Discussion of "Climbing off and going up the ladder" by Lawrence Schmidt

François Gourio

FRB Chicago

MFS Workshop, SFO

Overview of the paper

- Lots of interesting stuff (99 pages!)
- Big picture:
 - risk of idiosyncratic disasters matters for asset pricing,
 - because it is correlated with stock returns

- Model: merges Constantinides-Duffie & Dreschler-Yaron,
- and add time-varying skewness of individual cons. growth

- Data:
 - we have measures of skewness at annual frequency
 - use time series methods to extrapolate to higher frequency and measure the volatility of skewness

1. Recent literature by Guvenen, Song et al. on income dynamics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 2. Explain different steps in the model
- 3. Some quantitative comments

1. Guvenen, Song and coauthors: data

Study labor income dynamics using SSA records (W2s)

- almost no measurement error
- almost no attrition
- no top coding
- huge sample (10% of male population)
- includes stock options, bonuses, etc.
- annual, pretax, 1978-2011

Guvenen, Song and coauthors: findings

- Some key results:
 - income growth volatility shows no trend...
 - ... and no business cycle variation (unlike STY)

- but skewness is countercyclical
- both at 1y and 5y horizon

Income growth volatility is flat

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Income growth skewness is countercyclical

Skewness of $\Delta \log(Y')$ and $\Delta_5 \log(Y')$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Interpretation

- "Displacement risk"
 - bond trader becomes a high school teacher?
 - •
 - career interruption for family/health reasons, then goes back at much lower wage?

- Other findings
 - large kurtosis: lots of tiny changes
 - systematic risk differences given average income
 - note skewness of log wages, but wages have >0 skew!

2. Modeling contribution

- Start with Constantinides-Duffie
 - Add Skewness (instead of volatility)
 - Add Recursive utility (instead of CRRA)
 - Add Long run risk (richer model for aggregate variables)

Simple version of Constantinides-Duffie

• Consumption process

$$\Delta \log \left(c_{it+1} \right) = \Delta \log \left(C_{t+1} \right) + \eta_{it+1}$$

• CRRA preferences, no frictions, so \forall asset j:

$$E_t \beta \left(\frac{c_{it+1}}{c_{it}}\right)^{-\gamma} R_{jt+1} = 1$$

$$E_t \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} e^{-\gamma \eta_{it+1}} R_{jt+1} = 1$$

$$E_t \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} E \left(e^{-\gamma \eta_{it+1}} | s_{t+1}\right) R_{jt+1} = 1$$

• Constantinides-Duffie: η_{it+1} is $N\left(-s_{t+1}^2/2, s_{t+1}^2\right)$. Hence

$$E_{t} \underbrace{\beta \left(\frac{C_{t+1}}{C_{t}}\right)^{-\gamma} e^{\frac{\gamma^{2}}{2}s_{t+1}^{2}}}_{=M_{t+1}} R_{jt+1} = 1$$

Constantinides–Duffie without normality

• Suppose instead:

$$\eta_{it+1} = \left\{ egin{array}{cc} u, \ {
m w/prob} \ 1-p_{t+1} \ -d, \ {
m w/prob} \ p_{t+1} \end{array}
ight\}$$

Then

$$M_{t+1} = \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} \left((1-p_{t+1})e^{-\gamma u} + p_{t+1}e^{\gamma d}\right)$$

• Extension (as in Martin (REStud 2012)):

$$E\left(e^{-\gamma\eta_{it+1}}|s_{t+1}
ight)=\exp\sum_{n=0}^{\infty}\kappa_{n,t+1}rac{\left(-\gamma
ight)^{n}}{n!}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where $\kappa_{n,t+1}$ are cumulants of η_{it+1}

Numerical illustration: role of concentration

Even with constant aggregate consumption!

• this requires a dividend shock correlated with idiosyncratic risk

Time-varying equity premium

• if p_t moves around

Evaluating the mechanism

- EE holds at household level, so can estimate using individual consumption data
 - Brav, Constantinides and Geczi; Cogley; etc.
- Measure directly XS moments of cons growth
 - Tricky because extreme observations matter a lot
 - Measurement error
- Here: Epstein-Zin utility so not directly implementable.

Adding Epstein-Zin

- If pt is iid, EZ doesn't really matter
- But if serially correlated, news about future p_t are priced
- How to solve? if random walk, then wealth-consumption ratio same for everyone, so EE looks very similar to before

$$E_t\left(\beta\left(\frac{c_{it+1}}{c_{it}}\right)^{-\psi}\left(\frac{V_{it+1}}{E_t(V_{it+1}^{1-\gamma})^{\frac{1}{1-\gamma}}}\right)^{\psi-\gamma}R_{jt+1}\right)=1$$

$$E_{t}\left(\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}e^{-\gamma\eta_{it+1}}\frac{v_{t+1}^{\psi-\gamma}}{E_{t}(v_{t+1}^{1-\gamma}\left(\frac{c_{it+1}}{c_{it}}\right)^{1-\gamma})^{\frac{1}{1-\gamma}}}R_{jt+1}\right)=1$$

3. Quantitative work

Very good fit;

- note the LRR model does not seem to do a lot
 - need the dividend shock to get stock prices to fall in bad times

Questions:

- Does the model fit the predictability evidence?
- How much does the model generate for $\sigma(R_m)$?

Return volatility unaffected by most parameters

• Big part is dividends are fairly volatile

	Data	Simulated Model-Implied Moments					
Moment	Estimate	Markets	Baseline	No Covariance	Less CF Vol	IID Cons	
$E[R_m - R_f]$	7.1	Inc	6.5	5.5	5.8	5.3	
		RA	3.2	3.1	2.5	2.0	
$\sigma(R_m)$	20.3	Inc	24.2	20.2	23.4	23.1	
		RA	26.9	23.5	26.0	25.5	
$E[R_f]$	0.6	Inc	0.4	0.4	0.6	0.7	
		RA	2.0	2.0	2.0	2.0	
$\sigma(R_f)$	2.9	Inc	3.7	3.7	3.5	3.3	
		RA	0.3	0.3	0.1	0.0	
E[pd]	3.4	Inc	3.4	3.4	3.5	3.6	
		RA	4.5	4.1	5.1	6.2	
$\sigma(pd)$	0.45	Inc	0.22	0.21	0.21	0.20	
		RA	0.25	0.25	0.24	0.24	
AC1(pd)	0.87	Inc	0.62	0.64	0.60	0.60	
		RA	0.59	0.62	0.58	0.57	
$E[\Delta c]$	1.9	Both	2.0	2.0	2.0	2.0	
$\sigma(\Delta c)$	2.2	Both	2.1	2.1	2.1	2.1	
$AC1(\Delta c)$	0.45	Both	0.23	0.23	0.23	0.23	
$E[\Delta d]$	1.15	Both	0.68	0.75	0.70	0.80	
$\sigma(\Delta d)$	11.1	Both	14.5	12.8	14.4	14.4	
$AC1(\Delta d)$	0.21	Both	0.53	0.50	0.53	0.53	
$Corr(\Delta c, \Delta d)$	0.55	Both	0.40	0.44	0.41	0.36	

Table 12: Data and model-implied moments for different specifications

Vol of P-D lower than the data

• Same reason: most vol is dividends, not price

	Data	Simulated Model-Implied Moments					
Moment	Estimate	Markets	Baseline	No Covariance	Less CF Vol	IID Cons	
$E[R_m - R_f]$	7.1	Inc	6.5	5.5	5.8	5.3	
		RA	3.2	3.1	2.5	2.0	
$\sigma(R_m)$	20.3	Inc	24.2	20.2	23.4	23.1	
		RA	26.9	23.5	26.0	25.5	
$E[R_f]$	0.6	Inc	0.4	0.4	0.6	0.7	
		RA	2.0	2.0	2.0	2.0	
$\sigma(R_f)$	2.9	Inc	3.7	3.7	3.5	3.3	
		RA	0.3	0.3	0.1	0.0	
E[pd]	3.4	Inc	3.4	3.4	3.5	3.6	
		RA	4.5	4.1	5.1	6.2	
$\sigma(pd)$	0.45	Inc	0.22	0.21	0.21	0.20	
		RA	0.25	0.25	0.24	0.24	
AC1(pd)	0.87	Inc	0.62	0.64	0.60	0.60	
- /		RA	0.59	0.62	0.58	0.57	
$E[\Delta c]$	1.9	Both	2.0	2.0	2.0	2.0	
$\sigma(\Delta c)$	2.2	Both	2.1	2.1	2.1	2.1	
$AC1(\Delta c)$	0.45	Both	0.23	0.23	0.23	0.23	
$E[\Delta d]$	1.15	Both	0.68	0.75	0.70	0.80	
$\sigma(\Delta d)$	11.1	Both	14.5	12.8	14.4	14.4	
$AC1(\Delta d)$	0.21	Both	0.53	0.50	0.53	0.53	
$Corr(\Delta c, \Delta d)$	0.55	Both	0.40	0.44	0.41	0.36	

Table 12: Data and model-implied moments for different specifications

Risk-free rate more volatile with incomplete markets

• Time-varying precautionary savings

	Data	Simulated Model-Implied Moments					
Moment	Estimate	Markets	Baseline	No Covariance	Less CF Vol	IID Cons	
$E[R_m - R_f]$	7.1	Inc	6.5	5.5	5.8	5.3	
		RA	3.2	3.1	2.5	2.0	
$\sigma(R_m)$	20.3	Inc	24.2	20.2	23.4	23.1	
		$\mathbf{R}\mathbf{A}$	26.9	23.5	26.0	25.5	
$E[R_f]$	0.6	Inc	0.4	0.4	0.6	0.7	
		RA	2.0	2.0	2.0	2.0	
$\sigma(R_f)$	2.9	Inc	3.7	3.7	3.5	3.3	
		RA	0.3	0.3	0.1	0.0	
E[pd]	3.4	Inc	3.4	3.4	3.5	3.6	
		RA	4.5	4.1	5.1	6.2	
$\sigma(pd)$	0.45	Inc	0.22	0.21	0.21	0.20	
		RA	0.25	0.25	0.24	0.24	
AC1(pd)	0.87	Inc	0.62	0.64	0.60	0.60	
		RA	0.59	0.62	0.58	0.57	
$E[\Delta c]$	1.9	Both	2.0	2.0	2.0	2.0	
$\sigma(\Delta c)$	2.2	Both	2.1	2.1	2.1	2.1	
$AC1(\Delta c)$	0.45	Both	0.23	0.23	0.23	0.23	
$E[\Delta d]$	1.15	Both	0.68	0.75	0.70	0.80	
$\sigma(\Delta d)$	11.1	Both	14.5	12.8	14.4	14.4	
$AC1(\Delta d)$	0.21	Both	0.53	0.50	0.53	0.53	
$Corr(\Delta c, \Delta d)$	0.55	Both	0.40	0.44	0.41	0.36	

Table 12: Data and model-implied moments for different specifications

- Important topic;
- Very ingenious modeling;
- Clever time series work;
- Current paper does not show the full potential of the model!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?