Discussion on "Stagnation Traps"

Jang-Ting Guo

Department of Economics University of California, Riverside

May 15, 2015

• Existence and Persistence of Stagnation Trap in a Monetary Endogenous Growth Model with Quality Ladders

 \Rightarrow Coexistence of Positive Unemployment, Low Growth, and Liquidity Trap

• Existence and Persistence of Stagnation Trap in a Monetary Endogenous Growth Model with Quality Ladders

 \Rightarrow Coexistence of Positive Unemployment, Low Growth, and Liquidity Trap

• The Key Mechanism

(1) Unemployment and Weak Aggregate Demand \Rightarrow Reduces Firms' Investment in Innovation \Rightarrow Low Growth

(2) Low Growth \Rightarrow Reduces Real Interest Rate \Rightarrow Pushes Nominal Interest Rate to Zero

• Two Steady States in Baseline Model

(1) Full Employment $y^f = 1$, High Growth g^f , Positive Nominal Interest Rate $i^f > 0$, and Positive/Negative Inflation Rate $\pi^f \ge 1$

(2) Unemployment $y^u < 1,$ Low Growth $g^u < g^f,$ Zero Nominal Interest Rate $i^u=0,$ and Negative Inflation Rate $\pi^u < 1$

Objective

• Two Steady States in Baseline Model

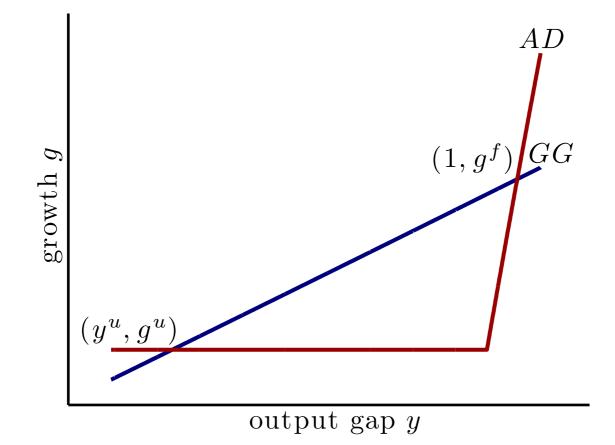
(1) Full Employment $y^f = 1$, High Growth g^f , Positive Nominal Interest Rate $i^f > 0$, and Positive/Negative Inflation Rate $\pi^f \ge 1$

(2) Unemployment $y^u < 1,$ Low Growth $g^u < g^f,$ Zero Nominal Interest Rate $i^u=0,$ and Negative Inflation Rate $\pi^u < 1$

- Two Extensions: Precautionary Savings and Time-Varying Inflation Rate
- Constant or Countercyclical Subsidy to Firms' Investment in Innovation ⇒ Removal of Low-Growth Steady State

- Two Steady States: $y^f = 1$ and $y^u < 1$
 - \Rightarrow y Denotes the Level of Actual Output
 - $\Rightarrow 1-y = \mathsf{Output}\ \mathsf{Gap}$

- Two Steady States: $y^f = 1$ and $y^u < 1$
 - \Rightarrow y Denotes the Level of Actual Output
 - $\Rightarrow 1 y = \mathsf{Output} \mathsf{Gap}$
- Figure 1 \Rightarrow Local Stability Property of Each Steady State: Saddle, Sink or Source
- Possibility of Global Indeterminacy \Rightarrow Various Forms of Bifurcations



• This Paper

$$\max \ \sum_{t=0}^\infty \beta^t \frac{C_t^{1-\sigma}-1}{1-\sigma}, \ \ 0<\beta<1$$

$$C_t = \exp\left(\int_0^1 \ln q_{jt} c_{jt} dj\right)$$
 and $Q_t = \exp\left(\int_0^1 \ln q_{jt} dj\right)$

$$\left(\frac{c_{t+1}}{c_t}\right)^{\sigma} = \beta \left(1 + r_t\right) g_{t+1}^{1-\sigma}, \text{ where } g_{t+1} = \frac{Q_{t+1}}{Q_t}$$

• This Paper

$$\max \ \sum_{t=0}^\infty \beta^t \frac{C_t^{1-\sigma}-1}{1-\sigma}, \ 0<\beta<1$$

$$C_{t} = \exp\left(\int_{0}^{1} \ln q_{jt} c_{jt} dj\right) \quad \text{and} \quad Q_{t} = \exp\left(\int_{0}^{1} \ln q_{jt} dj\right)$$
$$\left(\frac{c_{t+1}}{c_{t}}\right)^{\sigma} = \beta \left(1 + r_{t}\right) g_{t+1}^{1-\sigma}, \quad \text{where} \quad g_{t+1} = \frac{Q_{t+1}}{Q_{t}}$$

• Need $\sigma > 1$ such that

(1) Positive Relationship between Present Consumption and Innovation Growth

(3)
$$i^f > 0$$
 at Full-Employment Steady State

• Alternative Specification (Footnote 14)

$$\max \ \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}-1}{1-\sigma}, \quad 0<\beta<1$$

$$y_t = f\left(\int_0^1 q_{jt} X_{jt} dj\right) = f(Q_t)$$

• Alternative Specification (Footnote 14)

$$\max \ \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}-1}{1-\sigma}, \quad 0<\beta<1$$

$$y_t = f\left(\int_0^1 q_{jt} X_{jt} dj\right) = f(Q_t)$$

$$\left(\frac{c_{t+1}}{c_t}\right)^{\sigma} = \beta \left(1 + r_t\right)$$

$$\left(\frac{c_{t+1}}{c_t}\right)^{\sigma} = \beta \left(1 + r_t\right) g_{t+1}^{1-\sigma}, \text{ where } g_{t+1} = \frac{Q_{t+1}}{Q_t}$$

 \Rightarrow Isomorphic Formulations Only When $\sigma=1$

• This Paper

Euler:
$$\left(\frac{c_{t+1}}{c_t}\right)^{\sigma} = \beta \frac{(1+i_t)}{\bar{\pi}} g_{t+1}^{1-\sigma}$$

Growth :
$$1 = \beta \left[\left(\frac{c_t}{c_{t+1}} \right)^{\sigma} g_{t+1}^{1-\sigma} \left(\chi \frac{\gamma - 1}{\gamma} y_{t+1} + 1 - \frac{\ln g_{t+2}}{\ln \gamma} \right) \right]$$

When $\sigma > 1 \Rightarrow$ Positive Relationship between y_{t+1} and g_{t+1}

• This Paper

Euler:
$$\left(\frac{c_{t+1}}{c_t}\right)^{\sigma} = \beta \frac{(1+i_t)}{\bar{\pi}} g_{t+1}^{1-\sigma}$$

Growth :
$$1 = \beta \left[\left(\frac{c_t}{c_{t+1}} \right)^{\sigma} g_{t+1}^{1-\sigma} \left(\chi \frac{\gamma - 1}{\gamma} y_{t+1} + 1 - \frac{\ln g_{t+2}}{\ln \gamma} \right) \right]$$

When $\sigma ~>~ 1 \Rightarrow$ Positive Relationship between y_{t+1} and g_{t+1}

Market Clearing:
$$c_t + rac{\ln g_{t+1}}{\chi \ln \gamma} = y_t$$

Monetary Policy:
$$1+i_t=\max\left\{\left(1+ar{\imath}
ight)y^{\phi}_t,\;1
ight\}$$

Period Utility:
$$\frac{c_t^{1-\sigma}-1}{1-\sigma}$$

Period Utility:
$$\frac{c_t^{1-\sigma}-1}{1-\sigma}$$

Final Good:
$$Y_t = A \int_0^1 (q_{jt}X_{jt})^{lpha} dj, \ A > 0, \quad 0 < lpha < 1$$

Demand for
$$X_{jt}$$
: $X_{jt} = \left(\frac{A\alpha q_{jt}^{\alpha}}{P_{jt}}\right)^{\frac{1}{1-\alpha}}$

Period Utility:
$$\frac{c_t^{1-\sigma}-1}{1-\sigma}$$

Final Good:
$$Y_t = A \int_0^1 (q_{jt}X_{jt})^lpha dj, \ A>0, \quad 0$$

Demand for
$$X_{jt}$$
: $X_{jt} = \left(\frac{A \alpha q_{jt}^{\alpha}}{P_{jt}}\right)^{\frac{1}{1-\alpha}}$

Supply for
$$X_{jt}$$
: $X_{jt} = L_{jt}$, where $\int_0^1 L_{jt} dj + L_t^{RD} + U_t = L_t$

R&D Firms' Profits:
$$\pi_{jt} = (P_{jt} - W_t)X_{jt}, \ \ \frac{W_t}{W_{t-1}} = ar{\pi}$$

Monopoly Pricing:
$$P_{jt} = \frac{W_t}{\alpha}$$

Equilibrium Quantity:
$$X_{jt} = \left(\frac{A\alpha^2 q_{jt}^{\alpha}}{W_t}\right)^{\frac{1}{1-\alpha}}$$

Monopoly Pricing:
$$P_{jt} = \frac{W_t}{\alpha}$$

Equilibrium Quantity:
$$X_{jt} = \left(\frac{A \alpha^2 q_{jt}^{\alpha}}{W_t}\right)^{rac{1}{1-lpha}}$$

Aggregate Output:
$$Y_t = A^{\frac{1}{1-\alpha}} \alpha^{\frac{2\alpha}{1-\alpha}} W_t^{\frac{-\alpha}{1-\alpha}} Q_t,$$

where $Q_t = \int_0^1 q_{jt}^{\frac{\alpha}{1-\alpha}} dj$

Equilibrium Profit:
$$\pi_{jt} = lpha(1-lpha) q_{jt}^{rac{lpha}{1-lpha}} rac{m{Y}_t}{Q_t}$$

Comments 0000000000

Probability of Innovating
$$= \frac{\chi L_t^{RD}}{L} = \chi \mu_t$$

Comments 0000000000

Probability of Innovating =
$$\frac{\chi L_t^{RD}}{L} = \chi \mu_t$$

Value Function:
$$V_t = eta \left(rac{c_{t+1}}{c_t}
ight)^{-\sigma} [\pi_{jt+1} + (1-\chi\mu_{t+1})V_{t+1}]$$

Free Entry:
$$L_t^{RD}W_t = \chi \mu_t V_t \Rightarrow LW_t = \chi V_t$$

Innovation Growth:
$$g_{t+1} = \frac{Q_{t+1}}{Q_t} = \chi \mu_t \gamma^{\frac{\alpha}{1-\alpha}} \Rightarrow \frac{Y_{t+1}}{Y_t} = g_{t+1} \bar{\pi}^{\frac{-\alpha}{1-\alpha}}$$

Comments 000000000

Probability of Innovating =
$$\frac{\chi L_t^{RD}}{L} = \chi \mu_t$$

Value Function:
$$V_t = \beta \left(\frac{c_{t+1}}{c_t}\right)^{-\sigma} [\pi_{jt+1} + (1 - \chi \mu_{t+1})V_{t+1}]$$

Free Entry:
$$L_t^{RD}W_t = \chi \mu_t V_t \Rightarrow LW_t = \chi V_t$$

Innovation Growth:
$$g_{t+1} = \frac{Q_{t+1}}{Q_t} = \chi \mu_t \gamma^{\frac{\alpha}{1-\alpha}} \Rightarrow \frac{Y_{t+1}}{Y_t} = g_{t+1} \bar{\pi}^{\frac{-\alpha}{1-\alpha}}$$

Growth:
$$1 = \left(\beta \bar{\pi}^{\frac{\sigma \alpha}{1-\alpha}}\right) g_{t+1}^{-\sigma} \left[\alpha(1-\alpha)q_{j(t+1)}^{\frac{\alpha}{1-\alpha}} \frac{\chi Y_{t+1}}{\mathcal{L}W_t Q_{t+1}} + \bar{\pi}(1-\frac{g_{t+2}}{\gamma^{\frac{\alpha}{1-\alpha}}})\right]$$

When $\sigma ~>~ 0 \Rightarrow$ Positive Relationship between $rac{Y_{t+1}}{Q_{t+1}}$ and g_{t+1}

00

Euler:
$$\left(\frac{c_{t+1}}{c_t}\right)^{\sigma} = \beta \frac{(1+i_t)}{\overline{\pi}}$$

$$\text{Growth: } 1 = \left(\beta \bar{\pi}^{\frac{\sigma \alpha}{1-\alpha}}\right) g_{t+1}^{-\sigma} \Big[\alpha (1-\alpha) q_{j(t+1)}^{\frac{\alpha}{1-\alpha}} \frac{\chi Y_{t+1}}{L W_t Q_{t+1}} + \bar{\pi} (1-\frac{g_{t+2}}{\gamma^{\frac{\alpha}{1-\alpha}}}) \Big]$$

When $\sigma ~>~ 0 \Rightarrow$ Positive Relationship between $rac{Y_{t+1}}{Q_{t+1}}$ and g_{t+1}

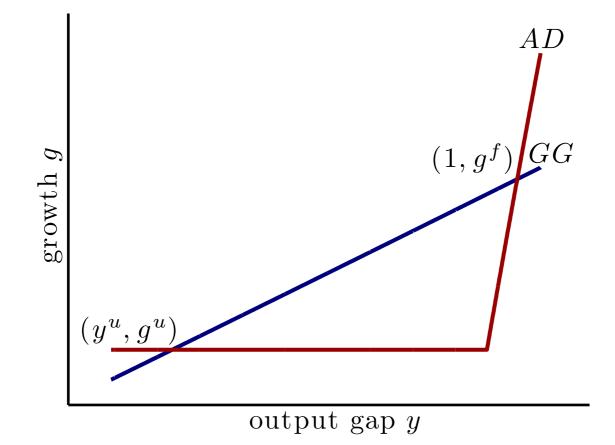
Euler:
$$\left(\frac{c_{t+1}}{c_t}\right)^{\sigma} = \beta \frac{(1+i_t)}{\overline{\pi}}$$

$$\text{Growth: } 1 = \left(\beta \bar{\pi}^{\frac{\sigma \alpha}{1-\alpha}}\right) g_{t+1}^{-\sigma} \Big[\alpha (1-\alpha) q_{j(t+1)}^{\frac{\alpha}{1-\alpha}} \frac{\chi Y_{t+1}}{LW_t Q_{t+1}} + \bar{\pi} (1-\frac{g_{t+2}}{\gamma^{\frac{\alpha}{1-\alpha}}}) \Big]$$

When $\sigma ~>~ 0 \Rightarrow$ Positive Relationship between $rac{Y_{t+1}}{Q_{t+1}}$ and g_{t+1}

Market Clearing:
$$c_t = Y_t \Rightarrow \frac{c_{t+1}}{c_t} = \frac{Y_{t+1}}{Y_t} = g_{t+1}\bar{\pi}^{\frac{-\alpha}{1-\alpha}}$$

Monetary Policy: $1 + i_t = \max\{(1 + \bar{i})\frac{Y_t}{Q_t}, 1\}$



- At Unemployment Steady State
 - (1) Baseline $ar{\pi} < 1 \Rightarrow$ Deflation

Extension with Precautionary Savings, but Unemployed Households Cannot Borrow or Trade Firms' Shares

• At Unemployment Steady State

(1) Baseline $ar{\pi} < 1 \Rightarrow$ Deflation

Extension with Precautionary Savings, but Unemployed Households Cannot Borrow or Trade Firms' Shares

(2) Zero Nominal Interest Rate $i^u = 0$

Negative Nominal Interest Rates Observed in Europe: ECB's Deposit Rate of -0.2%, and Swiss National Bank's Deposit Rate of -0.75%

$$\Rightarrow 1 + i_t = \max\left\{ \left(1 + \overline{\imath}
ight) y^{\phi}_t, \ \ \underline{i}
ight\}$$
, where $\underline{i} < 1$

