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1. Introduction

The U.S. economy has changed substantially over the past
two decades. The information technology revolution alone
has transformed inventory management, fostered increased
globalization of trade in goods and services, and improved
the efficiency of labor and goods markets. These and other
changes have had wide-ranging effects on the economy:
The magnitude of macroeconomic fluctuations has de-
clined dramatically, estimates of the long-run growth rate
of productivity have risen more than 1 percentage point,
and estimates of the natural rate of unemployment have de-
clined about 1 percentage point.1 The implications of struc-
tural change for the conduct of monetary policy have
attracted increased attention from researchers and policy-
makers, as evidenced by the 2003 Jackson Hole confer-
ence, “Monetary Policy and Uncertainty: Adapting to a

Changing Economy.”2 The goal of this paper is to examine
issues related to the design of monetary policy when struc-
tural change is a regular feature of the economy and when
there is considerable uncertainty about the precise nature
of the underlying process of change. 

I represent structural change by medium- and low-fre-
quency variation in the natural rates of unemployment and
interest. For the purpose of this paper, I define the natural
rate of unemployment to be the unemployment rate consis-
tent with a stable rate of inflation in the absence of transi-
tory supply shocks; correspondingly, I define the natural
rate of interest to be the real short-term interest rate consis-
tent with the convergence of the unemployment rate to its
natural rate in the absence of transitory demand shocks. I
focus on shifts in natural rates because of the relatively
strong evidence that they vary over time; I leave the analy-
sis of the monetary policy implications of changes in other
aspects in the economy to future research.3
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1. Kim and Nelson (1999) and McConnell and Quiros (2000) analyze
the decline in variability in output in the United States. Orphanides and
Williams (2002) and Edge, Laubach, and Williams (2004) document the
evolution of estimates of the natural rate of unemployment and the long-
run rate of productivity growth respectively. 

2. Symposium sponsored by the Federal Reserve Bank of Kansas City,
Jackson Hole, Wyoming, August 28–30, 2003.  

3. For example, Rudebusch and Svensson (1999) find no evidence of a
break in slope coefficients in their model, while Estrella and Fuhrer
(2003) find strong evidence of a break when testing jointly for 
intercepts—which are related to natural rates—and slope parameters.
See also Kozicki and Tinsley (2001), who emphasize lower-frequency
variation in intercepts in estimated models. The evidence for change in
other macroeconomic relationships, such as the autocorrelation of
inflation, is the subject of ongoing research; see Bernanke and Mihov
(1998), Cogley and Sargent (2002a, 2002b), Sims (2002), Boivin and
Giannoni (2003), and Stock and Watson (2003). 
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If there is uncertainty about the true levels of the natural
rates, but their true data-generating processes (DGPs) are
known, then, in a standard linear-quadratic framework, cer-
tainty equivalence obtains, and the form and parameters of
the optimal monetary policy would be the same as if there
were no natural rate uncertainty.4 Similarly, Giannoni and
Woodford (2005) emphasize that in a linear-quadratic
framework the Euler equation describing the optimal mon-
etary policy is invariant to the natural rate process.
Nonetheless, implementation of the optimal policy re-
quires that the policymaker form correct forecasts of en-
dogenous variables, for which they need to know the true
DGPs of the natural rates. However, the assumption that
policymakers know the processes generating natural rates
is highly unrealistic, as emphasized by Orphanides and
Williams (2002).5 In addition, the processes underlying
movements in natural rates themselves may change over
time, as evidenced by shifts in innovation variances noted
in Cogley and Sargent (2002b) and others, further impair-
ing policymakers’ ability to infer the true model from the
data. Thus, a key assumption of this approach is that uncer-
tainty regarding the process of structural change is perva-
sive and that it is unlikely to vanish in the foreseeable
future. 

I assume that the policymaker must choose once and for
all, without knowing the true DGPs for natural rates, both a
method to estimate the natural rates in real time and a mon-
etary policy rule. I consider two approaches to model un-
certainty. In one, the policymaker has well-formed prior
beliefs, stated as probabilities (priors) over the set of poten-
tial natural rate DGPs and chooses an estimation and pol-
icy rule combination that minimizes the expected loss—in
terms of unconditional squared deviations of inflation, 
the unemployment rate, and the interest rate from target
levels—when integrating over the set of natural rate DGPs.
The second approach corresponds to Knightian uncer-
tainty, in which the policymaker does not have well-
formed priors over the natural rate models. In this case, I
follow the robust-control literature and analyze the estima-
tion and policy-rule combinations that minimize the maxi-
mum loss over the set of potential natural rate DGPs. This
method of examining robust monetary policy under model

uncertainty follows the approach advocated by McCallum
(1988) and implemented by Taylor (1999), Levin, Wieland,
and Williams (1999, 2003), and others.6

I implement this approach by specifying three represen-
tative natural rate processes that make up the set of possible
natural rate processes: a highly persistent first-order auto-
regressive process, a fractionally integrated (“long-
memory”) process, and a two-state Markov-switching
process. I choose these processes because they are all con-
sistent with the data, but they differ in their implications 
for the specification of the optimal natural rate estimator. For
each process, I also allow for uncertainty regarding the pa-
rameterization of the process, as evidenced by the wide
range of estimates of natural rate innovation variances re-
ported by Laubach and Williams (2003) and others in the
case of the Kalman filter. To capture this form of parameter
uncertainty, I include three different calibrations of the
DGP for each natural rate. 

A key contribution of this paper is its analysis of the
joint problem of estimation and policy feedback when
there is uncertainty about the processes underlying struc-
tural change. A number of researchers have examined the
effects of natural rate mismeasurement on the performance
and optimal specification of monetary policy rules, but
most have treated natural rate mismeasurement as exoge-
nous noise.7 In this paper, I directly examine the perform-
ance of real-time estimation strategies and policy rules in
which the true natural rates vary over time.8 Thus, the oc-
currence of natural rate misperceptions and their correla-
tion with other variables arise endogenously and depend on
both the estimation method and the policy rule. 

I conduct the analysis using a variant of the backward-
looking model of Rudebusch and Svensson (1999) esti-
mated on 50 years of postwar U.S. data. I focus on this
model because Orphanides and Williams (2002) have
shown that natural rate mismeasurement is relatively easy
to overcome in forward-looking and hybrid models by
specifying the policy rule in terms of changes of the inter-
est rate as it reacts to inflation and the change in the unem-
ployment rate. But such a strategy is far less effective in
models of the Rudebusch-Svensson type, which have em-

4. See Simon (1956), Theil (1958), Chow (1975) and Kalchbrenner and
Tinsley (1976) for early analysis of certainty equivalence, and Swanson
(2004), Svensson and Woodford (2003), and Woodford (2003) for more
recent treatments. Stochastic natural rates are a form of additive uncer-
tainty, and therefore certainty equivalence applies for optimal policies
and optimal filters. Certainty equivalence does not apply to uncertainty
about slope parameters, as analyzed by Brainard (1967). 

5. See also Stock and Watson (1998), Lansing (2000) and Orphanides
and van Norden (2002).

6. See, for example, Orphanides and Williams (2002), Laxton and
Pesenti (2003), Levin and Williams (2003), Brock, Durlauf, and West
(2003), and Onatski and Williams (2003). Cogley and Sargent (2003)
extend this type of analysis to the case in which the policymaker con-
tinuously updates his or her priors over models. 

7. See, for example, Orphanides et al. (2000), Smets (2002), Orphanides
(2002), Rudebusch (2001, 2002), and Orphanides and Williams (2002). 

8. The use of the term “real time” for problems of this sort is due to
Diebold and Rudebusch (1991).
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pirical support (Estrella and Fuhrer, 2003).9 In addition, the
model has been extensively studied in the monetary policy
literature, facilitating the comparison of results from stud-
ies by Rudebusch (2001, 2002), Onatski and Williams
(2003), Brock, Durlauf, and West (2003), and Levin and
Williams (2003). 

I find that there can be very large costs, especially in
terms of inflation variability, to ignoring natural rate uncer-
tainty. However, I also show that it is possible to design es-
timation and monetary policy rules that are robust to a
variety of models of natural rate evolution. In the termi-
nology of Levin and Williams (2003), such estimation-
and-policy combinations display a high degree of fault
tolerance in the face of model uncertainty about natural
rates. I find that weighted sample means of the real interest
rate and the unemployment rate, in which the weights on
past data decline gradually, yield very good estimates of
the natural rates for use in the conduct of monetary policy.
I also find that in the face of uncertainty about natural rates,
the robust policy incorporates more policy inertia and a
more muted response to a perceived unemployment gap
than would be the case if the natural rates were known. By
focusing primarily on the “inflation ball,” such a policy re-
duces the unavoidable policy “mistakes” resulting from
natural rate mismeasurement.

The remainder of the paper is organized as follows. The
model is described in Section 2. In Section 3, the model es-
timation methodology and results are reported. Section 4
describes the method used by policymakers to estimate
natural rates in real time. Section 5 analyzes optimal mon-
etary policies assuming that the natural rate processes are
known. Section 6 examines the characteristics of policies
that are robust to misspecification of the natural rate
processes. Section 7 concludes.

2. The Model 

I use a modified version of the Rudebusch-Svensson model
for the analysis (Rudebusch and Svensson 1999).
Following Orphanides and Williams (2002), the model is
specified in terms of the unemployment rate gap as op-
posed to the output gap specification of Rudebusch-
Svensson, and allowance is made for time variation in the
natural rates of interest and unemployment. Each unit of
time corresponds to one quarter of a year.

2.1. Unemployment and Inflation Dynamics 

The IS curve equation relates the unemployment rate, ut, to
its lags, its natural rate, u∗

t , and the lagged difference be-
tween the two-quarter average of the real federal funds
rate, rt , and its natural rate, r∗

t ,

(1) ut = (1 − β1 − β2)u
∗
t−1 + β1ut−1 + β2ut−2

+β3
(
(rt−1 + rt−2)/2 − r∗

t−1

) + εt ,

where εt ∼ N (0, σ 2
ε ) is a serially uncorrelated innovation.

The real federal funds rate is defined to be the difference
between the nominal federal funds rate and a measure of
expected inflation assumed to equal the inflation rate over
the past four quarters: 

rt ≡ it − π̄t ,

where π̄t denotes the four-quarter moving average of the
inflation rate. 

The Phillips curve equation relates the GDP price de-
flator inflation rate, πt , to its own lags (with a unity sum
imposed on the coefficients) and the lagged difference be-
tween the unemployment rate and its natural rate: 

(2) πt = γ1πt−1 + (1 − γ1)
1

3

4∑
j=2

πt− j

+ γ2(ut−1 − u∗
t−1) + ηt ,

where ηt ∼ N (0, σ 2
η ) is a serially uncorrelated innovation.

As noted above, the natural rates of interest and unemploy-
ment are time-varying and are therefore identified with
time subscripts. 

2.2. Modeling Natural Rates 

I consider three types of time-series models for time-vary-
ing natural rates: a first-order autoregressive process, a
fractionally integrated (“long memory”) process, and a
two-state Markov-switching process. I focus on stationary
processes for the natural rates.10 For each model, I consider
three parameterizations of the variance of the process, as
described below. 

The first type of model is the standard first-order autore-
gressive process, or AR(1), according to which the natural
rate, z , follows the law of motion: 

(3) zt = (1 − ρ)z + ρzt−1 + τt ,9. The assumption of adaptive expectations is not without cost, as this
framework ignores the endogenous response of expectations, which can
exacerbate the problems associated with policy errors induced by faulty
estimates of model parameters, as discussed by Orphanides and
Williams (2002, 2005a) and others. The extension of the analysis of this
paper to other models of expectations formation is left for future work.

10. On the basis of the ADF test, one can reject the null of nonstationar-
ity of both the unemployment and real federal funds rate over 1950–
2003 at the 5 percent level.
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where z is the unconditional mean of z, |ρ| < 1, and 
τt is assumed to be a white noise innovation. 

The second type of model is a fractionally integrated, or
“long memory,” model studied by Granger (1980) and
Diebold and Rudebusch (1989). The corresponding law of
motion is given by 

(4) (1 − L)d(zt − z) = νt ,

where |d| < 1/2 and νt is a white noise innovation. I ap-
proximate this process by its binomial expansion, trun-
cated after 5,000 terms,

(5) zt = z +
5000∑
j=1

(−1) j−1

∏ j
i=1(d − i + 1)

j!
(zt− j − z ) .

An interesting facet of, and possible justification for, the
long-memory model highlighted by Granger (1980) is that
it approximates the outcome from aggregating idiosyn-
cratic AR(1) stochastic processes generated by differing
values of the autocorrelation coefficient.

The fractionally integrated model differs from the AR(1)
model in two important respects. First, the autocorrelation
of an AR(1) decays geometrically, as shown by the dashed
line in Figure 1, while that of the long-memory process dis-
plays approximately hyperbolic decay, as shown by the
solid line. Thus, the long-memory process is able to gener-
ate significant lower-frequency variability without impos-
ing a very high degree of high-frequency serial correlation.
Second, the two processes differ markedly in their impulse
responses. The impulse response function for an AR(1) de-
clines geometrically, while that of the long-memory
process falls rapidly for the first several periods but then
declines very gradually. Evidently, the long-memory
process behaves like a combination of a weighted sum of
two AR(1) processes, one with a relatively low root and the
other with a root near unity. 

The third type of model is a two-state Markov-switching
process as described by Hamilton (1989), in which with
some probability, p, the natural rate shifts from the first
state to the second state. I assume that the probability of
switching states is the same for each state, so that the mean
time spent in each state is the same and the unconditional
mean of the natural rate is the average of the values in the
“low” and “high” states. 

Each of these three natural rate DGPs are characterized
by two parameters, one describing the persistence of the
natural rate and the other describing the variance of the in-
novations to the natural rate. Because I am interested in
medium- and low-frequency variation in the natural rates, I
assume values of ρ = 0.99 , d = 0.48 , and p = 0.99 ,
which yield a high degree of lower-frequency persistence,

as illustrated in Figure 1. I allow for uncertainty regarding
the behavior of these processes by including three sets of
values for the innovation variances, as discussed in the next
section. 

Figure 1
Characteristics of Long-Memory and AR(1) Processes

0 20 40 60 80 100 120
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Quarters

A. Autocorrelation

AR(1) (� = 0.99)

Long memory (d = 0.48)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1.0

Quarters

B. Impulse response function

AR(1) (� = 0.99)

Long memory (d = 0.48)
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2.3. Monetary Policy 

I assume that the monetary policymaker’s objective is to
minimize the expected unconditional squared deviations of
the four-quarter inflation rate from its target rate, π∗, of the
unemployment rate from its natural rate, and of the devia-
tion of the nominal interest rate from the long-run target
nominal interest rate, i∗

t = r∗
t + π∗. Specifically, the loss,

L, is given by 

(6) L = E
{
(π − π∗)2 + λu(u − u∗)2 + λi (i − i∗)2

}
,

where expectations are taken with respect to the innova-
tions to the unemployment rate and inflation, {εt }∞

t=0 and
{ηt }∞

t=0 , respectively, as well as to the natural rates of un-
employment and interest, {u∗

t , r∗
t }∞

t=0 . Throughout the re-
mainder of the paper, I assume the following weights in the
policymaker loss function: λu = 1, λi = 0.5 ; qualita-
tively, the results are not sensitive to moderate variations in
these parameters.

Furthermore, I assume that the inflation target is zero.
The expectation in the loss function takes into account both
uncertainty about the realization of future innovations and
uncertainty about the DGPs for the natural rates. Let S de-
note the set of the possible natural rate DGPs (which may
differ across variables). Assume for the present purpose
that the policymaker has well-defined prior beliefs re-
garding the distribution of s ∈ S , denoted by F(s) . Let
L(s) denote the expected policymaker loss for the data-
generating process s . Then, for a given specification of
monetary policy, the expected unconditional loss is given by

(7) L =
∫

S
L(s) d F(s) .

In practice, I represent this expectation with a finite set of
discrete elements, {si }Ns

i=1 of S , weighted by ωi :

(8) L =
Ns∑

i=t

L(si ) ωi ,

where 
∑

ωi = 1. In the example studied in this paper,
Ns = 9 . 

I assume that monetary policy is implemented by setting
the federal funds rate according to a monetary policy rule
taking the form of an augmented Taylor (1993) rule similar
to that found to perform well under natural rate uncertainty
in Orphanides and Williams (2002). In the absence of natu-
ral rate uncertainty, policy rules of this type yield macro-
economic performance very nearly equal to the fully
optimal policy. In particular, the federal funds rate is set ac-
cording to the following:

(9) it = θi it−1 + (1 − θi ){r̂∗
t−1 + (1 + θπ̄ )π̄t−1

+θππt−1 − θu(ut−1 − û∗
t−1) − θ
u
ut−1} ,

where r̂∗
t and û∗

t are the policymaker’s real-time estimates
of the natural rates of interest and unemployment, respec-
tively, and 
ut is the first difference in the unemployment
rate. I abstract from the zero lower bound on interest rates. 

3. Model Estimation 

In this section, I estimate the basic model and calibrate 
the set of DGPs for the natural rates of interest and 
unemployment. 

3.1. Unemployment and Inflation Dynamics 

If the natural rates of interest and unemployment were con-
stant, ordinary least squares (OLS) estimation of the pa-
rameters of the IS and Phillips curve equations would yield
consistent estimates of these equations. However, if the
natural rates change over time and are unobserved by the
econometrician, the assumption of constant natural rates
introduces mismeasurement in the right-hand-side vari-
ables, thereby potentially biasing all parameter estimates.
To mitigate these effects, I estimate the IS curve and
Phillips curve equations using rolling regressions in which
each sample contains only 15 years of data. In addition, I
proxy the true time-varying natural rate of unemployment
with the estimates made by the Congressional Budget
Office (CBO). Given the sample of data for the 1950–2003
period, I can thus run 156 regressions. I take as the model
parameter estimate the median estimates from this set of
156 estimates. 

Figure 2 plots the rolling regression estimates of the
model parameters. The three panels on the left report the
estimates pertaining to the Phillips curve equation, and the
three on the right report those for the IS curve equation. For
the Phillips curve equation, I plot estimates based on a
specification that includes a constant but excludes the CBO
estimate of the natural rate of unemployment; the bottom
left panel shows the resulting rolling regression estimate of
the natural rate of unemployment, given by the ratio of the
estimated intercept divided by the estimate of γ2. For the IS
curve equation, I use the CBO estimate of the natural rate
of unemployment; the bottom right panel reports the result-
ing estimates of the natural rate of interest, given by the
ratio of the estimated intercept divided by the negative of
the estimate of β3.

The rolling regression estimates of the natural rates of
unemployment and interest vary considerably over time
and thus lend support for time variation in the true values
of the natural rates, or for the difficulty in their real-time
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Figure 2
Characteristics of Long-Memory and AR(1) Processes

Notes: Sample length is 15 years. Dashed lines indicate the median estimates.
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estimation, or both. An interesting feature, not investigated
in this paper, is that some of the other parameters exhibit
some signs of time variation. The estimate of γ1 , the co-
efficient on the first lag of inflation in the Phillips curve
equation, also displays considerable time variation. This
variation in estimates of γ1 also obtains when the sum re-
striction on lagged inflation is not imposed.11 The slope of
the IS curve displays a downward trend over the sample. In
contrast, the estimates of the slope of the Phillips curve and
the lags of the unemployment rate in the IS curve are rela-
tively stable over the sample. 

The median estimates from the rolling regressions yield
the following two equations, which I use in the analysis
that follows:

(10)

(11) πt = 0.46πt−1 + 0.54
1

3

4∑
j=2

πt− j

−0.23(ut−1 − 5.96) + ηt .

These estimates are similar to those from full-sample esti-
mation and conform to estimates from similar models,
such as Rudebusch and Svensson (1999) and Orphanides
and Williams (2002). A key difference is that full-sample
estimation through 2003 yields a much lower value for β3 ,
the slope of the IS curve, and thus suggests the possibility
of bias owing to time variation of the natural rate of inter-
est. The “sacrifice ratio” implied by the estimated Phillips
curve is 21/4; that is, if the unemployment rate is 21/4 per-
centage points above its natural rate for one year, the
inflation rate will eventually decline 1 percentage point.

3.2. Natural Rates of Interest and Unemployment 

I now describe the calibration of the three natural rate DGP
models and the various parameterizations of each. As noted
above, there exists a great deal of uncertainty regarding the
parameters of any specific model for the natural rates. For
example, the Kalman filter has been extensively used to es-
timate time-varying natural rates of interest and unemploy-

ut = 0.09u∗CBO
t−1 + 1.54ut−1 − 0.63ut−2

+0.04

(
rt−1 + rt−2

2
− 2.18

)
+ εt ,

ment.12 A key finding in this literature is that the parameters
describing the law of motion of natural rates are very im-
precisely estimated (Laubach and Williams 2003), espe-
cially the innovation variance for the highly persistent
component of natural rates. Thus, the data provide frustrat-
ingly little guidance on this key parameter. 

I represent this uncertainty regarding the parameters de-
scribing natural rate processes by allowing for three para-
meterizations that span the set of values that are broadly
consistent with the data. In one, the innovation variance for
the natural rates is set to zero, a level corresponding to con-
stant natural rates. In the second, the innovation variance is
set to the baseline value computed as described below. In
the third, the innovation variance is set to a larger value that
lies within the range of other published estimates. Note that
in the high-variance case, I am arguably being conservative
in my approach in that even higher estimates of natural rate
variability cannot be rejected by the data, according to
some estimates. In the cases of a zero natural rate variance,
the three DGPs collapse into one, so in the end there are
seven unique alternative specifications of natural rate
DGPs in all. 

I follow the same basic procedure for calibrating the
DGPs for both the natural rate of unemployment and the
natural rate of interest. Starting with unemployment, I first
estimate the natural rate using the Kalman filter applied to
the Phillips curve equation, assuming that the natural rate
follows a random walk. For this purpose, I use the Stock
and Watson (1998) median-unbiased estimator. The sample
period is 1970–2003. The estimate of the standard devia-
tion of the natural rate innovation, στ , is 0.22. The resulting
“smoothed” or “two-sided” estimates of the natural rate of
unemployment are shown in Figure 3 and are comparable
to, albeit slightly more variable than, the CBO estimates
shown in the figure for comparison.

To capture the uncertainty regarding the innovation stan-
dard deviation, I consider two representative alternative
values for στ , 0 and 0.44. The value of zero corresponds to
a constant natural rate, and 0.44 yields estimates of the nat-
ural rate that are in fact less variable than the baseline esti-
mates reported in Staiger, Stock, and Watson (2002), as
seen in the figure. In terms of in-sample fit of the inflation
equation, the data cannot clearly distinguish between the
baseline values and the two alternatives. 

11. In fact, the sum restriction cannot be rejected for the sample from
1970 to 2003. Only during the 1960s is the sum of coefficients on lagged
inflation well below unity; see Orphanides and Williams (2005a) for a
discussion of this issue.

12. See, for example, Staiger, Stock, and Watson (1997, 2002), Gordon
(1998), Brainard and Perry (2000), and Laubach (2001), for Kalman
filter estimates of the natural rate of unemployment. See Laubach and
Williams (2003) and Orphanides and Williams (2002) for Kalman filter
estimates of the natural rate of interest.
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I use the values of the innovation standard deviations
from the Kalman filter estimates to calibrate the three
DGPs for the natural rate of unemployment. For the AR(1)
model, I assume that ρ = 0.99 and set the standard devia-
tion of the innovation to 0.22 for the baseline calibration
(Table 1). The resulting process for the natural rate of un-
employment has an unconditional standard deviation of
1.56 percentage points. For the high-variance version 
of the AR(1) model, I set the innovation standard deviation
to 0.44; this yields an unconditional standard deviation of
3.12 percentage points. I do not formally estimate the long-
memory process and the Markov-switching models for the
natural rate of unemployment but instead calibrate them to
have the same unconditional variances as those of the
AR(1) process. For the long-memory process model, I set d
to 0.48. For the Markov-switching model, I set the com-
mon switching probability, p, to 0.99 and set the difference
in the natural rate of unemployment between the states at
3.12 percentage points; for the high-variance calibration, I
set the difference between the states to 6.24 percentage
points. Given this calibration, the unconditional variances
are identical across the three processes for the baseline case
and for the low- and high-variance cases. 

The strategy for calibrating the DGPs for the natural rate
of interest is the same as for the natural rate of unemploy-
ment. I use the same values of ρ , d, and p as before.

Kalman filter estimation of the IS curve yields an innova-
tion standard deviation of 0.11 percentage point, which I
use for the baseline AR(1) process (Table 1). This implies
an unconditional standard deviation for the natural rate of
interest of 0.78 percentage point. For the high-variance al-
ternative, I set the innovation standard deviation to 0.22
percentage point, which is in the range of estimates re-
ported by Laubach and Williams (2003). The resulting
smoothed estimates are shown in Figure 4. For the two
variants of the long-memory process, I set the innovation
standard deviations so that they match those from the
AR(1) model. For the baseline Markov-switching model, I
set the difference between the two states at 1.56 percentage
points, and for the high-variance alternative, I set the dif-
ference at 3.12 percentage points. 

Finally, in order to make the seven DGPs equivalent in
the sense of the implied overall variability of inflation and
the unemployment rate gap, I adjust the standard devia-
tions of the innovations to the IS curve and Phillips curve
equations, as indicated in Table 1. In the case of constant
natural rates, I use the median estimate of the standard
error of the regression for the 15-year rolling regressions
used to estimate the parameters of the model, as described
above. This procedure yields an IS curve innovation stan-
dard deviation of 0.28 percentage point and a Phillips
curve innovation standard deviation of 1.13 percentage
points. For the other natural rate DGPs, I set the IS curve
and Phillips curve innovation standard deviations so that
the median estimate of the standard errors of the regression
of the two curves for rolling 15-year-sample regressions on
simulated data yield the same estimated standard devia-
tions. The resulting calibration of the innovation standard
deviations are reported in Table 1. 

Figure 3
Estimates of the Natural Rate of Unemployment
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Notes: All estimates are smoothed, or “two-sided” estimates.
KF Variations of the Kalman filter estimates computed for this paper.
CBO Current estimates from the Congressional Budget Office.
SSW Estimates reported in Staiger, Stock, and Watson (2002).

Table 1
Calibration of Natural Rate DGP Models

Innovation Unconditional
standard dev. standard dev. 

Model ε η r∗ u∗ r∗ u∗

Zero variance 
(constant) .280 1.13 0 0 0 0

Baseline variance
AR(1) .276 1.12 0.11 0.22 0.78 1.56
Long-memory .265 0.11 0.43 0.87 0.78 1.56
Markov-switching .271 1.12 — — 0.78 1.56

High variance 
AR(1) .257 1.10 0.22 0.44 1.56 3.12
Long-memory .210 1.03 0.84 1.75 1.56 3.12
Markov-switching .253 1.07 — — 1.56 3.12

DGP   Data-generating process.
— Not applicable.
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4. Real-Time Estimation of Natural Rates 

I assume that the policymaker makes an ex ante commit-
ment to one method of estimating the natural rates of both
interest and unemployment. I additionally assume that the
degree of uncertainty regarding the nature of time-variation
in the natural rates variables is fixed. Thus, the policymaker
can neither modify the method of natural rate estimation
based on incoming data nor deduce the true DGPs. 

I analyze two commonly used methods for estimating
natural rates. The first method is the weighted sample
mean, in which the estimate of the natural rate of interest
(unemployment) equals a weighted sample mean of the
real interest (unemployment) rate over the past n periods.
In the case of constant weights, this method corresponds to
the simple sample mean. Examples of weighted sample
mean estimators of the current natural rate include the
Hodrick-Prescott and band-pass filters.13

The second method estimates the natural rates implied
by the IS curve and Phillips curve equations. In each case,
the dynamic equation is estimated with the natural rate
term replaced by an intercept. In implementing this ap-

proach, I assume that the slope parameters are being esti-
mated jointly with the intercept. In estimating the natural
rate of interest, estimates of the natural rate of unemploy-
ment are needed because the natural rate of unemployment
appears in the IS curve. For this purpose, I use the policy-
maker’s estimates of the natural rate of unemployment de-
rived from the estimated Phillips curve equation. Note that
inaccuracy in estimates of the natural rate of unemploy-
ment spills over to estimates of the natural rate of interest. 

As in the case of the sample mean estimator, two vari-
ants of this second estimator method are common. In the
first, used for example by Rudebusch (2001) in estimating
the natural rate of interest, the natural rate is assumed to be
constant over the sample period, and the natural rate esti-
mate equals the estimated constant divided by the negative
of the estimated coefficient on the unemployment rate gap
(in the case of the Phillips curve) or the natural rate gap (in
the case of the IS curve). In the second variant, OLS is re-
placed by weighted least squares, where the weights de-
cline with the difference between the date of the past
observation and that of the current quarter; Ball and
Mankiw (2002) use a method in this class to estimate the
natural rate of unemployment. In the case of geometrically
declining weights, the latter method is identical to the 
constant-gain least squares commonly used in the learning
literature (see, for example, Sargent 1999, Evans and
Honkapohja 2001, and Orphanides and Williams 2005b). 

In the following section, I will analyze the optimal
choice of the single free parameter for each estimation
method. Throughout, I assume that the maximum feasible
choice of n is 200, a limit consistent with the current avail-
ability of about 50 years of U.S. quarterly data on the un-
employment rate and the inflation rate. For the methods
that use weighted data, I assume that the weights decline
geometrically, with the choice parameter being the decay
factor, δ. For either method, increasing the decay factor
provides better protection against time variation in the nat-
ural rate but at the cost of increased sampling variation and
resulting loss in precision if the natural rates are in fact
constant. 

5. Optimized Policy 

In this section, I compute optimized policies assuming the
policymaker knows the true DGPs for the natural rates. I
start with the textbook case that the natural rates are con-
stant and known. I then analyze the optimal estimators and
policy rules for the seven DGPs assuming the policymaker
has only 200 observations on hand. To compute the policy-
maker loss under different policies, I perform model sto-
chastic simulations that last 110,000 periods. I drop the
first 10,000 periods to eliminate the effects of initial condi-

Figure 4
Estimates of the Natural Rate of Interest

55 60 65 70 75 80 85 90 95 00 05
1.0

1.5

2.0

2.5

3.0

3.5

4.0

High-variance KF

Baseline KF

constant

Percent

Notes: All estimates are smoothed, or “two-sided” estimates.
KF Variations of the Kalman filter estimates computed for this paper.

13. See Hodrick and Prescott (1997), Baxter and King (1999), and
Christiano and Fitzgerald (2003) for descriptions of these univariate
filters. See Orphanides and Williams (2002) for a discussion of their
real-time properties as estimators of natural rates.
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tions and compute moments from the remaining 100,000
(25,000 years of) simulated observations. 

5.1. Optimal Policies for Known Natural Rates 

As a benchmark for comparison, I consider the perform-
ance of rules that are based on the belief that the natural
rates are constant and known with certainty, as is common
in much of the literature on monetary policy rules. The
coefficients of the resulting optimized policy rule are given
at the top of Table 2. Such a rule incorporates very little
policy inertia (θi = 0.10) and a large response to the unem-
ployment gap (θu = 1.05): these characteristics are con-
sistent with the findings of Rudebusch and Svensson
(1999) and Orphanides and Williams (2002) for backward-
looking models with no natural rate uncertainty. The result-
ing unconditional standard deviations of inflation, of the
unemployment gap, and of the interest rate gap and the pol-
icymaker loss are given in the first row of the table. In this
“ideal” world, in which natural rates are constant and
known, the policymaker loss under the optimized rule is
17.1 (Table 2). 

I now evaluate the performance of the optimized policy
rule—that is, a rule designed under the assumption of no 
natural rate uncertainty despite the use of real-time, time-
varying estimates of natural rates in monetary policymak-
ing. I assume that the policymaker constructs real-time
estimates of the natural rates of unemployment and interest
using one of the two estimators described above. For the
present purpose, I assume that in each period the policy-
maker estimates the natural rates of unemployment and in-
terest using the most recent 50 years of simulated, equally
weighted data. The interest rate is then set according to the
policy rule using the estimated natural rates as inputs. 

Increasing the variance of the natural rate innovations
reduces the accuracy of the natural rate estimates. The first
two columns of Table 2 show the unconditional standard
deviations of the difference between the real-time values
and true values of the natural rates. For this policy rule, the
estimator based on the IS and Phillips curve equations does
a slightly better job of real-time estimation of both natural
rates than does the sample mean (first two columns of
Table 2). 

Under the policy rule optimized on the assumption of
known natural rates, macroeconomic performance deterio-
rates modestly under the baseline calibrations of the natu-
ral rate DGPs but declines much more significantly under
the high-variance alternatives. The policymaker loss in the
case of the Markov-switching model is up to 60 percent
higher than that implied by constant and known natural
rates. With the greater variability in natural rates, the poli-
cymaker’s estimates of natural rates become less accurate

and thereby add persistent errors to the setting of policy.
Experiments that separately consider the two sources of
natural rate mismeasurement show that mismeasurement
of the natural rate of unemployment, rather than of interest,
is the predominant source of the reduction in macroeco-
nomic performance. In the cases of the AR(1) and Markov-
switching processes, the rise in inflation variability
accounts for much of the increase in the loss. In contrast,
for the long-memory process, the variabilities of both the
inflation rate and the unemployment rate gap contribute to
the higher value of the loss. The result for the long-memory
process is due to its high-frequency component, which
causes fluctuations in the natural rate of unemployment
that, because they are short-lived, have little direct effect on
inflation. Stabilization performance is modestly better
when the policymaker derives estimates of the natural rates
from estimated model equations rather than sample means. 

Table 2
Policy Rule Optimized for Known Natural Rates, 
by Estimator and Natural Rate DGP Model
λu = 1,  λi = 0.5

Optimized policy:
θi = 0.10,  θπ̄ + θπ = 1.37,  θu = 1.05,  θ
u = 2.22

Estimator and 
Unconditional standard deviation

Loss
model û − u∗ r̂ − r∗ π̄ − π∗ u − u∗ i − i∗ L∗

No misperceptions
(constant) — — 2.2 1.3 4.6 17.1

Estimator: Sample mean
Zero variance
(constant) 0.4 1.0 2.3 1.3 4.8 18.7

Baseline variance
AR(1) 1.5 1.2 2.6 1.4 4.9 20.9
Long-memory 1.3 1.1 2.4 1.6 4.8 19.7
Markov-switching 1.6 1.3 2.6 1.4 4.9 20.9

High variance
AR(1) 2.8 1.7 3.3 1.5 5.3 26.9
Long-memory 2.6 1.5 2.6 2.3 4.6 22.1
Markov-switching 3.1 1.9 3.3 1.7 5.2 27.3

Estimator: Model equations
Zero variance 
(constant) 0.4 0.9 2.2 1.4 4.8 18.5

Baseline variance
AR(1) 1.3 1.1 2.4 1.4 5.0 20.1
Long-memory 1.3 1.1 2.2 1.7 4.8 19.3
Markov-switching 1.5 1.2 2.4 1.5 5.0 20.3

High variance
AR(1) 2.4 1.6 2.8 1.6 5.2 23.8
Long-memory 2.5 1.5 2.3 2.3 4.6 21.3
Markov-switching 2.7 1.8 2.8 1.8 5.2 24.5

— not applicable.
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5.2. Optimal Policies with Known 
Natural Rate DGPs 

The preceding analysis illustrates the fact that policies de-
signed to be optimal when natural rates are known can per-
form poorly if natural rates vary over time and must be
estimated in real time. Some of the decline in macro-
economic performance associated with natural rate mis-
perceptions is unavoidable: Even with optimal estimates,
natural rate mismeasurement will occur and add noise to
the setting of policy. And, as shown above, the greater the
variability in natural rates, the greater the natural rate mis-
measurement, on average, and the worse the macroeco-
nomic performance. But, as I show in this section,
appropriately designed estimation and monetary policy
combinations can significantly reduce the stabilization
costs associated with time varying natural rates. 

I start by computing the optimized policies for each nat-
ural rate process, assuming that the true processes are
known and that the realized values of the natural rates are
not known. These policies provide benchmarks for the
analysis in the next section, in which I seek a single 
estimation-and-policy-rule combination that is robust
across the set of natural rate processes. Table 3 shows the
optimized policies for each natural rate process and the re-
sulting loss. The first and second columns report the opti-
mal choices for the decay factors used in estimating the
natural rates of unemployment and interest, respectively.
The next four columns report the coefficients of the opti-
mized policy rule. The final column reports the policy-
maker loss, denoted by L∗. 

The performance of optimized policies is nearly the
same for the two types of natural rate estimators.14 For both
the sample mean and model-based estimators, the optimal
choice of the decay factors is very small for all of the natu-
ral rate processes. For any given natural rate process, the
coefficients of the policy rule are similar across the two
natural rate estimators. The small differences in the per-
formance of optimized policies between the types of esti-
mators is striking given that the model-based estimators
incorporate more information regarding the structure of the
economy. In practice, such model-based methods are likely
to be subject to misspecification, potentially causing them
to perform worse than the sample mean estimator.

If the true natural rates are constant but unobserved, 
the optimized policy is nearly identical to the certainty-

equivalent optimized policy; but, with time-varying natural
rates, the optimized policies exhibit greater policy inertia
and a more muted response to the unemployment rate gap.
Note that certainty equivalence does not apply to this
analysis owing to the violation of two necessary assump-
tions: First, the class of policy rules that I consider are not
fully optimal, and second, the estimators are not optimal in
that they do not yield conditional mathematical expecta-
tions of the natural rates. In response to measurement error
in the natural rate of interest, optimized policies reduce the
direct response to the natural rate of interest through a
larger degree of interest rate smoothing, or policy inertia,
represented by θi. To compensate for the lack of accurate
estimates of the natural rates, optimized policies respond
less aggressively to the perceived unemployment rate gap
but respond more strongly to the change in the unemploy-
ment rate. In so doing, these policies dramatically reduce
the “cost” associated with natural rate mismeasurement.
Interestingly, for a given natural rate estimator, the opti-
mized policy responses to inflation differ relatively little
across the natural rate processes. Thus, relative to the opti-
mal policy in the case of no uncertainty, the optimal poli-
cies with uncertainty are biased toward combating inflation

14. I also tried rolling-regression versions of these estimators with the
sample length chosen as a free parameter and the decay parameters set
to zero. These policies performed slightly worse in general than those
that used the assumed “full” sample of 200 observations.

Table 3
Optimized Policies, by Estimator 
and Natural Rate DGP Model
λu = 1,  λi = 0.5

Estimator and
Policy coefficients

Loss
model δu δi θi θπ̄ + θπ θu θ
u L∗

Estimator: Sample mean
Zero variance
(constant) 0 0 0.1 1.5 1.1 2.3 18.6

Baseline variance
AR(1) 0.011 0 0.4 1.5 0.7 2.9 19.8
Long-memory 0.002 0 0.2 1.5 0.9 2.5 19.4
Markov-switching 0.002 0.001 0.5 1.5 0.6 3.1 19.9

High variance
AR(1) 0 0.005 0.7 1.5 0.3 4.0 21.5
Long-memory 0.006 0 0.4 1.5 0.7 2.7 21.0
Markov-switching 0 0.004 0.6 1.6 0.5 3.3 22.5

Estimator: Model equations
Zero variance 
(constant) 0 0.002 0.1 1.3 1.0 2.2 18.5

Baseline variance
AR(1) 0.001 0 0.5 1.2 0.6 3.0 19.6
Long-memory 0.001 0 0.2 1.3 0.9 2.2 19.3
Markov-switching 0.001 0 0.4 1.3 0.6 2.8 19.8

High variance
AR(1) 0.001 0.002 0.7 1.3 0.3 3.8 21.3
Long-memory 0.001 0 0.4 1.2 0.7 2.6 20.9
Markov-switching 0.002 0.003 0.6 1.3 0.4 2.8 22.3
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and away from controlling variability in the unemployment
gap, and this bias is stronger under the high-variance natu-
ral rate processes. 

6. Robust Policies 

I now analyze the choice of estimation and policy rule pa-
rameters that minimize the loss taking into account uncer-
tainty regarding the natural rate processes. I first consider
the case in which the policymaker has priors across the nat-
ural rate processes; I then turn to the case of a min-max ap-
proach to model uncertainty. 

6.1. Robust Policy with Priors 
across Natural Rate DGPs 

I initially assume that the policymaker has well-formed
priors over the seven natural rate processes. As noted
above, I assume that the policymaker does not update these
priors based on incoming data. I assume a weight of 1/4 for
the case of constant natural rates; 1/6 on each of the baseline
calibrations of the three natural rate processes, so that the
sum of the weights on the baseline calibrations equals 1/2;
and 1/12 on each of the three high-variance natural rate
processes so that the sum of the weights on the high-
variance processes equals 1/4 (Table 4). 

For a given combination of a parameterized natural rate
estimator and policy rule coefficients, I compute the loss in
each model and sum the weighted losses to obtain the ex-
pected loss. I then numerically find the estimation and pol-
icy coefficients that minimize the expected loss (Table 4).
The second through fourth columns report the resulting un-
conditional standard deviations of the inflation rate, unem-
ployment rate gap, and the nominal interest rate gap,
respectively. The fifth column reports the resulting loss.
The final column—the policymaker loss shown in Table
3—reports the minimum attainable loss within the class of
estimators and policy rule considered here assuming the
natural rate process is known. 

The single optimized combination of estimators and pol-
icy rule coefficients does very well across all natural rate
processes; indeed, the robust policy delivers performance
nearly on par with the first-best policy for each natural rate
process. By incorporating a significant degree of policy in-
ertia and a muted response to the unemployment gap, this
policy combination is very effective at protecting against
the high-variance natural rate processes and accomplishes
this at negligible cost in terms of performance in the case in
which the natural rates are constant. As before, the opti-
mized rates of decay used in weighting past data in the nat-
ural rate estimators are very small. Finally, the optimized
policy using the weighted sample mean estimators per-

forms nearly as well as that using the model-based estima-
tor. Although not reported here, this finding that a single
combination of estimation method and policy is robust 
to natural rate model uncertainty generalizes to other para-
meterizations of the loss function. 

6.2. Robust Policy with a Min-Max Objective

I now consider the case in which the policymaker does not
have well-formed priors over the different natural rate
processes but instead follows a min-max approach, that is,
choosing the estimation method and policy-rule coeffi-
cients that minimize the maximum loss in any of the seven
states of the world corresponding to different processes.

Table 4
Robust Policy with Priors, 
by Estimator and Natural Rate DGP Model
λu = 1,  λi = 0.5

Estimator and Weight
Standard deviation Loss

model ω π̄ u − u∗ i − r∗ L L∗

Optimized policy:
δu = 0.005,  δi = 0

Estimator: θi = 0.47,  θπ̄ + θπ = 1.49,  θu = 0.60,  
Sample mean θ
u = 3.10

Zero variance
(constant) .250 2.2 1.4 4.9 18.9 18.6

Baseline variance
AR(1) .167 2.3 1.5 5.0 19.8 19.8
Long-memory .167 2.2 1.7 4.9 19.5 19.4
Markov-switching .167 2.3 1.5 5.0 19.9 19.9

High variance
AR(1) .083 2.6 1.6 5.1 22.0 21.5
Long-memory .083 2.2 2.3 4.6 21.0 21.0
Markov-switching .083 2.6 1.8 5.1 22.9 22.5

Expected loss — — — — 20.1 19.9

Optimized policy:
δu = 0.001,  δi = 0

Estimator: θi = 0.43,  θπ̄ + θπ = 1.26,  θu = 0.59,
Model equations θ
u = 2.75

Zero variance 
(constant) .250 2.2 1.4 4.9 18.8 18.5

Baseline variance
AR(1) .167 2.3 1.5 5.0 19.7 19.6
Long-memory .167 2.2 1.7 4.8 19.4 19.3
Markov-switching .167 2.3 1.5 5.0 19.8 19.8

High variance
AR(1) .083 2.5 1.6 5.1 21.7 21.3
Long-memory .083 2.2 2.3 4.6 20.9 20.9
Markov-switching .083 2.6 1.8 5.1 22.6 22.3

Expected loss — — — — 19.9 19.8

— not applicable.
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This is the approach taken in the robust-control literature
(see Sargent 1999 and Hansen and Sargent, forthcoming). 

The min-max policy minimizes the “worst” state, that is,
the high-variance version of the Markov-switching process
(Table 5; as before, the values of L∗ correspond to those
from the weighted sample mean estimator reported in
Table 3). The min-max policy incorporates greater policy
inertia, a larger response to inflation, and a smaller re-
sponse to the perceived unemployment gap relative to the
optimized policy, which assumes priors over the seven
processes examined above. The decay parameter used in
constructing the sample mean is nearly the same as before.
The min-max policy does a better job of protecting against
the high-variance natural rate processes at the cost of
slightly worse performance in the zero and baseline vari-
ance processes. 

6.3. Simple Rules 

The preceding analysis shows that accounting for uncer-
tainty about the natural rates of unemployment and interest
changes the optimal degree of policy inertia and the re-
sponsiveness to inflation and the unemployment gap. For
purposes of comparison with the literature, it is of interest
to conduct the same analysis assuming that the policy-
maker is constrained to follow a version of the Taylor rule
(Taylor 1993) in which the interest rate is determined by
the perceived natural rate of interest, the inflation rate, and
the perceived unemployment gap. In particular, I conduct
the analysis exactly as before but constrain θI , θπ , and
θ
u to equal zero (Table 6). The upper part of Table 6 (opti-
mized Taylor-style rule) summarizes the results from this
experiment; the lower part of the table (optimized general-
ized Taylor rule) summarizes the results from more com-
plicated policy rules discussed in the earlier part of the
paper. For this purpose, I focus on the case of the sample
mean estimator. The two loss columns report the expected
(mean) loss assuming the priors over the natural rate DGPs
described above and the maximum loss across the DGPs. 

As before, the policy optimized under the assumption of
no natural rate uncertainty performs relatively poorly when
natural rates in fact vary over time. In contrast, the policy
optimized with priors over the various natural rate DGPs
responds more aggressively to inflation and less so to the
unemployment gap. These differences are even more pro-
nounced for the policy chosen to minimize the maximum
loss. In both cases, the optimized decay factor in estimating
the natural rate of unemployment is significantly higher
than for the complicated rules, while that for the natural
rate of interest is zero. The Taylor-style rules perform
nearly as well as the more complicated rules, consistent
with the findings of Williams (2003). 

Table 5
Robust Policy with Min-Max Loss, 
by Estimator and Natural Rate DGP Model
λu = 1 , λi = 0.5

Estimator and
Unconditional standard dev. Loss

model π̄ u − u∗ i − r∗ L L∗

Optimized policy:
δu = 0,  δi = 0.004

Estimator: θi = 0.60,  θπ̄ + θπ = 1.60,  θu = 0.48, 
Weighted sample mean θ
u = 3.28

Zero variance
(constant) 2.1 1.5 5.1 19.5 18.6

Baseline variance
AR(1) 2.1 1.6 5.1 20.1 19.8
Long-memory 2.1 1.8 5.0 20.1 19.4
Markov-switching 2.1 1.6 5.1 20.2 19.9

High variance
AR(1) 2.4 1.7 5.2 21.6 21.5
Long-memory 2.1 2.4 4.8 21.4 21.0
Markov-switching 2.4 1.8 5.2 22.5 22.5

Optimized policy:
δu = 0.002,  δi = 0.003

Estimator: θi = 0.59,  θπ̄ + θπ = 1.26,  θu = 0.41, 
Model equations θ
u = 2.85

Zero variance 
(constant) 2.1 1.5 5.0 19.1 18.5

Baseline variance
AR(1) 2.2 1.5 5.0 19.9 19.6
Long-memory 2.1 1.8 4.9 19.7 19.3
Markov-switching 2.2 1.6 5.0 20.0 19.8

High variance
AR(1) 2.4 1.7 5.1 21.5 21.3
Long-memory 2.1 2.4 4.7 21.3 20.9
Markov-switching 2.4 1.8 5.1 22.3 22.3

Table 6
Policy Evaluation Summary: Sample Mean Estimator
λu = 1,  λi = 0.5

Optimal policy coefficients Loss

Assumption δu δi θi θπ̄ + θπ θu θ
u Mean Max

Optimized Taylor-style rule
No uncertainty 0 0 — 1.34 1.28 — 23.3 31.6
Bayesian 0.021 0 — 1.56 1.07 — 21.5 25.1
Min-max 0.012 0 — 1.79 0.81 — 21.9 24.4

Optimized generalized Taylor rule
No uncertainty 0 0 0.10 1.37 1.05 2.22 21.3 27.3
Expected loss 0.005 0 0.47 1.49 0.60 3.10 20.1 22.9
Min-max 0 0.004 0.60 1.60 0.48 3.28 20.4 22.5

— not applicable.
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7. Conclusion 

This paper studies the policymaker’s joint problem of
model estimation and robust monetary policy in an envi-
ronment in which there is uncertainty regarding the true
process underlying movements in the natural rates of inter-
est and unemployment. I show that the costs of ignoring
natural rate uncertainty can be very large. Thus, there is a
danger that policymakers could again fall into a pattern of
mistakes such as that of the late 1960s and 1970s, when, as
argued by Orphanides and Williams (2005a), natural rate
misperceptions contributed to the stagflation of that period. 

On the positive side, it is possible to design estimation
and monetary policy rules that are remarkably robust to a
variety of models of natural rate evolution. Weighted sam-
ple means perform well for the conduct of monetary policy
in an environment in which there is uncertainty regarding
the data-generating processes for natural rates. The robust
policy incorporates a significant degree of policy inertia
and muted response to the perceived unemployment 
gap. In contrast, in the model studied here, the certainty-
equivalent policy is characterized by virtually no policy 
inertia and a relatively strong response to the unemploy-
ment gap. In addition, the robust policy’s response to
inflation is somewhat greater than that of the certainty-
equivalent policy. As a result, the robust policy is tilted
more strongly toward the control of inflation relative to the
unemployment gap than would be optimal if natural rates
were known. This finding complements that of Orphanides
and Williams (2005b), who show that learning on the part
of private agents calls for policies that react more strongly
to deviations of the inflation rate from its target. 

The analysis can be extended in a number of fruitful
ways, including the incorporation of private expectations
and time variation in other model parameters. In addition, I
have assumed that the policymaker does not update priors
over the various natural rate data-generating processes as
new data arrive. A natural extension would allow for the
updating of beliefs about the various DGPs in the context
of time variation in the innovation variances.
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