Introduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix
000	00000	00000	0000000	00	00	00000

CREDIT SEARCH AND CREDIT CYCLES

Feng Dong Pengfei Wang Yi Wen

Shanghai Jiao Tong U Hong Kong U Science and Tech STL Fed & Tsinghua U

May 2015

The usual disclaim applies.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Introduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix		
•00	00000	00000		00	00	00000		
Motivation								

- The supply and demand are not always well aligned and matched in our real life.
 - labor, finance, monetary, etc.
 - credit.
- Data pattern:
 - excess reserve-to-deposit ratio Data
 - interest spread Data
- Austrian school and many others: credit supply and financial intermediation plays a critical role in generating and amplifying the business cycle.

Introduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix
○●○	00000	00000		00	00	00000
			Preview			

- This paper provides a framework to rationalize the Austrian theory and the observed credit cycles.
- We develop a search-based theory of credit allocation.
- Credit search can lead to endogenous increasing returns to scale and variable capital utilization,
 - even in a model with constant returns to scale production technology and matching functions.
 - a micro-foundation for the indeterminacy literature of Benhabib and Farmer (1994) and Wen (1998).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix
00●	00000	00000		00	00	00000
			Intuition			

• Prevalence of and the essential role played by intermediation.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- people carry money but no investment opportunity.
- investors carry investment projects but no money.
- Intuition:
 - Amplification.
 - Propagation.
 - Sunspot.

Introduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix
000	●○○○○	00000		00	00	00000
			Setup			

- Continuous time; infinite horizon.
- Players:
 - a representative household (HH).
 - unit measure of workers/depositors.
 - a representative and perfectly competitive bank (FI).
 - unit measure of loan officers.
 - intermediation between HH and firms.
 - firms.
 - free entry into credit market by paying a fixed cost.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Household and Deposit Search (I)

• The constrained optimization by HH:

$$\max \mathbb{E}\left\{\int_{0}^{+\infty} e^{-\rho t} \left[log\left(C_{t}\right) - \psi \frac{N_{t}^{1+\xi}}{1+\xi} \right] \right\}$$

subject to

 $C_t + \dot{S}_t = W_t N_t + e R_t^d S_t - \delta(e) S_t + (\text{profits from banks and firms})_t$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $e \in [0,1]$: the proportion of savings transferred to deposit,
- $\delta(e)$: the convex "depreciation" function w.r.t. e.

Household and Deposit Search (II)

- We use household's deposit search to rationalize $\delta(e)$.
- Denote *x* as the search effort by household such that
 - cost: $\delta = \phi^H x_t$,
 - benefit: e_t part of savings successfully transferred to deposit,

$$e(x_t) = M^H(x_t H, B),$$

- *H*,*B*: measure of household and bank officers,
- *e* is concave in *x* and thus δ is convex in *e*.

Bank, Firms and Loan Search (I)

• Matching between loan officers and firms:

$$q \equiv \frac{M(B,V)}{V} = M(\theta,1),$$
$$u \equiv \frac{M(B,V)}{B} = M\left(1,\frac{1}{\theta}\right).$$

• Banks are fully competitive:

$$R_t^d = u_t \cdot R_t^l$$

• Given matched, the total surplus is

$$\Pi_t = \max_{n_t \ge 0} \left\{ A_t \widetilde{S}_t^{\alpha} n_t^{1-\alpha} - W_t n_t \right\} \equiv \pi_t \widetilde{S}_t.$$

•
$$S_t = e_t S_t$$
.

~

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Bank, Firms and Loan Search (II)

• Bargaining: $(\eta, 1 - \eta)$, firm vs bank.

$$R_t^l = (1 - \eta) \, \pi_t.$$

• Firm's free entry condition into the credit market:

$$\phi_t = q_t \eta \Pi_t = q_t \eta \pi_t \widetilde{S}_t.$$

• Aggregate profit to the household:

$$\operatorname{profit}_{t} = \underbrace{\left(-R_{t}^{d} + u_{t}R_{t}^{l}\right)\widetilde{S}_{t}}_{\operatorname{profit from banks}} + \underbrace{\left(-\phi_{t} + q_{t}\eta\Pi_{t}\right)V_{t}}_{\operatorname{profit from firms}} = 0.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix
000	00000	0000	0000000	00	00	00000

Equilibrium (I)

• Given
$$(e_t, u_t, A_t, S_t, N_t)$$
,

$$Y_t = A_t \left(e_t u_t S_t \right)^{\alpha} N_t^{1-\alpha}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Feedback:

• If
$$M^H(xH,B) = \gamma_H(x_tH)^{\varepsilon_H} B^{1-\varepsilon_H}$$
, then
 $e_t \propto \left(\frac{Y_t}{S_t}\right)^{\varepsilon_H}$.

• If
$$M(B, V) = \gamma B^{1-\varepsilon} V^{\varepsilon}$$
, then
 $u_t \propto Y_t^{\varepsilon}$.

Introduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix
000	00000	0000	0000000	00	00	00000

Equilibrium (II)

• Derivation on *e*:

$$\begin{split} \delta'\left(e\right) &= R^{d} = uR^{l} = u\left(1-\eta\right)\pi = u\left(1-\eta\right)\left(\alpha\frac{Y}{u\widetilde{S}}\right),\\ \widetilde{S} &= eS. \end{split}$$

• Derivation on *u*:

$$V = \left(\frac{B}{\theta}\right) = \frac{1}{\theta} = \left(\frac{u}{\gamma}\right)^{\frac{1}{\theta}}$$
$$\phi = q\eta\pi\widetilde{S} = q\eta\left[\alpha\left(\frac{Y}{Vq\widetilde{S}}\right)\right]\widetilde{S} = \frac{\alpha\eta Y}{V}.$$

・ロト・日本・日本・日本・日本・日本・日本

Equilibrium 00000

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Equilibrium (III)

• In equilibrium,

 $Y_t \propto A_t^{\tau} S_t^{\alpha_s} N_t^{\alpha_n}.$

where
$$\tau = \frac{1}{1-\alpha(\varepsilon+\varepsilon_H)}$$
, $\alpha_s = \alpha (1-\varepsilon_H) \tau$, $\alpha_n = (1-\alpha) \tau$.

• Increasing return to scale:

$$\alpha_s + \alpha_n = \frac{1 - \alpha \varepsilon_H}{1 - \alpha (\varepsilon + \varepsilon_H)} > 1.$$

• indeterminacy region:

- dual search is indispensable to sustain sunspot.

Introduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix
000	00000	00000	0000000	00	00	00000

Welfare (I)

• Under what condition does η maximize the HH's welfare, *i.e.*,

$$\Omega \equiv \max \mathbb{E} \left\{ \int_{0}^{+\infty} e^{-\rho t} \left[log(C_t) - \psi \frac{N_t^{1+\xi}}{1+\xi} \right] \right\}.$$

• Given
$$(S_t, N_t)$$
,

$$\eta^* = \operatorname*{arg\,max}_{\eta \in [0,1]} \left(\frac{Y_t^{DE}}{Y_t^{SP}} \right) = \frac{\varepsilon}{\varepsilon + \varepsilon_H}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Unlike the standard labor search, capital and labor supply is endogenous here.

• in steady state,
$$\underset{\eta \in [0,1]}{\operatorname{arg\,max}} \left(\frac{\Omega^{DE}}{\Omega^{SP}}\right) \neq \frac{\varepsilon}{\varepsilon + \varepsilon_H}$$
 in general.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Calibration

	14.0	
Parameter	Value	Description
ρ	0.01	Discount factor (quarterly)
A	1	Normalized aggregate productivity
α	0.33	Capital income share
Ψ	1.75	Coefficient of labor disutility
ξ	0.2	Inverse Frisch elasticity of labor supply
ϵ_H	0.82	Matching elasticity in 1st Stage Search
δ	0.04	Depreciation rate
η	0.187	Firm's bargaining power
ϕ	0.086	Vacancy cost to search for credit.
γ	0.797	Matching efficiency in 2nd stage search
ε	0.729	Matching elasticity in 2nd stage search

Table 1. Calibration

Comparative Statics: Productivity Shock

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Comparative Statics: Credit Shock

Impulse Response: Productivity Shock

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Impulse Response: Credit Shock

Introduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix
000	00000	00000	0000000	00	00	00000

Impulse Response: Sunspot Shock

▲□▶▲□▶▲□▶▲□▶ = つくで

Introduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix
000	00000	00000		00	00	00000

Impulse Response

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- A-shock, γ -shock and sunspot shock all imply:
 - procyclical credit utilization.
 - countercyclical interest spread.

- The baseline is a special case with J = 1.
- Amplification, propagation and the possibility of sunspot increases with *J*.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Introduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix
000	00000	00000	0000000	0•	00	00000

Long-Term Credit Relationship

- A strong assumption made so far.
 - credit relationship always terminates by the end of each period.
 - purely for analytical illustration.
- We relax this assumption to build a fully fledged DSGE model, and do more serous quantitative work
 - to address government policy like liquidity injection, etc.
 - to model banking heterogeneity, inter-banking lending, and macro-prudential policy, etc.

- Supply and demand do not necessarily equal to each other in real life.
 - not only true for labor, but also for credit markets.
- Motivated by the regulated data pattern, we develop a model
 - to show how demand and supply fails to equal each other by using credit search.
 - to show credit supply and financial intermediation plays a critical role in generating and amplifying the business cycle.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Introduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix
000	00000	00000		00	⊙●	00000

THANK YOU

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix
000	00000	00000	0000000	00	00	0000

Data: Excess Reserve

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix
000	00000	00000	000000	00	00	00000

Data: Interest Spread

|▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 = めのの

ntroduction	Model	Equilibrium	Quantitative Exercise	Extension	Conclusion	Appendix
00	00000	00000	000000	00	00	00000

An Incomplete Sample of Literature

• Self-fulfilling Business Cycles

- sunspot: Cass and Shell (1983), etc.
- production externality and indeterminacy: Benhabib and Farmer (1994) and Wen (1998), etc.
- credit market frictions: Gertler and Kiyotaki (2014), Azariadis, Kaas and Wen (2014), and Benhabib, Dong and Wang (2014), etc.
- Search Frictions in Business Cycles
 - labor: Merz (1995), Andolfatto (1996), Shimer (2005), etc.
 - credit: Den Haan, Ramey and Waston (2003), Wasmer and Weil (2004), Petrosky-Nadeau and Wasmer (2013), etc.

• Empirics on Credit Allocation

• Contessi, DiCecio and Francis (2015), etc.

Indeterminacy Analysis (I)

• We have

$$\begin{bmatrix} \dot{s}_t \\ \dot{c}_t \end{bmatrix} = J \cdot \begin{bmatrix} \widehat{s}_t \\ \widehat{c}_t \end{bmatrix},$$

• Indeterminacy emerges, *i.e.*, Trace(*J*) < 0, and Det(*J*) > 0 if and only if

$$\varepsilon_H + \varepsilon > \left(\frac{1}{\alpha}\right) \left(\frac{\alpha + \xi}{1 + \xi}\right) > 1.$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Return

Indeterminacy Analysis (II)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで