OPEN MARKET OPERATIONS

Guillaume Rocheteau, Randall Wright, Sylvia Xiaolin Xiao UC-Irvine, UW-Madison, UT-Sydney Presentation to the NBER, May, 2015

May 15, 2015

May 15, 2015

1 / 32

• New Monetarist model with money and bonds, A_m and A_b

- study two policies: LR inflation and a one-time OMO
- assets can differ in acceptability or pledgeability
- these differences are microfounded in information theory
- with random or directed search, and bargaining, price taking or posting
- Results:
 - negative nominal rate, liquidity trap, sluggish prices, multiplicity
 - OMO's work, unless liquidity is not scarce or if the economy is in a trap, but what matters is ΔA_b and not ΔA_m

- NM surveys:
 - Williamson & Wright (2010), Nosal & Rocheteau (2011), Lagos et al (2014)
- Related monetary policy analyses:
 - Williamson (2012,2013), Rocheteau & Rodriguez-Lopez (2013), Dong & Xiao (2014), Han (2014)
- McAndrews (May 8 speech):

The Swiss National Bank, the European Central Bank, Danmarks Nationalbank, and Swedish Riksbank recently have pushed short-term interest rates below zero. This is ... unprecedented.

- Each period in discrete time has two subperiods:
 - in DM, sellers produce q; buyers consume q
 - in CM, all agents work ℓ , consume x and adjust portfolios
- Period payoffs for buyers and sellers:

$$\mathcal{U}^{b}(x,\ell,q) = U(x) - \ell + u(q) \mathcal{U}^{s}(x,\ell,q) = U(x) - \ell - c(q)$$

• NB: the buyers can be households, firms or financial institutions.

- *A_m* and *A_b* can be used as payment instruments (Kiyotaki-Wright), collateral for loans (Kiyotaki-Moore) or repos (combination).
 - asset prices: ϕ_m and ϕ_b
 - pledgeability parameters: χ_m and χ_b
- Nominal returns:
 - real liquid bonds: $1 + \rho = (1 + \pi) \, / \phi_b$
 - nominal liquid bonds: $1 + \nu = \phi_m/\phi_b$
 - nominal illiquid bonds: $1 + \iota = (1 + \pi) (1 + r)$

- 3 types of DM meetings or trading needs/opportunities:
 - $\alpha_m = prob(type-m mtg)$: seller accepts only money
 - $\alpha_b = prob$ (type-b mtg): seller accepts only bonds
 - $\alpha_2 = prob(type-2 mtg)$: seller accepts both
- Special cases:
 - $\alpha_b = 0$: no one takes only bonds
 - $\alpha_b = \alpha_2 = 0$: no one takes bonds
 - $\alpha_b = \alpha_m = 0$: perfect subs

Policy instruments:

- money growth rate = inflation rate: π
- liquid real bond supply: Ab
- nominal bonds: omitted for talk but results (in paper) are similar
- tax: T adjusts to satisfy GBC after Δ monetary policy
- NB: trading A_b for $A_m \Leftrightarrow$ changing A_b with A_m fixed
 - due to the 'radical' assumption that prices clear markets
 - classical neutrality holds, but OMO's can still matter
- NB: A_b can be used to target ρ within bdds $[\rho, \iota]$

Let $z_m = \phi_m a_m$ and $z_b = a_b$. Then

$$W(z_m + z_b) = \max\{U(x) - \ell + \beta V(\hat{z}_m, \hat{z}_b)\}$$

st $x + T = z_m + z_b + \ell - (1 + \pi)\hat{z}_m - \phi_b \hat{z}_b$

- Lemma (history independence): $(\hat{z}_m, \hat{z}_b) \perp (z_m, z_b)$
- Lemma (linear CM value function): $\mathcal{W}'\left(\cdot
 ight)=1$

Let the terms of trade be given by p = v(q) where v is a mechanism (e.g., Walras, Nash, Kalai...). Then

$$V(z_m, z_b) = W(z_m + z_b) + \alpha_m [u(q_m) - p_m] \\ + \alpha_b [u(q_b) - p_b] + \alpha_2 [u(q_2) - p_2]$$

Liquidity constraint: $p_j \leq \bar{p}_j$, where

$$ar{p}_m=\chi_m z_m$$
, $ar{p}_b=\chi_b z_b$ and $ar{p}_2=\chi_m z_m+\chi_b z_b$

Lemma: We always have $p_m = \bar{p}_m$ but we can have either

\$p_2 = \$\bar{p}_2\$, \$p_b = \$\bar{p}_b\$ (constraint binds in all mtgs)
\$p_2 < \$\bar{p}_2\$, \$p_b = \$\bar{p}_b\$ (constraint slack in type-2 mtgs)
\$p_2 < \$\bar{p}_2\$, \$p_b < \$\bar{p}_b\$ (constraint slack in type-2 & type-b mtgs)

Consider Case 1, where

$$m{v}(m{q}_m)=\chi_m m{z}_m$$
, $m{v}\left(m{q}_b
ight)=\chi_b m{z}_b$ and $m{v}\left(m{q}_2
ight)=\chi_m m{z}_m+\chi_b m{z}_b$

Euler equations,

$$\iota = \alpha_m \chi_m \lambda(q_m) + \alpha_2 \chi_m \lambda(q_2)$$

$$s = \alpha_b \chi_b \lambda(q_b) + \alpha_2 \chi_b \lambda(q_2),$$

where

- ι = nominal rate on an illiquid bond
- s = spread between yields on illiquid and liquid bonds
- $\lambda(q_j) = Lagrange$ multiplier on $p_j \leq ar{p}_j$

• Standard accounting yields

$$\rho = \frac{\alpha_m \chi_m \lambda(q_m) - \alpha_b \chi_b \lambda(q_b) + (\chi_m - \chi_b) \alpha_2 \lambda(q_2)}{1 + \alpha_b \chi_b \lambda(q_b) + \alpha_2 \chi_b \lambda(q_2)}$$

- While $\iota >$ 0 is impossible, ho < 0 is possible when, e.g.,
 - $\chi_m = \chi_b$ and $\alpha_m \lambda(q_m) < \alpha_b \lambda(q_b)$ (A_b has higher liquidity premium)
 - or $\alpha_m\lambda(q_m) = \alpha_b\lambda(q_b)$ and $\chi_m < \chi_b$ (A_b is more pledgeable).

- Not all Treasury securities are equal; some are more attractive for repo financing than others... Those desirable Treasuries can be hard to find: some short-term debt can trade on a negative yield because they are so sought after. *The Economist*
- Interest rates on Swiss government bonds have been negative for a while. These bonds can be used as collateral in some markets outside of Switzerland where the Swiss franc cannot. *Aleks Berentsen*

• Effects of LR inflation: $\Delta \pi > 0 \Rightarrow$ no effect on q_b and

 $z_m \searrow q_m \searrow q_2 \searrow s \nearrow \phi_b \nearrow$ and $ho \rightsquigarrow$ (Fisher vs Mundell)

• Effects of one-time OMO: $\Delta A_b > 0 \Rightarrow$

$$z_m\searrow q_m\searrow q_2
earrow q_b
earrow s\searrow \phi_b
earrow and
ho
earrow$$

 Sluggish prices: ΔA_m > 0 and ΔA_b < 0 ⇒ Δz_m > 0 ⇒ P goes up by less than A_m (quantity eqn fails for OMO)

- Case 2: $p_2 < \bar{p}_2$ and $p_b = \bar{p}_b$
 - $\Delta \pi > 0 \Rightarrow z_m \searrow q_m \searrow s \nearrow$ and no effect on q_b or q_2
 - $\Delta A_b > 0 \Rightarrow q_b \nearrow s \searrow$ and no effects on z_m , q_m or q_2

• Case 3:
$$p_2 < ar{p}_2$$
 and $p_b < ar{p}_b$

- $\Delta\pi > 0 \Rightarrow z_m \searrow q_m \searrow$ but no other effects
- $\Delta A_b > 0 \Rightarrow$ no effect on anything (Ricardian equivalence)
- Cases 1, 2 or 3 obtain when A_b is low, medium or high, resp.

Effects of inflation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Effects of OMO's

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○

Nominal bonds:

- A_b and A_m grow at rate π and OMO is a one-time change in levels
- Results are the same except $\partial q_b/\partial \pi < 0$ in Case 1
- Long-term bonds:
 - imply multiplier effects, but not big enough to generate multiple equilibria
 - still, $\partial z_m / \partial A_b$ is bigger, so prices look even more sluggish after injections of cash by OMO

- Injections of cash... by a central bank fail to decrease interest rates and hence make monetary policy ineffective." *Wikipedia*
- After the rate of interest has fallen to a certain level, liquiditypreference may become virtually absolute in the sense that almost everyone prefers cash to holding a debt which yields so low a rate of interest. In this event the monetary authority would have lost effective control over the rate of interest." *Keynes*

- Type-*i* buyers have $\alpha_j^i = prob(type-j mtg)$
- For some type- i (e.g., banks) $\alpha_2^i > 0 = \alpha_m^i = \alpha_b^i$
- They hold bonds and hold money iff $A_b < \bar{A}_b$
 - A_m , $A_b > 0 \Rightarrow$ they must have same return adjusted for χ 's
 - Hence, $orall A_b < ar{A}_b$ we get the lower bdd

$$\underline{\rho} \equiv \frac{(\chi_m - \chi_b)\iota}{\iota + \chi_b}$$

• NB: In this economy $\underline{\rho} = 0$ iff $\chi_m = \chi_b$ or $\iota = 0$ (Friedman rule).

Liquidity trap with random search: Example

- Type-m and type-2 sellers sort into segmented submarkets
- Buyers can go to any submarket and are indifferent if both open
- We consider bargaining and posting terms of trade
- Generates a liquidity trap but now buyers choose their types
- ullet Arrival rates are endogenous fns of submarket seller/buyer ratio σ
 - ullet \Rightarrow policy affects output on extensive and intensive margins
 - ullet \Rightarrow effect of money injection on $\mathbb{E} q$ is ambiguous

Liquidity trap with directed search: Example

- As in LPW, set $\chi_i=1$ and let buyers produce bad assets at 0 cost
 - all sellers recognize A_m (for simplicity)
 - but have cost κ to recognize A_b , where κ differs by seller
- Sellers' benefit of being informed is $\Delta = \Delta \left(z_m
 ight)$
- If $\alpha = prob$ (seller mtg) and $\theta =$ buyers' bargaining power, e.g.,

$$\Delta(z_m) = \frac{\alpha(1-\theta)}{\theta} \left[u \circ q_2(z_m) - u \circ q_m(z_m) - z_b \right].$$

- Measure of informed sellers n₂ = F ο Δ (z_m) = N (z_m) defines IA curve
- Euler eqn for buyers defines RB curve $z_m = Z(n_2)$
- Both slope down \Rightarrow multiplicity
 - higher $z_m \Rightarrow$ fewer sellers invest in information
 - higher $n_2 \Rightarrow$ buyers hold less real money balances
- Paper derives clean comparative statics despite multiple equil and endogenous α's

OMO money injection w/ endog acceptability

- As in LRW, buyers in CM can produce bad assets at costs $\beta\gamma_m z_m$ and $\beta\gamma_b z_b$
- Set $\alpha_2 > 0 = \alpha_m = \alpha_b$ (for now) and $\theta = 1$ as in std signalling theory
- Let p_m and p_b be real money and bond payments
- IC for money:

• IC for bonds is similar

- Sellers' IR constraint at equality: $c(q) = p_m + p_b$
- Buyers' feasibility constraints: $p_m \leq z_m$ and $p_b \leq z_b$
- Buyers' IC: $p_m \leq \chi_m z_m$ and $p_b \leq \chi_b z_b$ where:

$$\chi_m = rac{\gamma_m - \iota}{lpha}$$
 and $\chi_b = rac{\gamma_b - s}{lpha}$

- NB: χ_j depends on cost γ_j , policy ι and market spread s
- Paper delivers clean comparative statics despite multiple equil and endogenous $\chi{\rm 's}$

Types of equilibria in an example

OMO money injection w/ endog pledgeability

- New Monetarist theory used to analyze monetary policy:
 - money and bonds differing in liquidity, grounded in information theory
 - robust across environments
- The model can generate negative nominal interest, liquidity traps, sluggish prices and multiplicity
- Take Away: printing money and buying T-bills is a bad idea
- It's probably worse with LR bonds (Quantitative Easing)

- Bonds either have or do not have liquidity value:
 - if they don't then OMO's (and QE) are irrelevant
 - if they do then the Fed has it all wrong
- What is the effect on *M* on *P*? III posed.
 - Quantity eqn holds for transfers but not OMO's
- What is the effect of π on the nominal rate? III posed.
 - Fisher eqn holds for ι but not ρ .
- It is not so easy to check Quantity and Fisher eqns in the data!