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Strategic Uncertainty and Belief Synchronization

I In models with strategic uncertainty, there are often equilibria
where agents coordinate on a sunspot process. This requires
agents to �learn� to play the correct equilibrium.

I Questions that were already answered:

I Are rational expectations equilibria learnable?
I Are rational expectations equilibria with sunspots learnable?

I I study an environment where agents must learn to use the
correct sunspot out of in�nitely many options.

I Added ingredient: agents have some innate bias in predicting
output (some are inherently optimistic, while others are
pessimistic). There is no aggregate bias.
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cont.

I This gives rise to complicated dynamics that can lead to:

I Full Synchronization (all agents converge on playing a
particular equilibrium).

I Incoherence (the agents do not converge on an equilibrium)
I Partial Synchronization (most agents converge on playing a

particular equilibrium while others drift incoherently)

I Additionally, the system can �uctuate between synchronization
and incoherence, spending long periods of time in one and
then quickly switching to another.

I Metronomes: http://youtu.be/Aaxw4zbULMs
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The Kuramoto Model

I The Kuramoto model describes synchronization phenomena.

I It describes N oscillators whose phases ψi
t

(i = 1, . . . , n;ψj
t ∈ [−π, π]), are coupled as described by the

equation:

d

dt
ψi
t = ωi − K

N

N∑
j=1

sin(ψi
t − ψ

j
t), i = 1, · · · ,N.

I ωi ∈ R is the natural frequency of the oscillator, K > 0 is the
strength of the coupling.

I By de�ning Rte
iψt = 1

N

∑N
i=1

e iψ
i
t , the equations take the

more convenient form:
d

dt
ψi
t = ωi − RtK sin(ψi

t − ψt).

I Rt ∈ [0, 1] is a measure of the synchronization of the system
(the order parameter). Rt = 0 is incoherence and Rt = 1 is full
synchronization.
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The Kuramoto Model - continuum limit

I For N →∞, the system has an incoherent solution where the
oscillators are uniformly spread around the circle, each moving
with ψi

t = ψi
0

+ ωi t.

I The incoherent solution is stable when the coupling constant is
below some critical value K < Kc .

I There is also a fully synchronized solution: ψi
t = ω̄t + φi ,

ω̄ =
1

N

N∑
i=1

ωi , sinφi =
ωi − ω̄
R̄K

, R̄ =
1

N

∣∣∣∣ N∑
i=1

e iφ
i

∣∣∣∣.
I This solution requires that the natural frequencies not be too

dispersed (|ωi − ω̄| � K ). Otherwise, there is a partially
synchronized solution.

http://upload.wikimedia.org/wikipedia/commons/transcoded/9/9e/KuramotoModelPhaseLocking.ogv/KuramotoModelPhaseLocking.ogv.360p.webm
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The Kuramoto Model - Stability

I For K > Kc (strong coupling) with N =∞, the incoherent
solution is not stable, and the system tends (at t →∞)
toward one of the synchronized solutions.

I In the �nite N case, the system oscillates between the
synchronized and the incoherent solution.

I Some common modi�cations of this model include:

I Adding a stochastic term.
I Allowing the coupling Ki,j to depend on |i − j |.
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Related Literature

I The model that I use today is based on Behanbib, Wang, Wen
(2013);

I The approach to learning follows Marcet and Sargent (1989),
see also Evans and Honkapohja (2012)

I Learning with multiple equilibria/sunspots Woodford (1990);
Guesnerie and Woodford (1990); Evans et al. (1994); Evans
and Honkapohja (2003*2); Honkapohja and Mitra (2004)...

I Synchronization phenomena: Kuramoto (1975), Strogatz
(1994,2000), Acebrn et al. (2005).



Households

I Households maximize

maxE0

∞∑
t=0

βt [log(Ct)− ψNt ]

subject to:

Ct ≤
Wt

Pt
Nt +

Πt

Pt

I The �rst order conditions are:

Ct =
1

ψ
· Wt

Pt



Final Good Producers

I Competitive �nal goods producers:

Yt =

[ˆ
1

0

εθjtY
1−θ
jt dj

] 1

1−θ

where εjt are iid.

I Pro�t maximization implies

Yjt = (Pt/Pjt)
1/θ εjtYt

and

P
1−1/θ
t =

ˆ
εjtP

1−1/θ
jt dj .



Intermediate Good Producers

I Intermediate good producers use labor only: Yjt = ANjt .

I They must make decisions before observing εjt , based on a
signal generated from market research sjt .

I After the intermediate �rms produce, prices of their goods are
set to clear the market (as in a Cournot competition).

I The intermediate �rm's problem is

max
Yjt

Ejt

[(
Pjt −

Wt

A

)
Yjt

∣∣∣∣ sjt]
I Solved by:

Yjt =

{
(1− θ)

A

ψ
Et

[
(εjt)

θY θ−1
t

∣∣∣sjt]}1/θ



Intermediate Good Producers - cont.

I Without loss of generality, choose A, such that

Y θ
jt = Et

[
εθjtY

θ−1
t

∣∣∣sjt] = Et [exp(θεjt − (1− θ)yt |sjt ]

I where εjt and yt are the logs of εjt and Yt respectively.

I Notice that �rms are targeting:

ŷjt = θεjt − (1− θ)yt .



Forecasters

I There is a large number of forecasters that get to observe two
random variables z it , i = 1, 2; z it ∼ N(0, 1) iid.

I Forecaster i believes that output is related to these variables:

yt = φi + ξi · zt

I Basically, we limit the belief space to
(
φi , ξi

)
∈ R3.

I The �rms get a signal that is a linear combination of their
speci�c shock and the average forecast:

sjt = λεjt + (1− λ)
(
〈φit〉+ 〈ξit〉 · zt

)
, λ ∈ (0, 1).

I Also, each �rm believes yt = φj + ξj · zt .
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Learning

I Firms and forecasters behave at period as if their point
estimates in the belief space are perfectly accurate.

I Both update their beliefs using an OLS estimator that can be
written recursively:(

φjt+1

ξjt+1

)
=

(
φjt
ξjt

)
+ gt

(
1
zt

)
(yt + ∆φj − φjt − ξ

j
t · zt).

I I omit the var-covar matrix because it converges to unity
uniformly.

I gt is the gain sequence (1/t for OLS)

I ∆φj is the persistent bias term, that is assumed to average to
zero across agents.
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The �rm's decision

I Recall that �rms want to know xjt = θεjt − (1− θ)(yt − φ0).

I Assume εjt ∼ N(0, σ2ε ) iid across �rms and time.

I Then, xjt |sjt ∼ N(m(‖ξj‖2)(sjt − (1− λ)φj), Σ̂(‖ξj‖2)), where

m(ξ2) =
θλσ2ε − (1− θ)(1− λ)ξ2

λ2σ2ε + (1− λ)2ξ2
,

Σ̂(ξ2) =
(θ + λ− 2θλ)2ξ2σ2ε
λ2σ2ε + (1− λ)2ξ2

.



Output

I Firm's decision is

yjt = (1−θ−1)φj+θ−1
[
m(‖ξj‖2)(sjt − (1− λ)φj) +

1

2
Σ̂(‖ξj‖2)

]
I Integrating over all �rms, we get

(1− θ)yt = log

ˆ
1

0

e
σ2ε
2

[θ+(θ−1−1)λm(‖ξj‖2)]2×

×e+(1−θ){(1−θ−1)φj+θ−1[(1−λ)m(‖ξj‖2)(〈φi 〉−φj+〈ξi 〉·zt)+ 1

2
Σ̂(‖ξj‖2)]}dj



REE without bias

I Set ∆φi = 0, and let all agents have common beliefs.

I The last equation de�nes a mapping from perceived to actual
law of motion

φ→− (1− θ)

θ
φ+

1

2θ
Σ̂(‖ξ‖2) +

[θ + (θ−1 − 1)m(‖ξ‖2)λ]2σ2ε
2(1− θ)

,

ξ →1

θ
m(‖ξ‖2)(1− λ)ξ.



REE without bias

I The mapping has two types of �xed points:

1. A deterministic equilibrium:

φC =
θσ2ε

2(1− θ)
, ξC = 0

2. A circle of stochastic equilibria, only when λ < 1/2

φS = φC
(
1− (1− θ)(1− 2λ)

1− λ

)
, ‖ξS‖2 =

θλ(1− 2λ)

(1− λ)2
σ2ε .

I Note that the stochastic equilibrium is Pareto inferior.



Stability

I Locally, stability has to do with the eigenvalues of the
Jacobian matrix of the mapping PLM→ALM.

I Stability under RLS with gt = 1/t, is equivalent to the
eigenvalues having real parts smaller than 1.

I Theorem: For λ > 1/2 only the deterministic equilibrium exists
and it is stable under OLS learning. For λ < 1/2, both
equilibria exist but only the stochastic ones are stable.

I With constant gains the situation is more complicated. The
eigenvalues also need to be larger than -1, for there to be
stability with any gain value. This results are depicted in the
following graph.



Stability with const. gains



Full Simulation



Simulations - Results

I For large enough V (∆φi ), the system does not converge, but
does not diverge either.

I Coordination builds up slowly and falls abruptly.

I With small bias, |∆φj | � φS , the system quickly converges
and stays near Rt = ξS . Output in the latter case is symmetric
and mesokurtic.

I With high bias the system stays near Rt = 0 and the resulting
time series for output, yt , is right-skewed and heavy tailed.

I Non-intuitive: the economy is more volatile when beliefs are
better synchronized!



Learning about phases only

I To better understand the results, consider a version of the
model where all agents share the beliefs: φ = φS and
‖ξ‖ = ξS , and are only trying to learn about the phases, i.e.:

φjt = φS , ξjt = ξS(cosψj
t , sinψ

j
t).

I Agents continue using the RLS, but override the results they
get for φ, ‖ξ‖ (consistent).

I Also de�ne zt = rt(cos ζt , sin ζt).

I The actual law of motion is

yt = φS +
1

1− θ
log

ˆ
1

0

e(1−θ)ξS rt cos(ψj−ζt)dj ,
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cont.

I The evolution is

ψj
t+1

= ψj
t −

gtrt
ξS

sin(ψj
t − ζt)×

×
(
ξS rt

{〈
cos(ψk

t − ζt)
〉∗ − cos(ψj

t − ζt)
}

+ ∆φj
)

〈
cos(ψk

t − ζt)
〉∗

=
1

(1− θ)(ξS rt)
log

ˆ
1

0

e(1−θ)ξS rt cos(ψ
k
t −ζt)dk



cont.

I When the ψj 's are not too dispersed, we can further
approximate and get

ψj
t+1

= ψj
t−gtrt sin(ψj

t−ζt)
[
sin(ψj

t−ζt)
ˆ

1

0

sin(ψj
t−ψk

t )dk+
∆φj

ξS

]

I Compare:

ψj
t+1

= ψj
t − gt

[
K

ˆ
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Summary

I A simple macro model where volatility changes dynamically as
agents' beliefs synchronize and de-synchronize.

I Heavy-tailed growth series.

I Volatility is inversely related to belief-dispersion.

I A connection to the Kuramoto model.

I Demonstration: http://youtu.be/tlR1Ksv6cuI

http://youtu.be/tlR1Ksv6cuI


Future research

I Understanding the stochastic coupling.

I Adding persistence (tricky).

I Exploring alternative couplings Ki ,j .
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