Summary of Paper	Model and Results	Comments	RBC Model with Distribution Shocks

Discussion of "Hysteresis in Unemployment and Jobless Recoveries" by D. Plotnikov

Kevin J. Lansing¹ Federal Reserve Bank of San Francisco

Multiple Equilibria and Financial Crises May 15, 2015

 $^{^1}$ Any opinions expressed here do not necessarily reflect the views of the management of the Federal Reserve Bank of San Francisco or of the Board of Governors of the Federal Reserve System

Summary:

- Agents either work or search for work: Don't care about leisure. Negative externality as firms search harder for workers.
- Model introduces a persistent "belief shock" to c_t/w_t ratio in place of labor-leisure tradeoff.
- Steady state does not pin down c_t / w_t ⇒ continuum of steady state employment rates.
- Persistent belief shock \Rightarrow persistent shift in $c_t/w_t \Rightarrow$ persistent shift in employment.

Summary of Paper	Model and Results	Comments	RBC Model with Distribution Shocks
O	●	O	
Basic setup of	model		

Standard part:

$$\frac{1}{c_t} = \beta E_t \left\{ \frac{1}{c_{t+1}} \left[r_{t+1} + 1 - \delta \right] \right\}$$

$$c_t + \underbrace{k_{t+1} - (1 - \delta) k_t}_{i_t} = \underbrace{r_t k_t + w_t \ell_t}_{y_t}, \qquad \begin{aligned} r_t &= \frac{\partial y_t}{\partial k_t} \\ w_t &= \frac{\partial y_t}{\partial \ell_t} \end{aligned}$$

5

12.

Non-standard part:

$$c_{t} = \phi \begin{bmatrix} \frac{y_{t}^{p}}{w_{t}} \end{bmatrix} w_{t}, \qquad (\phi \equiv c_{ss} / y_{ss})$$
$$\begin{bmatrix} \frac{y_{t}^{p}}{w_{t}} \end{bmatrix} = \begin{bmatrix} \frac{y_{t-1}^{p}}{w_{t-1}} \end{bmatrix}^{0.95} \begin{bmatrix} \frac{y_{t}}{w_{t}} \end{bmatrix}^{0.05} \exp\left(\varepsilon_{t}^{b}\right), \qquad \text{persistent belief shock}$$

Summary of Paper	Model and Results	Comments	RBC Model with Distribution Shocks
O	●	O	
Basic setup	of model		

Standard part:

$$\frac{1}{c_t} = \beta E_t \left\{ \frac{1}{c_{t+1}} \left[r_{t+1} + 1 - \delta \right] \right\}$$

 $c_t + \underbrace{k_{t+1} - (1 - \delta) k_t}_{i_t} = \underbrace{r_t k_t + w_t \ell_t}_{y_t},$

$$r_t = \frac{\partial y_t}{\partial k_t}$$
$$w_t = \frac{\partial y_t}{\partial \ell_t}$$

Non-standard part:

$$c_{t} = \phi \left[\frac{y_{t}^{p}}{w_{t}} \right] w_{t}, \qquad (\phi \equiv c_{ss} / y_{ss})$$
$$\left[\frac{y_{t}^{p}}{w_{t}} \right] = \left[\frac{y_{t-1}^{p}}{w_{t-1}} \right]^{0.95} \left[\frac{y_{t}}{w_{t}} \right]^{0.05} \exp\left(\varepsilon_{t}^{b} \right), \qquad \text{persistent belief shock}$$

Hansen (1985):

$$c_t = \frac{1}{B} w_t$$
, $B =$ marginal disutility of labor

Summary of Paper	Model and Results	Comments	RBC Model with Distribution Shocks
O	O	•	
Comments			

• Aside from search externality,

Plotnikov (2015) \simeq Hansen (1985) + Persistent shock to $\frac{1}{B}$.

Summary of Paper O	Model and Results O	Comments •	RBC Model with Distribution Shocks
Comments			

- Aside from search externality, Plotnikov (2015) \simeq Hansen (1985) + Persistent shock to $\frac{1}{R}$.
- Simulations compare a two-shock model (Plotnikov) to a one-shock model (Hansen). Also, productivity shock is mean-reverting rather than a unit root, so there are no permanent shocks in Hansen model.

Summary of Paper O	Model and Results O	Comments •	RBC Model with Distribution Shocks
Comments			

- Aside from search externality, Plotnikov (2015) \simeq Hansen (1985) + Persistent shock to $\frac{1}{R}$.
- Simulations compare a two-shock model (Plotnikov) to a one-shock model (Hansen). Also, productivity shock is mean-reverting rather than a unit root, so there are no permanent shocks in Hansen model.
- Is there some independent evidence (e.g., from Consumer Expenditure Survey) to support the belief shock formulation? Are consumption expenditures really a long moving average of past incomes?

Summary of Paper O	Model and Results O	Comments •	RBC Model with Distribution Shocks
Comments			

- Aside from search externality, Plotnikov (2015) \simeq Hansen (1985) + Persistent shock to $\frac{1}{R}$.
- Simulations compare a two-shock model (Plotnikov) to a one-shock model (Hansen). Also, productivity shock is mean-reverting rather than a unit root, so there are no permanent shocks in Hansen model.
- Is there some independent evidence (e.g., from Consumer Expenditure Survey) to support the belief shock formulation? Are consumption expenditures really a long moving average of past incomes?
- Other types of fundamental shocks could account for sluggish employment recoveries, e.g., distribution shocks.

Capital share = 1 - employee compensation/gross value-added of corporate bus. sector.

Summary of Paper Simple Two-Shock RBC Model See Lansing (2015 AEJ-Macro, f.) and Lansing & Markiewicz (FRBSF WP 2012-23).

Capital Owners:

$$\max E_0 \sum_{t=0}^{\infty} \beta^t \log \left(c_t^c\right), \quad c_t^c + k_{t+1} - \left(1 - \delta\right) k_t = r_t k_t$$

Workers:

$$\max E_0 \sum_{t=0}^{\infty} \beta^t \log \left[c_t^w - B \exp \left(\overline{z}_t \right) \ell_t^\gamma \right], \quad c_t^w = w_t \ell_t$$
$$\overline{z}_t = \overline{z}_t + \mu, \quad (\gamma - 1)^{-1} = 10.$$

Production:

$$y_t = Ak_t^{ heta_t} \left[\exp\left(z_t\right) n \ell_t
ight]^{1- heta_t}$$
, $n = 4$,

 z_t = productivity shock (choose to match y_t series in U.S. data).

 θ_t = distribution shock (take directly from U.S. data).

$$\ell_t = \left\{ \frac{A(1-\theta_t)}{B\gamma} \left[\frac{k_t}{\exp(z_t)n} \right]^{\theta_t} \exp\left(z_t - \overline{z}_t\right) \right\}^{\frac{1}{\gamma+\theta_t-1}} \quad \text{(decision rule)}.$$

