1/29

Government Debt and Banking Fragility: The Spreading of Strategic Uncertainty

Russell Cooper* Kalin Nikolov**

*Pennsylvania State University

**European Central Bank

15 May 2015

Motivation

- Bank-Sovereign linkages have been important in the EA Sovereign Debt Crisis
- Termed Diabolic Loop, Doom Loop, Deadly Embrace
- Belief that banks and sovereigns are dragging one another deeper into insolvency
- Our aim is to understand why these linkages exist ...
- ... and look for some simple remedies

The Diabolic Loop

Source: JPMorgan Chase.

Figure: Credit Default Swaps $(\bigcirc) (\odot)$

3 / 29

イロン イロン イヨン イヨン 三日

4 / 29

Questions

- How does the 'diabolic loop' linking debt and financial fragility operate?
- Can we avoid it?

The Diabolic Loop: a Short Summary

- Pessimism reduces value of debt
- banks lose valuable liquid wealth
- government bail out
- likelihood of default increases
- reduces value of debt ...

Can we avoid it?

- Yes if banks issue equity or if no government bailout
- Government cannot commit not to bail out ex post
- ... so banks do not issue equity (zero weight in Basel)
- (If government could commit, banks would issue equity)
- Diabolic Loop alive and well!!

Approach

- Diamond-Dybvig Banks + Calvo Debt Uncertainty
- General Equilibrium Model, Three periods
- Agents: households, investors, government
- Shocks
 - Pricing of Government Debt: Sunspots
 - Fundamentals: Government Finance, Long Term Investment

Related Literature: Sovereign Default and Banks

Bank bond holdings as microfoundation for default costs

• Gennaioli, Martin and Rossi (2013)

Models of the 'diabolic loop'

- Acharya, Drechsler and Schnabl (2013)
- Uhlig (2013)
- Bronner, Erce, Martin and Ventura (2013)
- Leonello (2013)
- Farhi and Tirole (2014)
- Bocola (2014)

Empirical evidence on sovereign-banking linkages

• Battistani, Pagano and Simonelli (2013)

(人間) シスヨン スヨン

Our emphasis

- Multiple equilibria as a source of sovereign crises
- Equity buffers as potential loss absorbers
- Banks' absence of incentives to issue equity

Households

- as in Diamond-Dybvig framework
- risk averse
- idiosyncratic liquidity needs
- deposit endowment in bank

nvestors

- risk neutral
- discount future consumption at $\frac{1}{R}$
- endowment A_t in period t = 0, 1, 2.
- A₂ is government tax base, includes costly default (γ) and intermediation breakdown (ψ)

$$A_2 = \overline{A}(1 - \psi \mathbb{1}\{B\})(1 - \gamma \mathbb{1}\{G\}).$$

Households

- as in Diamond-Dybvig framework
- risk averse
- idiosyncratic liquidity needs
- deposit endowment in bank

Investors

- risk neutral
- discount future consumption at $\frac{1}{R}$
- endowment A_t in period t = 0, 1, 2.
- A_2 is government tax base, includes costly default (γ) and intermediation breakdown (ψ)

$$A_2 = \bar{A}(1 - \psi \mathbb{1}\{B\})(1 - \gamma \mathbb{1}\{G\}).$$

うくで 9/29

(1)

Banks

- DD: competitive, contracting environment in period 0 determines
 - consumption profile: (c^E(s), c^L(s)) contingent on sunspot shock s
 - portfolio of two-period government debt and illiquid investment: b₀, i₀ - funded with deposits from households and equity from investors
 - government debt can be traded in the middle date so liquid
 - illiquid investment yields R>1 in two periods, ε liquidation value
- Period 1: provide c^E(s), sell debt and/or liquidate LR project if needed
- Period 2: provide c^L(s) from assets, pay dividends δ₂(s) to investors

Optimal Contract

$$\max E[\pi u\left(c^{E}(s)\right) + (1 - \pi) u\left(c^{L}(s)\right)]$$
(2)

such that

$$i_0 + q_0 b_0 \le d + x_0 \tag{3}$$

$$\pi c^{E}(s) \leq q_{1}(s) \left(b_{0} - b_{1}(s) \right) + \varepsilon l_{1}(s) \forall s$$

$$(4)$$

$$(1-\pi) c^{L}(s) \leq b_{1}(s) + R(i_{0} - l_{1}(s)) - \delta_{2}(s) \forall s$$
 (5)

$$\mathsf{E}\delta_2(s) \ge \mathsf{R}\mathsf{x}_0. \tag{6}$$

Government

- sells two-period debt in period 0, B_0 , at price q_0
- sells one-period debt in period 1 at price q₁: finance G₁ and support banks if needed
- period 2 tax rate satisfies:

$$\tau = \frac{B_1}{A_2}.$$

Sovereign Default

- stochastic tax capacity: $ilde{ au} \sim {\sf F}(\cdot)$
- no strategic default repay if possible: $\tilde{ au} \geq \frac{B_1}{A_2}$,
- default otherwise: probability $F(\frac{B_1}{A_2})$

Period 1 Pricing of Debt

• Arbitrage by Risk Neutral Investors implies:

$$\underbrace{\frac{1 - F\left(\frac{B_1}{A_2}\right)}{R}}_{R} = q_1$$
(7)

(ロ) (四) (三) (三) (三)

- R is discount rate of investor
- determines q_1 given (B_1) .

Optimistic Equilibrium: First-Best Allocation

- assume no default solves (7)
- assume sunspots do not affect equilibrium
- bank contract independent of strategic uncertainty
- no liquidations

Proposition

In the optimal banking contract with $q_0 = q_1 = \frac{1}{R}$: (i) $c^{*L} > c^{*E}$ and (ii) $l_1 = 0$.

Markets Clear

• First-Best Allocation: defines investor Pareto weight ω such that $u'(c^{*E}) = \omega$

Optimistic Equilibrium: First-Best Allocation

- assume no default solves (7)
- assume sunspots do not affect equilibrium
- bank contract independent of strategic uncertainty
- no liquidations

Proposition

In the optimal banking contract with $q_0 = q_1 = \frac{1}{R}$: (i) $c^{*L} > c^{*E}$ and (ii) $l_1 = 0$.

- Markets Clear
- First-Best Allocation: defines investor Pareto weight ω such that u'(c*^E) = ω

15/29

Debt Fragility

• multiplicity through debt pricing as in Calvo (1988)

$$B_1 = B_0 + G_1/q_1 \tag{8}$$

イロン イロン イヨン イヨン 三日

• investors price debt in period 1:

$$1 - F\left(\frac{B_0 + G_1/q_1}{\bar{A}(1 - \psi \mathbb{1}\{B\})}\right) = Rq_1.$$
(9)

• fragility from multiple solutions to (9)

How can the bank deal with strategic uncertainty?

- Debt is needed for liquidity but it is risky
- Optimal for risk-neutral investors to absorb the risk
- Private solution: bank sells equity claims to investors
- Public solution: government bails out the bank under pessimism

Private Solution: Equity as a Buffer

- equity can be issued to investors ex ante
- use proceeds to purchase enough bonds to pay early depositors under pessimism
- equity yields dividends if optimism, nothing otherwise
- expected return equal to R so attractive to investors
- fully insures depositors against pessimism
- no link between sovereign and the banks

Proposition

Selling equity to investors at t = 0 implements the first-best contract.

Public Solution: Government Bailout

- No equity, bonds enough to pay early types under optimism
- Under pessimism, period 1 debt price falls to $\widehat{q}_1 < q_1^*$
- Bank insolvent, requires a bailout
- Debt buyback: $\mathcal{T}_1(q_1)=(q_1^*-\hat{q}_1)b_0$

Closing the Sovereign-Bank Loop

• Bailout affects Debt Valuation:

$$1 - F\left(\frac{B_0 + G_1/q_1 + T_1(q_1)/q_1}{A_2}\right) = Rq_1$$
 (10)

- Banking contract protected but probability of sovereign default is amplified - Diabolic loop!!
- Welfare dominated due of deadweight costs of default

Pessimism

Nash Equilibria

Figure: Fiscal Fragility: The Impact of $T(q_1)$

The solid curve displays the case in which $T(q_1) \equiv 0$. The dashed curve allows $T(q_1) > 0$.

The Diabolic Loop as a SPNE

- Two-Stage Game
- Banks: jointly choose size of government debt holdings and level of equity
- Two alternatives for the Government
- Discretion: chooses whether to bailout or not ex post
- Commitment: chooses whether to bailout or not ex ante
- Study a sub-game Perfect Nash Equilibrium with Sunspots

Outcome depends on commitment power

- Commitment: equity issued and no bailout (no linkage)
- Discretion: no equity issued, government bailout ex post (loop alive and well!!)

The banking contract with expected bailouts and no equity

$$\max_{b_0, i_0, L_1, b_1, c^E, c^L} \pi u\left(c^E\right) + (1 - \pi) u\left(c^L\right)$$

such that

$$i_{0} + q_{0}b_{0} \leq d$$

$$\pi c^{E} = q_{1}^{*}(b_{0} - b_{1}) - L_{1}$$
(11)

$$(1-\pi) c^{L} = Ri_{0} + b_{1} + r^{b} L_{1}.$$
(12)

No equity and maximum debt holdings

- bailout anticipated then NO equity and very large government debt holdings
- Bank earns a DI subsidy from sovereign bond holdings
- 'Rebated' back to the government in the form of higher q_0

$$q_0 = \frac{1}{R} > \nu \frac{1}{R} + (1 - \nu) \frac{p}{R}$$
(13)

イロト 不得下 イヨト イヨト 二日

Proposition

The optimal contract under the debt buyback scheme features maximum bank exposure to strategic uncertainty from the government debt market: (i) banks hold all the government debt (ii) no equity is issued voluntarily (iii) first best contract offered.

But will a bailout be provided?

- Calculate expected welfare with and without bailout given pessimism
- Banking contract optimal on the basis of expected bailout
- Find conditions such that bailout is indeed provided ex post

Bank Resolution Regime

- Important what happens when banks fail
- Assume orderly resolution, no bank runs
- Optimally 'haircut' all depositors: \hat{c}^E and \hat{c}^L
- $\bullet\,$ Real costs too ψ fraction of investors' endowment is lost

Social welfare with and without a bailout

$$W^{BB} - W^{NB}$$

$$= \pi \left[u \left(c^{*E} \right) - u \left(\hat{c}^{E} \right) \right] + (1 - \pi) \left[u \left(c^{*L} \right) - u \left(\hat{c}^{L} \right) \right]$$

$$= \omega \left(\frac{1}{R} - q_{1}^{NB} \right) B_{0}^{B}$$

$$= \frac{\omega}{R} \left[\left(p^{BB} - p^{NB} \right) \gamma + \psi \right] \bar{A}.$$

$$(14)$$

• Key terms

- Insuring depositors vs tax costs
- Difference in expected govt default costs
- Bank default costs when no bailout

Protecting depositors vs Tax costs

• Gains from redistribution

$$\pi \left[u\left(c^{*E}\right) - u\left(\hat{c}^{E}\right) \right] + (1 - \pi) \left[u\left(c^{*L}\right) - u\left(\hat{c}^{L}\right) \right] - \omega \left(\frac{1}{R} - q_{1}^{NB}\right) B_{0}^{B}$$
(15)

Rewrite as:

$$\pi \left[u\left(c^{*E}\right) - u\left(\hat{c}^{E}\right) \right] + (1 - \pi) \left[u\left(c^{*L}\right) - u\left(\hat{c}^{L}\right) \right] - u'\left(c^{*E}\right) \left(\pi [c^{*E} - \hat{c}^{E}] + (1 - \pi) [\frac{c^{*L} - \hat{c}^{L}}{R}] \right)$$
(16)

- Always positive due to concavity of utility
- Gains from bailout even greater if bank failure leads to runs and inefficient liquidations

26 / 29

Protecting banks vs Default costs

• DI saves bank breakdown costs but greater default risk

$$\left(\boldsymbol{p}^{DI}-\boldsymbol{p}^{NI}\right)\boldsymbol{\gamma}+\boldsymbol{\psi}>\boldsymbol{0}. \tag{17}$$

Will a bailout be provided?

Proposition

The government will bailout the banks when ψ is large and γ is small. There will exist a SPNE with a government debt buyback at a price of $q_1^T = \frac{1}{R}$ in the pessimistic sunspot state. The first best banking contract will be offered to households and no equity will be issued. Banks will buy all the government debt at t = 0.

Commitment

- A **committed government** chooses whether to bail out ex ante and sticks to its decision.
- The unique SPNE: Government does not bail the banks out. Banks offer the first best contract and self-insure through equity issuance.
- Pessimism sunspots occur but banking system immune

Intuition

- Insurance through bailouts is inefficient because of higher expected default costs.
- Insurance through equity issuance is preferred by committed government

Conclusions

- 'Diabolic loop' will exist as long as government debt has a zero risk weight and bank failure is costly
- Government debt is risky due to fundamental/strategic uncertainty
- Banks hold too much risky government debt when bailout expectations are high
- Governments bails out banks ex post: debt crisis magnified
- Voluntary equity issuance can (but will not) break the loop as long as bailout anticipated
- Remedies: (i) Positive risk weight on government debt and (ii) Better bank resolution mechanisms