Financial Liberalization, Debt Mismatch, Allocative Efficiency and Growth

Romain Ranciere and Aaron Tornell

May 11, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Can one make the case for Financial liberalization?

- Our answer: a qualified yes
- Provided regulation imposes limits on the type of issuable liabilities

Financial liberalization may enhance growth and consumption possibilities because it improves allocative efficiency:

- By allowing for new financing instruments and the undertaking of risk, liberalization relaxes financing constraints.
- Sectors more dependent on external finance can invest more and grow faster.

The rest of the economy benefits from this relaxation of the bottleneck via input-output linkages.

However,

- The use of new financial instruments
 - $\rightarrow\,$ a riskless economy is transformed into one with systemic-risk
 - \rightarrow \uparrow Incidence of crises
 - \rightarrow Bailout costs
- $\uparrow\downarrow$ Consumption opportunities
- We derive a condition for gains from gowth that we bring to the data

Model

- Combine endogenous growth model with Schneider-Tornell (2004)
- Two-sectors:
 - Input (N) sector
 - Final goods (T) sector
 - T-good is numeraire $\rightarrow p_t = \frac{p_t^n}{p_t^T}$
- N-sector uses its own goods as capital
 - ϕ : share of N-output commanded by the N-sector for investment.

 $\blacktriangleright~\phi$ determines production efficiency and GDP growth.

Agents:

- ▶ Risk-neutral investors, opportunity cost 1 + r
- Workers (T-sector): supply inelastically $l_t^T = 1$, wage v_t^T
- Entrepreneurs (N-sector): supply inelastically $l_t = 1$, wage v_t
- ▶ OLGs, linear preferences over consumption of T-goods $c_t + \frac{1}{1+r}c_{t+1}$

T-sector

Produce T-goods using N-inputs

$$y_t = d_t^{\alpha}(l_t^T)^{1-\alpha}, \quad \alpha \in (0,1).$$

▶ Representative T-firm maximizes profits taking as given the price of N-goods (p_t) and standard labor wage (v_t^T)

$$\max_{d_t, l_t^T} \left[y_t - p_t d_t - v_t^T l_t^T \right]$$

N-sector

▶ Produce N-goods using entrepreneurial labor (l_t) , and capital (k_t) .

$$q_t = \Theta_t k_t^{\beta} l_t^{1-\beta}, \qquad \Theta_t =: \theta \overline{k_t}^{1-\beta}, \qquad k_t = I_{t-1}$$

Budget constraint

$$p_t I_t + s_t \le w_t + B_t, \qquad w_t = v_t.$$

- Can issue two types of one-period bonds
 - N-bonds promise to repay in N-goods.
 - T-bonds promise to repay in T-goods.
- Profits

$$\pi(p_{t+1}) = p_{t+1}q_{t+1} + (1+r)s_t - v_{t+1}l_{t+1} - (1+\rho_t)b_t - p_{t+1}(1+\rho_t^n)b_t^n.$$

Production Efficiency

• Central Planner allocates supply of inputs (q_t) to final goods production $(d_t = [1 - \phi_t]q_t)$ and to input production $(I_t = \phi_t q_t)$.

$$\max_{\{c_t, c_t^e, \phi_t\}_{t=0}^{\infty}} W^{po} = \sum_{t=0}^{\infty} \delta^t \left[c_t^e + c_t \right], \quad \text{ s.t. } \sum_{t=0}^{\infty} \delta^t \left[c_t + c_t^e - y_t \right] \le 0,$$
$$y_t = \left[1 - \phi_t \right]^{\alpha} q_t^{\alpha}, \qquad q_{t+1} = \theta \phi_t q_t.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optimality \rightarrow maximizes PV of final goods (T-)production $(\sum_{t=0}^{\infty} \delta^t y_t)$

 $\blacktriangleright \uparrow \phi \text{ today}$

- $ightarrow \downarrow$ today's T-output by $lpha (1-\phi)^{lpha-1} q_t^lpha \partial \phi$
- ightarrow \uparrow tomorrow's N-output by $heta q_t \partial \phi$
- $ightarrow \uparrow$ tomorrow's T-output by $lpha \left[(1-\phi) heta \phi q_t
 ight]^{lpha-1} heta q_t \partial \phi$
- $\rightarrow\,$ Intertemporal rate of transformation

$$M = \frac{\alpha \left[(1-\phi)\theta \phi q_t \right]^{\alpha-1} \theta q_t}{\alpha (1-\phi)^{\alpha-1} q_t^{\alpha}} = \theta^{\alpha} \phi^{\alpha-1}.$$

 $\blacktriangleright \ {\rm Set} \ M = \delta^{-1}$

$$\phi^{cp} = (\theta^{\alpha} \delta)^{\frac{1}{1-\alpha}} , \quad \text{ if } \ \delta < \theta^{-\alpha}.$$

Imperfections

Contract Enforceability Problems. If at time t the entrepreneur incurs a non-pecuniary cost $H[w_t + B_t]$, then at t + 1 she will be able to divert all the returns provided the firm is solvent (i.e., $\pi(p_{t+1}) \ge 0$).

Systemic Bailout Guarantees. If a majority of firms become insolvent, then a bailout agency pays lenders the outstanding liabilities of each non-diverting firm that defaults.

Bankruptcy Costs. If a firm is insolvent $(\pi(p_{t+1}) < 0)$ a share $1 - \mu_w$ of its revenues is lost in bankruptcy procedures. The remainder is paid as wages to the young entrepreneurs.

Regulatory Regimes

Financial Repression. Can issue only one-period standard bonds with repayment indexed to the price of N-goods that it produces.

Financial Liberalization. Can issue one-period standard bonds with repayments denominated in N- or T-goods.

Anything Goes. Can also issue option-like catastrophe bonds.

Symmetric Equilibrium

Given prices, N-sector firms and creditors set $(I_t, s_t, b_t, b_t^n, \rho_t, \rho_t^n)$; the T-sector demand for N-input d_t maximizes T-firms' profits; factor markets clear; and the market for intermediate goods clears

$$d_t(p_t) + I_t(p_t, \underline{p}_{t+1}, \overline{p}_{t+1}, \chi_{t+1}) = q_t(I_{t-1}).$$

$$p_{t+1} = \begin{cases} \overline{p}_{t+1} & \text{with probability } \chi_{t+1} \\ \underline{p}_{t+1} & \text{with probability } 1 - \chi_{t+1} \end{cases} \quad \chi_{t+1} = \begin{cases} 1 \\ u \in (0, 1). \end{cases}$$

Allocation under Financial Repression

There exists an SSE if and only if $H \in (0, 1), \beta \in (H, 1)$ and the input sector productivity $\theta > \underline{\theta}^s \equiv \left(\frac{1}{\beta\delta}\right)^{\frac{1}{\alpha}} \left(\frac{1-\beta}{1-H}\right)^{\frac{1-\alpha}{\alpha}}$.

• Debt is hedged and crises never occur ($\chi_{t+1} = 1$).

Input sector debt

$$b_t^n = \frac{H}{1 - H} w_t$$

Investment Share

$$I_t = \phi^s q_t, \qquad \phi^s = \frac{1-\beta}{1-H}.$$

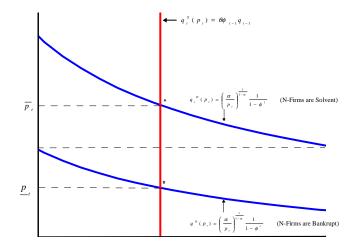
Bottleneck:

 \blacktriangleright Under financial repression the investment share is below the Central Planner's optimum: $\phi^s < \phi^{cp}$

- Why? $\phi^s < \phi^{cp}$ can be rewritten as $\theta > \left(\frac{1}{\delta}\right)^{\frac{1}{\alpha}} (\phi^s)^{\frac{1-\alpha}{\alpha}} \equiv \theta'$,
- An equilibrium exists only if $\theta > \underline{\theta}^s \equiv \left(\frac{1}{\beta}\right)^{\frac{1}{\alpha}} \left(\frac{1}{\delta}\right)^{\frac{1}{\alpha}} (\phi^s)^{\frac{1-\alpha}{\alpha}}$.

• Since
$$\beta \in (0,1) \rightarrow \underline{\theta}^s > \theta'$$
.

Allocation under Financial Liberalization


- Systemic risk: a sunspot can induce a sharp fall in the input price that bankrupts all input sector firms and generates a systemic crisis, during which creditors are bailed out.
- ▶ There exists an RSE for any crisis' financial distress costs $l^d \in (0,1)$ if and only if

$$H \in (0,1), \quad u \in (H,1), \quad \beta \in \left(\frac{H}{u},1\right), \quad \theta \in (\underline{\theta},\overline{\theta})$$

• Debt is risky:
$$b_t = \frac{H/u}{1-H/u} w_t$$

▶ Input sector's investment $(I_t = \phi_t q_t)$ (τ_i denotes a crisis time):

$$\chi_{t+1} = \begin{cases} 1-u & \text{if } t \neq \tau_i; \\ 1 & \text{if } t = \tau_i; \end{cases} \qquad \phi_t = \begin{cases} \phi^l \equiv \frac{1-\beta}{1-Hu^{-1}} & \text{if } t \neq \tau_i; \\ \phi^c \equiv \frac{\mu_w}{1-H} & \text{if } t = \tau_i. \end{cases}$$

Figure: Market Equilibrium for Input

Bottleneck II:

- Under financial Liberalization the investment share is below the Central Planner's optimum
- $\blacktriangleright \ \phi^l < \phi^{cp} \Leftrightarrow \theta > \left(\tfrac{1}{\delta} \right)^{\frac{1}{\alpha}} \left(\phi^l \right)^{\frac{1-\alpha}{\alpha}} \equiv \theta^{\prime\prime}.$
- A risky equilibrium exists only if $\theta > \underline{\theta}$.
- Can show that $\underline{\theta} > \theta''$ for all (H, u, β, δ) for which an RSE exists.

GDP Growth

$$gdp_t = p_t I_t + y_t$$

Equilibrium N-sector investment, T-output, and prices:

$$I_t = \phi_t q_t, \quad y_t = [(1 - \phi_t)q_t]^{\alpha}, \quad p_t = \alpha [(1 - \phi_t)q_t]^{\alpha - 1}.$$

Substituting

$$gdp_t = q_t^{\alpha} Z(\phi_t), \qquad Z(\phi_t) \equiv \frac{1 - (1 - \alpha)\phi_t}{(1 - \phi_t)^{1 - \alpha}}.$$

Repressed Economy

$$1 + \gamma^s \equiv \frac{gdp_t}{gdp_{t-1}} = \left(\theta \frac{1-\beta}{1-H}\right)^{\alpha} = \left(\theta \phi^s\right)^{\alpha}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Liberalized economy

Tranquil times

$$1 + \gamma^{l} \equiv \frac{gdp_{t}}{gdp_{t-1}} = \left(\theta \frac{1-\beta}{1-Hu^{-1}}\right)^{\alpha} = \left(\theta \phi^{l}\right)^{\alpha}.$$

- Crises can occur.
- \blacktriangleright In equilibrium, 2 crises cannot occur consecutively \rightarrow average growth in crisis episode

$$1 + \gamma^{cr} = \left(\left(\theta\phi^l\right)^{\alpha} \frac{Z(\phi^c)}{Z(\phi^l)} \right)^{1/2} \left(\left(\theta\phi^c\right)^{\alpha} \frac{Z(\phi^l)}{Z(\phi^c)} \right)^{1/2} = \left(\theta(\phi^l\phi^c)^{1/2}\right)^{\alpha}$$

Loss in GDP growth stems only from the fall in the N-sector's average investment share (\(\phi^l \phi^c\))^{1/2}\).

▶ $\log(gdp_t) - \log(gdp_{t-1})$ follows a 3-state Markov chain:

$$\Gamma = \begin{pmatrix} \log\left((\theta\phi^l)^{\alpha}\right) \\ \log\left((\theta\phi^l)^{\alpha}\frac{Z(\phi^c)}{Z(\phi^l)}\right) \\ \log\left((\theta\phi^c)^{\alpha}\frac{Z(\phi^l)}{Z(\phi^c)}\right) \end{pmatrix}, \qquad T = \begin{pmatrix} u & 1-u & 0 \\ 0 & 0 & 1 \\ u & 1-u & 0 \end{pmatrix}.$$

▶ The mean long-run GDP growth rate

$$E(1+\gamma^{r}) = (1+\gamma^{l})^{\frac{u}{2-u}}(1+\gamma^{cr})^{1-\frac{u}{2-u}} = \theta^{\alpha}(\phi^{l})^{\frac{1}{2-u}\alpha}(\phi^{c})^{\frac{1-u}{2-u}\alpha}$$

Growth Enhancing Liberalization

 $E(\gamma^r) > \gamma^s \iff \log(\phi^l) - \log(\phi^s) > [1-u] [\log(1-\beta) - \log(\mu_w)]$

where $\phi^c \equiv \frac{\mu_w}{1-H} = \frac{\mu_w}{1-\beta} \phi^s$.

Liberalization Enhances Long-run mean GDP growth iff

- \blacktriangleright Benefits of higher leverage and investment in tranquil times $(\phi^l > \phi^s)$ compensate for the
- Shortfall in credit and investment in crisis times (μ_w < 1 − β) × frequency of crisis (1 − u).</p>

Let $u \uparrow 1 \rightarrow$ gains for all admissible 1-u

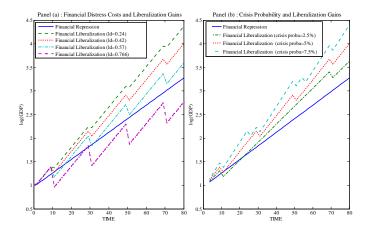


Figure: Growth Gains from Liberalization

Proposition (Liberalization and Growth)

If financial liberalization generates systemic risk and makes the economy vulnerable to self-fulfilling crises and the financial distress costs of crises $l^d \equiv 1 - \frac{\mu_w}{1-\beta}$ are lower than a threshold

$$l^d < \overline{l^d} \equiv 1 - e^{-\frac{H}{1-H}}, \quad then:$$
 (1)

- 1. Liberalization increases long-run mean GDP growth.
- Liberalization increases the long-run mean N-investment share bringing it nearer to—but still below—the central planner's optimal level, i.e., φ^s < E(φ^r) < φ^{cp}.
- 3. The gains from liberalization are increasing in the crisis probability, within the admissible region (i.e., $1 u \in (0, 1 H)$).

• Replacing ϕ^l by $\frac{1-\beta}{1-Hu^{-1}}$ and ϕ^s by $\frac{1-\beta}{1-H}$, • $E(\gamma^r) > \gamma^s$ becomes equivalent to $l^d < 1 - \left(\frac{1-Hu^{-1}}{1-H}\right)^{\frac{1}{1-u}}$.

• Then
$$\lim_{u \uparrow 1} \left(\frac{1 - Hu^{-1}}{1 - H} \right)^{\frac{1}{1 - u}} = e^{-\frac{H}{1 - H}}.$$

What does the data say: $l^d < \overline{l^d} \equiv 1 - e^{-\frac{H}{1-H}}$?

▶ Get estimates of *H*.

$$\blacktriangleright \ b = \left(\frac{1}{1-H} - 1\right) w \ \rightarrow \ H = \frac{b}{b+w} \cdot w$$

 Estimate ^b/_{b+w} from firm-level balance sheet info for 23 emerging markets 1990-2013, Thomson Worldscope data set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- u use estimates in literature
- Compare \overline{l}^d with data on crisis GDP losses

Estimates of Crisis Probability 1-u

- Schularick-Taylor (2012): 14 countries over 1870-2008
- ► Gourinchas-Obstfeld (2012): 57 emerging countries over 1973-2010.
- Unconditional crisis probability: GO: 3%, ST: 5%
- Conditional Probabilities (logit): ST, five lags of credit growth; GO credit-to-GDP.
- Distribution of Predicted crisis probabilities by percentile of country-years:

Percentile of country-years	5%	25%	50%	75%	95%
Schularick-Taylor, 2012	1.47%	2.54%	3.48%	4.82%	8.55%
Gounrinchas-Obstfled, 2012					
—Full specification	0.37%	1.47%	2.96%	5.70%	17.74%
—Credit/GDP only	1.8%	2.91%	3.57%	4.44%	7.76%

Estimation of Upper Threshold for Financial Distress Costs $(\overline{l^d}=1-e^{-\frac{H}{1-H}})$

- Use Thomson Worldscope data set.
- \blacktriangleright We bias downwards \widehat{H} by assuming all countries are in a risky equilibrium.

•
$$\hat{\frac{debt}{assets}} = 0.542$$
, s.e. = 0.0049

Crisis Probability $(1-u)$	0.05	0.1	0.2
$\widehat{H} = u \cdot \left(\widehat{\frac{debt}{assets}}\right)$	0.515	0.488	0.434
$\widehat{\overline{l^d}} \equiv 1 - e^{-\frac{\widehat{H}}{1 - \widehat{H}}}$	0.654	0.614	0.535

Upper Bound on GDP Losses During Crises.

- Financial distress costs do not have a direct counterpart in the data.
- In equilibrium they are closely linked to GDP losses during a crisis (data exists):

$$\mathcal{S} \equiv \frac{GPD^{trend} - GDP^{crisis}}{GPD^{trend}} = 1 - \frac{\left(1 + \gamma^{cr}\right)^2}{\left(1 + \gamma^l\right)^2} = 1 - \left(\frac{\phi^c}{\phi^l}\right)^{\alpha}$$

Substituting the upper bound *l*^d for *l*^d, the largest crisis GDP loss consistent with liberalization gains is

$$\overline{\mathcal{S}} = 1 - \left(\frac{1 - Hu^{-1}}{1 - H} \cdot e^{-\frac{H}{1 - H}}\right)^{\alpha}$$

• Setting α =0.34, its average for 7 countries in Emerging Asia:

Crisis Probability $(1-u)$	0.05	0.1	0.2
\widehat{H}	0.515	0.488	0.434
$\widehat{\overline{\mathcal{S}}}$ (Upper Bound GDP Losses)	31.6%	28.9%	24%

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 → りへで

- Laeven and Valencia (2012): 31 crises episodes in emerging countries over 1970-2012.
 - Annualized crisis GDP losses average 10.68%
 - \blacktriangleright 90th percentile crisis annualized GDP losses is 23.1%
 - Only two crises exhibit losses greater than 30%.
- ▶ $\widehat{\overline{S}} > 10.68\% \rightarrow$ financial distress costs are below the growth enhancing threshold \overline{l}^d
- ➤ ⇒ Across emerging markets over the period 1970-2012, the direct positive effect of financial liberalization—due to a relaxation of borrowing constraints—dominates the indirect negative effect due to a greater incidence of crises.

Consumption Possibilities

 $\label{eq:FL} \textbf{FL} \rightarrow \text{Systemic Risk} \rightarrow \begin{array}{c} \text{Relax BC} \rightarrow & \uparrow \text{Investment} \\ \text{Crises} \rightarrow & \text{Bailouts} \end{array}$

Expected discounted value of consumption

$$W = E_0 \left(\sum_{t=0}^{\infty} \delta^t (c_t + c_t^e) \right) = E_0 \left(\sum_{t=0}^{\infty} \delta^t [[1 - \alpha] y_t + \pi_t - T_t] \right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► In repressed economy

$$W^{s} = \sum_{t=0}^{\infty} \delta^{t} y_{t}^{s} = \frac{1}{1 - \delta(\theta \phi^{s})^{\alpha}} y_{o}^{s} = \frac{1}{1 - \delta(\theta \phi^{s})^{\alpha}} (1 - \phi^{s})^{\alpha} q_{o}^{\alpha}.$$

In liberalized economy

$$W^{r} = E_{0} \sum_{t=0}^{\infty} \delta^{t} \kappa_{t} y_{t}, \qquad \kappa_{t} = \begin{cases} \kappa^{c} \equiv 1 - \frac{\alpha}{1 - \phi^{c}} [1 - \mu_{w}] & \text{if } t = \tau_{i}, \\ 1 & \text{otherwise;} \end{cases}$$

$$W^{r} = \frac{1 + \delta(1-u) \left(\theta \phi^{l} \left(\frac{1-\phi^{c}}{1-\phi^{l}}\right)\right)^{\alpha} \left(1 - \frac{\alpha[1-\mu_{w}]}{1-\phi^{c}}\right)}{1 - \left[\theta \phi^{l}\right]^{\alpha} u\delta - \left[\theta^{2} \phi^{l} \phi^{c}\right]^{\alpha} \left[1-u\right] \delta^{2}} (1-\phi^{l})^{\alpha} q_{0}^{\alpha}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

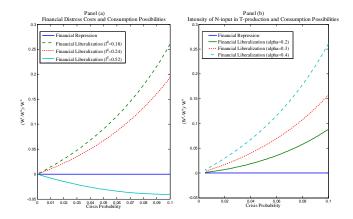


Figure: Consumption Gains from Liberalization

Example: Anything Goes Regulatory Regime

 Alternative (inferior) technology for producing final T-goods using only T-goods

$$y_{t+1} = \varepsilon_{t+1}I_t^{\varepsilon}$$
, where $\varepsilon_{t+1} = \begin{cases} \overline{\varepsilon} & \text{with probability } \lambda, \\ 0 & \text{with probability } 1-\lambda \\ \overline{\varepsilon} & \leq 1+r. \end{cases}$

Catastrophe bonds w/no collateral are allowed:

$$L_{t+1}^c = \begin{cases} 0 & \text{if } \varepsilon_{t+1} = \overline{\varepsilon}, \\ (1+\rho_t^c) \, b_t^c & \text{if } \varepsilon_{t+1} = 0. \end{cases}$$

Bailout up to an amount Γ_t is granted to lenders of a defaulting borrower if majority of borrowers defaults.

- The negative NPV ε -technology may be funded
- \blacktriangleright Catastrophe bonds \rightarrow all repayments shifted to the default state
- ► Borrowing determined by expected bailout rather than by equity $(b_t^c = [1 \lambda]\delta\Gamma_{t+1}).$
- Average growth may be higher than under F. repression, but losses during crises more than offset private profits.

This example helps rationalize contrasting experiences:

- Emerging markets' booms have featured mainly standard debt
 - Systemic risk taking has been, on average, associated with higher long-run growth.

- Recent US boom featured a proliferation of uncollateralized option-like liabilities
 - Supported funding of negative net present value projects.

Conclusions

- Liberalization has led to more crisis-induced volatility
- ► ⇒ Liberalization per-se is bad for either growth or production efficiency.
- Policies intended to eliminate financial fragility might block the forces that spur growth and allocative efficiency.
- At the other extreme, the gains can be overturned in a regime with unfettered liberalization where option-like securities can be issued without collateral.

Parameters	Baseline Value	Range of Variation	Target / Sources
Probability of crisis	1 - u = 0.05	[0, 0.1]	Schularick-Taylor (2012), Gourinchas-Obstbeld (2012)
Intensity of N-inputs in T-production	$\alpha=0.34$	[0.2, 0.4]	Input-Output Tables for Emerging Asia Source: ADB (2012)
Financial distress costs	$l^d=24\%$	[18%, 76.6%]	Laeven and Valencia (2013)
Contract enforceability	H = 0.515		Debt-to-Assets in Emerging Countries Source: Thompson Worldscope
N-sector Internal Funds	$1-\beta=0.33$		
N-sector Productivity	$\theta = 1.6$		

The discount factor is set to $\delta=0.85$ to satisfy $\delta<\theta^{-\,\alpha},$ so that $\phi^{cp}<1.$