dWC,P
t

dWLR,P
t




.

To keep the model arbitrage-free, the two level factors must be prevented from hitting the

lower zero-boundary. This positivity requirement is ensured by imposing the Feller conditions

under both probability measures, which in this case are four; i.e.,

κP11θ
P
1 + κP14θ

P
4 >

1

2
σ2
11,

10−7 · θQ
LN

>
1

2
σ2
11,

κP41θ
P
1 + κP44θ

P
4 >

1

2
σ2
44,

and

10−7 · θQ
LR

>
1

2
σ2
44.

Furthermore, to have well-defined processes for LN
t and LR

t , the sign of the effect that these

two factors have on each other must be positive, which requires the restrictions that

κP14 ≤ 0 and κP41 ≤ 0.

These conditions ensure that the two square-root processes will be non-negatively correlated.12

3.2.1 Deflation Probabilities Within the SV Model

CLR (2011) use the CV model to generate deflation probabilities at various horizons appro-

priate for macroeconomic and monetary policy purposes. Similarly, the SV model can be

used to calculate deflation probabilities, although additional steps are necessary.

The change in the price index implied by the model’s “yields-only” approach for the period

from t to t+ τ is given by
Πt+τ

Πt

= e
∫ t+τ
t

(rNs −rRs )ds.

To determine whether the change in the price index over a τ -period horizon may be below a

12Our empirical results show that the Feller condition pertaining to the real yield level factor LRt under
the Q-measure is systematically binding, while the other three Feller conditions are never binding. Thus, it
is mainly the dynamics of LRt that are affected by the imposition of the Feller conditions, most notably σ44.
For robustness, we analyzed the specification of the SV model without Feller conditions imposed, but found it
to underperform along multiple dimensions relative to the reported SV model with Feller conditions imposed.
Results for this alternative specification and analysis are available upon request.
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critical level q, we are interested in the probability of the states where

Πt+τ

Πt

≤ 1 + q,

or, equivalently,

Yt,τ =

∫ t+τ

t

(rNs − rRs )ds ≤ ln(1 + q).

Given that rNt = LN
t + St and rRt = LR

t + αRSt, we are interested in the distributional

properties of the process

Y0,t =

∫ t

0
(rNs −rRs )ds =

∫ t

0
(LN

s +Ss−LR
s −αRSs)ds ⇒ dY0,t = (LN

t +(1−αR)St−LR
t )dt.

This process is then introduced into the system of equations containing the P -dynamics of

the state variables Xt.

Due to the introduction of stochastic volatility into the two level factors, this system of

equations no longer has Gaussian state variables. As a consequence, we must use the Fourier

transform analysis described in full generality for affine models in Duffie, Pan, and Singleton

(2000), as opposed to the approach detailed in CLR (2011) for the CV model. The intuition of

this approach is to express expectations of contingent payments in a tractable, mathematical

form. By simplifying these expectations to indicator variables such as 1(Yt,τ≤ln(1+q)), event

probabilities are readily generated; see Appendix C for details.

3.3 Model Estimation

The estimation of both models relies on the Kalman filter as in CLR (2010, 2011); that is,

nominal and real zero-coupon yields are affine functions of the state variables such that

yt(τ) = −1

τ
B(τ)′Xt −

1

τ
A(τ) + εt(τ),

where εt(τ) are assumed to be i.i.d. Gaussian errors. The conditional mean for multi-

dimensional affine diffusion processes is given by

EP [XT |Xt] = (I − exp(−KP (T − t)))θP + exp(−KP (T − t))Xt, (18)

where exp(−KP (T−t)) is a matrix exponential. In general, the conditional covariance matrix

for affine diffusion processes is given by

V P [XT |Xt] =

∫ T

t

exp(−KP (T − s))ΣD(EP [Xs|Xt])D(EP [Xs|Xt])
′Σ′ exp(−(KP )′(T − s))ds. (19)

12



Stationarity of the system under the P -measure is ensured if the real components of all

the eigenvalues of KP are positive, and this condition is imposed in all estimations. For this

reason, we can start the Kalman filter at the unconditional mean and covariance matrix.13

However, the introduction of stochastic volatility in the SV model implies that the factors

are no longer Gaussian since their variances are now dependent on the path of the state

variables. For tractability, we choose to approximate the true probability distribution of the

state variables using the first and second moments described above and use the Kalman filter

algorithm as if the state variables were Gaussian.14 The state equation is given by

Xt = (I − exp(−KP∆t))θP + exp(−KP∆t)Xt−1 + ηt, ηt ∼ N(0, Vt−1),

where ∆t is the time between observations and Vt−1 is the conditional covariance matrix given

in Equation (19).15 In the Kalman filter estimations, the error structure is given by

(
ηt

εt

)
∼ N

[(
0

0

)
,

(
Vt−1 0

0 H

)]
,

where H is assumed to be a diagonal matrix of the measurement error standard deviations,

σε(τi), that are specific to each yield maturity in the data set. Furthermore, the discrete

nature of the transition equation can cause the square-root processes to become negative

despite the fact that the parameter sets are forced to satisfy Feller conditions and other non-

negativity restrictions. Whenever this happens, we follow the literature and simply truncate

those processes at zero; see Duffee (1999) for an example.

4 Empirical Analysis

In this section, we first detail the data used for model estimation before describing the esti-

mation results with particular emphasis on the risk of deflation and its implications for the

value of the deflation protection options embedded in TIPS.

13In the estimation, we calculate the conditional and unconditional covariance matrices using the analytical
solutions provided in Fisher and Gilles (1996), which differs from the previous studies by CLR (2010, 2011)
that relied upon numerical approximations.

14A few notable examples of papers that follow this approach include Duffee (1999), Driessen (2005), and
Feldhütter and Lando (2008). An unreported simulation analysis suggests that the added bias from using the
Kalman filter in estimating the SV model is modest relative to the finite-sample bias that even the CV model
is subject to.

15For estimation purposed over the first eight years of the sample with-

out TIPS yields, e−K
P∆t, (1 − e−K

P∆t)θP , and the conditional covariance matrix
∫ t+τ

t
e−K

P (t+τ−s)ΣD(EP [Xs|Xt])D(EP [Xs|Xt])′Σ′e−(KP )′(t+τ−s)ds are calculated using the upper (3 × 3)

part of KP and the upper (3× 1) part of θP .
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4.1 Data

In this paper, the nominal Treasury bond yields used are zero-coupon yields constructed as

in Gürkaynak et al. (2007).16 These yields are constructed using a discount function of the

Svensson (1995)-type to minimize the pricing error of a large pool of underlying off-the-run

Treasury bonds. As demonstrated by Gürkaynak et al. (2007), the model fits the underlying

pool of bond prices extremely well. By implication, the zero-coupon yields derived from this

approach constitute a very good approximation of the underlying Treasury zero-coupon yield

curve. From this dataset, we use eight Treasury zero-coupon bond yields with maturities of

3-months, 6-months, 1-year, 2-years, 3-years, 5-years, 7-years, and 10-years. We use weekly

Friday data and limit our sample to the period from January 6, 1995 to December 31, 2010,

which provides us with 835 weekly observations. Similarly for the real Treasury yields, we

use the zero-coupon bond yields constructed with the same method used by Gürkaynak et al.

(2010).17 The data is available from January 1999, but due to weak liquidity in the first years

of TIPS trading, we follow CLR (2010) and limit our sample to the period after 2002. We

have weekly real Treasury yields from January 2, 2003 to December 31, 2010, a total of 418

observations. Since our focus is on the long-term real yields, we use the six yearly maturities

from five to ten years.

4.2 Estimation Results

To select the best fitting specifications of each model’s real-world dynamics, we use a general-

to-specific modeling strategy that restricts the least significant parameter in the estimation

to zero and then re-estimates the model. This strategy of eliminating the least significant

coefficients is carried out down to the most parsimonious specification, which has a diagonal

KP matrix. The final specification choice is based on the values of the Akaike and Bayes

information criteria as per CLR (2010).18

For the CV model, the summary statistics of the model selection process are reported in

Table 1. Both information criteria are minimized by specification (9), which has a KP matrix

specified as

KP
CV =




κP11 0 0 0

κP21 κP22 κP23 0

0 0 κP33 0

κP41 κP42 0 κP44




.

16The Board of Governors of the Federal Reserve updates the data on its website at
http://www.federalreserve.gov/pubs/feds/2006/index.html.

17This dataset is also maintained by the Board of Governors of the Federal Reserve System at
http://www.federalreserve.gov/pubs/feds/2008/index.html.

18See Harvey (1989) for further details.
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Alternative Goodness-of-fit statistics
specifications Max logL k p-value AIC BIC

(1) Unrestricted KP 52,561.05 40 n.a. -105,042.1 -104,853.0
(2) κP24 = 0 52,560.99 39 0.7290 -105,044.0 -104,859.6
(3) κP24 = κP32 = 0 52,560.89 38 0.6547 -105,045.8 -104,866.1
(4) κP24 = κP32 = κP43 = 0 52,560.76 37 0.6101 -105,047.5 -104,872.6
(5) κP24 = . . . = κP12 = 0 52,560.58 36 0.5485 -105,049.2 -104,879.0
(6) κP24 = . . . = κP13 = 0 52,560.52 35 0.7290 -105,051.0 -104,885.6
(7) κP24 = . . . = κP14 = 0 52,559.97 34 0.2943 -105,051.9 -104,891.2
(8) κP24 = . . . = κP31 = 0 52,559.40 33 0.2857 -105,052.8 -104,896.8
(9) κP24 = . . . = κP34 = 0 52,558.84 32 0.2899 -105,053.7 -104,902.4

(10) κP24 = . . . = κP21 = 0 52,549.96 31 < 0.0001 -105,037.9 -104,891.4
(11) κP24 = . . . = κP42 = 0 52,542.19 30 0.0001 -105,024.4 -104,882.6
(12) κP24 = . . . = κP41 = 0 52,533.33 29 < 0.0001 -105,008.7 -104,871.6
(13) κP24 = . . . = κP23 = 0 52,516.58 28 < 0.0001 -104,977.2 -104,844.8

Table 1: Evaluation of Alternative Specifications of the CV Model.

Thirteen alternative estimated specifications of the CV model of nominal and real Treasury bond yields

are evaluated. Each specification is listed with its maximum log likelihood (Max logL), number of

parameters (k), the p-value from a likelihood ratio test of the hypothesis that the specification differs

from the one directly above that has one more free parameter. The information criteria (AIC and

BIC) are also reported, and their minimum values are given in boldface.

Table 2 contains the estimated parameters for this specification. All the off-diagonal elements

are highly significant and consistent with the empirical results reported in CLR (2010).19 In

terms of dynamic properties, the nominal level factor is a persistent, slowly varying process

not affected by any of the other factors. The common curvature factor is also unaffected

by the other factors, but is less persistent and more volatile. The common slope factor is

in between these two extremes as it is less persistent than the nominal level factor and less

volatile than the curvature factor. Finally, the real level factor is the least persistent factor

likely due to the shorter sample of real yields.

Turning to the chosen specification of the SV model, Table 3 contains the summary statis-

tics of the model selection. For reasons of parsimony, we choose to focus on the specification

preferred according to BIC with a mean-reversion matrix given by

KP
SV =




κP11 0 0 0

0 κP22 κP23 0

0 0 κP33 0

0 0 0 κP44




.

19The primary difference with the specification favored by CLR (2010, 2011) is that the κP14 parameter is
set to zero in this case.
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KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 θP Σ

KP
1,· 0.3483 0 0 0 0.0637 σ11 0.0059

(0.2528) (0.0045) (0.0002)
KP

2,· 1.4559 0.8185 -0.8148 0 -0.0289 σ22 0.0087

(0.4738) (0.1678) (0.1152) (0.0174) (0.0002)
KP

3,· 0 0 0.5416 0 -0.0175 σ33 0.0297

(0.2897) (0.0135) (0.0006)
KP

4,· -4.1070 -0.6406 0 3.1116 0.0372 σ44 0.0068

(0.5491) (0.1874) (0.3428) (0.0047) (0.0001)

Table 2: Parameter Estimates for the Preferred CV Model.

The estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix are shown for the

specification of the CV model preferred according to both AIC and BIC information criteria. The

estimated value of λ is 0.5016 (0.0034), while αR is estimated to be 0.5600 (0.0056). The numbers in

parentheses are the estimated parameter standard deviations. The maximum log likelihood value is

52,558.84.

Alternative Goodness-of-fit statistics
specifications Max logL k p-value AIC BIC

(1) Unrestricted KP 54,479.99 38 n.a. -108,884.0 -108,704.3
(2) κP34 = 0 54,479.99 37 1.0000 -108,886.0 -108,711.1
(3) κP34 = κP24 = 0 54,479.85 36 0.5967 -108,887.7 -108,717.5
(4) κP34 = κP24 = κP31 = 0 54,479.26 35 0.2774 -108,888.5 -108,723.1
(5) κP34 = . . . = κP32 = 0 54,479.12 34 0.5967 -108,890.2 -108,729.5
(6) κP34 = . . . = κP21 = 0 54,477.19 33 0.0495 -108,888.4 -108,732.4
(7) κP34 = . . . = κP41 = 0 54,473.33 32 0.0055 -108,882.7 -108,731.4
(8) κP34 = . . . = κP14 = 0 54,470.80 31 0.0245 -108,879.6 -108,733.0

(9) κP31 = . . . = κP23 = 0 54,437.41 30 < 0.0001 -108,814.8 -108,673.0

Table 3: Evaluation of Alternative Specifications of the SV Model

Nine alternative estimated specifications of the SV model of nominal and real Treasury bond yields

are evaluated. Each specification is listed with its log likelihood (Max logL), number of parameters

(k), the p-value from a likelihood ratio test of the hypothesis that the specification differs from the

one directly above that has one more free parameter. The information criteria (AIC and BIC) are also

reported, and their minimum values are given in boldface.

Compared to the preferred specification of the CV model, κP21 and κP41 are jointly only bor-

derline significant, while κP42 is not admissible.

The estimated parameters for this preferred specification are reported in Table 4. The

most notable difference relative to the results for the CV model is that the nominal level factor

is less persistent, while the real level factor is more persistent. Furthermore, for obvious

reasons, σ11 and σ44 operate at different levels now due to the introduction of stochastic

volatility through the first and fourth factor. However, as we show below, these differences
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KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 θP Σ

KP
1,· 1.0431 0 0 0 0.0425 σ11 0.0633

(0.4193) (0.0045) (0.0006)
KP

2,· 0 0.6711 -0.6248 0 -0.0118 σ22 0.0130

(0.1867) (0.1549) (0.0143) (0.0003)
KP

3,· 0 0 0.6915 0 -0.0076 σ33 0.0303

(0.1966) (0.0119) (0.0007)
KP

4,· 0 0 0 1.4203 0.0168 σ44 0.0597

(0.1914) (0.0017) (0.0007)

Table 4: Parameter Estimates for the Preferred SV Model.

The estimated parameters of the KP -matrix, the θP -vector, and the Σ-matrix for the preferred spec-

ification of the SV model according to BIC. The Q-related parameters are estimated at: λ = 0.6067

(0.0025), αR = 0.4397 (0.0068), θQ
LN

= 32,419 (31.67), and θQ
LR

= 17,846 (47.15). The numbers in

parentheses are the estimated standard deviations of the parameter estimates. The maximum log

likelihood value is 54,470.80.

Maturity
in months

CV model SV model

Nom. yields Mean RMSE σ̂ε(τi) Mean RMSE σ̂ε(τi)

3 -0.54 9.53 9.51 0.75 19.23 19.22
6 0.00 0.00 0.00 -0.17 8.23 8.24
12 1.79 5.80 5.79 0.00 0.00 0.00
24 2.22 3.98 4.00 0.46 1.56 1.56
36 0.00 0.13 0.55 0.00 0.00 0.00
60 -2.67 3.73 3.83 -0.28 1.27 1.38
84 0.08 3.37 3.66 0.24 0.59 1.14
120 9.53 12.03 12.15 -1.15 4.41 4.59

TIPS yields Mean RMSE σ̂ε(τi) Mean RMSE σ̂ε(τi)

60 -3.98 20.27 20.20 -2.04 13.59 13.59
72 -2.60 12.23 12.18 -0.51 5.87 5.86
84 -1.31 5.64 5.61 0.00 0.00 0.00
96 0.00 0.00 0.00 -0.38 4.72 4.72
108 1.35 4.94 4.90 -1.52 8.74 8.74
120 2.74 9.32 9.25 -3.32 12.35 12.35

Max logL 52,558.84 54,470.80

Table 5: Summary Statistics of the Fitted Errors.

The mean and root mean squared fitted errors (RMSE) for the preferred specification of the CV and

SV models are shown. All numbers are measured in basis points. The nominal yields cover the period

from January 6, 1995, to December 31, 2010, while the real TIPS yields cover the period from January

3, 2003, to December 31, 2010.

do not lead to major differences in the models’ first moment dynamics.

Table 5 contains summary statistics for the fitted errors from both models. For the
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nominal yields, the CV model fits the very short end of the nominal yield curve relatively

better than the longer maturities in the one- to ten-year maturity range. In contrast, the SV

model provides a better in-sample fit in the one- to ten-year maturity range, but less accurate

fit for short-maturity yields. For the real yields, though, the SV model provides a significant

overall improvement in model fit relative to the CV model, which is the main cause for the

large difference in likelihood values.

In the following, we analyze the performance of the two models in greater detail using

real-time analysis; that is, each model is estimated using the sample covering the twelve-year

period from January 6, 1995 to January 5, 2007, and relevant model output is calculated; then,

one week of data is added to the sample and the models are re-estimated, and another set of

model output is constructed. This process is continued until the sample ends on December

31, 2010.

4.3 Inflation Expectations

A key purpose of our joint models of nominal and real yields is to decompose BEI rates

into inflation expectations and inflation risk premiums for further analysis. To conduct this

analysis, we generate real-time, out-of-sample forecasts based on the rolling model estimation

procedure described previously.

Figure 2 illustrates the models’ market-implied expected inflation at the five-year horizon

as well as the median of the five-year CPI inflation forecast from the Survey of Professional

Forecasters (SPF). The preferred CV and SV models produce sharp declines in expected

inflation shortly after the Lehman bankruptcy in September 2008, which is consistent with

realized inflation; that is, headline CPI did register negative year-over-year changes during

2009 for the first time since 1955. Since the beginning of 2009, the two models suggest that

medium-term inflation expectations have stabilized, but at a lower level than what prevailed

prior to the financial crisis. This downward shift is consistent with the downward trend in the

SPF survey measure, but notably larger. Furthermore, it appears consistent with the trend

in CPI realizations, which has shifted down.20

In Figure 3, the one-year inflation forecasts from the two models are compared to the

subsequent headline CPI realizations as well as the corresponding survey forecasts provided

by Blue Chip and the one-year inflation swap rate. Please note that both models and surveys

are unable to capture the large variation in headline CPI inflation. To compare the various

forecasts, Table 6 reports the results of aligning the model-generated inflation forecasts with

20From the beginning of 2006 until the end of June 2008, the average annual rate of headline CPI inflation
was log(218.815/195.3)/2.5 = 4.5 percent, while the average annual rate from mid-2008 until the end of 2010
was a modest log(219.179/218.815)/2.5 = 0.1 percent.
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Figure 2: Estimated Five-Year Inflation Expectations.

Illustration of the estimated inflation expectations at the five-year horizon according to the CV and

SV models. Included is the median five-year forecast of CPI inflation from the Survey of Professional

Forecasters.

the release dates of the Blue Chip survey and calculating the forecast errors for the 36 months

from January 2007 through December 2009. In terms of matching headline CPI inflation, the

two models are at least on par with, if not ahead of, the Blue Chip survey forecasts and the

one-year inflation swap rate as measured by RMSEs.

In addition to the conditional expectations for future inflation studied so far, we also

analyze the models’ ability to match the unconditional moments of the CPI inflation process.

To do so, we calculate the unconditional mean and standard deviation of the one- and two-

year expected inflation from the two models and compare them to the corresponding statistics

for headline CPI inflation realizations since January 2000. The results are reported in Table

7. Interestingly, the unconditional mean from the CV and SV models are below the mean of

observed CPI realizations. However, in terms of the volatility of the price inflation process,

the SV model is able to match the observed values very closely, while the CV model generates

a distribution for inflation outcomes that is too narrow. This result suggests that the SV

model captures price inflation dynamics reasonably well, in particular inflation uncertainty,

even though no price indexes are used in the model estimation.
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Figure 3: One-Year CPI Inflation Forecasts.

Illustration of year-over-year headline CPI inflation realizations are shown with a solid grey line. The

one-year inflation forecasts from the CV and SV models are shown with a dashed and solid black line,

respectively. Included are also the monthly Blue Chip one-year headline CPI inflation forecast (dashed

grey line) and the one-year zero-coupon inflation swap rate downloaded from Bloomberg (dotted black

line).

Model Mean RMSE

Random Walk -39.35 349.34

One-year inflation swap -38.86 224.45
Blue Chip 42.12 300.47

CV model 23.77 215.78
SV model 46.29 225.06

Table 6: Comparison of Real-Time CPI Inflation Forecasts.

Summary statistics for one-year forecast errors of headline CPI inflation in real time. The Blue Chip

forecasts are mapped to the tenth of each month January 2007 to December 2009, a total of 36 monthly

forecasts. The comparable model forecast is generated on the nearest available business day prior to

the Blue Chip release. A similar principle is used for the collection of the corresponding inflation swap

rate forecast. The subsequent CPI realizations are year-over-year changes starting at the end of the

survey month. As a consequence, the random walk forecasts equal the past year-over-year change in

the CPI series as of the end of the survey month.

4.4 Deflation Probability Forecasts

Another relevant comparison measure for these models is their implied probability forecasts

of net deflation one year ahead, as presented in CLR (2011) and in Figure 4. The risk of
20



Unconditional distribution of πe
t (τ)

Model τ = 1 year τ = 2 years
Mean St. Dev. Mean St. Dev.

Headline CPI inflation 2.45 1.38 2.47 0.86

CV model 1.35 0.71 1.35 0.64
SV model 1.91 1.30 1.90 1.00

Table 7: Moments from the Unconditional Distribution of Expected Inflation.

The mean and standard deviation of the unconditional distribution of the one- and two-year expected

inflation from the CV and SV models are shown. The parameters in each case are those estimated

as of December 31, 2010. The mean and standard deviation of the unconditional distribution of

expected headline CPI inflation outcomes are approximated by the mean and standard deviation of

the monthly one- and two-year headline CPI inflation realizations over the period from January 2000

until December 2010, a total of 132 observations, measured at a continuously compounded rate. All

numbers are measured in percent.
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Figure 4: Estimated One-Year Objective Deflation Probabilities.

Illustration of the estimated probability of negative net inflation over the following one-year period

according to the CV and SV models.

deflation in 2007 and leading up to the failure of Lehman Brothers in September 2008 was

basically zero under both models. In late 2008, the models assigned a high probability to

net deflation over the following twelve-month period, which is consistent with the observed

negative year-over-year change in headline CPI observed during these months. The SV model
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Figure 5: Five-Year Par-Coupon Yield Spread Between Seasoned and Newly Issued

TIPS.

Illustration of the estimated five-year par-coupon yield spread between a seasoned and a newly issued

TIPS according to the CV and SV models. Included is also the spread in yield-to-maturity between

comparable pairs of seasoned and newly issued TIPS with approximately five years remaining to

maturity as reported by Bloomberg. This series is a proxy for the value of the embedded deflation

protection options. See footnote 24 for complete details on the specific nominal and real bond pairs

used to generate the series.

probabilities are markedly higher than the CV model probabilities starting at the end of 2008

through year-end 2010. These higher and more persistent probabilities are partly a reflection

of slightly lower short-term expected inflation within the SV model during this period (see

Figure 3), but mainly they are due to the SV model’s higher conditional volatility estimates

that make tail outcomes more likely. Furthermore, in light of the fact that the economy did

experience negative headline CPI inflation during 2009, we consider the deflation probability

forecasts from the CV model to be low, while the forecasts from the SV model appear more

reasonable with estimates in the 30% to 50% range through most of 2009.

4.5 Deflation Protection Option Values

In this section, we use our rolling estimation results to analyze the models’ ability to price the

deflation protection option embedded in TIPS using the methodology described in Section

2.2. To highlight the difference between the CV and SV models in this regard, Figure 5
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shows the two model-implied values of the embedded TIPS deflation option measured as the

difference in value between a newly issued TIPS and an otherwise identical seasoned TIPS

converted into par-coupon yield spreads. The shown series are synthetic, constant five-year

par-yield spreads implied by both models. The figure also shows the actually observed yield

differences between seasoned and recently issued TIPS bonds with maturities in 2013, 2014,

and 2015. At each point in time, we only show the yield spread for the TIPS pair containing

the most recently issued five-year TIPS, which we refer to as the on-the-run pair, and that

represents the closest observable proxy to the model-implied constant-maturity yield spread.21

As observed by CLR (2011), the CV model consistently undervalues the deflation protection

option even though it captures its time-variation well. The SV model is much more successful

at matching the observed value of the deflation option prior to the crisis, at the peak of the

crisis, as well as in the post-crisis period.

To further illustrate the relative performance of these two models, we examine the model-

implied predicted values of the yield-to-maturity for each of the TIPS bonds in the on-the-

run pair separately.22 For this exercise, we match the timing of the outstanding coupons

and principal for each bond exactly, although we neglect the lag in the inflation indexation

since such adjustments are typically small for medium-term bonds. Specifically, we use the

fitted nominal and real yield curves to generate the net present value of the remaining bond

payments according to the left hand side of Equation (6) and convert the bond price into

yield-to-maturity. In calculating the model-implied value of the deflation protection option

in Equation (6), we explicitly control for the accrued inflation compensation in the option

valuation; i.e., the option will only be in the money provided that

ΠT

Πt

≤ 1

Πt/Π0
,

where Πt/Π0 is the index ratio as of time t; that is, the deflation experienced over the

remaining life of the bond ΠT /Πt negates the accumulated inflation experienced since the

bond’s issuance.

Figure 6 shows the raw yield-to-maturity series from Bloomberg as well as the model-

implied predicted values. Both models fit the bond-specific yield data relatively well outside

of the peak of the financial crisis in the fall of 2008 and the early part of 2009 when TIPS

liquidity was a concern. The summary statistics of the pricing errors reported in Table 8

show that the SV model does not perform as well in pricing the individual bonds as it does

21Specifically, from April 23, 2008 to April 22, 2009, we use the 5-year TIPS with maturity in April 2013
and the 10-year TIPS with maturity in July 2013. From April 23, 2009 to April 23, 2010, we use the 5-year
TIPS with maturity in April 2014 and the 10-year TIPS with maturity in July 2014. Since April 26, 2010, we
use the 5-year TIPS with maturity in April 2015 and the 10-year TIPS with maturity in July 2015.

22We are grateful to Kenneth Singleton for suggesting this exercise.
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Figure 6: Comparison of Model-Implied TIPS Yields to Bloomberg Data.

Comparison of the model-implied yields based on GSW data to the yield-to-maturity of the seasoned

and newly issued TIPS as reported by Bloomberg.

in capturing the spread and thus the embedded option values. For the sample period, the

SV model has larger mean errors for both the seasoned and newly-issued TIPS bonds. In

terms of RMSE, its value for the seasoned bonds is on par with that of the CV model, but

it is much higher for the newly-issued bonds. As observed in Table 5 regarding the models’

comparative in-sample fit for the nominal and real yield curves, the relative advantage of

the SV model is not obvious when examining the data’s first moment dynamics, whether for

the real yield curve or for individual bond yields. However, the model’s ability to price the

option values implicit in the spread between the on-the-run bond pairs reflects its advantage

in better capturing the data’s second moment dynamics. Table 8 shows that the SV model

provides better estimates of the embedded TIPS deflation option over the sample period

of April 2008 through December 2010 both in terms of mean fitted error (i.e., -1.50 basis

points for the SV model relative to +10.49 basis points for the CV model) and root-mean

squared error (i.e., 19.28 versus 25.09 basis points). Looking more carefully at subperiods,

both models performed similarly prior to the Lehman bankruptcy in September 2008, but for

the remainder of 2008, the SV model’s RMSE was lower at 50.6 basis points as compared to

the CV model’s value of 62.4 basis points. The SV model again outperformed the CV model

over the course of 2009 with an RMSE of 33.4 basis points relative to 40.5 basis points, and in

2010, the corresponding RMSE values were similar at 8.4 versus 7.1 basis points. The ability

of the SV model to handle the greater volatility observed during the financial crisis, while
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CV model SV model
TIPS yield

Mean RMSE Mean RMSE

(a) Seasoned 1.88 38.68 15.76 39.41
(b) Newly issued -8.61 23.75 17.26 32.32

Yield spread (a-b) 10.49 25.09 -1.50 19.28

Five-year GSW yield 9.29 28.48 4.67 18.61

Table 8: Summary Statistics of Pricing Errors for Bloomberg Data.

The table reports the mean and the root mean squared pricing error of the yield-to-maturity for the

seasoned and newly issued TIPS in the pair of TIPS that contains the on-the-run five-year TIPS as

reported by Bloomberg. For comparison the last row reports the comparable in-sample mean and root

mean squared fitted error of the five-year TIPS yield in the Gürkaynak et al. (2010) data based on the

full sample estimation of each model. All numbers are measured in basis points. The data is weekly

covering the period from April 25, 2008 to December 31, 2010, a total of 141 observations.

performing as well as the CV model before and after the crisis period, is strong evidence in

favor of using this model for interest-rate derivatives pricing and capturing the data’s second-

moment dynamics. Thus, the introduction of stochastic volatility into term structure models

is an important extension for modeling interest rate risk and derivatives pricing.

5 Conclusion

In this paper, we examine the deflation protection option embedded in TIPS bonds over the

period from 2003 to 2010, including the depths of the financial crisis in late 2008 and early

2009. To do so, we modify the joint model of nominal and real bond yields introduced in

CLR (2010) by replacing its constant volatility (CV) assumption with stochastic volatility

(SV) driven by the model’s nominal and real level factors. Our preferred specification of the

SV model delivers reasonable decompositions of breakeven inflation (i.e., the spread between

nominal and real Treasury yields) into expected inflation and inflation risk premiums, showing

that this model captures the data’s first moment dynamics as well as the CV model. However,

the SV model is shown to be better able to price the value of deflation protection embedded in

TIPS bonds and proxied for here by the difference between similar TIPS bonds with differing

degrees of accumulated inflation protection. This result highlights that the SV model is better

able to capture the volatility dynamics observed in the data and critical to derivatives pricing.

Based on this evidence, the proposed SV model should be useful for judging bond investors’

views on the tail risk of deflation as well as their inflation expectations. The SV model is

an obvious candidate for pricing derivative products in the inflation swap market, a topic we

leave for future research.
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Appendices

A). Bond Price Formulas

In the SV model, nominal zero-coupon bond prices are given by

PN(t, T ) = EQt
[

exp
(

−
∫ T

t

rNu du
)]

= exp
(

BN1 (t, T )LNt +BN2 (t, T )St+B
N
3 (t, T )Ct+B

N
4 (t, T )LRt +AN(t, T )

)

,

where BN1 (t, T ), BN2 (t, T ), BN3 (t, T ), and BN4 (t, T ) are the unique solutions to the following system of ODEs
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and γ and δ are given by
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0













and δ =













1 0 0 0
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0 0 0 0

0 0 0 1













.

This structure implies that the factor loadings in the nominal zero-coupon bond price function are given

by the unique solution to the following set of ODEs

dBN1 (t, T )

dt
= 1 + κQ

LN
BN1 (t, T )− 1

2
σ2
11B

N
1 (t, T )2, BN1 (T, T ) = B

N

1 ,

dBN2 (t, T )

dt
= 1 + λBN2 (t, T ), BN2 (T, T ) = B

N

2 ,

dBN3 (t, T )

dt
= −λBN2 (t, T ) + λBN3 (t, T ), BN3 (T, T ) = B

N

3 ,

dBN4 (t, T )

dt
= κQ

LR
BN4 (t, T )− 1

2
σ2
44B

N
4 (t, T )2, BN4 (T, T ) = B

N

4 .

These four ODEs have the following unique solution23

BN1 (t, T ) =
−2[eφ

N (T−t) − 1] +B
N

1 e
φN (T−t)(φN − κQ

LN
) +B

N

1 (φN + κQ
LN

)

2φN + (φN + κQ
LN

−B
N

1 σ
2
11)[e

φN (T−t) − 1]
,

BN2 (t, T ) = e−λ(T−t)B
N

2 − 1− e−λ(T−t)

λ
,

BN3 (t, T ) = λ(T − t)e−λ(T−t)B
N

2 +B
N

3 e
−λ(T−t) +

[

(T − t)e−λ(T−t) − 1− e−λ(T−t)

λ

]

,

BN4 (t, T ) =
2κQ

LR
B
N

4

(2κQ
LR

−B
N

4 σ
2
44)e

κ
Q

LR
(T−t)

+B
N

4 σ
2
44

,

23The calculations leading to this result are available upon request.
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where

φN =
√

(κQ
LN

)2 + 2σ2
11.

Now, the AN(t, T )-function in the yield-adjustment term in the nominal zero-coupon bond yield function

is given by the solution to the following ODE

dAN(t, T )

dt
= −BN(t, T )′KQθQ − 1

2
σ2
2B

N
2 (t, T )2 − 1

2
σ2
3B

N
3 (t, T )2, AN(T, T ) = A

N
.

This ODE has the following unique solution
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In the SV model, the real zero-coupon bond prices are given by

PR(t, T ) = EQt
[

exp
(

−
∫ T

t

rRu du
)]

= exp
(

BR1 (t, T )LNt +BR2 (t, T )St +BR3 (t, T )Ct +BR4 (t, T )LRt +AR(t, T )
)

,

where BR1 (t, T ), BR2 (t, T ), BR3 (t, T ), and BR4 (t, T ) are the unique solutions to the following system of ODEs
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This implies that the factor loadings in the real zero-coupon bond price function are given by the unique

solution to the following set of ODEs

dBR1 (t, T )

dt
= κQ

LN
BR1 (t, T )− 1

2
σ2
11B

R
1 (t, T )2, BR1 (T, T ) = B

R

1 ,

dBR2 (t, T )

dt
= αR + λBR2 (t, T ), BR2 (T, T ) = B

R

2 ,

dBR3 (t, T )

dt
= −λBR2 (t, T ) + λBR3 (t, T ), BR3 (T, T ) = B

R

3 ,

dBR4 (t, T )

dt
= 1 + κQ

LR
BR4 (t, T )− 1

2
σ2
44B

R
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R

4 .
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These four ODEs have the following unique solution24

BR1 (t, T ) =
2κQ

LN
B
R

1

(2κQ
LN

−B
R

1 σ
2
11)e

κ
Q

LN
(T−t)

+B
R

1 σ
2
11

,

BR2 (t, T ) = e−λ(T−t)B
R

2 − αR
1− e−λ(T−t)

λ
,

BR3 (t, T ) = λ(T − t)e−λ(T−t)B
R

2 +B
R

3 e
−λ(T−t) + αR

[

(T − t)e−λ(T−t) − 1− e−λ(T−t)

λ

]

,

BR4 (t, T ) =
−2[eφ

R(T−t) − 1] +B
R

4 e
φR(T−t)(φR − κQ

LR
) +B

R

4 (φ
R + κQ

LR
)

2φR + (φR + κQ
LR

−B
R

4 σ
2
44)[e

φR(T−t) − 1]
,
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The AR(t, T )-function in the yield-adjustment term in the real zero-coupon bond yield function is given by

the solution to the following ODE
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B). Calculation of the NPV of the TIPS Principal Deflation Protection

In general, we are interested in finding the NPV of terminal payoffs from TIPS contingent on the cumulated

inflation being below some critical value q, specifically the following difference is of interest

EQt

[

e−
∫
T
t
rNs ds1

{
ΠT
Πt

≤1+q}

]

− EQt

[
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T
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rRs ds1
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≤1+q}

]

.

Thus, the states of the world of interest are characterized by

ΠT
Πt

≤ 1 + q ⇐⇒ Yt,T =

∫ T

t

(rNs − rRs )ds ≤ ln(1 + q).

24The calculations leading to this result are available upon request.

28



Since we are pricing, we need the dynamics of the state variables under the Q-measure
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where Z0,t = (LNt , St, Ct, L
R
t , Y0,t) represents the augmented state vector.

Now, define the following two intermediate functions
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In order to calculate ψ1(B, t, T ) and ψ2(B, t, T ), we summarize the Q-dynamics by the following matrices and
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Furthermore, γ and δ are given by
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From Duffie, Pan, and Singleton (2000) it follows that

ψ1(B, t, T ) = exp(Bψ1(t, T )′Zt,t + Aψ1(t, T )),

where Bψ1(t, T ) and Aψ1(t, T ) are the solutions to the following system of ODEs
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dBψ1(t, T )

dt
= ρR + (KQ)′Bψ1(t, T )− 1
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This system of ODEs can be solved analytically and the solution is provided in the following proposition.

Proposition 1:

Let the state variables be given by Zt,T = (LNt , St, Ct, L
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t , Yt,T ), and let the real instantaneous risk-free

rate be given by
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25The calculations leading to this result are available upon request.
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2φR
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ψ1 + κQ
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4
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44)[e
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with

φNψ1 =
√

(κQ
LN

)2 + 2ρ1σ2
11, ρ1 = −B5

, φRψ1 =
√

(κQ
LR

)2 + 2ρ4σ2
44, and ρ4 = 1 +B

5
.

Using a similar approach, it holds that

ψ2(B, t, T ) = exp(Bψ2(t, T )′Zt,t + Aψ2(t, T )),

where Bψ2(t, T ) and Aψ2(t, T ) are the solutions to the following system of ODEs

dBψ2(t, T )

dt
= ρN + (KQ)′Bψ2(t, T )− 1

2

5
∑

j=1

(Σ′Bψ2(t, T )Bψ2(t, T )′Σ)j,j(δ
j)′, Bψ2(T, T ) = B,

dAψ2(t, T )

dt
= −Bψ2(t, T )′KQθQ − 1

2

5
∑

j=1

(Σ′Bψ2(t, T )Bψ2(t, T )′Σ)j,jγ
j , Aψ2(T, T ) = 0.

This system can also be solved analytically and the solution is provided in the following proposition.

Proposition 2:

Let the state variables be given by Zt,T = (LNt , St, Ct, L
R
t , Yt,T ), and let the nominal instantaneous risk-free

rate be given by

rNt = (ρN)′Xt,

then

ψ2(B, t, T ) = exp(B1
ψ2(t, T )L

N
t +B2

ψ2(t, T )St +B3
ψ2(t, T )Ct +B4

ψ2(t, T )L
R
t +B5

ψ2(t, T )Yt,t + Aψ2(t, T )),
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with

φNψ2 =
√

(κQ
LN

)2 + 2ρ1σ2
11, ρ1 = 1−B

5
, φRψ2 =

√

(κQ
LR

)2 + 2ρ4σ2
44, and ρ4 = B

5
.

With these results at our disposal, we can turn our attention to the pricing of the deflation protection

option in the TIPS contract. From Duffie, Pan, and Singleton (2000) it follows that

EQt

[

e−
∫
T
t
rRs dseB

′
Zt,T 1{b′Zt,T≤z}

]

=
ψ1(B, t, T )

2
− 1

π

∫ ∞

0

Im{e−ivzψ1(B + ivb, t, T )}
v

dv,

EQt

[

e−
∫
T
t
rNs dseB

′
Zt,T 1{b′Zt,T≤z}

]

=
ψ2(B, t, T )

2
− 1

π

∫ ∞

0

Im{e−ivzψ2(B + ivb, t, T )}
v

dv.

Since we interested in the condition

Yt,T =

∫ T

t

(rNs − rRs )ds ≤ ln(1 + q),

26The calculations leading to this result are available upon request.
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the expectations above should be evaluated at b = (0, 0, 0, 0, 1), z = ln(1 + q), and B = (0, 0, 0, 0, 0).

A similar approach can be used to calculate the NPV of the TIPS deflation protection option within the

CV model (see CLR 2011 for details).

The functions Im{e−ivzψ1(B+ivb,t,T )}
v

and Im{e−ivzψ2(B+ivb,t,T )}
v

that need to be integrated in order to

calculate the NPV of the TIPS deflation protection option have already converged to zero for values of v above

500, so we approximate the infinite integral in the pricing formulas by capping v at 1000 to err on the side of

conservatism and use a step size of ∆v = 0.01 in the numerical approximation, which is sufficient since the

functions are clearly smooth.

C). Deflation Probabilities Within the SV Model

CLR (2011) use the CV model to generate deflation probabilities at various horizons appropriate for

macroeconomic and monetary policy purposes. Similarly, the SV model can be used to calculate deflation

probabilities, although additional steps are necessary. The change in the market-implied price index for the

period from t until t+ τ is given by
Πt+τ
Πt

= e
∫ t+τ
t (rNs −rRs )ds.

We want to calculate the probability of the event that the change in the price index is below a certain critical

level q. By implication, we are interested in the states of the world where

Πt+τ
Πt

≤ 1 + q,

or, equivalently,
∫ t+τ

t

(rNs − rRs )ds ≤ ln(1 + q).

Since the nominal and real instantaneous short rates are given by

rNt = LNt + St,

rRt = LRt + αRSt,

we are interested in the distributional properties of the following process

Y0,t =

∫ t

0

(rNs − rRs )ds =

∫ t

0

(LNs + Ss − LRs − αRSs)ds ⇒ dY0,t = (LNt + (1− αR)St − LRt )dt.

In general, the P -dynamics of the state variables Xt are given by

dXt = KP (θP −Xt)dt+ ΣD(Xt)dW
P
t .
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Adding the Yt-process to this system, leaves us with a five-factor SDE of the following form
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,

where Z0,t = (LNt , St, Ct, L
R
t , Y0,t) represents the augmented state vector.

This is a system of non-Gaussian state variables. As a consequence, we cannot use the approach detailed

in CLR (2011). Instead, we use the Fourier transform analysis described in full generality for affine models in

Duffie, Pan, and Singleton (DPS, 2000). DPS provide a formula for calculating contingent expectations of the

form

GB,b(y;Zt,t, t, T ) = EP
[

e−
∫
T
t
ρ′ψZs,T dseB

′
Zt,T 1{bZt,T≤y}

∣

∣

∣
Ft

]

.

If we define

ψ(B;Zt,t, t, T ) = EP
[

e−
∫
T
t
ρ′ψZs,T dseB

′
Zt,T

]

= eBψ(t,T )′Zt,t+Aψ(t,T ),

where Bψ(t, T ) and Aψ(t, T ) are solutions to a system of ODEs similar to the one outlined in Equations (20)

and (21),27 then DPS show that

GB,b(y;Zt,t, t, T ) =
ψ(B;Zt,t, t, T )

2
− 1

π

∫ ∞

0

Im[e−ivyψ(B + ivb;Zt,t, t, T )]

v
dv.

Here, we are interested in the cumulative probability function of Yt,T conditional on Zt,t, that is, we are

interested in the function EP [1{Yt,T≤y}|Ft]. From the result above it follows that we get the desired probability

function if we fix

B = 0, b =



















0

0

0

0

1



















, ρψ = 0, and y = ln(1 + q).

Priced Deflation Probabilities Within the SV Model

The actual probability of deflation calculated above is determined by the estimated factor dynamics under

the P -measure. Thus, it reflects the actual time series dynamics of the state variables. The priced probability

of deflation, on the other hand, reflects the implicit probability of deflation needed to match the observed

bond prices. Due to risk premia that reflect bond investor risk aversion, this measure can be different from

the actual deflation probability. To calculate the priced probability of deflation, we replace the P -dynamics

above with the Q-dynamics.

27Note, however, that the solutions differ from the formulas in Appendix B as we are now working under
the P -measure. Thus, we rely on numerical approximations based on a fourth order Runge-Kutta method.
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