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Abstract

A flexible labor margin allows households to absorb shocks to asset values with
changes in hours worked as well as changes in consumption. This ability to ab-
sorb shocks along either or both margins greatly alters the household’s attitudes
toward risk, as shown by Swanson (2012). The present paper extends that work
to the case of generalized recursive preferences, as in Epstein and Zin (1989) and
Weil (1989), which are increasingly being used to bring macroeconomic models
into closer agreement with basic asset pricing facts. Measures of risk aversion
commonly used in the literature show no stable relationship to the equity pre-
mium in a standard RBC model, while the closed-form expressions derived in
this paper match the equity premium closely. Thus, measuring risk aversion
correctly is crucial for understanding asset prices in the model.
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1. Introduction

A number of recent studies focus on bringing standard dynamic macroeconomic models into
closer agreement with basic asset pricing facts, such as the equity premium or the long-term

bond premium.!

In these models—indeed, in any consumption-based asset-pricing model—a
crucial parameter is risk aversion, which determines the compensation that households require to
bear risk. At the same time, a key feature of standard dynamic macroeconomic models is that
households have at least some ability to vary their labor supply. A fundamental difficulty with
this line of research, then, is that much of what is known about risk aversion has been derived
under the assumption that household labor is exogenously fixed. For example, Arrow (1964) and
Pratt (1965) define absolute and relative risk aversion, —u"(c)/u’(c) and —cu” (¢)/u’(¢) in a static
model with one consumption good. Similarly, Epstein and Zin (1989) and Weil (1989) define risk
aversion for generalized recursive preferences in a dynamic model without labor (or, equivalently,
in which labor is fixed).

Swanson (2012) considers this problem when households have standard expected utility
preferences in a dynamic equilibrium framework. That paper derives closed-form expressions
for risk aversion and shows that risk aversion—and risk premia on assets in the model-—can
vary dramatically depending on how the household’s labor margin is specified. The present paper
extends that analysis to the case of generalized recursive preferences, as in Epstein and Zin (1989)
and Weil (1989). Understanding risk aversion for these preferences is important because they are
one of the main approaches being used to bring macroeconomic models into closer agreement
with asset pricing facts.?

Intuitively, a flexible labor margin gives households the ability to absorb shocks to asset
values with changes in hours worked as well as changes in consumption. This ability to absorb
shocks along either or both margins greatly alters the household’s attitudes toward risk. For
example, with expected utility and period utility function wu(cs,l;) = ctl_v/(l — ) — nly, the
quantity —cuq1/u; =y is often referred to as the household’s coefficient of relative risk aversion,
but in fact the household is risk neutral with respect to gambles over asset values or wealth
(Swanson, 2012). Intuitively, the household is indifferent at the margin between using labor or

consumption to absorb a shock to asset values, and the household in this example is clearly

1 See, e.g., Boldrin, Christiano, and Fisher (2001), Tallarini (2000), Rudebusch and Swanson (2008, 2012), Uhlig
(2007), Van Binsbergen et al. (2010), Backus, Routledge, and Zin (2008), and Gourio (2011).

2See, e.g., Tallarini (2000), Uhlig (2007), Rudebusch and Swanson (2012), Van Binsbergen et al. (2010), Backus,
Routledge, and Zin (2008), Gourio (2011, 2012), Andreasen (2012), Colacito and Croce (2012), Dew-Becker (2012),
and Kung (2012).



risk neutral with respect to gambles over hours. More generally, when u(c,l;) = ¢ /(1 —

1 a combination of the parameters on

v) =l T™X /(1 + x), risk aversion equals (y~! + x 1)~
the household’s consumption and labor margins, reflecting the fact that the household absorbs
shocks along both margins. The present paper shows how to derive closed-form expressions for
risk aversion in dynamic equilibrium models with generalized recursive preferences and aribitrary
period utility function u, taking into account the effects of the household’s variable labor margin.

An additional contribution of the present paper is to show that risk premia computed using
the Lucas-Breeden stochastic discount factor are unrelated to traditional, fixed-labor measures of
risk aversion unless labor is, in fact, fixed. In contrast, the closed-form expressions for risk aversion
derived in the present paper match risk premia in a standard real business cycle model (with a
flexible labor margin) closely. Thus, measuring risk aversion correctly—taking into account the
household’s labor margin—is necessary for understanding asset prices in the model. Since many
recent studies have focused on bringing standard macroeconomic models into closer agreement
with asset prices, it is surprising that so little attention has been devoted to measuring risk
aversion correctly in these models. The present paper aims to fill that void.

The present paper also demonstrates that there are problems with applying the Epstein-Zin-
Weil fixed-labor coefficient of relative risk aversion to a Cobb-Douglas aggregate of consumption
and leisure, as is sometimes done in the literature. Intuitively, the Cobb-Douglas composite good
interpretation is invalid if the individual components of the composite good have separate general
equilibrium effects in the model—which is exactly the case in standard macroeconomic models,
where labor enters into production. Thus, the risk aversion measure that would be appropriate
under the composite good interpretation turns out to be inappropriate in a standard real business
cycle model. Instead, the coefficient of relative risk aversion R¢ defined in the present paper—
which recognizes the household’s flexible labor margin but excludes the value of leisure from total
household wealth—is more closely related to the equity premium.

There are a few previous studies that extend the Arrow-Pratt definition beyond the one-
good, one-period case. Kihlstrom and Mirman (1974) provide an early example of the difficulties
involved. In a static, multiple-good setting, Stiglitz (1969) measures risk aversion using the house-
hold’s indirect utility function rather than utility itself, essentially a special case of Proposition 1
of the present paper. Constantinides (1990) measures risk aversion in a dynamic endowment
economy (i.e., with fixed labor) using the household’s value function, another special case of
Proposition 1. Boldrin, Christiano, and Fisher (1997) apply Constantinides’ definition to some

very simple endowment economy models for which they can compute closed-form expressions for



the value function, and hence risk aversion. Uhlig (2007) points out that when households have
generalized recursive preferences, leisure affects asset prices because the value function V appears
in the household’s stochastic discount factor, and V depends on leisure. The present paper builds
on these studies by deriving closed-form solutions for risk aversion in dynamic equilibrium models
in general, demonstrating the importance of the labor margin, and showing the tight link between
risk aversion and asset prices in these models.

The remainder of the paper proceeds as follows. Section 2 defines the dynamic equilibrium
framework used in the analysis. Section 3 derives closed-form expressions for risk aversion in the
model. Section 4 demonstrates the close connection between risk aversion and Lucas-Breeden
asset prices in the model, both theoretically and with numerical examples. Section 5 verifies
the accuracy of the closed-form expressions for risk aversion using numerical methods. Section 6
extends the results to the case of balanced growth. Section 7 discusses some general implications
and concludes. An Appendix provides details of proofs and numerical solutions that are outlined

in the main text.

2. Dynamic Equilibrium Framework

2.1 Generalized Recursive Preferences and Value Function

Time is discrete and continues forever. At each time ¢, the household receives a utility flow
u(e, li), where (¢, lp) € Q C R? denotes the household’s choice of consumption and hours worked

in period t. The period utility function u is assumed to satisfy the following regularity conditions:

Assumption 1. The function u: Q — R is increasing in its first argument, decreasing in its

second, twice-differentiable, and strictly concave.

The household faces a flow budget constraint in each period,
arr1 = (14 re)ay + wely +dy — ¢4, (1)

and a no-Ponzi-scheme condition,
T

lim | [(1+r,01) tari >0, (2)

T—o0
T=t

where a; denotes beginning-of-period assets and wy, r;, and d; denote the real wage, real interest

rate, and net transfer payments to the household, respectively. There is a finite-dimensional



Markov state vector #; that is exogenous to the household and governs the processes for wy, ry,
and d;. Before choosing (c¢t,1;) in each period ¢, the household observes 6; and hence wy, 7y,
and d;. The state vector and information set of the household’s optimization problem at each
date ¢ is thus (a¢;0;). Let X denote the domain of (a;0;), and I': X — Q describe the set-valued
correspondence of feasible choices for (¢, l;) for each given (ay;6;).

Let (¢',1*) = {(¢r,1;)}22, denote a state-contingent plan for household consumption and
labor from time ¢t onward, where the explicit state-dependence of the plan is suppressed to reduce
notation. Following Epstein and Zin (1989) and Weil (1989), the household has preferences over

state-contingent plans ordered by the recursive functional

]1/(1—a)

V(e 1Y) = ulcy,le) + B | By V(cH 1) e : (3)

where # € (0,1), « € R, E; denotes the mathematical expectation conditional on the household’s
information set at time ¢, and (c*!,1'*!) denotes the state-contingent plan (c’,l?) from date
t + 1 forward. Note that equation (3) has the same form as expected utility preferences, but
with the expectation operator “twisted” and “untwisted” by the coefficient 1 — . When a = 0,
(3) reduces to the special case of expected utility. When o # 0, the intertemporal elasticity of
substitution over deterministic consumption paths in (3) is the same as for expected utility, but
the household’s risk aversion with respect to gambles over future utility flows is amplified (or
attenuated) by the additional curvature parameter o.3

The household’s “generalized value function” V: X — R, is defined to be the maximized

value of (3), subject to the budget constraint (1)—(2). V satisfies the recursive equation

—a\1/(1—a
V(ag;0;) = max u(es, le) + B (Ee V(agr; 0441)' %) /(1=e) , (4)
(ct,lt)ET (at;0+)

where a;y; is given by (1). Technical conditions for the existence and uniqueness of V' will be
discussed shortly.

Note that many authors use an alternate specification for the generalized value function,

_\p/all/r
U(at; 975) = max |:U(Ct7 lt)p + 6 (Et U(at+1; 9t+1)a) :| , (5)
(ctsle) €l (a;0:)

where p € R, p < 1. This specification follows Epstein and Zin’s (1989) original definition

more closely, where those authors take u(c,l;) = ¢; in their framework without labor. However,

3The case a = 1 is understood to correspond to V(ct, 1Y) = u(ct,lt) + Bexp [Eilog V (et 1t+1)].



setting V = U” and a = 1 — &/p, this can be seen to correspond exactly to (4).* Moreover, (4)
has a much clearer relationship than (5) to standard dynamic programming results, regularity
conditions, and first-order conditions: for example, (4) requires concavity of u while (5) requires
concavity of u”, and the Benveniste-Scheinkman equation for (4) is the usual Vi = (1 + r)wy
rather than U; = (1 + r;)U(1=P)/Pyr=1y;. That is, the marginal value of a dollar in (4) is just
the usual marginal utility of consumption rather than something much more complicated.

A few technical conditions are required to ensure that (3)—(4) are well-defined. First, to

avoid complex numbers:
Assumption 2. Fither u: Q — [0,00) or u: Q — (—00,0].

In the latter case, it is natural to take V< 0, V <0, and interpret (3) as

Tty B St gty i—a] YT /
V(1) = uler ) = B[ B(~V (e 1) , (3)

and similarly for (4). Note that (5) requires this same restriction, for the same reasons.”

Technical conditions that ensure the existence and uniqueness of V' are tangential to the

main points of the present paper, so it is simply assumed that:%

Assumption 3. A solution V: X — R to the household’s generalized Bellman equation (4) exists

and is unique, continuous, and concave.

The same technical conditions, plus Assumption 1, guarantee the existence of a unique
optimal choice for (¢, ;) at each point in time, given (a¢;6;). Let ¢f = ¢*(ay;6;) and I = 1*(ay; 0;)
denote the household’s optimal choices of ¢; and I; as functions of the state (a;60;). Then V' can

be written as
V(a6r) = (e}, 1) + B (B Viafyasen) =) /07, (6)

where af,; = (1 + ri)ar + wlf + dy — ;. These solutions are also assumed to be interior:

Assumption 4. For any (at;0;) € X, the household’s optimal choice (c¢f,lf) exists, is unique,

and lies in the interior of T'(ay; ;).

4 For the case p <0, set V.= —UP with period utility —u(ct, l+)? instead of u(ce,lt)P.

®The assumption that either u > 0 or u < 0 is not very restrictive in practice. For example, restrictions can be
placed on Q or I" and a constant added to w such that u never takes on negative (or positive) values. Alternatively,
for local analysis around a steady state, the restriction is satisfied so long as u # 0 in steady state, since then
u > 0 or u < 0 holds locally.

6 Stokey and Lucas (1990), Alvarez and Stokey (1998), and Rincén-Zapatero and Rodriguez-Palmero (2003)
provide different sets of sufficient conditions that ensure Assumption 3 is satisfied for the case a = 0. Sufficient
conditions for general a have not yet been derived, but Epstein and Zin (1989) and Marinacci and Montrucchio
(2010) provide important results for the consumption-only case.



Intuitively, Assumption 4 requires the partial derivatives of u to grow sufficiently large toward
the boundary that only interior solutions for ¢ and [f are optimal for any (a¢;0;) € X.
Assumptions 1-4 guarantee that V is continuously differentiable with respect to a and

satisfies the Benveniste-Scheinkman equation, but slightly more than this will be required below:

Assumption 5. For any (a¢; 0;) in the interior of X, the second derivative of V' with respect to
its first argument, Vi1(ays; 0y), exists.

Assumption 5 also implies differentiability of the optimal policy functions, ¢* and [*, with respect
to a;. Santos (1991) provides relatively mild sufficient conditions for this assumption to be satisfied

when o = 0; intuitively, © must be strongly concave.

2.2 Representative Household and Steady State Assumptions

Up to this point, the analysis has focused on a single household in isolation, leaving the other
households of the model and the production side of the economy unspecified. Implicitly, the other
households and production sector jointly determine the process for 6, (and hence wy, 4, and dy),
and much of the analysis below does not need to be any more specific about these processes than
this. However, to move from general expressions for risk aversion to more concrete, closed-form

expressions, three standard assumptions from the macroeconomics literature are adopted:”

Assumption 6. The household is infinitesimal.
Assumption 7. The household is representative.

Assumption 8. The model has a nonstochastic steady state, at which xy = x4y for all k = 1,2,
., and z € {c,l,a,w,r,d,0}.

Assumption 6 implies that an individual household’s choices for ¢; and I; have no effect on the

aggregate quantities wy, r¢, dy, and 6;. Assumption 7 implies that, when the economy is at the

nonstochastic steady state, any individual household finds it optimal to choose the steady-state

values of ¢ and [ given a and 6. Throughout the text, a variable without its time subscript ¢ is

used to denote its steady-state value.

7 Alternative assumptions about the nature of the other households in the model or the production sector may
also allow for closed-form expressions for risk aversion. However, the assumptions used here are standard and thus
the most natural to pursue.

8Let the exogenous state 0; contain the variances of any shocks to the model, so that (a;6) denotes the
nonstochastic steady state, with the variances of any shocks (other than the hypothetical gamble described in
the next section) set equal to zero; c(a;8) corresponds to the household’s optimal consumption choice at the
nonstochastic steady state, etc.



It is important to note that Assumptions 7-8 do not prohibit offering an individual household
a hypothetical gamble of the type described below. The steady state of the model serves only as
a reference point around which the aggregate variables w, r, d, and 6 and the other households’
choices of ¢, [, and a can be predicted with certainty. This reference point is important because
it is there that closed-form expressions for risk aversion can be computed.

Finally, many dynamic models do not have a steady state per se, but rather a balanced
growth path. The results below carry through essentially unchanged to the case of balanced
growth. For ease of exposition, Sections 3-5 restrict attention to the case of a steady state, while
Section 6 shows the adjustments required under the more general:

Assumption 8. The model has a balanced growth path that can be renormalized to a non-

stochastic steady state after a suitable change of variables.

3. Risk Aversion
3.1 The Coefficient of Absolute Risk Aversion

The household’s attitudes toward risk at time ¢ generally depend on the household’s state vector
at time ¢, (a¢;0¢). Given this state, the household’s aversion to a hypothetical one-shot gamble
in period t of the form
arr1 = (L+ry)ag +wely +dy — ¢ + 0g441 (7)
can be considered, where ;1 is a random variable representing the gamble, with bounded support
[, €], mean zero, unit variance, independent of 6 for all times 7, and independent of a, ¢;, and I,
for all 7 < t. A few words about (7) are in order: First, the gamble is dated ¢+ 1 to clarify that its
outcome is not in the household’s information set at time ¢. Second, ¢; cannot be made the subject
of the gamble without substantial modifications to the household’s optimization problem, because
¢; is a choice variable under control of the household at time ¢. However, (7) is clearly equivalent
to a one-shot gamble over net transfers d; or asset returns r;, both of which are exogenous to the
household. Indeed, thinking of the gamble as being over r; helps to illuminate the connection
between (7) and the price of risky assets, which will be discussed further in Section 4. As shown
there, the household’s aversion to the gamble in (7) is directly linked to the premium households
require to hold risky assets.
Following Arrow (1964) and Pratt (1965), one can ask what one-time fee p the household

would be willing to pay in period ¢ to avoid the gamble in (7):

a¢t4+1 = (1 + Tt)at + wely +dy — g — L. (8)



The quantity p that makes the household just indifferent between (7) and (8), for infinitesimal o
and p, is the household’s coefficient of absolute risk aversion.? Formally, this corresponds to the

following definition:

Definition 1. Let (a;6;) be an interior point of X. Let V(at; 0; 0) denote the value function for

the household’s optimization problem inclusive of the one-shot gamble (7), and let u(ay; 0y;0) de-

note the value of pu that satisfies V(ar—1£—;0¢) = V(as; 04;0). The household’s coefficient of abso-

lute risk aversion at (ay; 0;), denoted R%(as;0;), is given by R*(ays; 0;) = limg_o pu(as; 055 0)/(0%/2).
In Definition 1, p(a¢;6:;0) denotes the household’s “willingness to pay” to avoid a one-shot
gamble of size o in (7). As in Arrow (1964) and Pratt (1965), R* denotes the limit of the
household’s willingness to pay per unit of variance as this variance becomes small. Note that
R*(at;0;) depends on the economic state because p(a¢; 0¢; o) depends on that state. Proposition 1
shows that V(at; Os;0), u(as; 0:;0), and R*(ag; 0¢) in Definition 1 are well-defined and derives the

expression for R%(a¢;0¢):

Proposition 1. Let (a;;0;) be an interior point of X. Giwen Assumptions 1-6, V(ay;0y;0),
w(ag; 045 0), and R*(ag; 04) exist and

Vi(al, 1;0041)?

Vi) [Vt - o o)

Ra Qa ’9 = ; , 9
it By V(ay 3 0e41)7*Vi(aiyq; 0e41) (9)

where Vi and Vi1 denote the first and second partial derivatives of V' with respect to its first
argument. Given Assumptions 7-8, equation (9) can be evaluated at the steady state to yield:
—Vll((l;(g) Vl(a; (9)

R(@:0) = T Ay (10)

PROOF: See Appendix.

Note that risk aversion in the dynamic case is related to the curvature of the value function
with respect to wealth rather than the curvature of u with respect to consumption. When a = 0,
(10) reduces to —Vi1/V;, the standard “folk wisdom” value for risk aversion in the dynamic
expected utility framework.!® For general o, there is no pre-existing folk wisdom for the formula

for risk aversion, highlighting the usefulness of the results and methods of the present paper.

9 Discussion of relative risk aversion is deferred until the next subsection because defining total household wealth
is complicated by the presence of human capital—that is, the household’s labor income.

108ee, e.g., Constantinides (1990), Farmer (1990), Cochrane (2001), and Flavin and Nakagawa (2008). Swanson
(2012) derives this folk wisdom value rigorously using the same methods as the present paper.



Note that for u, V' > 0, larger values of o imply higher levels of risk aversion.'* For u,V <0,
the opposite is true: larger values of oo imply lower levels of risk aversion.

A practical difficulty with Proposition 1 is that closed-form expressions for V' do not exist
in general, even for the simplest dynamic models with labor. One can solve this problem by
observing that V; and V71 often can be computed even when closed-form solutions for V' cannot

be. For example, the Benveniste-Scheinkman equation,
Vi(as; 0:) = (1 + ) wa(c), 1), (11)

states that the marginal value of a dollar of assets equals the marginal utility of consumption times
1 + r; (the interest rate appears here because beginning-of-period assets in the model generate
income in period t).'? In (11), u; is a known function. Although closed-form solutions for the
functions ¢* and [* are not known in general, the points c¢; and [} often are known—for example,
when they are evaluated at the nonstochastic steady state, ¢ and [. Thus, one can compute V7 at
the nonstochastic steady state by evaluating (11) at that point.

The second derivative V31 can be computed by noting that (11) holds for general a;; hence

it can be differentiated to yield:

ocs oly
Vu(at;(%) = (1 +7“t) un(c;f,lf) —aat + ulg(c:,lf) —aat (12)
t t

All that remains is to find the derivatives dc;j /da, and O} /Oay.
One can solve for 0l /Oa; by differentiating the household’s intratemporal optimality con-
dition,

—ug(cy, lf) = wrui(cf,1y), (13)

with respect to a;, and rearranging terms to yield:

oly oc;
= -\ 14
0at t(‘)at ’ ( )
where
_ weunn (6, 1) Huaa(ef, 1) walef, I )uas(cf, 1) — ua(cf, I )ua (e}, 1)
uzz(c, 17) + wiuia(cy, If) uy (cf, 1 Juga(cy, If) — ua(ey, I Juia(cy, 1)

Note that, if consumption and leisure in period ¢ are normal goods, then A\; > 0, although this

restriction is not required below. It now only remains to solve for the derivative Oc; /0ay.

M Note that sufficiently low or negative values of a can imply risk-loving behavior, R%*(a;6) < 0.

12 The Benveniste-Scheinkman equation (11) holds for generalized recursive preferences as well as expected utility.
See the proof of Proposition 1 in the Appendix.
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Intuitively, dc; /Ja; should not be too difficult to compute: it is just the household’s marginal
propensity to consume today out of a change in assets, which can be deduced from the household’s

Euler equation and budget constraint:!3

Lemma 2. Given Assumptions 1-8, the household’s marginal propensity to consume out of
wealth, evaluated at steady state, satisfies

Oci _ n _ % k=1,2.3,... (16)
0at|(qey 00t l(py Ot |(p) Y
and .
ocj _ r (17)
aat (a;g) 1 + U))\ )

PROOF: See Appendix.

In other words, starting from steady state, the household’s optimal change in consumption today
in response to an increase in assets must be the same as the change in consumption tomorrow,
and the change in consumption at each future date ¢t + k. Note that this equality does not follow
from the steady state assumption—for example, in a model with internal habits, the individual
household’s optimal consumption response to a change in assets increases gradually over time,
even starting from steady state.

According to Lemma 2, the household’s optimal response to a unit increase in assets is
to raise consumption in every period by the extra asset income, r (the “golden rule”), adjusted
downward by the amount 1 4+ wA, which takes into account the household’s decrease in hours
worked and labor income. Thus, Lemma 2 represents a “modified golden rule” that takes into
account the household’s labor margin.

The household’s coefficient of absolute risk aversion can now be computed. Substituting

(11), (12), (14), and (16) into (10) proves the following:

Proposition 3. Given Assumptions 1-8, the household’s coefficient of absolute risk aversion,
R*(ay; 0;), evaluated at steady state, satisfies

—u11 + Aui2 r ruy
ag:0) = — 1
R*(a; ) Uy 1+w)\+au ’ (18)

where w1, ui1, and uiz denote the corresponding partial derivatives of u evaluated at the steady

state (c,l), and X is given by (15) evaluated at steady state.

Ocyyq dajiy B dcyyq olr B dcy

Oa Oa

ock
1 s taken to mean

13 The notation =
at 6at+1 dat 8at+1

1+ 741 + we , and analogously for
Ociyo Ociis

2 b
Oa Oa

etc.



11

There are several features of Proposition 3 worth noting. First, when a = 0, equation (18)
reduces to the expressions derived in Swanson (2012) for the case of expected utility. When oo = 0
and labor is fixed (A = 0), risk aversion in (18) reduces further to —ruy1/u1, which is just the
usual Arrow-Pratt definition multiplied by r, a scaling factor that translates between assets and
current-period consumption units.™

When u > 0 everywhere, risk aversion is increasing in o, and when u < 0, R* is decreasing
in «, as observed after Proposition 1. Multiplying v by a constant has no effect on risk aversion,
but an additive translation of u does affect risk aversion if o # 0, because it changes the “twisted”

expectation in equation (4). When a # 0 and labor is fixed (A = 0), equation (18) reduces to
—Uu1

" + Oz%, times r, corresponding to the standard formula for absolute risk aversion in an
Ep;tein—Zin—Weil endowment economy (see Example 1, below).

When A\ # 0, Proposition 3 implies that risk aversion is less than the consumption-only
value. Even when consumption and labor are additively separable in u (u;2 = 0), households
can partially offset shocks to income through changes in hours worked. As a result, c¢; and labor
supply are indirectly connected through the household’s budget constraint. When ;5 # 0, risk
aversion is further attenuated or amplified by the direct interaction between consumption and

labor in utility, u12. Note, however, that regardless of the signs of A and w12, R® is always reduced

when households can vary their labor supply:

Corollary 4.

R%(a;0) < _:ZH + Ozﬂ . (19)
PROOF: Substituting in for A\ and w, the first term in (18) can be written as:
—ruqg U1 U2 — Uy _ —run 1 | 0)
W unuze — 2wt + (Z_?)Q“%l “ 1+ (72 w11 — U12)2

2
U11U22 — U79

Strict concavity of w implies that ujjuz2 — u2, > 0, hence the right-hand side of (20) is less than
or equal to —ruyy/u;.

Recall that the right-hand side of (19) is the formula for risk aversion with generalized recursive
preferences in the consumption-only case.
The household’s labor margin can have dramatic effects on risk aversion. Even if —uq1 /u; is

very large, the first term in (19) can be arbitrarily small as the matrix discriminant, wy1uz2 — u3,,

145 gamble over a lump sum of $X is equivalent here to a gamble over an annuity of $X/r. Thus, even though
V11/Vh is different from w11 /w1 by a factor of r, this difference is exactly the same as a change from lump-sum to
annuity units. Thus, the difference in scale is essentially one of units.
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approaches zero. In other words, the first term in (19) depends on the concavity of u in all
dimensions rather than just in one dimension. The second term in (18)—(19), aru;/u, is not
directly affected by a change from a fixed-labor to flexible-labor assumption.

Some examples of risk aversion calculations are provided in Section 3.3, below, after first

defining relative risk aversion.

3.2 The Coefficient of Relative Risk Aversion

The distinction between absolute and relative risk aversion lies in the size of the hypothetical

gamble faced by the household. If the household faces a one-shot gamble of size A; in period t:
arr1 = (1 +re)ay +wily + di — ¢ + Ayoerya, (21)

or the household can pay a one-time fee A,y in period ¢ to avoid this gamble, then it follows from
Proposition 1 that lim, o 2u(0)/0? for this gamble is given by

— A B Vii(ay 15 0i41)
EV; (G?HQ O¢11)

(22)

The natural definition of A;, considered by Arrow (1964) and Pratt (1965), is the household’s
wealth at time ¢. The gamble in (21) is then over a fraction of the household’s wealth and (22)
is referred to as the household’s coefficient of relative risk aversion.

In models with labor, however, household wealth can be more difficult to define because
of the presence of human capital. In these models, there are two natural definitions of human
capital, so we consequently define two measures of household wealth A; and two coefficients of
relative risk aversion (22). Note that the household’s financial assets a; are not a good measure
of wealth A;, since a; for an individual household may be zero or negative at some points in time.

When the household’s time endowment is not well-defined, such as when u(c;, l)) = ¢; 7 /(1—
v) — 7717:5l X and no upper bound [ on [, is specified, or [ is specified but is completely arbitrary,
it is most natural to define human capital as the present discounted value of labor income, w.l}.

Equivalently, total household wealth A; equals the present discounted value of consumption, which

follows from the budget constraint (1)—(2). This leads to the following definition:

Definition 2. Let (as; 0;) be an interior point of X. The household’s consumption-only coefficient
of relative risk aversion, denoted R(ay;0;), is given by (22) with Ay = (L+1ry) ' Ey > 00, my ¢k,
the present discounted value of household consumption, where m; , denotes the stochastic discount

factor 57~ us (¢, 1) Jua (¢}, 7).
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The factor (1+7;)~! in the definition expresses wealth A; in beginning- rather than end-of-period-t
units, so that in steady state A = ¢/r and R°(a;0) is given by

—AVi1(a;0) AVi(a;0) —u11 + Ao c cuy
Cc . — 7 fd —_— . 2
F(a;9) Vi(a;0) Ta V(a; ) Uy 1+wA T u (23)

Alternatively, when the household’s time endowment [ is well specified, one can define hu-

man capital to be the present discounted value of the household’s time endowment, w;l. Equiv-
alently, total household wealth A, equals the present discounted value of leisure we(l — I}) plus
consumption ¢, from (1)—(2). This corresponds to the following definition:

Definition 3. Let (as;6;) be an interior point of X. The household’s consumption-and-leisure
coefficient of relative risk aversion, denoted R%(as;0;), is given by (22) with Ay = (1 +1r,) 7L~
Ey Y my e (ch 4w (L= 17)).

In steady state, A = (c+ w(l — l))/r, and

— [ — [—1
RCl(a;Q) _ —un + Auge c+w(l—1) ‘oo (c+w( ))Ul ‘ (24)
Uy 1+ wA U

Assuming leisure is positive, R%(as; 0;) > R¢(ay; 0;), because the size of the gamble is larger. The
closed-form expressions (23)—(24) are also closely related, differing only by the ratio of the two
gambles, (c +w(l —1))/c.15

For expositional purposes, define

R (a;0) = _Zull +a 031 , (25)
1

the coefficient of relative risk aversion in the corresponding model where labor is held exogenously
fixed (see Example 1, below). R thus ignores or assumes away the household’s ability to offset
shocks to portfolio values by varying labor supply. By Corollary 4, R¢(a;0) < R (a;0). However,
R°(a;0) may be greater or less than R/ (a;6), depending on the importance of leisure in the

household’s total consumption bundle.

3.3 Examples

Example 1. Following Epstein and Zin (1989) and Weil (1989), consider the case where utility

depends only on consumption, 1y
c
t

1—v’

u(er, ly) = (26)

15 Other definitions of relative risk aversion, corresponding to alternative definitions of household wealth, are also
possible, but Definitions 2-3 are the most natural for several reasons. First, both definitions reduce to R, defined
below, when there is no labor in the model, so Definitions 2—-3 represent a proper generalization of the traditional
definition of risk aversion in an endowment economy. Second, in steady state the household consumes exactly the
flow of income from its wealth, rA, consistent with standard permanent income theory (where one must include
the value of leisure w(l — ) as part of consumption when the value of leisure is included in wealth).
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with v > 0, ¢; > 0, and [; fixed exogenously at some [ € R for all ¢.!¢ Leisure is arbitrary in this
example—any [ > [ is observationally equivalent—so R from Definition 3 is not well-defined.

Thus, attention is restricted to R¢ from Definition 2,

Re() = = + o=t = ytoa(l-7), (27)

which is well-defined and motivates the definition of R' given above. Note that if the household’s
generalized value function is written using specification (5) rather than (4), where p = 1—+, then
a=7v+a(l —v) and R°(a;0) = a. This is the usual definition of risk aversion for generalized

recursive preferences in an endowment economy framework.

Example 2. Following van Binsbergen et al. (2010), among others,'” a natural way to incorporate
leisure into the preferences in (26) is to let

(X (1=t )"
-y

u(er, ly) = , (28)

where v > 0, x € (0,1), ¢; > 0, and I; € (0,1).'® In this example, the household can be regarded
as consuming a single, composite good in each period formed from the Cobb-Douglas aggregate
of consumption and leisure. A natural definition of risk aversion is thus v + a(1 — v) = a,
the coefficient of relative risk aversion from Example 1 applied to the single, composite good.
Indeed, this is the definition used by van Binsbergen et al. (2010). It is also the value implied by
Definition 3 of the present paper,

ol —u11 + Augs ¢+ w(l —1) (c+wl—1)u
; = + = 1- 2
R%(a;0) ” Y o " v+ af v), (29)

which includes the value of leisure in household wealth.
The consumption-only coefficient of relative risk aversion from Definition 2, R¢, excludes
leisure from household wealth and thus is less than (29), corresponding to the smaller size of the

gamble: \
c —U11 + AU c cu
R(a;0) = 11u1 2 Y + aTl = yx+a(l—7)x. (30)

In this example, the Cobb-Douglas functional form implies R°(a;0) = xR%(a;6).'* The next

1611 this example, Assumptions 1-8 need to be modified in a straightforward way to the one-dimensional case.
173ee also Andreasen (2012), Gourio (2011), Colacito and Croce (2012), and Dew-Becker (2012).

18 \When v < 1, then u > 0, risk aversion is increasing in «, and a > 0 corresponds to preferences that are more
risk averse than expected utility. When vy > 1, then u < 0, risk aversion is decreasing in «, and o < 0 corresponds
to preferences that are more risk averse than expected utility.

19 That is, ¢/(c + w(l — 1)) = x. One might be surprised that R°(a;0) — 0 as x — 0. However, as x — 0,
w/c — 00, so consumption becomes trivial to insure with tiny variations in labor supply.
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section investigates which of these two risk aversion measures is more closely related to the
equilibrium price of a risky asset in the model.
Note that neither (29) nor (30) corresponds to the fixed-labor measure of risk aversion,

R (a;0) = _Zull + 031 = (1-x(1—7)) +a(1—7), a point emphasized by Swanson (2012) for
1

the case of expected utility, @ = 0. The fixed-labor measure R/ ignores the household’s ability to
offset shocks to portfolio values by varying its hours of work; as a result, R does not generally
correspond to the household’s willingness to hold a risky asset and thus is not closely related to
the equilbrium prices of such assets, a fact that will be verified in the next section.

Finally, note that several other authors consider an alternative parameterization of (28),2°

(c(1—1)") "
1—7

U(Ct, lt) =

where y > 0, v >0, ¢, > 0,1, € (0,1), and v > v/(1+4v) for concavity. For this parameterization,
R (a;0) = v + (1l — ) = @, but this fixed-labor measure is not related to asset prices in the
model, for the same reasons as discussed above. Definitions 2-3 of the present paper recognize

the household’s ability to self-insure itself with variations in hours worked, and imply

R(a;0) = (v/(1+v)— (1-y)) + a(l —y)v (32)
and

R%a;0) = (1-(1-Q1+v)) + al=—y(1+v). (33)

Example 3. Following Rudebusch and Swanson (2009), consider the additively separable period

utility function
C%_’Y ltl-‘rx
u(es, ly) = — , 34
(ct,1t) 1—~ 771 Fx (34)

where x > 0, 7 > 0, ¢, > 0, I, > 0, and v > 1.2! Leisure is essentially arbitrary in this
example, since different assumptions regarding [ have essentially no effect on the equilibrium.

Thus, R%(a;6) is not well-defined in this example, and attention is restricted to R°(a;#) from

Defintion 2,
gl ol —vy
R(a;0) = + (35)
’ Y wl =1 wl
L+ X ¢ L+ 1+x ¢

208ee, e.g., Gourio (2012), Uhlig (2007), Backus, Routledge, and Zin (2008), and Kung (2012).

21 The last restriction ensures consistency with Assumption 2. Alternatively, one could assume restrictions on
the domain €2 such that u(-,-) < 0 for all (¢t,l:) € Q. Under either of these assumptions, u < 0, risk aversion is
decreasing in «, and a < 0 corresponds to preferences that are more risk averse than expected utility.
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As in Swanson (2012), one can simplify (35) a bit further by assuming ¢ ~ wl,?? an assump-

tion made in this paragraph only and nowhere else in the paper. In this case,

gl ol —7)
“(a;0) = .
R%(a;0) 1+%+1+% (36)

Equation (36) is less than R/ (a;60) = v + a(1 — 7), by an amount that can be dramatic if either
of the denominators in (36) is large. Alternatively, as x — oo, the household’s labor margin

becomes inflexible and R¢ — R/,

4. Risk Aversion and Asset Pricing

As discussed above, the household’s aversion to gambles over asset values or wealth depends on its
ability to offset the outcome of those gambles with changes in hours worked. In this section, the
analysis is extended to show the relationship between risk aversion and risk premia in the Lucas-
Breeden stochastic discounting framework. Risk premia in this framework are closely related to
the definition of risk aversion in the present paper, and are generally unrelated to traditional

measures of risk aversion that hold household labor fixed.

4.1 The Stochastic Discount Factor, Risk Premia, and Risk Aversion
For generalized recursive preferences (4) with labor, Rudebusch and Swanson (2012) show that
the household’s stochastic discount factor is given by

u1(Ciis i) V(ay 1;0i41)"°
w(Ch D) (BV(ag, g 0pp0) )0

mey1 = 3 (37)

Let p! denote the ex-dividend time-t price of an asset i that pays stochastic dividend d:

each period. In equilibrium, p! satisfies
pi = Etmt+1(d§+1 +Pi+1)- (38)

Let 1+ r;,; denote the realized gross return on the asset,

1+T§+1 = MT%’ (39)
t

221 steady state, ¢ = ra + wl + d, so ¢ = wl holds exactly if there is neither capital nor transfers in the model.
In any case, ra + d is typically small, since r ~ .01.
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and define the risk premium on the asset, 1%, to be its expected excess return,
Y = Etriﬂ - 7“{+1 ) (40)
where 1 + r{ 41 = 1/Eymyy1 denotes the risk-free rate. Then

Etmt+1Et (d§+1 + pi+1) - Etmt+1<di+1 + p§+1)
piEimyq

v =

— —COVt<dmt+1,T§+1) <41)
Eymyyq ’

where Cov; denotes the covariance conditional on information at time ¢, and dmsy1 = M1 —
Eimyy.
Intuitively, one can see the close relationship between the risk premium and risk aversion

as follows. Since ui(c;, 1) = Vi(as; 0:)/(1+ 1),

Vilai, 1;0 Viai, ;0 -« 1+7r
Mers = 0 1i/t(ﬂ-(;)ﬂ) S —a/(l—a) 11 o (42)
1105 Tt (EeV (a7, 15 0i41)'72) Tt+1
Then, to first order, conditional on information at time £,
Viida} Vi2df Vida} Vodb
dmess = B 110047 + V12a0e41 af 1001 + Vaabipr i
%1 Vv
\% aVs
= —BR(a;0) daj, + <6v112 - Bv 2) dbypy — drisq, (43)
assuming V is differentiable with respect to 6 at the steady state. It follows that
Y; ~ R%(a;0) Covi(dri,,,daj, ;)
—V V- , 1 :
+ < V12 + a V2> COVt(dT§+1,d9t+1) + B COVt(deJrl,th_A,_l) (44)
1

near the steady state.

In equation (44), one can start to see the close relationship between the risk premium ),
and risk aversion R®. In particular, ¢! increases linearly with R, by an amount that depends on
the covariance of the asset return with the household’s financial wealth.

However, the decomposition in (44) is problematic, for several reasons. First, the covariance
involving day,, ignores the household’s nonfinancial wealth, such as the present value of future
transfers and labor income. Instead, the asset’s covariance with nonfinancial wealth is relegated
to the second term in (44), since 6 determines the household’s current and future wages w and

transfers d. But this covariance is expressed in terms of the “black box” parameter 6 rather than
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-V %
12 4 04—2) on this covariance is inscrutable,
1 V

being neither clearly related nor unrelated to risk aversion.

nonfinancial wealth itself, and the coefficient (

Thus, the following decomposition is ultimately more illuminating, at the cost of being some-
what more complicated to derive. First, the stochastic discount factor (37) can be differentiated

at the steady state, conditional on information at time ¢, to yield

ob dVit1 (45)

dth = uii[ulldC:Jrl + ulgdl;;+1] — v

to first order. From the household’s intratemporal optimality condition (13),

* * U1
dlfyy = —Adegyy — ias & Wiia dwi41 (46)

to first order as well. Note that there is an additional term in (46), relative to (14), because 0
(and hence w, r, and d) will generally change in response to macroeconomic shocks.
The corresponding expression for dcf,; is somewhat more complicated, and is stated as a

lemma:

Lemma 5. To first order, evaluated at the steady state,

. r =1
derer = 14w {dat“ + Bt Z T (ldwiyp + ddyyp + adm+k)] (47)
k_
U1u12 r\
+ ——=d + d ey ‘
U11U22 — Uiy BT )\U12 B Z (1+7) <1 p R p Tt+k+1>

Proor: The expression follows from the household’s Euler equation, budget constraint, and
equation (46). See the Appendix for details.

Note that if w, r, and d are held constant, as in the Arrow-Pratt gamble for a single household
in Section 3, then equations (46)—(47) reduce to (14) and (17). More generally, (47) includes the
effects of changes in w, r, and d on the household’s desired consumption. The term in square
brackets in (47) describes the change in household wealth—including nonfinancial wealth—and
thus the first line of (47) describes the wealth effect on consumption. The last line of (47) describes
the substitution effect: changes in consumption due to changes in current and future wages and
interest rates.??

For notational simplicity, let dlel = dayy1+Fiy Z,;“;l(l—l—r)_k(l dwi ik +ddyy g +adriyy),
the change in household wealth in (47). Then it is straightforward to show:

23 The household’s intertemporal elasticity of substitution is given by —u1/(c(u11 — )\ulg)), so the last term in
(47) describes intertemporal substitution effects on consumption of changes in future wages and interest rates.
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Lemma 6. To first order, evaluated at the steady state,

d‘/;ngl = U1<1 + ’)") dAt+1. <48)
PROOF: The expression follows from (6), (46), and (47). See the Appendix for details.

Lemma 6 states that the change in household welfare equals the marginal utility of consumption
times the change in household wealth. The factor 1 4+ r appears in (48) because a change in
beginning-of-period-t assets produces 1 + r units of extra consumption in period ¢.

Equations (45)—(48) then imply the following decomposition:

Proposition 7. To first order, evaluated at steady state,

dmt+1 = —Ra(a; 9) /BdAtJr]_ + ﬁ d(pt+1 5 <49)

where d®11 = Eyyq Zzozl(l—kr)*k (ﬁderH — 1+’"i‘UA dwt+k), the intertemporal substitution term

from (47). To second order, evaluated at steady state,

Yl = R(a;0) Covt(errl,dAHl) — Covy(ri, 1, dPesr). (50)

PROOF: Substituting (46)—(48) into (45) yields (49). Substituting (49) into (41) yields (50).
(Recall that V =u/(1 — ) and 3 = Eymyy1 at steady state.) Finally, Cov(dx, dy) is accurate to
second order when dx and dy are accurate to first order.

The decomposition of the risk premium provided by equation (50) gives a more complete
description of the relationship between risk premia and risk aversion than the decomposition
in (44). The first term in (50) shows that 1! increases locally linearly with R, by an amount
that depends on the covariance between the asset return and the household’s wealth, including
nonfinancial wealth. This link between risk premia and risk aversion should not be too surprising:
Propositions 1-2 described the risk premium for extremely simple, idiosyncratic gambles over
household wealth, while Proposition 7 shows that the same coefficient also applies to more general
financial market gambles that may be correlated with aggregate variables such as interest rates,
wages, and net transfers.

The second term in (50) corresponds to Merton’s (1973) “changes in investment opportu-
nities” in the ICAPM framework. Even if R® = 0—that is, even if households are risk-neutral in
a cross-sectional or CAPM sense—4) can be nonzero because even a risk-neutral household can
benefit from an asset that pays off well when the price of the household’s total consumption bun-
dle is low. That is, an asset that pays off well when current and future wages are low (and hence

leisure is cheap) and current and future interest rates are high (and hence future consumption
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is cheap) is preferable to an asset that pays off poorly in those situations. Even a risk-neutral
household would be willing to pay a premium for such an asset—implying a lower 1{—and this
effect is captured by the second term in (50).

The fact that households in the present paper face a consumption-leisure tradeoff as well
as a current-vs.-future consumption tradeoff implies that the second term in (50) is more general
than just changes in the household’s investment opportunities. Indeed, the second term in (50)
is better described as being due to “changes in relative prices.” The decomposition in (50) also
suggests that 1! is more accurately described as an “expected excess return,” rather than a
“risk premium.” In fact, only the first term in (50) represents compensation to the household
for bearing risk; the second term is not compensation for risk but rather reflects changes in the
household’s purchasing opportunities over time.

Finally, the decomposition (50) can be written in terms of relative rather than absolute risk

aversion using Definitions 2-3:24

Corollary 8. In terms of relative risk aversion, the risk premium in (50) can be written as:

. - dA :
¥y = R(a;0) Covy <r§+1, Ttﬂ> — Covi(ri;q,d®sy1) (51)
or dA
77[}2 = RCZ(CL; 9) COVt (7‘24_17 T;VH) - Covt(ri—i-la dq)tJrl) ) <52)

where A and A are as in Definitions 2-3.

4.2 Numerical Examples

Two numerical examples help to illustrate the relationship between risk aversion and risk premia
derived above. For simplicity, the equity premium is studied in a standard real business cycle
(RBC) framework, which provides just enough structure to create an interesting asset pricing
problem in which household labor supply can vary endogenously.

The economy consists of a unit continuum of representative households and a unit continuum
of perfectly competitive representative firms. Each household has optimization problem (1)—(4)

and period utility function to be specified shortly. Each firm has production function

ye = Ak, Iy (53)

24 Note that dAt+1 differs slightly from dA;4+1 and d;ltJrl, which is why (51) and (52) are not written in terms
of dlog At+1 ord log AtJrl .



21

where y;, ki, and I; denote firm output, beginning-of-period capital, and labor input, respectively.

The productivity parameter A; follows the exogenous process
log Ay = plog A1 + &4, (54)

where ¢&; is i.i.d. with mean zero and variance o2. Labor and capital are supplied by households
at the competitive wage and rental rates w; and rf. Capital is the only asset in the economy that

is in nonzero net supply. Households accumulate capital according to
kt+1 = (1 + Tt)k‘t + U)tlt — C¢, (55)

where r; = rF — §, § is the capital depreciation rate, and ¢; denotes household consumption.

An equity security is defined to be a claim on the aggregate consumption stream, where
aggregate consumption Cy = ¢; in equilibrium. In equilibrium, the price of the equity claim, p;,
satisfies

pt = Eymir1(Cop1 + peyr), (56)

where my 1 is given by (37). The equity premium, v, is defined to be the expected excess return

Ei(Ciy1 +
T il ”]19 Pery) _ (1+r]). (57)
t

Following standard calibrations in the literature, a period in the model is taken to be one
quarter in the data, 3 is set to .99, § to .025, ¢ to .7, p to .9, and 0. to .01. Once the period
utility function is specified, the model is solved using perturbation methods, as in Rudebusch and
Swanson (2012) and Swanson (2012). This involves computing the model’s nonstochastic steady
state and an nth-order Taylor series approximation to the true nonlinear solution for the model’s
endogenous variables around the steady state. (Results in the figures below are for n = 5.)
Additional details of the solution algorithm and computer code are provided in the Appendix and
in Swanson, Anderson, and Levin (2006). Aruoba, Ferndndez-Villaverde, and Rubio-Ramirez
(2006) solve a standard RBC model using a variety of numerical methods and find that the fifth-
order perturbation solution is among the most accurate methods globally as well as being the

fastest to compute.

Example 4. Consider the additively separable period utility function from Rudebusch and
Swanson (2009) and Example 3,

1—y ll-‘rX

c
u(er, ly) = 1t_,y - n1t+x. (58)




Coefficient of relative risk aversion
= = N N w w B ) w
S & S & & & 8 & 8

el

o

22

0.15

{ Fixed-labor risk aversion Coefficient of relative risk

e 0.135 30 T measure, R" (left axis) aversion R[(Ie_fga_xi )

Fixed-labor risk aversion measure, R" (left axis)

H ——— [t aliutiniio dutiiind
—_——- g
JEPPRPOSEY et : -

o
e
N

Equity premium - ¢~ . 25
(right axis) --" Coefficient of relative risk aversion R¢ (left axis)
-
= 0.105

Equity premium (right axis)

0.09 20

0.075
15

10

0.045

(4e2A Jad juadiad) wniwaid Ainb3
Coefficient of relative risk aversion

o
o
@

5
0.015 i

0 0+ T T T T
5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 60 70 80 90 100

x v

Figure 1. The equity premium and risk aversion in a real business cycle model with generalized recursive
preferences and period utility function u(cs, l:) = ¢;~7/(1 — ) — nl; 7% /(1 + x). Solid black lines depict
the equity premium, dashed blue lines the coefficient of relative risk aversion R® from Section 3, and
dotted red lines the traditional fixed-labor measure of risk aversion, R = v + a(1 — ) = &. In the left
panel, x ranges from .01 to 50 while ~ is fixed at 5 and « at —10; in the right panel, v ranges from 1.01
to 100 while x is fixed at 1.5 and « at —10. In both panels, the equity premium is closely related to R®
and is essentially unrelated to R'. See text for details.

Set v =5, x = 1.5, and o = —10 as baseline values, and then consider how the equity premium
and risk aversion vary as each of these parameters is varied in turn. For each set of parameter

values, the model is solved as described above.

Figure 1 plots the equity premium and risk aversion as functions of y and . The solid black
line in each panel graphs the equity premium, 1, against the right axis. The equity premium in
this model is very small, less than 15 basis points per year in the left panel and 12 bp per year in
the right; this is a manifestation of Roewenhorst’s (1995) and Lettau and Uhlig’s (2000) finding
that the equity premium is an even larger puzzle in RBC models with endogenous labor than in
an endowment economy, because households can endogenously smooth consumption in response
to shocks. The dashed blue line in each panel graphs the coefficient of relative risk aversion,
R¢(a;0) from equation (35), against the left axis. For comparison, the dotted red line in each
panel plots the fixed-labor measure of risk aversion for these preferences, R/ (a;0) = v+ a(1—7),

also against the left axis.

In both panels of Figure 1, the equity premium tracks R closely, and is essentially unrelated
to Rf!. In the left panel, R' is independent of x and thus is constant at 45, yet the equity premium
varies by a factor of four, along with R°. In the right panel, R increases linearly with -, ranging

from about 1 up to 1090 (values above 32 are off the chart and not depicted), while the equity
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Figure 2. The equity premium and risk aversion in a real business cycle model with generalized recursive
preferences and period utility u(ct, ) = (¢f(1 —lt)lfx)l_w/(l — 7). Solid black lines depict the equity
premium, dashed blue lines the coefficient of relative risk aversion R®, dotted red lines the fixed-labor
measure of risk aversion R”, and dash-dot green lines the coefficient of relative risk aversion R°. In the
left panel, x ranges from .01 to .99 while ~ is fixed at 4 and a at —10; in the right panel, v ranges from
1.01 to 50 while y is fixed at 0.3 and « at —10. In both panels, the equity premium is closely related to
R¢ and is essentially unrelated to R and R°. See text for details.

premium is a concave function of v that corresponds closely to R°.
Results from varying the parameter o are not reported in Figure 1 because R¢ and R both

vary linearly with «, while the equity premium 1 also varies about linearly, so the results for that

case do not discriminate between the different risk aversion measures.

Example 5. Consider the Cobb-Douglas preference specification from van Binsbergen et al.

(2010) and Example 2, .
(C?(l—lt)l_x) 7
1—7 '

U(Ct, lt) = (59)

Following Gourio (2011), set v = 4, x = 0.3, and o = —10 as baseline values, and consider how
the equity premium and risk aversion vary as each of these parameters is varied in turn. For each
set of values for 7, x, and «, the model is solved as described above.

Figure 2 plots the equity premium and risk aversion as functions of x and . As in Figure 1,
the solid black line in each panel depicts the equity premium, v, the dashed blue line plots the
consumption-only coefficient of relative risk aversion, R(a;#), and the dotted red line graphs
the traditional, fixed-labor measure, R/ (a;0). As in Figure 1, the equity premium in Figure 2
tracks R¢ closely, and is essentially unrelated to R''. In the left panel, R is nearly constant at a
value of about 32.5, yet the equity premium varies by a factor of more than ten, along with R°.

(The equity premium does not converge to zero along with R¢ due to the additional ICAPM term

1.05
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0.6
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03
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in (50) reflecting changes in relative prices, discussed earlier.) In the right panel, R’ increases
linearly with 7, ranging from about 1 up to 506 (values above 175 are off the chart and not
depicted), but the equity premium increases at a more moderate pace corresponding to R°. For
example, a value of ¢ = 10 bp is associated with R® ~ 33 ~ R/' in the left panel of Figure 2, while
a value of ¢ = 10 bp in the right panel of Figure 2 requires R ~ 33 vs. R/ ~ 90 (at v = 10).

Household leisure is well-defined in this example, so the consumption-and-leisure coefficient
of relative risk aversion, R (a;0) = yv+a(1—7) = @, is well-defined and graphed in Figure 2 as the
dash-dotted green line. Perhaps surprisingly, R is not closely related to the equity premium 1.
In the left panel of Figure 2, R is independent of y and thus constant at 34, while ¢ varies by a
factor of ten. In the right panel, R® grows linearly along with R at a rate much greater than .
The reasons for the divergence between R and the equity premium are discussed in more detail
below.

As in Figure 1, results from varying the parameter « are not included in Figure 2 because
R¢, R, and R all vary linearly and on a similar scale with «, while the equity premium v also
varies about linearly, so the results for that case do not discriminate between the different risk

aversion measures.

4.3 Relative Risk Aversion R vs. R and the Equity Premium

It may seem surprising at first that R is not more closely related to the equity premium in Fig-
ure 2, given the composite good interpretation for consumption and leisure for those preferences.
Instead, the consumption-only risk aversion coefficient, R, provides the better measure. Looking
at the decomposition of the equity premium provided by Corollary 8, what Figure 2 is saying is
that the covariance Cov(r? Iy dfltﬂ /A) is much closer to being invariant with respect to changes
in the household’s preference parameters than is the covariance Covy(ryq, dAHl / ;[)?5 In this
section, the reasons for this result are explored and discussed.

Note first that—unlike the traditional, fixed-labor measure R/"—both R® and R recognize
that households will vary their labor supply to insure themselves from portfolio fluctuations. The
issue here is simply whether the value of leisure should be included in household wealth when
measuring relative risk aversion, with R including the value of leisure and R¢ excluding it.

In a model with two consumption goods (and no labor), with period utility given by

u(cit, cot) = (ci‘tcé;x) 1MY/(l — ), it would seem bizarre to equate wealth to the present value of

25 As will be discussed below, the second covariance term Covy (r§+1, d®:4+1) in Corollary 8 does not vary much
with changes in the household’s preference parameters.
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consumption of one of the goods, excluding the value of the other. Yet that is essentially what
the results in Figure 2 are suggesting.

The key difference between the two-consumption-good example and the model with leisure
in Example 5 is the general equilibrium effect of households’ labor choice. In a model with
two consumption goods, varying the parameter xy between 0 and 1, for example, might change
the relative sizes of the two consumption good sectors in steady state, but does not have any
aggregate general equilibrium implications. By contrast, varying the parameter y in Example 5
has important general equilibrium effects on steady-state capital, labor, consumption, wealth,
and other aggregate variables.

To see the effects of x on the steady state and the covariance term Cov,(r} +1;dz‘it+1) in
Example 5, start by computing the model’s steady state. The steady-state interest rate r =
(1— 3)/B and marginal product of capital r* = (y/k)/(1 — (), so the output-capital ratio satisfies

%zflc(%—ké). (60)
From the production function, (I/k) = (y/k)*/¢, and the aggregate resource constraint implies
(¢/k) = (y/k) + 6. Thus, the rati(os/y)/k, [/k, and ¢/k are all invariant with respect to x, and
y/k

so is the steady-state wage w = W Finally, the household’s period utility function implies

xw(l—1)=(1-x)c, and thus

w

k= — . (61)
w(1/k) + —(c/k)

The wage w and ratios [/k and ¢/k are invariant with respect to x, so the aggregate equilibrium
level of k is increasing in y, ranging from 0 to (y/k)~ /¢ as x ranges from 0 to 1.

Thus, varying the parameter y in Example 5 changes not just the composition of the
consumption-leisure aggregate good, but also the equilibrium levels of k£ and household wealth
A and E, among other variables. This, in turn, changes the crucially important covariance
Covy(ri +1,dflt+1) in Proposition 7. In particular, Cov,(r? +1,dflt+1) is roughly proportional to
steady-state k, because dlel = dayt1 + B Y o (1 + r) k(I dwyyr, + adry,y) scales about

linearly with k.26

26 Household assets a = k and the ratio l/k is constant, so a and [ scale linearly with k. (Labor scales linearly
up to its maximum value | = 1, which is attained when x = 1 and k = 1/({/k).) In contrast, dri+1 and dw¢y1
hardly change with k because the marginal products of capital and labor, (1 — {)y:/k: and Cy¢/l¢, are invariant to
changes in steady-state k. The term da¢y1 grows about linearly with k because technology shocks in the model
are multiplicative, so the effects of technology shocks scale. Thus, dAH_l scales about linearly with k. The return
r% 41 on the consumption claim hardly changes with k because both sides of the household’s Euler equation scale

linearly with k. Thus, Cov; (Ti-i-l’ dAt+1) varies roughly linearly with k.
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Finally, household wealth A in Definition 2 and Corollary 8 is also roughly proportional
to k, because consumption and the present discounted value of consumption vary linearly with k.
As a result, Covy(ry, 4, dA; 11 /A) in Corollary 8 is close to invariant with respect to y, implying
a very tight, linear relationship between R°(a;6) and the equity premium .27 Indeed, this close
relationship is clearly visible in Figure 2. By contrast, the value of leisure, w(1—1), decreases with k
because w is invariant and 1—{ decreases. As a result, the leisure-inclusive measure of wealth from
Definition 3, A, does not have a simple relationship to k and the covariance Cov, (i 41, dAs 44 / zzf)
varies substantially with changes in y and k. Thus, there is no stable relationship between R
and the equity premium 1 in Example 5, as confirmed by Figure 2.

Intuitively, in order for the Cobb-Douglas composite good interpretation in the preferences
(59) to hold, the individual components of the composite good cannot have separate general
equilibrium effects on the other variables of the model. But that assumption is clearly violated
in a standard RBC model, in which labor has important general equilibrium effects of its own in
production. Thus, the risk aversion measure R, which would be appropriate under the composite
good interpretation, is not necessarily appropriate in a macroeconomic model, and in fact does
not match the equity premium in Figure 2. Instead, the consumption-only coefficient of relative
risk aversion, R“—which recognizes the household’s flexible labor margin but excludes the value

of leisure from total household wealth—is more closely related to the equity premium.

5. Risk Aversion Away from the Steady State

The closed-form expressions for risk aversion derived in Section 3 hold exactly only at the model’s
nonstochastic steady state. For values of (ay; 6;) away from steady state, these expressions are only
approximations. In this section, the accuracy of those approximations is evaluated by computing
risk aversion numerically away from the steady state for the standard real business cycle model
described above.

The setup and parameterization of the model are as described previously. Household prefer-
ences are assumed to have the same additively separable form as in Examples 3—4, with parameter
values v =5, x = 1.5, and a = —10, as in the baseline parameterization of Example 4. The state

variables of the model are k; and A;.?® The household’s consumption-only coefficient of relative

27 The second covariance term in Corollary 8, Covt(ri +1,d<I>t+1), is not strictly invariant to changes in x, but
this term is much smaller than the first and thus does not have a substantial effect on 1 in Figure 2.

28 The household’s endogenous state variable is its own holdings of capital, k:. The exogenous state variables
of the model are A; and the aggregate capital stock, K¢. Thus, the state vector of the household’s optimization
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Figure 3. Coeflicient of relative risk aversion R® as a function of the state (k¢; A¢) in a real business cycle
model with generalized recursive preferences and period utility u(cs,l¢) = ¢~ /(1 —~) — nli 7™ /(1 + x).
Dashed black lines depict the closed-form, steady-state value R¢(k; A), solid red lines the numerical
solution for R°(k¢; A¢). In the left panel, log(k:/k) ranges from —0.38 to 0.38 while log A; is fixed at 0;
in the right panel, A; ranges from —0.23 to 0.23 while k. is fixed at k. In both panels, R°(k:; A¢) is close
to R°(k; A) and never near the traditional, fixed-labor value of R/ = 45. See text for details.

risk aversion at the steady state, R°(k; A), is given by equation (35). For the parameter values
above, this implies a risk aversion coefficient of 17.76, a little more than one-third the traditional
measure of a =y + (1 — ) = 45.

For values of (k;; A;) away from the steady state, equations (9) and (11)—(15) remain valid,
and can be used to compute R¢(k;; A¢) numerically. Equations for R®, Vi, Vi1, A, and Oc; /Oay
are appended to the standard set of RBC equilibrium conditions and solved using the same fifth-
order perturbation method as in the previous section. (A complete list of equations and additional
details regarding the numerical solution algorithm are provided in the Appendix).

Figure 3 graphs the result as a function of log(k;/k) and log A; over a wide range of values
for these variables, about +10 standard deviations (equal to about +38 percent and 423 percent
in logarithmic terms for log k; and log A, respectively).?? The horizontal dashed black lines in
Figure 3 report the constant, closed-form value for risk aversion at the nonstochastic steady state,
R¢(k; A), equal to 17.76. The solid red lines in the figure plot the numerical solution for R¢(k;; A)
for general values of k; and A;.3° The key point of Figure 3 is that, even over the very wide range

of values of the state variables considered, the household’s coefficient of relative risk aversion

problem could be written more precisely as (k¢; A¢, Kt), or even (k¢; A¢, Kt,02), since the nonstochastic steady
state requires setting 02 = 0. However, in equilibrium, k: = K¢, so for simplicity the state vector is written in this
section as (k¢; A¢).

29 The unconditional standard deviations of log A; and log(kt/k) are about 2.3 and 3.8 percent, respectively.
The ergodic mean of log A; is zero and that of log(k:/k) is about .006, or 0.6 percent.

30 The red lines do not intersect the black lines at the vertical axis because c; and [} evaluated at k¢t = k
and A; = A do not equal the nonstochastic steady state values ¢ and | due to the presence of uncertainty (e.g.,
precautionary savings).
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Figure 4. Coefficient of absolute risk aversion R* as a function of the state (k:; A¢) in a real business cycle
model with generalized recursive preferences and period utility u(c:,l:) = c; 7 /(1 —~) —nly 7% /(1 + x).
Dashed black lines depict the closed-form, steady-state value R®(k; A), solid blue lines the numerical
solution for R®(k:; At). Absolute risk aversion is decreasing with both k; and A:. See notes to Figure 3
and text for details.
ranges between about 17.45 and 18, very close to R°(k; A), and never near the traditional, fixed-
labor value of Rf = 45. Thus, the closed-form expressions in Section 3 seem to provide a good
approximation to household risk aversion in a standard model even far away from steady state.
It is also interesting that the household’s risk aversion is countercyclical with respect to the
state variables k; and A;. This can be seen most clearly in Figure 4, which graphs the household’s
coefficient of absolute risk aversion, R*(k;; A;) over the same range of values for k; and A; as in
Figure 3. The absolute risk aversion coefficient of .09 implis that the household is willing to pay
about 9 cents to avoid a fair gamble with a standard deviation of one dollar. This willingness to
pay varies from about 7 to 12 cents over the range of values for the state variables in Figure 4,
with higher values of the states corresponding to higher household wealth and lower risk aversion.
Looking back at Figure 3, relative risk aversion is not countercyclical in that figure with
respect to k; because household wealth-—and thus the size of the hypothetical gamble faced by the
household—is increasing in k; and A;. Indeed, for higher ki, the increase in wealth is sufficiently
large that the household’s relative risk aversion increases with k;, even though absolute risk

aversion is decreasing.

6. Balanced Growth

The analysis in the previous sections has abstracted from growth for simplicity, but the results

of those sections carry through essentially unchanged to the case of balanced growth. The cor-

log A
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responding expressions are briefly collected and proved here in Lemma 9, Proposition 10, and
Corollary 11.

A detailed discussion of balanced growth is provided in King, Plosser, and Rebelo (1988,
2002). Along a balanced growth path, z € {[,r} satisfies x4y = z; for k = 1,2,..., and the time
subscript is dropped to denote the constant steady-state value. For x € {a,c,w,d}, 1 = GFx;
for k=1,2,..., for some G € (0,1+r), and x?g is used to denote the balanced growth path value.
The balanced growth path value of 6, is denoted by Qfg , although the elements of  may grow at

different constant rates over time (or remain constant).

Lemma 9. Given Assumptions 1-7 and 8, for k = 1,2,..., along the balanced growth path:
i) )\i’ik = G*k)\gg, where )\gg denotes the balanced growth path value of A, i) Ocy,, /Oa; =
G*dc; /ay, i) DlF, ;. /da; = Olf /day, and iv) dc; /da; = (1 +1 — G) /(1 +wI\).

Note that wfg )\?9 in Lemma 9 is constant over time because w and A grow at reciprocal rates.
The larger is G, the smaller is dcf/0a, since the household chooses to absorb a greater fraction

of asset shocks in future periods.

Proposition 10. Given Assumptions 1-7 and 8, absolute risk aversion, evaluated along the
balanced growth path, satisfies

b b
Ra(abg' ng) . Vll(at—Ha Qt—gi-l) Vi <at+17 97511) (62)
t Yt - b b
Vi (at+1a etil) V(aHl, 9ti1)
" Re(al%;0) = —1 A + (1 rr 1) (63)
(07 = o _ —
Lot Uy 1+ w9\ G u’

where u; and u;; denote the corresponding partial derivatives of u evaluated at (ct D).

Note that (63) agrees with Proposition 2 when G = 1. The larger is G, the smaller is R®,

since larger GG implies greater household wealth and ability to absorb shocks to asset values.

Corollary 11. Given Assumptions 1-7 and 8', relative risk aversion, evaluated along the balanced
growth path, satisfies

bg bg
¢/ bg. nb —u11 + A ur2 c
R (atg§‘9tg) = L tbg bg (64)
uy 14 w7y
and b b b
At [—1
R (a9, 0%9) = —u1n + AN ue o +w (=) (65)

bgb
uy 14w\

Thus, the expressions for relative risk aversion are unchanged by balanced growth.
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7. Discussion and Conclusions

Traditional studies of risk aversion, such as Arrow (1964), Pratt (1965), Epstein and Zin (1989),
and Weil (1989), assume that household labor supply is fixed. However, this assumption ignores
the household’s ability to partially offset shocks to asset values by varying hours of work. As
a result, these fixed-labor measures of risk aversion are not representative of the household’s
aversion to holding risky assets when labor supply can vary. For reasonable parameterizations,
traditional, fixed-labor measures of risk aversion can overstate the household’s actual aversion to
bearing risk by a factor of as much as 10, as in Figure 2. Moreover, fixed-labor measures of risk
aversion are essentially unrelated to the equity premium in a standard RBC model, while the
flexible-labor measure R® derived in the present paper is closely related.

The present paper also shows that there are problems with applying the Epstein-Zin-Weil
fixed-labor coefficient of relative risk aversion to a Cobb-Douglas aggregate of consumption and
leisure, as is sometimes done in the literature. Perhaps not surprisingly, the Cobb-Douglas ag-
gregate interpretation of consumption and leisure does not hold up well in general equilibrium,
because changes in labor in the model have general equilibrium effects on production, capital,
and wealth that go beyond simple changes in the composite good. As a result, changes in the
parameters of the model have broader implications than a simple composite-good interpretation
would suggest. In contrast, the consumption-only coefficient of relative risk aversion, R, is much
more closely related to the equity premium in a standard RBC model. This measure recog-
nizes the household’s ability to self-insure its portfolio by varying hours of work, but—unlike the
Cobb-Douglas aggregate—excludes the value of leisure from household wealth.

The flexible-labor risk aversion measure R€ is less than both the traditional, fixed-labor
measure, R’ and the Cobb-Douglas aggregate measure, R, described above. As a result,
many studies in the macroeconomics, macro-finance, and international finance literatures may be
substantially overstating the actual degree of risk aversion in their models.

Finally, the analytical framework of the present paper can be applied not just to dynamic
models with labor, but to any such model with multiple goods in the utility function. Models with
home production, money in the utility function, or tradeable and nontradeable goods can all imply
very different household attitudes toward risk than traditional measures of risk aversion would
suggest. The closed-form expressions for risk aversion derived in this paper, and the methods of
the paper more generally, are potentially useful in any of these contexts, in pricing any asset—

stocks, bonds, or futures, in foreign or domestic currency—within the framework of dynamic
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equilibrium models. Since these models are a mainstay of research in academia, at central banks,

and international financial institutions, the applicability of the results should be widespread.
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Appendix: Proofs of Propositions and Numerical Solution Detalils

Proof of Proposition 1

Since (a¢; 6¢) is an interior point of X, V(at—&—%; ) and V(at—&—ﬁ; 0:) exist for sufficiently small o,
and V(ae+55-30) < V(ae;0s50) < V(at—&—%;et), hence V (as; 0:;0) exists. Moreover, since V(-; )
is continuous and increasing in its first argument, the intermediate value theorem implies there exists a
unique —u(o) € [og, 0g| with V(a;— ﬁ‘;i;et) = V(as; 045 0).

For generalized recursive preferences, the household’s first-order optimality conditions for ¢; and [,

ui(ci,lf) = 5<EtV(at*+1;9t+1)1_a)a/(1ia)EtV(af+1;9t+1)_aV1(a:+1;9t+1)a (A1)
us(cf,17) = —Bwe(BiV(aiyr;0e01)' %) TV EV (07115 0041) " Vaaya; 0es1), (A2)

are slightly more complicated than the case of expected utility considered in Swanson (2012). Note that
(A1) and (A2) are related by the usual ua(cy, i) = —wiui(cf;1;), and when o = 0, (A1) and (A2) reduce
to the standard optimality conditions for expected utility.

For a sufficiently small fee dy in (8), the first-order change in household welfare (4) is given by

d
~Va(ars00) 1 —|—Mrt' (A3)
Differentiating (6) with respect to a: yields
L el OCE w s Ol
Vi(ae;0,) = ul(ct,lt)a—ai + uz(ct,lt)aatt

+ BBV (@513 0001) ) TV BV (af 15 0041) T Vilaty; 1) (1 4+ 7). (Ad)

Applying the envelope theorem to (A4), (A3) can be rewritten as

—B(EV (als1;0041) ) VBV (@l 15 0041) O Vi(als s 0ep1) dit. (A5)

Note also that (A1) and (A4)—(A5) imply the Benveniste-Scheinkman equation (11).

Turning now to the gamble in (7), the household’s optimal choices for consumption and labor in
period t, ¢ and l;, will generally depend on the size of the gamble c—for example, the household
may undertake precautionary saving when faced with this gamble. Thus, in this section we write ¢ =
c*(at;0¢;0) and I = ["(ae; 0¢;0) to emphasize this dependence on o. The household’s value function,
inclusive of the one-shot gamble in (7), satisfies

V(at;ﬁt;a) = u(c:,lf) —|—ﬁEtV(af+1;9t+1), (A6)

where aj 1 = (1 4+ r¢)ar + welf + di — ¢f. Because (7) describes a one-shot gamble in period ¢, it affects
assets ayy 1 in period ¢+ 1 but otherwise does not affect the household’s optimization problem from period
t + 1 onward; as a result, the household’s value-to-go at time ¢ + 1 is just V(aj 1;60:+1), which does not
depend on ¢ except through afy;.

Differentiating (A6) with respect to o, the first-order effect of the gamble on household welfare is:

oc* tu ol
oo > 00

orr _ oc*
oo oo

u 1+ B(E V)Y Y B vy (wy +erg1)] do, (A7)

where the arguments of u1, uz, V, and Vi are suppressed to simplify notation. Optimality of ¢; and
7 implies that the terms involving dc¢* /0o and 0l /0o cancel, as in the usual envelope theorem (these
derivatives vanish at ¢ = 0 anyway, for the reasons discussed below). Moreover, E.V ™ *Vigir1 = 0
because €441 is independent of 6,11 and a;;, evaluating the latter at ¢ = 0. Thus, the first-order cost of
the gamble is zero, as in Arrow (1964) and Pratt (1965).
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To second order, the effect of the gamble on household welfare is

dc\? dc* ol a*\? 9 821"
u | 5— +2u12——0 tue|5-) + +ur=—

oo oo v Oo? Oo?

o (2a—1)/(1-c w or  oc* 2
+Oé/8<EtV1 )(2 1)/(1 ) |:Etv Vi- <wta_o-_aio_+gt+1):|

1—ava/(1—a) L1 o oc* 2
- O‘6<Etv ) EV V1| we 90 — 8—0' + €41

* * 2
+ BBV gy ey, (w2 97
t t 11 - | we 90 9o + €141

(A8)

_ - _ olr 9%c* do?
Byl /Uy ey (2 22 ) LT
+ /B( tV ) tV V1 Wt 902 902 B

The terms involving 9%c* /0o and 921* /0o cancel due to the optimality of ¢; and I;. The derivatives
Oc* /0o and 01" /0o vanish at o = 0 (there are two ways to see this: first, the linearized version of the
model is certainty equivalent; alternatively, if the distribution of € is symmetric about zero, the gamble in
(7) is isomorphic for positive and negative o, hence ¢* and I* must be symmetric about o = 0, implying
the derivatives vanish). Finally, €41 is independent of 0:41 and ai,;, evaluating the latter at o = 0.
Since e¢41 has unit variance, (A8) reduces to

@

BBV =) (BY T Vi — aB, VTV

(A9)

Equating (A5) to (A9), allows us to solve for du as a function of do. Thus, the limit lim, o 2u(0) /0>

exists and is given by

—EV Vi1 + aB, VY2

(A10)
EtV7QV1

Since (A10) is already evaluated at o = 0, to evaluate it at the nonstochastic steady state, set

at+1 = a and 041 = 0 to get
—Vii(a;0) | Vi(a;0)

Vila;0)  “V(a0)

(A11)

Proof of Lemma 2

Equations (A1), (A4), and the envelope theorem imply the household’s intertemporal optimality (Euler)
condition

ul(cf,lf) = /B(EtV(a:Jrl;9t+1)17a)a/(1_a)EtV(a:+1;9t+1)7°‘(1—I—Tt+1)u1(c;"+1,lf+1). (A12)

Differentiating (A12) with respect to a; and evaluating at steady state implies

80: . aC:fk+1 _ al,’f . 3l:f+1
v <8at 8at - 2 Bat 8@,5 ’ (A13)

where the arguments of u;; are suppressed to reduce notation. Using (14), this implies

80: 3c:+1 o
(u11 - )\U12) (a—at - day =0 (A14)
and thus N .
Oty _ Oci (A15)

8at o Bat '
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Equations (A12)—(A15) can be iterated forward to yield

ociy,  Ocy
Bat 8@,5 ’

k=1,2,... (A16)

whatever the initial response dc; /Ja:. From (14) and (A16), it also follows that

ANipe O
= k=1,2,... Al17
86& 86& ’ . ( )

It remains to solve for dcj/0a:. The household’s intertemporal budget constraint, evaluated at
steady state, implies

1+7r Ocf 147 0lf
= (1 . A18
r  Oag (147) +w r  Oag ( )
Substituting (14) into (A18) and solving for dc; /da; yields
ocy T
— = . Al
Oay 1+ wA (A19)
Proof of Lemma 5
Differentiating the household’s Euler equation (A12) and evaluating at steady state yields:
U11(d6: - EtdCI_H) + U12(dl;k - Etdl:_'_l) = BEiu1drisa, (A20)
which, applying (46), becomes:
* * U1U12
(u11 — Aui2)(dey — Erdeiy 1) — —————— (dwi — Erdwiy1) = BEruidriqa. (A21)
U22 + WU12
Note that (A21) implies, for each k =1,2,...,
* * Ui1u12 ﬁul
E:dc = dc; — ————=— (dw¢ — Eidw E drii;. A22
tACt 4k T i1t — u12( ¢ tdwit k) — T~ g Z t+i (A22)
Combining (1)—(2), differentiating, and evaluating at steady state yields:
1 . .
E, ; m(dct% —wdl}yy, — ldwiiy — ddeyr, — adreyy) = (14 7) das. (A23)
Substituting (46) and (A22) into (A23), and solving for dc;, yields:
T 1 >
- 1 By
de; T TTon (14 r)dat + Ey kZ:O ) (l dwitr + dditr + adrt—l—k)]
n UL U2 dws + 1 —uq E i 1 [ rA dw — Bdr ] (A24)
u1u22 — ul, T4 unn — A — (I4+r)k |14 wX i s b
Proof of Lemma 6
Differentiating equation (6) and evaluating at steady state implies
dVy = widc; + uadli + BEdViqq. (A25)
Solving (A25) forward and applying (46) yields
d A+ wNEdey oy — Y B —2  Edwis . A2
Vi = Zﬁ w1 (1 + wA)Erdei 4y, Z Yas T+ wu, tdwek (A26)

k=0
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Substituting (A22) into (A26) and simplifying yields

1+7r uduiz(l 4+ wl)

2
T U11U22 — Uy

dV, = 1+ru1(1+w)\)dct* —
T

dﬂ)t

o ok u1(u1uis — usu1) w1 +w)) 1 o= ki1
+ Eidw - Eidreyr . (A27
;;:oﬁ v zs — 2 tdwer = S 128 ;5 vdricr . (A27)
Substituting (A24) into (A27) and simplifying gives

oo

dVe = ui(1+r)das + ulEtZ
k=0

m(ldthrk + ddtJrk + ader). (A28)

Proof of Lemma 9

i) The household’s Euler equation (A12), evaluated along the (nonstochastic) balanced growth path,
implies

u1(cgg,l) = B(1 —|—r)u1(c?il,l) = 6(1 —|—r)u1(Gc?9,l). (A29)
Similarly, for labor,
bg
ua (1) = 5(1+r)u‘)‘;; ua (24,1 = B(1+ )G ua (G, 1). (A30)
t+1

As in King, Plosser, and Rebelo (2002), assume that preferences u are consistent with balanced
growth for all initial asset stocks and wages in a neighborhood of afg and wfg, and hence for all initial
values of (ct, 1) in a neighborhood of (¢??,1). Thus, (A29) and (A30) can be differentiated to yield:

un (et 1) = B(L+r)Gun (Ge,, 1), (A31)

u12(2?,1) = B(1 + ) u1a(G, 1), (A32)

'LLQQ(C?g’l) = ﬁ(l ~|—T)G71UQ2(GCSQ,Z). (A33)
Substituting (A31)—(A33) into (15) gives

wid un (e, 1) + wrz(c)?y, 1)

Xefy = = G, (A34)

U22(C?1175) + w?ilulz(c?ihl)
ii) Assumptions 1-6 imply (11)—(15) in the text and the Euler equation (A12). Hence

ocy
8at
Solving for Ocfy;/0a: and using (A31)—(A34) yields dciy/0ar = G Oci /Dax.
iii) Follows from (14), (A31)—(A34), and ii).

iv) Use the household’s budget constraint (1)—(2) and ii) to solve for dcf /das.

Oci i1

(w11 (cy?, 1) — APura(c}?, 1)) Bas

= B(1+7) (urr(c?y,1) — \pL urz(ch?y, 1))

(A35)

Proof of Proposition 10
Proposition 1 implies (62). Assumptions 1-6 imply (11)—(15). Substituting (11)—(14) and Lemma 9(iv)
into (62) gives

—uu(ci’il, 1) + )‘gi1ul2(0gi175) 1+4r-G (1+7)ur (Cgila 1)

Ra(asg;gfg) = b b b b b
Ui (Ctil’ 1) 1+ wtil)‘til V(a’til; etil)

(A36)

Expressing V(afil;eﬁil) in terms of period utility u is made slightly more complicated by the presence
of balanced growth, since now the arguments of u are not constant but rather grow over time.
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King, Plosser, and Rebelo (1988, 2002) show that, to be consistent with balanced growth, u(cs, ;)
must have the functional form

11—~ _
ulce, ly) = %v(z—zt) (A37)

or,as vy — 1, _
ule,ly) = loger +v(l — 1), (A38)

where v(-) in (A37) or (A38) is differentiable, increasing, and concave, but otherwise unrestricted. Since
the balanced growth path is nonstochastic, the allowable functional forms for u(c¢,l:) are the same for

the case of generalized recursive preferences as they are for expected utility.
If u has the form (A37), then

1

V(ay?;609) = m“(cfgﬁ (A39)
d
a bg bg bg . nbg bg 5G1_’Y bg
BV (a;11;0711) = V(a?5077) —u(c?,1) = m“(ct 1) (A40)

Moreover, (1 4+ r) = G”. Substituting (A29), (A31)—(A34), and (A40) into (A36) then completes the
proof.
If u has the form (A38), then

1

V(as?;679) = e Tei

u(c?,1) + b 5 log G, (A41)

(1-5)

ﬁ bg 6
1 _/Bu(ct )+ a—pe log G, (A42)

and B(1 + r) = G. Substituting (A29), (A31)—(A34), and (A42) into (A36) yields

/J)V(agiﬁ 9?i1) =

—ui1 + N urr - (1 +r 1) u1

U1 1+ wlINe G u+ s log G

R"(@”;6,%) = (A43)

This differs from (63) by the addition of the constant term 1_1G log G to u. Thus, in the case of log
147

preferences, u in (63) must be interpreted to include the additive constant 1_1G log G.
147

Proof of Corollary 11

As in Definitions 2-3, define wealth A’;g in beginning- rather than end-of-period-t units; this requires
multiplying by (1+r)_1G ~! rather than just (1—|—T)_1. Then the present discounted value of consumption
along the balanced growth path is given by Afg = ci’g / (% — 1), and the present discounted value of

leisure by wy?(I —1)/(1£- — 1). Substituting these into Proposition 10 completes the proof.

Numerical Solution Procedure for Sections 4-5
The equations of the RBC model itself are standard:
Yi=AK, T LE,
Ki=(1-6)Ki—1+Y, —Cy,
nLy/Cy7 = wy,
re=(1-0)Y:/Ki—1 — 0,
wy = 0Y3/ Ly,

log At = plOgAt_l + Et,
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where, for concreteness, the additively separable preference specification from Examples 3 and 5 have
been used in (A47), and will be assumed throughout this section. In equations (A44)-(A49), note that
K1 denotes the capital stock at the beginning of period ¢ (or the end of period ¢ — 1), so the notation
differs slightly from the main text for compatibility with the numerical algorithm below.

Because of the generalized recursive structure of household preferences, the household’s Euler equa-
tion (A12) involves the value function. Following Rudebusch and Swanson (2012), two equations for the
value function are added to the model, as follows:

Ctl—’Y L%_'_X
1—v n1+x

Vi = + BVTWIST,/ =), (A50)

VTWIST, = E,V,'7*. (A51)
The household’s Euler equation (A12) then can be written as
C;Y = BE(1+ res1) (Verr/VTWIST, =) 707 (A52)

To compute risk aversion, the following auxiliary variables and equations must be appended to
(A44)—(A52):

Ae = (v/x) Lt/ Cr, (A53)

C, " 'DCDA; = BE(1+741)C;y ' DCDAyy1 [(147¢) — (1+wihe) DCDA,], (A54)

CARA, — BV [(147641) (YO T ' DDA 1) + a(147:41)2Cr [ Viga] 7 (A55)
VIEXP,

VIEXP; = E,V,;$(14re1)C). (A56)

PDVC; = C; + BE.C;/Cy " (Vig1r /VTWIST, =) " *PDVCyyy. (A57)

CRRA; = CARA, PDVC; /(147+). (A58)

These are somewhat more complicated versions of the equations in Swanson (2012), owing to the use of
generalized recursive preferences in the present paper. Equation (A53) corresponds to (14), (A55)—(A56)
to Proposition 1, and (A57)—(A58) to Definition 2. The variable DCDA; correspond to dci/da¢, and
equation (A54) is the derivative of (A12) with respect to a¢, which is what determines how dcf/das
evolves over time. Note that

Ociyr _ Ocipa
8at Ba;‘H

oci _ oei
Bat 8@,5 ’

(1 + rt) — wt)\t (A59)

which is used in (A54). The envelope condition Vi(a¢;0:) = B(1 + r¢) E:Vi(at41; 0e41) is used to rewrite
EVi(at41;0¢41) in (A55)—(Ab56), and equations (11)—(12) are used to rewrite Vi and Vi1 in terms of
derivatives of wu.

The system of equations (A44)—(A58) can then be solved numerically using the Perturbation AIM
algorithm of Swanson, Anderson, and Levin (2006) to compute a fifth-order Taylor series approximate
solution around the nonstochastic steady state. These nth-order Taylor series approximations are guaran-
teed to be arbitrarily accurate in a neighborhood of the nonstochastic steady state, but importantly also
converge globally within the domain of convergence of the Taylor series as the order of the approximation
n becomes large. In practice, the solution seemed to converge globally over the range of values considered
for the state variables in Figure 1-4 by about the third or fourth order, so solutions higher than the
fifth order are not reported. Aruoba, Ferndndez-Villaverde, and Rubio-Ramirez (2006) solve a standard
real business cycle model like (A44)—(A58) using a variety of numerical methods, including second- and
fifth-order perturbation methods, and find that the perturbation solutions are among the most accurate
methods globally, as well as being the fastest to compute.
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