Coordinating Business Cycles

Edouard Schaal New York University Mathieu Taschereau-Dumouchel University of Pennsylvania Wharton School

Multiple Equilibria and Financial Crises Conference May 2015

Motivation

Figure : US real GDP (log) and linear trend (2007Q4 = 100)

- Postwar US business cycles:
 - Strong tendency to revert back to trend
 - 2007-09 recession: the economy seems to have fallen to a lower steady state
- We propose an explanation based on coordination failures
 - When complementarities are strong, can model the economy as a coordination game with multiple equilibria
 - Diamond (1982); Kiyotaki (1988); Benhabib and Farmer (1994);...
 - Hypothesis: the economy is trapped in a low output equilibrium as agents fail to coordinate on higher production/demand

- We develop a model of coordination failures and business cycles
- We respond to two key challenges in this literature:
 - Quantitative
 - Typical models are too stylized/unrealistic
 - ⇒ Our model is a small deviation from standard neoclassical model with monopolistic competition
 - Methodological
 - Equilibrium indeterminacy limits welfare/quantitative analysis
 - \Rightarrow We adopt a global game approach to discipline equilibrium selection
- The model can be used as a benchmark for quantitative and policy analysis

- We develop a model of coordination failures and business cycles
- We respond to two key challenges in this literature:
 - Quantitative
 - Typical models are too stylized/unrealistic
 - \Rightarrow Our model is a small deviation from standard neoclassical model with monopolistic competition
 - Methodological
 - Equilibrium indeterminacy limits welfare/quantitative analysis
 - \Rightarrow We adopt a global game approach to discipline equilibrium selection
- The model can be used as a benchmark for quantitative and policy analysis

- We develop a model of coordination failures and business cycles
- We respond to two key challenges in this literature:
 - Quantitative
 - Typical models are too stylized/unrealistic
 - $\Rightarrow\,$ Our model is a small deviation from standard neoclassical model with monopolistic competition
 - Methodological
 - Equilibrium indeterminacy limits welfare/quantitative analysis
 - $\Rightarrow\,$ We adopt a global game approach to discipline equilibrium selection
- The model can be used as a benchmark for quantitative and policy analysis

- Standard neoclassical model with:
 - Monopolistic competition
 - Aggregate demand externality provides a motive to coordinate
 - - · Breaks concavity of firm's problem, locally increasing returns
 - Large evidence for investment, labor but also shifts/production lines
 - We capture these non-convexities in the simplest way

$$u_t \in \{u_h > u_l\}$$

- Multiplicity?
 - Multiplicity for relevant parameters under complete information,
 - Uniqueness everywhere under incomplete information (global game)

Dynamics

- Multiple steady states in the multiplicity region
- Deep recessions: the economy can fall in a *coordination trap* where coordination on high steady state is difficult
- Quantitatively consistent with various features of the recovery from 2007-2009 recession
- Policy
 - Fiscal policy in general welfare reducing as coordination problem magnifies crowding out
 - But sometimes increases welfare by helping coordination close to a transition
 - Optimal policy is a mix of input and profit subsidies

I. Model: Complete Information Case

• Infinitely-lived representative household that solves

$$\max_{C_t, L_t, K_{t+1}} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\frac{1}{1-\gamma} \left(C_t - \frac{L_t^{1+\nu}}{1+\nu} \right)^{1-\gamma} \right], \gamma \ge 0, \nu \ge 0$$

under the budget constraints

$$P_{t}\left(C_{t}+K_{t+1}-\left(1-\delta\right)K_{t}\right)\leqslant W_{t}L_{t}+R_{t}K_{t}+\Pi_{t}$$

Production _____

- Two types of goods:
 - Final good used for consumption and investment
 - ▶ Differentiated goods $j \in [0, 1]$ used in production of final good
- Competitive final good industry with representative firm

$$Y_t = \left(\int_0^1 Y_{jt}^{\frac{\sigma-1}{\sigma}} dj\right)^{\frac{\sigma}{\sigma-1}}, \sigma > 1$$

yielding demand curve and price index

$$Y_{jt} = \left(\frac{P_{jt}}{P_t}\right)^{-\sigma} Y_t \text{ and } P_t = \left(\int_0^1 P_{jt}^{1-\sigma} dj\right)^{\frac{1}{1-\sigma}}$$

and we normalize $P_t = 1$

Intermediate Producers ____

• Unit continuum of intermediate goods producer under monopolistic competition

$$Y_{jt} = A e^{ heta} u_{jt} K^{lpha}_{jt} L^{1-lpha}_{jt}$$

• Aggregate productivity θ follows an AR(1)

$$\theta_t = \rho \theta_{t-1} + \varepsilon_t^{\theta}, \quad \varepsilon_t^{\theta} \sim \mathsf{iid} \ \mathcal{N}\left(0, \gamma_{\theta}^{-1}\right)$$

- Capacity utilization *u_{jt}*
 - Binary decision $u_{jt} \in \{1, \omega\}$ with $\omega > 1$
 - Operating at high capacity ω costs f
 - Acts as a TFP shifter:

$$A_{h}\left(heta_{t}
ight)\equiv\omega\mathcal{A}e^{ heta_{t}}>\mathcal{A}e^{ heta_{t}}\equiv\mathcal{A}_{l}\left(heta_{t}
ight)$$

Definition

An equilibrium is policies for the household $\{C_t(\theta^t), K_{t+1}(\theta^t), L_t(\theta^t)\}$, policies for firms $\{Y_{jt}(\theta^t), K_{jt}(\theta^t), L_{jt}(\theta^t)\}, j \in \{h, l\}$, a measure $m_t(\theta^t)$ of high capacity firms, prices $\{R_t(\theta^t), W_t(\theta^t)\}$ such that

- · Household and firms solve their problems, markets clear,
- Mass of firms with high capacity is consistent with firms' decisions

$$m_t \left(\theta^t \right) \equiv \begin{cases} 1 & \text{if } \Pi_{ht} - f > \Pi_{lt} \\ \in (0, 1) & \text{if } \Pi_{ht} - f = \Pi_{lt} \\ 0 & \text{if } \Pi_{ht} - f < \Pi_{lt} \end{cases}$$

Characterization _____

- The intermediate producer faces a simple static problem
- Producers face a positive aggregate demand externality

$$\Pi_{jt} = P_t \frac{\mathbf{Y}_t^{\frac{1}{\sigma}}}{\mathbf{Y}_{jt}^{\frac{\sigma-1}{\sigma}}} - W_t L_{jt} - R_t K_{jt}$$

where σ determines the strength of externality

• In partial equilibrium, the capacity choice collapses to

$$\Pi = \max\left[\frac{1}{\sigma}\frac{Y_t}{P_{ht}^{\sigma-1}} - f, \frac{1}{\sigma}\frac{Y_t}{P_{lt}^{\sigma-1}}\right]$$

with the cost of a marginal unit of output

$$P_{jt} = rac{\sigma}{\sigma - 1} M C_{jt}$$
 and $M C_{jt} \equiv rac{1}{A_{jt}(\theta)} \left(rac{R_t}{lpha}
ight)^{lpha} \left(rac{W_t}{1 - lpha}
ight)^{1 - lpha}$

Characterization _____

• Incentives to use high capacity increase with aggregate demand Y_t

- Under GHH preferences,
 - ► Labor supply curve independent of *C*,
 - Production side of the economy can be solved independently of consumption-saving decision!
- We thus proceed in two steps:
 - ► First, study *static* equilibrium (production and capacity choice)
 - ▶ Then, return to the *dynamic* economy (*C* and *K*′ decisions)

• Simple aggregate production function:

$$\begin{aligned} Y_t &= \overline{A}(\theta_t, m_t) K_t^{\alpha} L_t^{1-\alpha} \\ L_t &= \left[(1-\alpha) \frac{\sigma - 1}{\sigma} \overline{A}(\theta_t, m_t) K_t^{\alpha} \right]^{\frac{1}{\nu + \alpha}} \end{aligned}$$

Endogenous TFP:

$$\overline{A}(\theta, m) = \left(mA_h(\theta)^{\sigma-1} + (1-m)A_l(\theta)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$

• Simple aggregate production function:

$$Y_{t} = \overline{A}(\theta_{t}, m_{t})K_{t}^{\alpha}L_{t}^{1-\alpha}$$
$$L_{t} = \left[(1-\alpha)\frac{\sigma-1}{\sigma}\overline{A}(\theta_{t}, m_{t})K_{t}^{\alpha}\right]^{\frac{1}{\nu+\alpha}}$$

• Endogenous TFP:

$$\overline{A}(\theta,m) = \left(mA_{h}(\theta)^{\sigma-1} + (1-m)A_{l}(\theta)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$

• Simple aggregate production function:

$$Y_{t} = \overline{A}(\theta_{t}, m_{t})K_{t}^{\alpha}L_{t}^{1-\alpha}$$
$$L_{t} = \left[(1-\alpha)\frac{\sigma-1}{\sigma}\overline{A}(\theta_{t}, m_{t})K_{t}^{\alpha}\right]^{\frac{1}{\nu+\alpha}}$$

• Endogenous TFP:

$$\overline{A}(\theta, m) = \left(mA_{h}(\theta)^{\sigma-1} + (1-m)A_{l}(\theta)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$

Static Equilibrium: Multiplicity

Proposition 1

Suppose that $\frac{1+\nu}{\alpha+\nu} > \sigma - 1$, then there exists cutoffs $B_H < B_L$ such that there are multiple static equilibria for $B_H \leq e^{\theta} K^{\alpha} \leq B_L$.

Static Equilibrium: Multiplicity

Multiplicity vs. Uniqueness

Is the static equilibrium efficient?

Proposition 2

For $rac{1+
u}{lpha+
u} > \sigma-1$, there exists a threshold $B_{SP} < B_L$ such that

• For $e^{\theta}K^{\alpha} \leq B_{SP}$, the planner chooses m = 0,

• For $e^{\theta}K^{\alpha} \ge B_{SP}$, the planner chooses m = 1.

In addition, for σ low enough, $B_{SP} < B_H$.

Static Equilibrium: Efficiency ____

Capital K

Static Equilibrium: Coordination Failure _____

Capital K

II. Model: Incomplete Information Case

Model: Incomplete Information _

- Model remains the same, except:
 - Capacity choice is made under uncertainty about current θ_t
- New timing:
 - **1** Beginning of period: $\theta_t = \rho \theta_{t-1} + \varepsilon_t^{\theta}$ is drawn
 - **2** Firm *j* observes private signal $v_{jt} = \theta_t + \varepsilon_{it}^v$ with $\varepsilon_{it}^v \sim \text{iid } \mathcal{N}(0, \gamma_v^{-1})$
 - **(3)** Firms choose their capacity $u_j \in \{u_l, u_h\}$
 - 4 θ_t is observed, production takes place, C_t and K_{t+1} are chosen

Uniqueness of Static Game ____

Proposition 3

For γ_v large and if

$$\frac{\sqrt{\gamma_{\nu}}}{\gamma_{\theta}} > \frac{1}{\sqrt{2\pi}} \frac{\omega^{\sigma-1} - 1}{\sigma - 1},$$

then the equilibrium of the static global game is unique and takes the form of a cutoff rule $\hat{v}(K, \theta_{-1}) \in \mathbb{R} \cup \{-\infty, \infty\}$ such that firm *j* choose high capacity if and only if $v_j \ge \hat{v}(K, \theta_{-1})$. In addition, \hat{v} is decreasing in its arguments.

• Remark: the number of firms choosing high capacity is

$$m \equiv 1 - \Phi \left(\sqrt{\gamma_{v}} \left(\hat{v} \left(K, \theta_{-1} \right) - \theta \right) \right)$$

where Φ is the CDF of a standard normal

Uniqueness of Static Game _____

Capital K

Dynamics: Multiple Steady States _____

K_t

Dynamics: Multiple Steady States ____

K_t

Dynamics: Phase Diagram ____

Capital K

III. Quantitative Evaluation

- The model is calibrated in a standard way Calibration
- We then evaluate the model on the following dimensions:
 - Business cycle moments: similar performance to standard RBC model RBC moments
 - Skewness: outperforms standard models due to existence of large recessions (fat left tail)
 - Impulse responses: secular stagnation, 2007-2009 recession?

- The model dynamics display strong non-linearities
- We hit the economy with negative θ shocks:
 - Small
 - Ø Medium and lasts 4 quarters
 - 8 Large and lasts 4 quarters
- Results:
 - The response to small shock is similar to standard RBC model
 - Strong amplification and propagation for larger shocks
 - Large, long-lasting shocks can push the economy towards low steady state: coordination trap

Impulse Responses _

28/33

Impulse Responses _

29/33

2007-2009 Recession _

Figure : US series centered on 2007Q4 (left) vs model (right)

► TFP

IV. Policy Implications

- The competitive economy suffers from two (related) inefficiencies:
 - 1 Monopoly distortions on the product market,
 - Correct this margin immediately with input subsidy s_{kl} that offsets markup $1 s_{kl} = \frac{\sigma 1}{\sigma}$,
 - 2 Inefficient capacity choice due to aggregate demand externality.
- We analyze:
 - Impact of fiscal policy
 - Optimal policy and implementation

Policy: Summary of Results ____

- Fiscal policy:
 - Government spending is in general detrimental to coordination
 - Crowding out effect magnified by coordination problem Crowding
 - This effect dominates in most of the state space
 - But negative wealth effect can overturn this result
 - When preferences allow for wealth effect on labor supply, fiscal policy may be *welfare improving* by helping coordination Welfare
 - Possibly large multipliers without nominal rigidities
- Optimal policy:
 - ► A mix of constant input and profit subsidy implements the constrained efficient allocation Optimal Policy

V. Conclusion

- We construct a dynamic stochastic general equilibrium model with coordination failures
 - Provides a foundation for Keynesian-type effects without nominal rigidities
- The model generates:
 - Deep recessions: secular stagnation?
 - Fiscal policy can be welfare improving
- Future agenda:
 - Quantitative side:
 - Understand the role of firm-level heterogeneity
 - Use micro-data to discipline the non-convexities
 - Learning, optimal fiscal policy, etc.

Evidence of Non-Convexities .

- Typical neoclassical model assumes convex cost functions
 - Well-defined maximization problem with unique equilibrium
- However, large evidence of non-convexities in cost functions:
 - Firms adjust output along various margins which differ in lumpiness/adjustment/variable costs
 - Cooper and Haltiwanger (2006): lumpy adjustments in labor and investment,
 - Bresnahan and Ramey (1994): lumpy changes in production at plant-level with plant shutdowns/restart,
 - Hall (1999): non-convexities in shift adjustments across Chrysler assembly plants.

Evidence of Non-Convexities _

- Ramey (JPE 1991) estimates cost functions
 - Example food industry:

$$C_t(Y) = 23.3w_tY - 7.78^{**}Y^2 + 0.000307^*Y^3 + \dots$$

Figure : Non-convex cost curve (Ramey, 1991)

Static Equilibrium: Multiplicity ____

• Condition for multiplicity is

$$\frac{1+\nu}{\alpha+\nu} > \sigma - 1$$

• This condition is more likely to be satisfied if

- σ is small: high complementarity through demand,
- ν is small: low input competition (sufficiently flexible labor),
- α is small: production is intensive in the flexible factor (labor).

◀ Return

Static Equilibrium: Multiplicity vs. Uniqueness _

Capital K

▲ Multiplicity

Model: Incomplete Information _____

• Firms now solve the following problem:

$$u_{j}^{*} = \underset{u_{j} \in \{u_{h}, u_{l}\}}{\operatorname{argmax}} \left\{ \mathbb{E} \left[U_{c} \left(C, L \right) \left(\Pi_{h} \left(K, \theta, m \right) - f \right) \mid \theta_{-1}, v_{j} \right], \\ \mathbb{E} \left[U_{c} \left(C, L \right) \Pi_{l} \left(K, \theta, m \right) \mid \theta_{-1}, v_{j} \right] \right\}$$

where

- Expectation term over θ and m
- m is now uncertain and firms must guess what others will choose!

Uniqueness of Static Game _____

• Condition for uniqueness

$$\frac{\sqrt{\gamma_{\mathbf{v}}}}{\gamma_{\theta}} > \frac{1}{\sqrt{2\pi}} \frac{\omega^{\sigma-1} - 1}{\sigma - 1}$$

- This condition requires:
 - 1 Uncertainty in fundamental θ (γ_{θ} low),
 - **2** High precision in private signals (γ_v high)
 - Ensure that beliefs about fundamental (in $\gamma_{\nu})$ dominates feedback from others (in $\sqrt{\gamma_{\nu}})$

Return

Standard parameters:

Parameter	Value	Source/Target
Time period	one quarter	
Capital share	lpha= 0.3	Labor share 0.7
Discount factor	$eta=0.95^{1/4}$	0.95 annual
Depreciation rate	$\delta=1-0.9^{1/4}$	10% annual
Elasticity of substitution	$\sigma = 3$	Hsieh and Klenow (2014)
Risk aversion	$\gamma = 1$	log utility
Elasticity of labor supply	u = 0.4	Jaimovich and Rebelo (2009)
Persistence θ process	$ ho_{ heta}=$ 0.95	Cooley and Prescott (1985)
Stdev of θ	$\sigma_{ heta} = 0.006$	Stdev output

Parametrization _

Three parameters remain: γ_{v} , ω and f

- Precision of private information γ_{v} :
 - ► Target dispersion in forecasts about GDP growth from SPF
 - One quarter ahead: $\gamma_{v} = 124, 232 \simeq 0.2\%$ stdev
- Capacity utilization ratio $\omega = \frac{u_h}{u_l}$:
 - Match pre-2008/post-2010 averages $\simeq 1.017$
- Fixed cost f:
 - Chosen to match the tail probability of large crises in SPF (growth≤-4%),
 - Set f = 0.019 of GDP

Correlation with output

Correlation with output	Output	Investment	Hours	Consumption
Data	1.00	0.87	0.86	0.94
Full model	1.00	0.89	1.00	0.99
$RBC\;(f=0,\sigma\to\infty)$	1.00	0.96	1.00	0.99

Table : Correlation with output

• Again, similar performance to a standard RBC model

◀ Return

• The model does well for skewness and asymmetry of business cycles:

Skewness	Output	Investment	Hours	Consumption
Data	-0.59	-0.31	-0.35	-0.44
Full model	-0.16	-0.14	-0.16	-0.14
$RBC \ (f = 0, \sigma \to \infty)$	0.00	-0.01	0.00	0.01

Table : Skewness

Skewness and Fat Tail ____

• The negative skewness is due to ability to generate deep recessions:

Figure : Ergodic distribution of θ (top) vs. output (bottom)

Skewness and Fat Tail _

• Histogram of output in the data:

Figure : Distribution of log real GDP (1967-2014, linear trend)

Standard deviations

Stddev Rel. to Output	Output	Investment	Hours	Consumption
Data	1.00	3.27	1.46	0.94
Full model	1.00	2.06	0.72	0.88
$RBC\;(f=0,\sigma\to\infty)$	1.00	1.72	0.71	0.84

Table : Standard deviation relative to that of Output

• The full model behaves similarly to a standard RBC model

◀ Return

Solution of the Model .

Notes: Linear trend from 2001Q1-2008Q2 (dashed-dotted). Forecast 2008Q3 and beyond based on linear trend (dotted).

Figure : Various measures of TFP (*source:* Christiano, Eichenbaum and Trabandt, 2014)

Fiscal Policy: Crowding Out ____

• Crowding out:

Fiscal Policy: Crowding Out ____

• Crowding out: decline in investment

Fiscal Policy: Crowding Out ____

- Coordination is worsened by crowding out:
 - ▶ Capital K plays a crucial role for coordination,
 - By crowding out private investment, government spending makes coordination on high regime less likely in the future!
 - Large dynamic welfare losses
- Result: Under GHH preferences,
 - For γ_v large, firms' choice of *m* unaffected by *G*,
 - Government spending is *always* welfare reducing

Fiscal Policy: Wealth Effect .

• How can a negative wealth effect be welfare improving?

▲ Return

- We study a constrained planner with same information as outside observer:
 - At the beginning of period, only knows θ_{-1}
 - Does not observe firms' private signals

Constrained Planner Problem _____

• The planner chooses a probability to choose high capacity $z(v_j)$ for all signals v_j

$$V(K,\theta_{-1}) = \max_{z,C,L,K'} \mathbb{E}_{\theta} \left[\frac{1}{1-\gamma} \left(C - \frac{L^{1+\nu}}{1+\nu} \right)^{1-\gamma} + \beta V(K',\theta) \right]$$

subject to

$$C + K' = \overline{A}(\theta, m) K^{\alpha} L^{1-\alpha} + (1-\delta) K - mf$$
$$m(\theta) = \int \sqrt{\gamma_{\nu}} \phi \left(\sqrt{\gamma_{\nu}} (\nu - \theta)\right) z(\nu) d\nu$$
$$\overline{A}(\theta, m) = \left(mA_{h}(\theta)^{\sigma-1} + (1-m)A_{l}(\theta)^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$

Proposition 4

The competitive equilibrium with imperfect information is inefficient, but the efficient allocation can be implemented with:

- **1** An input subsidy $1 s_{kl} = \frac{\sigma 1}{\sigma}$ to correct for monopoly distortions,
- **2** A profit subsidy $1 + s_{\pi} = \frac{\sigma}{\sigma 1}$ to induce the right capacity choice.

• Remark:

► The profit subsidy is just enough to make firms internalize the impact of their capacity decision on others

Calibration Government Spending _____

• Utility function:
$$U(C,L) = \log C - (1+\nu)^{-1}L^{1+\nu}$$

Parameter	Value	Source/Target
Time period	one quarter	
Capital share	lpha= 0.3	Labor share 0.7
Discount factor	$eta=0.95^{1/4}$	0.95 annual
Depreciation rate	$\delta=1-0.9^{1/4}$	10% annual
Elasticity of substitution	$\sigma = 3$	Hsieh and Klenow (2014)
Risk aversion	$\gamma = 1$	log utility
Elasticity of labor supply	u = 0.4	Jaimovich and Rebelo (2009)
Persistence θ process	$ ho_{ heta}=$ 0.95	Cooley and Prescott (1985)
Stdev of θ	$\sigma_{ heta} = 0.006$	Stdev output
Fixed cost	f = 0.01485	
High capacity	$\omega = 1.017$	
Government spending	G = 0.00665	0.5% of steady-state output

