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Abstract

Discrete events, such as transitions between jobs, often induce changes in wages that can
be quite large, highly persistent, and largely uninsurable, effectively exposing labor market
participants to idiosyncratic tail risk. The nature of these events is highly cyclical; transi-
tions are more likely to be favorable if they occur during expansions relative to recessions.
In incomplete markets, agents require a premium to invest in assets which underperform
when labor market event risk is high, a feature absent from leading asset pricing models. I
provide new empirical evidence on the plausibility of event risk in explaining the shape of
the idiosyncratic distribution of income growth rates and its evolution over time. Next, I
formalize its role within a general affine, jump-diffusion asset pricing framework with het-
erogeneous agents and incomplete markets, making my results immediately applicable to a
wide class of existing models for aggregate dynamics. In addition, I propose a model where
agents are exposed to a small, time-varying probability of experiencing a rare, idiosyncratic
disaster. The model, whose key parameters are calibrated to new data on the cross-sectional
distribution of labor income, quantitatively matches the level and dynamics of the equity
premium. Consistent with the model’s predictions, initial claims for unemployment, suitably
normalized, is a highly robust predictor of returns, outperforming a number of conventional
predictors, including the dividend yield.
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1 Introduction

Tail events can play an important role in determining asset prices despite their relative infre-

quency. One potential resolution to the equity premium puzzle, first suggested by Rietz (1988)

and Barro (2006), is to incorporate rare disasters–a small probability of an extremely large drop

in aggregate consumption. This additional risk exposure reconciles the high expected excess re-

turn on stocks with the relatively small covariance between stocks and aggregate consumption.

Extensions which allow for a time-varying disaster probability and/or magnitude can reproduce

salient features of levels and dynamics of risk premia.1 However, a primary critique is that the

parameters of these models governing the probability and magnitudes of disasters are challenging

to estimate given the length of the time series of available data.2

This paper considers an economic environment where tail events are cross-sectional, rather

than aggregate phenomena. Labor income is risky, virtually uninsurable, and quantitatively

important–comprising the largest single component of aggregate consumption. A growing body

of empirical literature suggests that workers face a substantial amount of idiosyncratic labor

income risk.3 Much of this literature stresses the importance of labor market transitions in

explaining the large amount of variability in labor income. One strand focuses on job displace-

ment risk–large, highly persistent, and uninsurable declines in income which are often linked to

the extensive margin.4 These events resemble rare but idiosyncratic disasters, since they need

not be accompanied by large declines in aggregate consumption or output.5 Also important

are situations where a worker voluntarily switches jobs, presumably because she receives a bet-

ter outside offer. Both types of “idiosyncratic tail events” can result in large, persistent, and

uninsurable changes in income. Thus, they can have disproportionate impacts on welfare even

though their realizations only hit a small fraction of households each period.

When markets are incomplete, investors are willing to pay a premium to hedge against states

where labor market event risk is high. This paper makes a case for state-dependent, idiosyncratic

1See, e.g. Gourio (2012), Gourio (2013), Gabaix (2012), Wachter (2013), Tsai and Wachter (2013).
2See e.g. Julliard and Ghosh (2012).
3Standard moral hazard arguments suggest that insurance markets for idiosyncratic labor productivity shocks

are unlikely to function well.
4Losing a job is often associated with both temporary and permanent losses in income. Unemployment

insurance can act as a hedge against the former, but not the latter, type of risk. As such, the job displacement
literature focuses on the long-term earnings losses that persist even after a worker has found a new job. See Krebs
(2007) for a survey of the job displacement literature and a quantitative examination of its role in calculating the
welfare costs of business cycles.

5For example, Guvenen, Ozkan, and Song (2013), report that from 2007-2009, average annual wages declined
by 6.5%. Over the same period, the median worker experienced essentially no change in income (an increase of
0.1%), while ten percent of workers suffered a decline of 60 (log) percentage points or more.
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tail risk as a key driver of the dynamics of risk premia at business cycle frequencies. Agents

strongly dislike recessions because, as the economy contracts, the left tail of the cross-sectional

distribution of consumption growth becomes fatter and the right tail becomes thinner. Job

displacement events loom larger and lucrative outside offers dry up. Since stock prices fall and

uncertainty rises in recessions, stocks are a bad hedge against this source of risk, which can lead

to a large and countercyclical equity premium.

I propose and test a number of implications of a model where predictable changes in idiosyncratic

tail risk induce predictable changes in risk premia. First, I provide empirical evidence of state-

dependence in the conditional tails of the cross-sectional distribution of labor income growth

rates. Unlike aggregate tail events, for which the data are necessarily limited, idiosyncratic tail

events occur every period. My analysis builds upon statistics from Guvenen, Ozkan, and Song

(2014c, hereafter “GOS”) which are calculated from panel administrative earnings data. While

the center of the earnings growth distribution is relatively insensitive to the business cycle, the

tails are highly responsive. My estimates also suggest that changes in aggregate wages are far

from equally spread across agents; instead, they appear to be primarily driven by changes in the

tails of the cross-sectional distribution.

I develop a method which allows me to estimate the higher frequency (quarterly) dynamics of

idiosyncratic risk from cross-sectional moments measured at lower frequencies. Using this mixed-

frequency approach, I extract an empirical proxy for the conditional skewness of the idiosyncratic

income growth distribution from a large cross section of macroeconomic and financial time series.

This procedure yields a quarterly index capturing the level of idiosyncratic risk at a point in

time. My idiosyncratic risk index is highly persistent and cyclical, and it exhibits substantial

time series variation, even in periods without recessions.

Second, I propose a tractable asset pricing framework which integrates heterogeneous agents,

incomplete markets, and state-dependent cross-sectional consumption moments into a Lucas

(1978) endowment economy. The key mechanism is that the shape of the distribution of id-

iosyncratic shocks to consumption growth is linked to aggregate state variables. I solve the

model with arbitrary, jump diffusion dynamics (stochastic volatility and time-varying, com-

pound Poisson jumps) for aggregate cash flows. Symmetrically, idiosyncratic shocks are allowed

to have state-dependent Gaussian and jump components. These idiosyncratic jump components

provide an analytically tractable way of capturing infrequent, large changes in consumption. In

the model, agents are ex-ante identical and ex-post heterogeneous, facing the same distribution

of idiosyncratic shocks at each point in time, which preserves the analytical tractability of a
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representative agent economy.6

To complement my solution for a fully-specified endowment-based model, I also derive an in-

tertemporal capital asset pricing (ICAPM) representation of the stochastic discount factor from

my incomplete markets economy, extending a recent contribution by Campbell et al. (2012).

This representation reveals that, in addition to several risk factors which also appear in repre-

sentative agent models, news about contemporaneous and future idiosyncratic risk are priced

risk factors. The contemporaneous covariance between returns and idiosyncratic risk measures

has received virtually all of the attention in the extant literature. The ICAPM model reveals

that, when the EIS > 1 and idiosyncratic risk is fairly persistent, news about future idiosyncratic

risk likely carries a substantially higher weight.

While I emphasize labor income throughout, my asset pricing framework provides a tractable

way of pricing risks associated with the redistribution of wealth more generally. These shocks

could also come from households’ idiosyncratic exposures to firms’ capital–e.g. private equity and

entrepreneurial investments. In my framework, redistribution risk varies over time and enters as

a priced state variable. Moreover, this incomplete markets mechanism, which is largely absent in

production-based asset pricing models, is likely to generate an amplified response to aggregate

shocks. If unfavorable redistributions become more likely when productivity is low and/or

uncertainty is high (e.g. because default risk is higher), the associated increase in discount rates

will affect firms’ incentives to invest.7

Third, I test one of the key implications of my incomplete markets model, namely that the equity

premium is high when labor market uncertainty is high. I demonstrate that initial claims for

unemployment, an observable proxy for labor market uncertainty, is a powerful, highly robust

predictor of broad market returns. Over the 1967-2012 sample–the period for which initial claims

data are available–initial claims outperforms a number of conventional state variables from the

literature on return predictability, including the dividend yield, the book-to-market ratio, the

earnings-price ratio, and the default yield. Moreover, initial claims is an even stronger predictor

of the excess return on the Fama and French (1993) small-minus-big portfolio. Using a semi-

parametric method, I show that stock returns are highly informative about future labor market

conditions, whereas they convey little information about aggregate consumption growth.

6This assumption was introduced in an asset pricing context by Constantinides and Duffie (1996) and is also
used in Krebs (2007, 2003), Constantinides (2002), Angeletos (2007), and Toda (2014a, 2014b).

7For example, a recent literature emphasizes the link between uncertainty and economic growth. In repre-
sentative agent models, uncertainty affects risk premia indirectly (e.g. by changing the distribution of aggregate
consumption. In my model, uncertainty has an additional, direct effect on preferences when it is liked with the
distribution of idiosyncratic shocks. Herskovic et al. (2014) make a similar argument.
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The novel mechanism is that agents are exposed to rare, idiosyncratic disasters, where the

idiosyncratic disaster probability is time-varying. In this section, I work with a fairly standard

specification for aggregate risk so as to highlight the amplification in risk premia associated with

incomplete markets.

Finally, I illustrate the quantitative importance of idiosyncratic tail risk in affecting the dynamics

of risk premia within a stylized model. The novel mechanism is that agents are exposed to rare,

idiosyncratic disasters, and the idiosyncratic disaster probability persistent and time-varying.

While the structure of the model resembles that of the Bansal and Yaron (2004) long-run risk

model, the state variables in my model are considerably less persistent and aggregate consump-

tion growth is essentially unpredictable. Risk premia are not driven by ultra-persistent state

dynamics; instead, the presence of idiosyncratic disaster risk and incomplete markets amplifies

the risk premium. My model, whose key parameters are disciplined by the data, matches a

number of key asset pricing moments reasonably well; the equity premium is large (6.5%) and

time-varying, and stock returns are excessively volatile.

Related Literature. This paper lies at the intersection of literatures in finance, macroe-

conomics, and labor economics. Mankiw (1986) first suggested uninsurable risk as an early

potential resolution to the equity premium puzzle. In representative agent models, aggregate

and individual agents’ consumption move in lockstep, so a 1% decline in consumption is equally

shared across agents. Mankiw’s (1986) model demonstrates that welfare and asset pricing im-

plications may be different if such a decline is concentrated, ex post, among a small fraction

of agents. My theoretical model embeds such a concentration mechanism within a dynamic

environment.

Constantinides and Duffie (1996) propose a tractable asset pricing model with uninsurable id-

iosyncratic risk, where the the variance of permanent, idiosyncratic shocks is state dependent.

Given arbitrary aggregate consumption and return processes, they construct an idiosyncratic

shock process which prices assets properly, leading them to conclude that the incomplete mar-

kets model places no testable restrictions on the joint behavior of aggregate consumption and

returns. Storesletten et al. (2004) provide evidence that the volatility of persistent shocks to

individuals’ wages is more volatile in contractions as compared with expansions, a phenomenon

often referred to as countercyclical cross-sectional volatility (“CCSV”).8

GOS, using a larger panel of income records from the Social Security Administration, find little

8Beginning with Storesletten et al. (2004), studies which use income data from the PSID tend to find evidence
of CCSV. See, e.g. Huggett and Kaplan (2013) for a recent example. This finding is not without controversy. For
example, Krebs (2007) argues that this result goes away if one allows for a time trend in idiosyncratic volatility.
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evidence of state-dependent volatility and argue that it is the skewness of the persistent income

shock distribution which varies over the business cycle. Their results are consistent with findings

of Davis and Von Wachter (2011) on the earnings losses for workers who lost jobs in mass layoff

events. Whereas Davis and Von Wachter (2011) emphasize earnings losses for relatively low

skilled workers, GOS’ results demonstrate that essentially all workers are exposed to cyclical

variation in skewness.9 My analysis builds heavily on calculations in GOS, and I discuss their

findings in greater detail in the next section of the paper. While I emphasize time-varying

skewness throughout, my general theoretical model allows for CCSV, and the intuition for how

CCSV affects risk premia is essentially identical to that discussed here.

Constantinides and Duffie (1996) and several related studies assume that agents have identical

CRRA preferences, so any amplification coming from incomplete markets must arise from a

contemporaneous correlation between the higher moments of the idiosyncratic shock distribution

and returns.10 They also tend to be static, seeking to explain the level of the equity premium.

Cochrane (2005, Ch. 21.2) surveys the early literature on asset pricing with incomplete markets

and argues that the time variation in the variance of idiosyncratic shocks would have to be

implausibly large in order to meaningfully affect the equity premium with moderate levels of

risk aversion. Such a correlation is particularly unlikely to arise in the data given that stock

returns tend to lead the business cycle, whereas labor markets tend to lag. In contrast with

returns, labor market indicators tend to be highly persistent.

While the implications of the static incomplete markets model have been relatively well-explored,

comparatively little work has explored dynamic implications. Toda (2014b) extends the incom-

plete markets model to a setting with recursive preferences and Markov dynamics.11 When

agents have Epstein and Zin (1989) preferences and a preference for the early resolution of un-

certainty, they are willing to pay a premium to hold assets whose returns hedge against bad

news about the distribution of consumption growth in future periods.

Bansal and Yaron (2004) demonstrated that, with these preferences, one can generate a large

equity premium if expected (aggregate) consumption growth has a highly persistent, mean-

reverting component and stochastic volatility. This central idea has led to a large and rapidly

9Davis and Von Wachter (2011) and Krebs (2007) provide an excellent discussion of earlier empirical results
on earnings losses associated with unemployment. Mckay and Papp (2012) present evidence from the PSID that
the variance of idiosyncratic income shocks increases when the unemployment rate is high. They can generate
such a result using a search-and-matching model with on-the-job search.

10See, e.g., Cogley (2002), Krebs (2003), Krebs (2007), and Storesletten et al. (2007)
11 Toda (2014b) establishes the existence and uniqueness of a competitive equilibrium when agents have general

recursive preferences and access to a menu of linear investment technologies. These investments are subject to
both aggregate and uninsurable, state-dependent idiosyncratic risk. Toda (2014a) shows how to embed this
mechanism within a production setting. See also De Santis (2005).
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growing family of long run risk models.12 Virtually all of these models assume that markets are

complete; therefore, the only source of priced risk is aggregate consumption. Direct estimation

can be quite challenging, as the key (highly persistent) state variables often must be filtered

from aggregate consumption data, which exhibit little autocorrelation.13 A similar mechanism

operates in models which generate large risk premia with persistent variation in the probability

or severity of experiencing a macroeconomic disaster.

My theoretical model also features long-run risks, and the intuition behind it is quite similar.

Moreover, my assumptions on aggregate cash flow dynamics are sufficiently general to encompass

the vast majority of models considered to-date. I allow for additional dimensions of priced risk

which do not affect the distribution of aggregate consumption. Quantitatively speaking, my

measures are persistent and highly correlated with valuation ratios. Beeler and Campbell (2012)

argue that the long-run risk model makes counterfactual predictions about the predicability of

aggregate consumption by the price-dividend ratio. I find that the price-dividend ratio has

substantial predictive content for my idiosyncratic risk index.

While I work within a reduced-form framework, theoretical motivations for cyclical variation in

labor market event risk are plentiful. Berk et al. (2010) and Lagakos and Ordoñez (2011) provide

examples where the optimal contract between workers and firms involves partial insurance; wages

optimally move less than one-for-one in response to productivity shocks.14 In Berk et al. (2010),

financial distress can cause this insurance to break down, disappearing completely if the contract

is terminated. Ex post, losses are highly concentrated among workers who switch jobs. If all

firms are more likely to be distressed in some states than others, the risk of large losses is time-

varying.15 Moreover, firms’ provision of partial insurance will imply that output declines by

more than wages in these bad states, causing firm profits to fall precisely when labor market

event risk is high.

12See, e.g. Bansal et al. (2012) for a discussion of multiple extensions of the long-run risk model.
13Bansal and Yaron (2004) write: “Shephard and Harvey (1990) show that in finite samples, it is very difficult

to distinguish between a purely i.i.d. process and one which incorporates a small persistent component. While
it is hard to distinguish econometrically between the two alternative processes, the asset pricing implications
are very different.” For example, the calibration proposed in Bansal et al. (2012) includes a stochastic volatility
process with a monthly autocorrelation of 0.999.

14Berk and Walden (2013) present a model with two types of agents in which labor market contracts enable
one type of agents to perfectly share idiosyncratic risks, concentrating all aggregate risk with the second group.
See also Guiso et al. (2005) for empirical evidence on risk-sharing via the labor market.

15The intuition from Shleifer and Vishny (1992) likely applies to the market for skilled labor (i.e. high-earners,
who are more likely to participate in financial markets). When a worker with substantial industry-specific knowl-
edge switches jobs, she will be most productive if she stays within the same industry. However, if the switch
occurs because her firm encounters financial distress, other firms in the same industry (who are best positioned
to productively use this knowledge) may also be constrained, lowering her wages at the next job.
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In the search-and-matching literature, which is too voluminous to survey here, virtually all of

the variation in workers’ labor income occurs when workers switch between jobs. Thus, any

changes in aggregate quantities from are fully concentrated among those who switch jobs. I also

present evidence of procyclical variation in the likelihood of receiving large, positive shocks. On-

the-job search models emphasize workers’ real option to increase future wages via future outside

offers. The exercise of these options is more lucrative in good times, fattening the right tail of

the income growth distribution. Thus, my reduced-form specification provides an approximate,

but tractable way of thinking about potential asset pricing implications of search frictions in

incomplete markets.

Kuehn et al. (2013) and Hall (2014) both discuss interactions between labor market search and

asset prices. Kuehn et al. (2013) propose a production-based asset pricing model with search

frictions and show that these frictions can endogenously generate rare disasters in the aggregate,

which helps to generate a large, time-varying equity premium. Unlike my framework, they

assume that a representative agent can pool income from employed and unemployed workers.16

Hall (2014) makes the broader argument that rises in discount rates should be associated with

increases in unemployment, because they affect firms’ incentives for creating new jobs. Both

papers provide evidence that the equity premium is forecastable using observable proxies for

market tightness, the key state variable in search-and-matching models.

Two contemporaneous working papers also study asset pricing implications of time-varying,

state-dependent risk. Both provide empirical analyses in support of the mechanism and calibrate

theoretical models, both of which are special cases of my general framework. Constantinides

and Ghosh (2014) use data from the consumer expenditure survey (CEX) to show that the

skewness of household consumption growth is cyclical, complementing earlier work by Brav et al.

(2002).17 They construct a stylized model where aggregate consumption and dividend growth

are i.i.d but the higher moments of household consumption growth are persistent and show that

it is capable of matching key asset pricing moments. They present qualitative evidence that

household skewness measures are priced in the cross-section, though the estimated risk prices

are statistically insignificant.

Herskovic et al. (2014) identify a common factor in the idiosyncratic volatility of firm-level shocks

and demonstrate that this common component is priced in the cross-section of stock returns.

16My results suggest, therefore, that potential feedback from search fractions could be substantially increased
when households are unable to insure against job loss.

17These empirical findings compliment mine, which are derived from the cross-sectional distribution of income
growth rates. While CEX consumption measures have a more direct link with the theory, they require the use
of much smaller sample sizes. Also, survey-based consumption measures are more susceptible to measurement
errors relative to administrative earnings data.
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They show that that this factor is correlated with measures of household income risk. Their

leading measure is the change in the dispersion (measured as the difference between the 90th

and 10th percentiles) of year-on-year income growth rates from GOS. Finally, they show that

they can replicate these cross-sectional patterns in a model where the volatility of idiosyncratic

consumption growth shocks is persistent and countercyclical.

A key difference between these two papers and mine is the way in which idiosyncratic risk is

modeled. I allow idiosyncratic shocks to be generated via an affine jump diffusion process. Her-

skovic et al. (2014) emphasize changes in second moments of idiosyncratic shocks; therefore, their

analysis is focused on the implications of persistent variation in CCSV. In the income process of

Constantinides and Ghosh (2014), the only source of the asymmetry is a small adjustment due

to Jensen’s inequality. Their idiosyncratic risk specification generates very little skewness, and

persistent variation in even moments is the primary source of time-varying risk premia in their

model. My process can generate arbitrarily high levels of skewness.

Moreover, my general solution clarifies the theoretical mechanisms at play. I show that the

asset pricing implications of time-varying idiosyncratic risk can be summarized by the time

series behavior of a cross-sectional certainty equivalent. Risk premia depend in part on the

covariance between returns and this certainty equivalent, which takes an analytically tractable

affine form. When the idiosyncratic risk distribution distribution is driven by a single state

variable, I can infer the time series dynamics of the certainty equivalent directly from the cross-

sectional moments of the data. This makes it possible to test qualitative predictions of the

model without needing to impose a specific functional form on the DGP of idiosyncratic shocks.

Relative to these papers, I also allow for a much richer specification of aggregate dynamics,

which enables me to study the interactions between aggregate and idiosyncratic risk factors. To

clarify the mechanics associated with time-varying idiosyncratic risk, I downplay these dynamics

in my quantitative model. However, such an extension is likely to be useful going forward, as

I find a tight link between the first moment and the tails of the cross-sectional income growth

distribution.

The remainder of the paper is organized as follows. I begin with some motivating evidence on

state-dependent tail risk and its evolution over time. Section 2 presents some nonparametric

results, while Section 3 describes the evolution of idiosyncratic risk over time. Sections 4 and

5 present and solves my general theoretical asset pricing model. Section 6 introduces my proxy

for labor market uncertainty and tests the key implication of my model for return predictability.

Section 7 presents my stylized, quantitative model, and Section 8 concludes.
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2 Motivating Evidence

In this section, I briefly review several key implications of statistics calculated by GOS, whose

calculations are used as the basis for my analysis. GOS report a number of statistics for the

cross-section of real income growth rates and demonstrate how these distributions evolve over

time. The key, highly robust result from their analysis is that the variance of idiosyncratic

shocks is almost acyclical, while there is quantitatively important cyclical variation in skew-

ness/asymmetry of the distribution. I highlight that this cyclical variation in asymmetry takes

a very particular form; while the center of the distribution is relatively insensitive to the business

cycle, its conditional tails are highly state-dependent.

GOS obtain a nationally representative sample of panel earnings records for 10% of males aged

25-60 in the U.S. population from the Social Security Administration (163 million total obser-

vations). The data provide uncapped (i.e. not top-coded), nominal annual earnings for each

individual from 1978-2011, which are adjusted to real terms using the personal consumption

expenditure deflator.18 My calculations rely upon a number of statistics from GOS about the

distribution of changes in log earnings at 1, 3, and 5-year horizons.

One obtains an intuitive measure of the asymmetry of a distribution by considering three con-

ditional quantiles. A robust measure of skewness is Kelley’s skewness, which is defined as
[Q90t−Q50t]−[Q50t−Q10t]

Q90t−Q10t
.19 The denominator is the distance between the 10th and 90th percentiles,

a measure of the overall spread of the distribution. GOS show that, over longer horizons, the

denominator is almost constant. The numerator splits Q90t − Q10t into two pieces. The first,

Q90t − Q50t, measures the width of the right tail, while the latter, Q50t − Q10t measures the

width of the left tail. In most cases, increases in the former distance are “good”, indicating a

higher likelihood of seeing large increases in wages. Increases in the latter distance indicate a

higher exposure to large declines in wages.20

Figure 1 shows the time series evolution of these spreads, for 1, 3, and 5 year trailing changes

in wages. These statistics pool all observations in their sample, giving a snapshot of the entire

cross-sectional distribution of wage changes across the U.S. population. As the economy moves

from an expansion to a recession, the left tail of the distribution (Q50 − Q10, in Panel A)

18 According to GOS, the earnings data “include wages and salaries, bonuses, and exercised stock options as
reported on the W-2 form (box 1).” See GOS for additional details about the data and sample selection criteria.

19An alternative name for this measure, which is more popular in the finance literature, is “conditional asym-
metry”. See, e.g., Ghysels et al. (2013).

20For example, a Kelly’s skewness of -20% implies that the left tail makes up 60% of the spread between the
10th and 90th percentiles, while the right tail contributes the remaining 40% of the distance.
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Panel A: Difference between 50th and 10th percentiles of trailing k year real income growth rate
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Panel B: Difference between 90th and 50th percentiles of trailing k year real income growth rate

 

 

1980 1985 1990 1995 2000 2005 2010
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
5 year

3 year

1 year

Figure 1: Dynamic evolution of the cross-section of income growth rates over time

Panel A plots the evolution of the distance between the 50th and 10th percentiles, a measure of the

width of the left tail, of the cross-sectional distribution of 1,3, and 5-year trailing real income growth

rates from the 10% sample of Social Security earnings records in GOS. Panel B reports the distance

between the 90th and 50th percentiles, a measure of the width of the right tail. Data are from GOS

Appendix Table A.13, which reports linearly detrended cross-sectional quantiles.
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expands, indicating an increased likelihood of experiencing large decreases in wages, while the

width of the right tail (Q90−Q50, in Panel B) shrinks. There are more big losers in recessions

and fewer big winners. Note that my use of trailing growth rates in the graphs means that the

long horizon measures will tend to lag the recession bars.

Table 1 summarizes a number of GOS’s results on the distribution of 5-year wage changes, which

control for cohort and life-cycle fixed effects and individuals’ previous earnings.21 For each year in

their sample and for each of 100 different groups formed based on lagged wages, GOS calculate

a number of quantiles of the cross-sectional distribution of income growth rates. They then

average these statistics over expansion periods and recession periods, and compare the average

levels of the different quantiles in expansions with those in recessions. In their classification,

recession periods begin one year prior to the start of the recession and end several years after

the recession has ended, in order to emphasize persistent changes in wages from recessions, as

opposed to more temporary declines in income such as lost wages during unemployment spells.22

Expansions are 5-year periods which do not include a recession year.

Given my interest in asset pricing, I focus on the evolution of idiosyncratic risk faced by relatively

high earners over time–i.e. those who are likely to participate in financial markets. I summarize

this information by averaging the reported statistics over the 91st through 95th percentiles of

the lagged earnings distribution. These individuals have sufficiently high earnings that they are

likely to participate in stock markets. However, labor income is still likely to be their primary

source of non-housing wealth.23 Section A.1 in the Appendix shows that the same results hold

for different segments of the earnings distribution.

The left panel of Table 1 reports the median, 10th percentile, 90th percentile, and Kelley’s

skewness of five year income growth rates in expansions and recessions, respectively. The right

panel reports the changes in quantile-based measures of scale–the inter-quartile range and the 90 -

21A potential critique of Figure 1 is that the reported statistics pool the entire population of male earners
together, which could overstate the asymmetry of the distribution of idiosyncratic shocks. Therefore, it is impor-
tant to control for other observable characteristics as well, particularly lagged earnings. GOS control for lagged
earnings nonparametrically, placing each individual into one of 100 bins based upon his earnings over the previous
5 years, though similar results obtain when also controlling for age. I refer the reader to GOS for further details
on this procedure.

22GOS define income growth rates starting in 1979, 1989, 1999, and 2006 as those which include recessions.
Expansions average over income growth rates starting in 1983, 1984, 1993, 1994, and 2002.

23In 2011, GOS report that the 90th and 95th percentiles of wages are $98k and $135k per year, respectively,
in 2005 dollars. GOS also emphasize the high cyclicality of the incomes of extremely high earners, particularly
those in the top 1%. See also Guvenen, Kaplan, and Song (2014a). While the higher cyclicality is interesting,
these individuals likely possess substantial financial wealth, making it difficult to characterize the extent to which
income shocks translate to consumption. For example, existing evidence on partial insurance is unlikely to be
representative of their behavior.
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Statistic Period Value Statistic Period Value

Median E 1.53 Scale measures
R -2.41 Inter-Quartile Range R - E 1.30

R - E -3.81 90-10 Percentile Spread R - E -0.62

10th Percentile E -62.62 Left tail width measures
R -74.23 50-25 Percentile Spread R - E 3.01

R - E -11.51 50-10 Percentile Spread R - E 7.70

90th Percentile E 53.19 Right tail width measures
R 40.96 75-50 Percentile Spread R - E -1.72

R - E -11.93 90-50 Percentile Spread R - E -8.12
95-50 Percentile Spread R - E -15.47

Kelley’s Skewness E -10.85 99-50 Percentile Spread R - E -26.71
R -24.73

R - E -13.89

Table 1: Summary statistics for the cross sectional distribution of income growth rates

This table summarizes a number of statistics from the cross-section of 5-year log income growth

rates, which are calculated from statistics reported by GOS using annual data from 1978-2011. I

report the average of each statistic over the 91st through 95th percentiles of the 5-year average

income distribution (see GOS for a detailed definition) and over time. The second column indicates

the period over which the average value of the statistic is calculated, where “E”, “R”, and “R - E”

denote expansions, recessions, and the difference between recessions and expansions, respectively.

10 percentile spread–in recessions versus expansions. The right panel also reports quantile-based

measures of the width of the left and right tails of the cross-sectional distribution, respectively.

Recall that increases in the width of the left tail indicate higher risk exposures.

Several features of Table 1 are particularly striking. First, high earners face a substantial degree

of idiosyncratic labor income risk, even in expansions. The average 90-10 spread is 115 log

percentage points. Second, the entire distribution shifts to the left in bad times; all of the

quantiles are strictly lower in recessions relative to expansions. This shift is not specific to the

three quantiles in the left panel. All of the reported quantiles are lower in recessions.

Third, the change in the 10th and 90th percentiles is larger than the change in the median,

meaning that width of the left tail expands in recessions, while the right tail shrinks (as was

the case in Figure 1. This cyclical asymmetry is reflected by the change in Kelley’s skewness,

which decreases by 14 percentage points. In contrast, both measures of the overall spread of the

distribution changes very little over the cycle. GOS demonstrate that a similar result holds for

second moments, particularly at longer horizons.
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Finally, and perhaps most importantly, the tails of the idiosyncratic wage growth distribution,

as measured by extreme quantiles, are much more responsive to the cycle than the center of the

distribution. Over 5 year periods which include a recession, the median change in wages is 3.8 log

percentage points lower relative to expansions. Scale measures barely change at all. However,

the extreme quantiles of income growth rates are highly cyclical. The 50-10 spread increases by

7.7 log points, indicating a higher risk of large wage declines, while the 50-25 and 75-50 spreads

moves much less (3 and -1.7 log points, respectively). Turning to the right tail, where more

statistics are available, I find that the 90-50 spread shrinks by a magnitude comparable to the

50-10 spread, while the more extreme tail quantiles contract by considerably larger amounts.

The 95-50 and 99-50 spreads shrink by 15.5 and 26.7 log points, respectively.

The results in Table 1 suggest that, for those individuals who receive idiosyncratic shocks from

the center of the distribution, the business cycle has a relatively mild impact on their labor

income. However, for those who experience larger shocks, the cycle has a substantial quantitative

impact. Ex post, aggregate shocks appear to be disproportionately borne by a small fraction of

the population. Section 3.2 replicates these features with a simple model where labor income is

exposed to infrequent but very large shocks whose distribution is state-dependent.

3 The Evolution of Idiosyncratic Risk Over Time

3.1 Conditional skewness index

GOS emphasize changes in skewness in recession years relative to expansion years. In order to

better assess the potential linkages between labor income risk and asset pricing dynamics, it

is helpful to have a more continuous, higher frequency notion of idiosyncratic risk, particularly

since recessions need not coincide neatly with calendar years. In this section, I develop a mixed-

frequency approach to extract an empirical proxy for the conditional skewness of the idiosyncratic

income growth distribution from a large cross section of macroeconomic and financial time series.

My skewness index is available at a higher frequency (quarterly) and is available over a longer

time period, making it easier to understand its time series properties. In the final section, I

calibrate my theoretical model to match its dynamics.
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3.1.1 Statistical framework

My reduced-form model for labor income is a version of the canonical permanent income life-

cycle model. Let wit and ageit be individual i’s log labor income (after subtracting common

shocks and a deterministic life-cycle component) and age in period t, respectively. I assume

wit = αi + βiage
i
t︸ ︷︷ ︸

profile
heterogeneity

+ ξit︸︷︷︸
permanent
component

+ ρ(L) · ηit︸ ︷︷ ︸
state dependent
transitory shock

+ εit︸︷︷︸
state independent
transitory shock

(1)

ξit = ξit−1 + ηit, ηit|yt ∼ Fη(η; yt), εit ⊥ yt, (αi, βi)
iid∼ G(α, β), (2)

where ηit is a shock that is independently distributed over time conditional on the aggregate

state, which I assume can be characterized by a finite-dimensional random vector, yt. αi and βi

allow for heterogeneity in income levels and growth rates and are randomly drawn from a time-

invariant bivariate distribution with mean zero and finite third moments. ξit is the permanent

component to wages. As I discuss below, my theoretical model requires that ξit be a random

walk process. Alternatively, one could allow for ξit to follow a persistent, stationary process such

as an AR(1). I impose this restriction throughout, noting that empirical estimates of the AR(1)

parameter in other studies are generally close to 1.24

I also allow for a transitory component in labor income. The first term, which can depend on

current and past ηit via the lag polynomial ρ(L), allows permanent shocks to have additional

temporary effects on measured income. For example, large negative realizations of ηit could be

accompanied by unemployment spells, leading to temporary interruptions in the flow of labor

income.25 The second term, εit, is a mean zero transitory component that is stationary and

independent of the aggregate state. While it is straightforward to also allow for state dependence

in the distribution of εit, I maintain this assumption for parsimony.26

Asset pricing tests tend to be conducted using high frequency (e.g. monthly or quarterly) data,

but wage data are available on an annual basis. I use macroeconomic time series which are

sampled at a quarterly frequency in my analysis, then I derive the implications for the higher

moments of idiosyncratic wage changes, where wages are measured annually. To do so, I make

use of a simple log-linear approximation for time-aggregated wages.

24GOS estimate an version of this model with an AR(1) persistent component, albeit with different distribu-
tional assumptions, and obtain an annual autocorrelation coefficient of 0.979. An alternative specification yields
an estimate of 0.999. However, introducing profile heterogeneity could potentially lead to lower estimates.

25Signing bonuses could generate similar effects for large positive shocks.
26My aggregation result goes through if, given the aggregate state, the third central moment of εit is constant.
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Define W i
A,t =

∑3
j=0 exp(W i

t−j) and W i
A,t ≡ logW i

A,t, so that W i
A,t is a four quarter moving

average of labor income, measured at the end of quarter t. A time series of annual wages can

equivalently be expressed as a quarterly time series of W i
A,t, where W i

A,t is only observed in the

fourth quarter each year. In this notation, the year-on-year change in log wages is wiA,t−wiA,t−4.

A first-order Taylor expansion yields that, for k ≥ 4,

wiA,t−wiA,t−k ≈ 1
4∆wit + 1

2∆wit−1 + 3
4∆wit−2 +

k−1∑
j=3

∆wit−j + 3
4∆wit−k + 1

2∆wit−k−1 + 1
4∆wit−k−2. (3)

This approximation replaces an arithmetic mean with a geometric mean, a solution proposed in

a related context by Mariano and Murasawa (2003).27 If, in addition, the third central moment

of ηit takes the affine form, for k ≥ 4, E[(ηit)
3|yt] = a+ b′yt, then (1-3) imply

E
[(
wiA,t − wiA,t−k − E[wiA,t − wiA,t−k|Ft]

)3
|Ft

]
≈ ck + b′φk(L; ρ)yt, (4)

where the coefficients ck and the lag polynomial φk(L; ρ) are derived and defined in Appendix

A.2.1, and Ft is a filtration capturing aggregate information up to time t (which includes

{yt−j}∞j=0). Crucially, φk(·) is a known function that only depends upon the horizon k and the

specification of state-dependent transitory risk ρ(L).

Equation (4) says that, when the third central moment of the permanent shock ηit is affine in

an observable vector yt, under my assumptions on the income process, I can recover b semi-

parametrically with a regression. Given a time series of time-aggregated third-central moments

and a model for ρ(L), b is the vector of slope coefficients from a regression of the third central

moment of wiA,t−wiA,t−k on a constant and φk(L; ρ)yt. Further, I can pool the information from

time-aggregated moments which are measured over different horizons k, improving efficiency by

imposing the cross-equation restriction that b for all k. Relative to b, the unconditional level of

skewness a is harder to identify, because it interacts with the third central moments of profile

heterogeneity and transitory shocks to determine the constant ck.

Is it plausible to assume E[(ηit)
3|yt] = a + b′yt? A sufficient condition is that the cumulant-

generating function (the log of the moment-generating function) of ηit is linear in yt. Most

distributions used in theoretical asset pricing models satisfy this condition, since linear cumulant-

generating functions often lead to exponential affine solutions for prices, facilitating analytical

27See also Camacho and Perez-Quiros (2010) for a similar approach. Simulation results in Appendix A.2.2
demonstrate that these errors are negligible for the parametric model in Section 3.2, particularly over longer
horizons. Henceforth, I ignore approximation errors, treating (3) as the “true model” for time-aggregated labor
income measures.
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tractability.28 Two leading examples are compound Poisson processes with time-varying arrival

intensities and gamma random variables with time-varying shape parameters. Their cumulant-

generating functions are affine in these time-varying parameters. Assuming independence, sums

of these processes also satisfy this property. For example, if ηit has a compound Poisson dis-

tribution with arrival intensity λt = λ0 + λ′1yt, my regression recovers λ1 up to a constant of

proportionality. The next section discusses a number of key properties of this distribution, which

provides an analytically tractable way to represent infrequent, large shocks (“jump risk”).

3.1.2 Empirical implementation

Given a parametric specification for ρ(L), (4) implies that a simple regression can yield a high-

frequency estimate of the conditional skewness of permanent income shocks, i.e. b′yt. The

dependent variable is the time series of 1 and 5-year third central moments from GOS. I allow

ρ(L) a restricted MA(1) structure: ρ(L) = ρ · [1 +L]. This specification implies that permanent

shocks can have additional temporary effects that last about 6 months, though I find similar

results with different lag lengths.

Next, I must specify the state variables yt to include, as well as an estimation method. I explore

two approaches. One option is to estimate b directly via GMM (OLS when ρ is known, non-

linear least squares otherwise). The length of the sample precludes the estimation of a large

number of coefficients, so the risk of overfitting is nontrivial. Thus, such an approach works well

only if the dimension of yt is relatively low. Appendix A.3.1 adopts this approach, estimating

univariate and bivariate specifications involving several theoretically-motivated regressors.

My preferred approach estimates (4) using statistical methods which are designed to provide

optimal forecasts in a data-rich environment–situations where the number of predictors is large

(potentially much larger) relative to the sample size for the forecast target. These methods

enable the researcher to exploit the rich information in a large cross-section of predictors while

substantially reducing the risk of overfitting the data. Relative to principal components methods,

these techniques are more efficient in the presence of irrelevant factors–that is, factors that

explain cross-sectional variation among predictors that are uncorrelated with target variable. I

adapt the Three-Pass Regression Filter (3PRF) method of Kelly and Pruitt (2014) to extract

the optimal linear predictor from a large number of macroeconomic and financial time series.

I include 109 quarterly time series in the vector yt, all of which are available from 1960-2013. I

begin with 97 monthly macroeconomic and financial time series considered in Bernanke et al.

28Otherwise, one could still motivate our specification using standard linear projection arguments.
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Number of R2: 3rd moment Correlation w/
Category Variables 1 year 5 year overall index
All variables (3PRF) 109 70.1 80.8 100.0

All variables (Combination) 109 66.4 72.2 99.6
Real output and income 18 66.6 68.8 96.3
Employment and hours 24 57.7 63.3 95.8
Real inventories, orders, and unfilled orders 5 56.8 65.1 89.1
Stock returns and predictability state variables 14 51.4 74.4 68.9
Money and credit quantity aggregates 6 53.9 66.0 63.9
Interest rates 11 30.7 47.0 62.1
Housing starts and sales 7 11.2 13.4 49.7
Consumption 4 28.9 5.1 48.6
Consumer expectations 1 7.0 17.6 34.0
Price indices 15 7.6 16.9 25.6
Average hourly earnings 2 3.2 7.2 19.8
Exchange rates 2 12.5 15.1 12.5

Table 2: Goodness-of-fit statistics and variance decomposition of skewness index

This table presents the results from estimating equation (4) for different subsets of yt. The dependent

variables are 1 and 5-year 3rd central moments of the cross-sectional distribution of income growth

rates for 1978-2011 from GOS. Columns report R2 values at each horizon, as well as the correlation

between the implied skewness measure and the overall measure in the top row. Parameters are

estimated so as to minimize the sum of squared residuals for both 1 and 5-year measures. The

specification in the first line uses the 3PRF, while the remaining specifications construct a linear

index as a weighted average of the univariate forecasts from each variable in the category, using the

inverse of the mean-squared error as weights. Variables and categories are listed in Appendix A.3.2.

The parameter (ρ) governing the state dependent, temporary shock is 0.45.

(2005).29 I augment these series with 12 additional variables from the literature on stock re-

turn predictability, which are updated regularly by Goyal and Welch (2008). I then construct

quarterly series by averaging the underlying monthly series within each calendar quarter. To

allow for potential lead-lag relationships, I additionally include several lags and (weighted and

unweighted) moving averages of each variable. Further details are in Appendix A.3.2.
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3.1.3 Skewness index estimates

Table 2 documents the forecasting performance of the overall index, which is constructed using

the 3PRF, as well as other indices which are constructed using different subsets of the 109

variables in yt. These subindices are constructed using an alternative method for estimating

linear models in a data-rich environment: forecast combination methods–see, e.g. Timmermann

(2006). The 3PRF uses a series of regressions to optimally combine the information from each

univariate model, whereas the forecast combination approach takes a weighted average of the

univariate models, using the inverse of the mean-squared error (IMSE) as weights.30

Looking at the first row of Table 2, the overall performance of my skewness index is quite

strong. A single factor extracted from the 109 variables achieves R2’s of 70% and 81% at the

1-year and 5-year horizons, respectively. My estimate of ρ, which governs transitory risk, is 0.45,

suggesting that a 10% decline in permanent income in quarter t is associated with an additional

4.5% transitory decline in income in quarters t and t + 1. For additional discussion of the role

of state-dependent transitory risk, which much easier to see within the context of the univariate

and bivariate specifications explored there, I refer the interested reader to Appendix A.3.1.

The next row of Table 2 reports the performance of an alternative index, which is constructed

using IMSE weights. The R2’s decline somewhat to 66% and 72% at the 1-year and 5-year hori-

zons, respectively, which is perhaps unsurprising because the combination methods trades some

robustness for efficiency. Interestingly enough, however, the time-series properties of skewness

index from the IMSE combinations are virtually identical to those of the 3PRF estimates. The

correlation between the two quarterly indices, which is reported in the last column, is 99.6%.

Figure 2 plots the estimated quarterly skewness indices obtained using the 3PRF and combi-

nation approaches, respectively. Both measures are visually indistinguishable from one another

and highly cyclical, peaking in expansions and bottoming out during (or immediately after)

recessions. Note however that skewness dynamics appear to considerably richer than the two-

state (expansion and recession) Markov process typically assumed in the empirical literature on

estimating earnings process.31 Moreover, the measures are quite persistent, exhibiting substan-

29I obtain the data from Global Insight and transform them as in Bernanke et al. (2005) to ensure stationarity.
Of the 120 variables included in Bernanke et al. (2005), Wu and Xia (2014) identify a subset of 97 variables which
are available through the end of 2013. Wu and Xia (2014) also verify that the findings of Bernanke et al. (2005)
are replicable using the subset with available data.

30Kelly and Pruitt (2014) prove that the 3PRF is consistent as the number of predictors and time series
observations go to infinity. The efficiency gains associated with the 3PRF (which estimates a cross-sectional
regression for each time series observation) require a large number of predictors. With the smaller number of
variables for the subindices, the combination methods (which estimate fewer parameters) perform better.

31In unreported results, I find that a quarterly NBER recession indicator has little explanatory power for the
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Figure 2: Conditional skewness estimates from combination and univariate models

This figure plots estimates of quarterly conditional third central moments obtained by estimating

(4) using a large cross-section of macroeconomic and financial variables. Dark blue lines plot the

combined forecasts, which average over all univariate models using the 3PRF and inverse mean-

squared-error combination weights, respectively. Thinner lines plot the implied indices from the

40 best-fitting univariate models (as measured by the total sum of squared residuals). Lines are

color-coded to correspond with overall goodness-of-fit, where the darkest lines indicate the best fit.

tial variation at business cycle frequencies. The first-order autocorrelation, when expressed as

a monthly number, is around 96% for each measure.

In addition to the overall skewness indices, Figure 2 plots fitted values from the 40 best-

performing univariate regression models, which are shaded from light to dark according to

goodness-of-fit. Darker lines indicate better fit. These univariate forecasts are highly correlated

with one another and generally track the overall indices quite closely, indicating a strong factor

structure in the data. Note that the estimation sample begins in 1978, while the overall and

univariate skewness measures track one another quite closely prior to 1978, suggesting that the

identified factor is a genuine feature of the data, rather than an artifact of over-fitting.

time aggregated skewness measures. However, such a result could partially reflect a timing mismatch between
NBER recession dates and labor market peaks and troughs, which can lag the business cycle.
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Turning back to Table 2, I find that the skewness indices load most heavily on measures of

real activity, providing strong empirical support for the concentration mechanism in Mankiw

(1986). Indices constructed using two subcategories have a correlation of 96% with the overall

index. The first, real output and income, includes a number of industrial production indices and

measures of total household income. The second category, employment and hours, primarily

reflects information about the extensive margin in the labor market (employment growth, the

unemployment rate, and the distribution of unemployment durations). Next, indices constructed

from more forward-looking measures–real inventories, orders, and unfilled orders–have an 89%

correlation with the overall index. All achieve R2’s which are slightly inferior, but generally

comparable with the performance of overall combination forecast.

After these initial measures, my skewness index loads most heavily on financial variables. An

index constructed using realized stock returns and the Goyal and Welch (2008) predictors has a

69% correlation with the overall index. Moreover, this subindex outperforms any of the combi-

nation indices (including the overall measure) in tracking 5-year idiosyncratic skewness. Indices

constructed using money and credit quantity aggregates and interest rates perform reasonably

well and have correlations of 64% and 62%, respectively, with the overall index.

Perhaps more surprisingly, an index constructed using aggregate consumption measures does not

capture the variation in idiosyncratic skewness relative to other measures of real activity. The

consumption-based subindex achieves a modest R2’s of 29% and 5% at the 1-year and 5-year

horizons, respectively, though the consumption-based index maintains a 50% correlation with the

overall skewness index. Much of the disconnect in performance relative to other economic activity

measures is certainly due to the substantial measurement errors in high frequency consumption

data.32 In addition, such a result could reflect temporal instabilities in lead-lag relationships

between aggregate consumption and other measures of real activity.

Of the remaining categories, none of the subindices is capable of explaining very much of the

variation in idiosyncratic skewness. Particularly striking is the lack of explanatory power of

average hourly earnings, which provides further evidence for a link between the extensive margin

and the distribution of idiosyncratic shocks in the labor market.

32Recall that, so as to use the same data as in Bernanke et al. (2005), I construct quarterly series by av-
eraging the monthly measures over each quarter. In Appendix A.3.1, I estimate univariate regressions using
quarterly NIPA data on real consumption of nondurables and services. Using these data, aggregate consumption
works somewhat better. However, its performance is inferior to that of other univariate indicators, such as real
compensation growth, employment growth, or a measure of overall profitability of corporations.
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3.2 Parametric model with labor market event risk

The analysis in the previous section was semi-parametric, allowing me to make statements about

the time-series behavior of idiosyncratic skewness without any distributional assumptions. In

order to close a quantitative asset pricing model, such assumptions are required. This section

adopts a more parametric approach. I fit a simple model with labor market event risk that

simultaneously matches the cyclical variation in cross-sectional skewness from Section 2 and the

time-series dynamics emphasized in Section 3.1 quite well.

I maintain my assumptions on the labor income process from the previous section. For ease of

notation, I will suppress i superscripts here. Equation (41), in Appendix A.2.1, shows that the

growth rate of annual labor income at horizon k is the sum of three pieces: profile heterogeneity,

(β · k), a state-independent transitory shock (εA,t − εA,t−k), and a weighted moving average of

permanent shocks (θk(L; ρ)ηt). For the first two terms, I adopt the fairly standard assumptions

that β ∼ N(0, σ2
b ) and εA,t ∼ N(0, σ2

ε ).

My primary interest is on the last term, a weighted moving average of permanent shocks, ηt.

I assume that ηt = (Jg,t − Et[Jg,t]) + (Jb,t − Et[Jb,t]) + N(0, σ2
n). Jg,t and Jb,t are compound

Poisson random variables with time-varying intensities and exponential increments, defined as

Jg,t =

Ng,t∑
j=1

[µs + Exponential(σs)− σs], Ng,t ∼ Possion(λ0g + λ1xt) (5)

Jb,t =

Nb,t∑
j=1

[−µs + σs − Exponential(σs)], Nb,t ∼ Possion(λ0b − λ1xt), (6)

where xt is a scalar, and Jg,t = 0 and Jb,t = 0 when Ng,t = 0 and Nb,t = 0, respectively.

The first component, Jg,t, is a good shock, capturing infrequent, large upward adjustments in

consumption–“climbing the ladder”. For example, these changes could come as a result of a

promotion or the arrival of an attractive outside offer. The second component, Jb,t, is a bad

shock, capturing infrequent, large downward adjustments–“falling off the ladder”–likely driven

by events such as job loss. I also allow for a normally-distributed state-independent neutral

shock which hits every period.

In the relevant region of the parameter space, the probability that Ng,t or Ng,t is larger than 1

is essentially zero, so one can interpret λ0g + λ1xt and λ0b − λ1xt as the quarterly probabilities

of experiencing good and bad shocks, respectively. State dependence manifests itself via time

variation in these probabilities. The conditional skewness of ηt is proportional to λ1xt. When
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λ1xt is high, large positive shocks become more likely while large negative shocks become less

likely, shifting probability mass from the left to the right tail.

The parameters µs and σs are the mean and standard deviation of these large shocks (jump

increments) in log labor income, respectively. In the interest of parsimony, I assume that the

jump size distribution for good shocks equals that for the bad shocks multiplied by negative 1.

When the sum of the Poisson intensities is constant, this restriction implies that the variance

of ηt is constant. By construction, then, my estimates are consistent with the evidence on the

lack of cyclical variation in second moments from GOS. By allowing λ0g to differ from λ0b, this

process can generate substantial unconditional skewness.

As discussed earlier, if the data are generated according to (5-6), the quarterly skewness index

from Figure 2 is a consistent estimate of xt up to a constant of proportionality. Therefore, when

calibrating the idiosyncratic shock distribution, I set xt equal to my skewness index, normalized

it to have mean zero and variance one. After this normalization, λ0g and λ0b capture the

unconditional probabilities of experiencing good and bad shocks, while λ1 captures the marginal

effect of a 1 standard deviation increase in xt on the probability of a good shock.

My calibration tries to match a number of statistics Table 1, plus several additional moment

conditions from statistics reported by GOS. I estimate the parameters so as to minimize a

weighted sum of squared errors between a number of model-implied and data-implied moments.33

First, I try to match the average distance between the median and the 10th percentile of 5-year

income growth rates in expansions and recessions. I also target the average distance between

the 90th percentile and the median in expansions and recessions. Second, I target the changes

from recessions versus expansions in the left tail and right tail width measures. Third, I target

the average distance between the 90th and 10th percentiles of 1-year growth rates in expansions.

Finally, I add information about the standard deviation, skewness, and kurtosis from GOS.

I place two additional restrictions on the model. Under my assumptions, the distribution of

wA,t − wA,t−k can be decomposed into the sum of a gaussian component and a non-gaussian

component. The variance of the gaussian component depends on σ2
β, σ2

ε , and σ2
n. Given that

data are only available two different horizons (1-year and 5-year), I need an additional restriction

to achieve identification. I choose to shut off profile heterogeneity by setting σ2
β = 0, which is

relatively innocuous given my focus on state-dependent shocks. With respect to the state-

dependent transitory shock, I fix ρ at its estimated value of 0.45.

33I also place some practical constraints on the parameters, which restrict the variance of jump shocks, σs,
and guarantee that the fitted poisson intensities are non-negative for most of the sample. If the fitted intensity is
negative, I truncate λ1xt so that the minimum intensity is zero the sum of the fitted intensities is λ0b + λ0g.
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I am interested in matching the time series behavior of cross-sectional quantiles of time-aggregated

income growth rates, which cannot be expressed in closed form. However, conditional on the

parameters governing ρ(L) and the income process, which I collect in a vector β, I can cal-

culate its characteristic function, ϕk,t(ω;β) ≡ Et[exp{iω · (wA,t − wA,t−k)}] analytically. Using

Lévy’s theorem, I recover the probability density function fk,t(z;β) by taking the inverse Fourier

transform of ϕk,t(ω;β),

fk,t(z;β) =
1

π
· Real

[∫ ∞
0

[ϕk,t(ω;β)e−iωz]dω

]
, (7)

which involves a single numerical integration. I use the fractional fast Fourier transform to

efficiently evaluate fk,t(z;β) on a fine grid over the support of wA,t − wA,t−k. By integrating

fk,t(z;β), I quickly and accurately recover the conditional cdf and quantile functions.34 Expres-

sions for ϕk,t(z;β) and further details about the procedure are in Appendix A.3.3.

Table 3 presents estimates of the parameters governing the labor income process. λ0g + λ0b is

about 2%, suggesting that the probability of receiving a large shock within a given year is about

8%. λ0b is larger than λ0g, implying that large negative shocks are more likely to occur than

large positive shocks. λ1 is 0.26%, implying that, on an annualized basis, a 1 standard deviation

increase in xt shifts 1% of the probability mass from bad to good shocks.

The magnitudes associated with the state-dependent shocks are extremely large. Conditional

on receiving a large shock, the average absolute change in log wages is 77.5% and the standard

deviation is 51.7%. Incorporating Jensen’s inequality, the average decline in wages from a large

negative shock is about 49%! Positive shocks induce an average increase of 165%. Before

moving forward, recall that these magnitudes are for declines in pre-tax labor earnings for a

single individual. Associated declines in household consumption are likely to be smaller. In my

quantitative model, I assume that less than 25% of income declines pass through to consumption,

which is on the low end of estimates in Blundell et al. (2008) and Heathcote et al. (2014).

In stark contrast with the jump shocks, the annualized standard deviation of the state-independent

permanent, gaussian shock is only 3.7%, implying that permanent income is relatively safe when

no jumps occur. The contribution from transitory shocks is more substantial. The calibrated

value of σε is 13.5%, implying that the standard deviation of εA,t − εA,t−k is 19%.

Figure 3, Panel A plots the evolution of the fitted probabilities of good and back shocks, respec-

34The whole procedure takes about 2 milliseconds for each time period. I run some diagnostics using a variety
of parametric densities and find that approximation errors associated with the estimated quantiles are on the
order of 10−8.
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Parameter Value Description
λ0g 0.75% Average quarterly intensity of large positive shocks
λ0b 1.25% Average quarterly intensity of large negative shocks
λ1 0.26% Sensitivity of quarterly intensity of large shocks to a one standard

deviation shock to business cycle factor
µs 77.5% Absolute value of average change in log wages given a large shock
σs 51.7% Standard deviation of a large shock to wages
σn 1.86% Standard deviation of quarterly state-independent permanent shock
σε 13.5% Standard deviation of annual state-independent temporary shock
ρ 45% State-dependent mean of transitory shock (MA parameter)

Table 3: Calibrated income process parameters

This table presents the estimated parameters governing the distribution of idiosyncratic labor income

shocks. Estimates are obtained by minimizing a weighted sum of squared errors between model-

implied and data moments, both of which are displayed in Table 4. These moments are averages of

quantiles or moments of the cross-sectional distribution of income from GOS.

tively, over time. According to the fitted model, bad shocks are almost always more likely than

good shocks, though the difference between the two probabilities is relatively small in expan-

sions. As the economy moves into a recession, the probability of receiving a bad shock increases

substantially, while the probability of a good shock goes almost to zero. These probabilities

remain elevated in the early part of the post-recession recovery, then eventually revert back to

lower levels.

Note that the fitted good intensity goes slightly negative during the financial crisis. For pur-

poses of calculating the model-implied moments, I truncate the bad intensity so that the sum

of the two intensities is always λ0g + λ0b. The dashed line shows the untruncated path of λbt.

These untruncated estimates suggest that, during the financial crisis, idiosyncratic risk reached

unprecedentedly high levels relative to the rest of the period where the index is available. There-

fore, from an incomplete markets perspective, the Great Recession could easily be considered a

“disaster” in spite of the relatively moderate observed decline in aggregate consumption.35

Figure 3, Panel B plots the several quantiles of model-implied distributions of year-on-year

income growth rates. These estimates condition on the observed trajectory of the state vector,

{zt}Tt=0. To emphasize the changes in higher moments, I subtract the median from each quantile.

35Using NIPA data, I calculate that the peak-to-trough decline in quarterly real consumption of nondurables
and services was approximately 1.6%, which was spread over a 4 quarter period. Some caution is necessary when
drawing this conclusion, because my fitted 5-year skewness measures are more negative than their observed values
in the GOS data during the crisis.
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Figure 3: Fitted dynamics of idiosyncratic distributions

Panel A plots the poisson intensities for good and bad shocks from the estimated model for the income process.

Panel B plots the difference between the median and several quantiles of the model-implied distributions of

year-on-year changes in income.

At a 1-year horizon, the central quantiles barely move at all. Consistent with Table 1, the

interquartile range is essentially unchanged, while the more extreme quantiles (2.5, 5, 95, 97.5)

are highly state dependent. These extreme quantiles move up and down together, increasing in

expansions and falling significantly in recessions.

Figure 4 plots several densities associated with the fitted model. Panel B characterizes the densi-

ties of the permanent component of year-on-year changes in wages in expansions and recessions,
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Figure 4: Densities from fitted model

Panel A plots the densities of the jump size distributions for good and bad shocks. Panel B plots

the log of the densities of year-on-year changes in permanent income (φ4(L; 0)ηt) in expansions and

recessions, respectively. Dashed vertical lines correspond with the average change in log wages in

expansions and recessions, respectively. See the text for further details.

respectively. To generate the figures, I randomly sample with replacement from the observed

values of xt in expansion quarters and recession quarters, respectively, then plot the densities of

year-on-year changes in the permanent component of wages (i.e. I strip out transitory shocks).

I also allow for a time variation in the average logarithmic growth rate of labor income, which

is assumed to be an affine function of the change in aggregate private sector real compensation,

choosing the slope and intercept to exactly match the median in expansions and recessions from

Table 1. I use a log scale on the vertical axis in order to better show the changes in the tails.36

Dashed vertical lines indicate the average change in log wages in expansions and recessions,

36On this scale, the pdf of a normal distribution is a quadratic.
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Cross-sectional distribution of income growth rates Time series
Statistic Period Data Model Statistic Horizon R2

50-10 Percentile Spread 5 yr E 64.14 63.29 Mean - 50 Percentile 1 yr 0.790
5 yr R 71.82 72.79 3 yr 0.801
5 yr R-E 7.68 9.50 5 yr 0.793

90-50 Percentile Spread 5 yr E 51.66 51.64 50-10 Percentile Spread 1 yr 0.520
5 yr R 43.37 44.27 3 yr 0.702
5 yr R-E -8.30 -7.37 5 yr 0.671

50-25 Percentile Spread 5 yr R-E 3.01 1.81 90-50 Percentile Spread 1 yr 0.659
75-50 Percentile Spread 5 yr R-E -1.72 -0.79 3 yr 0.695
95-50 Percentile Spread 5 yr R-E -15.47 -15.15 5 yr 0.667
99-50 Percentile Spread 5 yr R-E -26.71 -18.62 Kelley skewness 1 yr 0.709
90-10 Percentile Spread 1 yr E 58.67 58.31 3 yr 0.762
Standard Deviation 5 yr E 66.52 62.36 5 yr 0.789
Skewness (Moment) 5 yr E -1.18 -0.29

5 yr R -1.80 -0.76
5 yr R-E -0.62 -0.47

Kurtosis 5 yr ≈ 10 10.53

Table 4: Goodness-of-fit statistics for calibrated income process

This table presents goodness-of-fit statistics for the calibrated model for idiosyncratic labor income

risk. The left panel compares model-implied moments with their counterparts in the data. These

moments are averages of quantiles or moments of the cross-sectional distribution of income growth

rates for individuals in the 91st through 95th percentiles of the income distribution, most of which

are in Table 1. The right panel calculates the R2 from univariate regressions of time series of model-

implied statistics on the same statistics from GOS for the cross-section of income growth rates for

male earners in the U.S. population.

respectively. Note that, despite the location shift, the densities are essentially indistinguishable

from one another in the center of the distribution. However, the behavior of the tails is radically

different. In expansions, the density is relatively close to symmetric, left tail is slightly fatter

than the left tail. As the economy moves from an expansion to a recession, the left tail becomes

fatter, while the right tail shrinks substantially. This evidence again suggests that observed

changes in aggregate wages are almost exclusively driven by changes in the tails.

Figure 4, Panel B plots the estimated jump size distributions, helping to illustrate the magnitudes

associated with the large shocks. Given the bounded support of the exponential distribution,

the minimum absolute change in wages is µs − σs, which equals 26% in the calibrated model,

about seven times the annualized standard deviation of the permanent gaussian shock.

Table 4 provides some goodness-of-fit statistics for the calibrated model. The left panel compares

the moments implied by the calibrated model with their counterparts in the data. Generally
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speaking, the fit is quite close. By setting λ0b > λ0g, the model is replicates the negative

unconditional asymmetry which is observed in the data. The model comes pretty close to

matching the cyclical variation in the 50-10 and 90-10 spreads, slightly overestimating variation

in the former and underestimating the latter. It matches the level of the 90-10 spread at 1 and

5 year horizons almost perfectly. While the exact magnitudes of changes in the other quantiles

do not match perfectly, particularly for the 99-50 percentile spread, the fit is reasonably close.

The presence of rare, large shocks generates substantial cyclical variation in the tails of the

distribution, while leaving the central quantiles essentially unchanged.

In addition to quantile-based measures from Table 1, I target several time series averages of

cross-sectional moments from GOS. First, the model-implied standard deviation is relatively

close, though slightly lower, to its value in the data.37 GOS provide a number of reasons to

prefer quantile-based skewness measures such as those reported in Table 1. I also compare the

calibrated (moment-based) skewness measures to their counterparts in the data. The fitted

model has some trouble matching the level of unconditional skewness, though it does a better

job of matching the observed change in skewness from expansions.38

I also calculate the kurtosis of 5-year earnings growth. Guvenen et al. (2014b) emphasize the

extremely high degree of excess kurtosis observed in the SSA earnings data, which is at odds with

the assumption of normally distributed shocks that is ubiquitous in the literature on calibrating

earnings distributions. Their estimates, which are constructed using similar methods to GOS,

suggest that the kurtosis of 5-year income growth rates for relatively high earners is about 10.

My model with jump shocks generates an average kurtosis of 10.5, consistent with this evidence.

The right panel of Table 4 compares model-implied time series with their counterparts in the

data. Recall that GOS report annual time series for the shape of the cross-sectional distribution

of income growth rates, where the entire U.S. population of male earners is treated as a single

cross-section. In contrast, my calibrated model targets the level of income risk faced by relatively

high earners. However, I can still assess whether our fitted model qualitatively matches the time

series dynamics of these cross-sectional moments. At 1, 3, and 5-year horizons, I report the

R2 from a univariate regression of the GOS data on model-implied statistics. I consider four

different time series, two of which are plotted in Figure 1: the difference between the mean and

the median, the 50-10 spread, the 90-10 spread, and Kelley’s skewness.

37It is worth noting that the fitted standard deviation is a bit further off at a 1-year horizon, suggesting that
there is room for improvement in my specification of transitory risk.

38Recall from the discussion above that the constant term, ak, in (4) capturing unconditional skewness is more
difficult to identify relative to the slope coefficient b. The same difficulty applies here as well.
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Overall, my model matches essentially all of these time series moments quite well. The R2’s

tend to be highest at a 3-year horizon, which is somewhat reassuring given that no data from

that horizon were used to estimate the linear index, xt. I have some trouble matching the tran-

sitory variation in the 50-10 spread in recessions, suggesting that I am omitting some important

sources of transitory risk. The high R2’s on the Kelley’s skewness measure suggest that we do a

reasonable job of capturing the cyclical variation in the overall asymmetry of the distribution.

In conclusion, the evidence in this section suggests that the business cycle has a particularly

strong impact on tails of the conditional distribution of idiosyncratic labor income growth dis-

tribution. This result suggests that aggregate shocks are far from equally distributed across

households; instead, state-dependent shocks appear to be disproportionately borne by those

who receive very large positive or negative shocks. I am able to replicate these features with

a simple model where labor income is subject to idiosyncratic “jump risk”. Moreover, my ob-

servable proxy for idiosyncratic risk is highly persistent. In the next section, I develop the asset

pricing implications of a model which allows for all of these features.

4 Theoretical Framework

In this section, I embed an endowment-based asset pricing model with heterogeneous agents

and incomplete markets within a general affine, jump-diffusion framework. My setup most

closely resembles the model in Toda (2014b), itself based upon the seminal contribution of

Constantinides and Duffie (1996). I place more structure on the stochastic environment, similar

to Drechsler and Yaron (2011, hereafter “DY”) and Eraker and Shaliastovich (2008), which leads

to approximate analytical solutions.

The model is a Lucas (1978) endowment economy with incomplete markets. Agents’ consump-

tion stream derives from two types of assets (trees), each of which delivers an uncertain stream

of future cash flows (fruit). Between periods, total fruit output grows stochastically and the

growth of each tree is potentially subject to aggregate and idiosyncratic shocks. The first type

of tree, human capital (H i
t), is a claim on future labor income, which will equal consumption in

equilibrium. In addition, agents may purchase shares (Nkt) in K other financial assets in zero

net supply, paying dividends (Dkt).

In the model, the key distinction between the two types of assets is that labor income is subject

to idiosyncratic risk, meaning that different investors will receive different returns over the same

holding period because their trees will not all grow at the same rate. Defining the aggregate
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quantity Ct ≡
∫
I C

i
tdi, the fruit production of the first type of tree grows at rate Ct/Ct−1 ×

exp(ηit), where ηit is a shock which is independently and identically distributed across agents

satisfying E[exp(ηit)] = 1.39 Households are unable to buy or sell human capital, nor trade

contingent claims on realizations of ηit.
40 Dividend income is only subject to aggregate risk,

so cash flows from trees of the second type grow at the same rate (Dkt/Dk,t−1). Finally, the

total supply of each type of tree in the economy is fixed, so that, in equilibrium, aggregate

consumption will equal total fruit production.

Time, indexed by t, is discrete and there are an infinite number of periods. There is a continuum

of infinitely-lived agents, indexed by i ∈ I = [0, 1]. Agents choose consumption and savings to

maximize lifetime utility over consumption, with identical recursive preferences following Epstein

and Zin (1989) and Weil (1989):

U it =

[
(1− δ)(Cit)1−1/ψ + δ(Et[(U

i
t+1)1−γ ])

1−1/ψ
1−γ

]1/(1−1/ψ)

, (8)

where ψ governs the elasticity of intertemporal substitution (EIS) and γ is the coefficient of

relative risk aversion.41 At time 0, each agent begins with an initial endowment H i
0. Thereafter,

each agent chooses her consumption (the numeraire) and investment N i
t to maximize (8). All

financial assets are in zero net supply, so market clearing will imply N i
kt = 0 for all i, k, and t.42

These assumptions imply the following budget constraint

Cit +
K∑
k=1

PktN
i
kt = Ct exp(ηit)H

i
t−1 +

K∑
k=1

(Pkt +Dkt)N
i
k,t−1 (9)

subject to
∑K

k=1 PktN
i
kt > −W , where Pkt is the price of the kth financial asset. The borrowing

constraint, which will not bind in equilibrium, is simply present in order to rule out Ponzi

schemes. In the section that follows, I will restrict attention to symmetric, no-trade equilibria.

Under my assumptions, H i
t = exp(ηit)H

i
t−1. This will imply that

Cit = H i
tCt ⇒ ∆cit = ∆ct + ηit, (10)

39I will formalize my assumptions about ηit later in the section.
40Since the financial assets are in zero net supply, no-trade will be an equilibrium. Therefore, I could assume

that households are able to buy and sell human capital without affecting any of the results below. The key friction
is the inability to write contingent claims on ηit.

41Krebs (2007) and Toda (2013) show how the assumption of infinitely-lived agents may be relaxed. Allowing
for a constant probability of death each period is isomorphic to lowering the discount rate δ.

42Without loss of generality, we normalize the total supply of human capital to equal 1.
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where ct = log(Ct). I denote levels with capital letters and logs with lower case letters, e.g.

dk,t = log(Dk,t). This is a special case of the permanent income model from section 3.1 with no

profile heterogeneity or transitory shocks. Ruling out profile heterogeneity is essentially without

loss of generality, because differences across agents in profile heterogeneity are isomorphic to

different endowments of H i
0.43 While the elimination of transitory risk is a substantial departure

from the data, existing representative agent results suggest that, when the EIS > 1, agents’

willingness to substitute over time means that transitory dynamics generally play a relatively

minor role in affecting risk premia.44

Assumption 1 gives my general model for aggregate dynamics.

Assumption 1. Aggregate variables evolve according to the stationary VAR model:

yt+1
(L×1)

= µy + Fyyt +Gy,tzy,t+1 + Jy,t+1, (11)

with y0 given, where zt+1 is i.i.d. N(0,1), Gy,tG
′
y,t is a symmetric, positive semi-definite matrix,

Fy has all of its eigenvalues inside the unit circle. Jy,t+1 is a compound Poisson shock with

mutually independent, i.i.d. increments and arrival intensity vector λy,t. Further, ∆ct+1 =

S′cyt+1 and ∆dk,t+1 = S′kyt+1 for L× 1 vectors Sc and S1, . . . , SK

I summarize the jump size distribution for the compound Poisson shocks with Ψy(u), the L× 1

vector-valued function whose jth element is the moment-generating function of the size distribu-

tion for the jth jump component. I need little structure on Ψy(u) beyond the existence of such

a function (and boundedness for certain values of u).

Assumption 1 allows for a very flexible array of dynamics, nesting a number of popular asset

pricing models as special cases. For example, Assumption 1 nests the Bansal and Yaron (2004)

long-run risk model, as well as a discrete-time version of the Wachter (2011) time-varying rare

disaster model.45 The vector yt+1 can include lagged values of consumption, income, or dividend

growth, in addition to other state variables of interest. It is also worth noting that Gy,t need

not have full rank. For example, one can impose cointegration restrictions on consumption

and dividends or make dividends a levered claim on aggregate consumption via appropriate

restrictions on Fy and Gy,t.

43If agents can write contingent claims (e.g. there are no short sales constraints) on the aggregate state, they
can effectively smooth out any deterministic differences in the growth rate of the endowment process.

44See, e.g. Bansal et al. (2010) and Dew-Becker and Giglio (2013).
45The disaster model obtains if I assume that both Sc and Sk have a common exposure to one of the Poisson

jump components, whose probability varies over time.
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My next assumption places some structure on the idiosyncratic shocks, ηit+1. Assumption 2

allows the distribution of the idiosyncratic shock to depend on the realization of the aggregate

state vector, yt+1. This structure means that, ex post, aggregate shocks (e.g. consumption

declines) need not be distributed equally across agents. Denote agent i’s private information by

the filtration F i
t and public information by Ft =

⋂
i
F i
t .

Assumption 2. The following statements are true.

(i) ηit = 1′M η̃
i
t, and, conditional on yt+1, η̃it is generated according to

η̃it+1
(M×1)

= µη + Fηyt+1 +Gη,t+1z
i
η,t+1 + J iη,t+1, (12)

where ziη,t+1 is a vector of standard normal random variables that is i.i.d. across agents

and over time, Gη,tG
′
η,t is a symmetric, positive semi-definite matrix. J iη,t+1 is a compound

Poisson shock with mutually independent, i.i.d. increments (across agents and over time

for a given agent) and arrival intensity vector λη,t+1.

(ii) yt ∈ Ft and the joint distribution of (yt+1, η
i
t+1)|F i

t is the same as the joint distribution

of (yt+1, η
i
t+1)|yt.

(iii) E[exp(ηit+1)|yt+1, yt] = 1 almost surely for all yt+1, yt ∈ RL.

As above, I will describe the jump size distribution for the idiosyncratic shocks by Ψη(u) be, an

M × 1 vector-valued function whose jth element is the moment-generating function of the size

distribution for the jth jump component.

Of the three conditions, Assumption 2.i is the most important and restrictive. It implies that,

conditional on public information, η̃it does not depend on any of its past realizations. It guar-

antees that agents are always ex-ante identical in the model and thus that I need not consider

the wealth distribution in order to study asset prices. This assumption implies that all individ-

uals always face the same level of human capital risk. In the data, one might imagine that the

distribution of idiosyncratic shocks hitting individuals who are currently unemployed could be

quite different from that faced by those who currently have jobs. Assumption 2.i rules out this

sort of individual-specific state dependence. The model can capture unemployment-type events,

except that I must collapse all of the effects of unemployment into a single shock rather than

allow for a series of bad shocks which unfold gradually over time.46 It also abstracts away from

46A similar simplifying assumption is common in the literature on rare macroeconomic disasters.
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heterogeneity in risks between individuals (e.g. skill heterogeneity, life cycle effects, etc.) and

across industries/occupations, which would require a substantially more complicated model.

The remaining assumptions involve the agents’ information and moment restrictions on ηit+1,

following Toda (2014b). Assumption 2.ii says that all agents have rational expectations and

consider the same set of information when choosing their investments. It also says that yt,

which is common knowledge, is a sufficient statistic for describing aggregate and idiosyncratic

dynamics. Assumption 2.iii guarantees that the idiosyncratic shock is truly idiosyncratic (i.e.

doesn’t affect the law of motion for aggregate quantities).

Assumption 3 places general restrictions on the model which are necessary to ensure that, after

performing the Campbell and Shiller (1988) approximation, the model generates valuation ratios

which are exponential affine in the state vector yt.

Assumption 3. The following statements are true.

(i) Gy,tG
′
y,t = hy +

∑L
j=1Hy,jyj,t, where hy and Hy,1, . . . ,Hy,L are L× L matrices.

(ii) λy,t = ly0 + ly1yt, where l0 and l1 are L× 1 and L× L matrices,

(iii) The (1,1) element of Gη,tG
′
η,t equals hη0 + H ′η1yt, where hη and Hη1 are a scalar and a

M × 1 vector, respectively. All other elements of Gη,tG
′
η,t are zero.

(iv) λη,t = lη0 + lη1yt, where lη0 and lη1 are M × 1 and M × L matrices, respectively.

Assumptions 3.i-ii are standard restrictions which ensure that the model’s solution falls into the

affine class.47 In the absence of idiosyncratic shocks, my framework nests long-run risk-type

representative agent models with Poisson jumps, such as DY.

Assumptions 3.iii-vi parameterize the idiosyncratic shocks. Assumption 3.iii allows for a normally-

distributed “diffusion” shock, and the variance of this shock is allowed to be state-dependent.48

As such, I can easily allow for CCSV within our model. Given that GOS find little evidence

of CCSV in their Social Security Administration dataset, my analysis will focus more on state-

dependence in the “jump” shocks. However, the theoretical implications of and intuition for

47The key property I exploit is that logEt[exp(u′yt+1)] and logEt[u exp(ηit+1)|yt+1] are affine functions of
yt and yt+1, respectively. Therefore, my solution method extends to other families of conditional distributions
that also have this property. For example, Bekaert and Engstrom (2013) show that the sum of gamma random
variables with time-varying shape parameters satisfies this property.

48Without loss of generality, I can concentrate all of the “diffusion risk” in the first element of η̃it, so M , the
dimension of ηit, is solely determined by the number of independent sources of jump risk.
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time-varying volatility of the Gaussian shocks are similar. Assumption 3.iv parallels Assump-

tion 3.ii, allowing for state-dependence in the idiosyncratic jump intensities.

It is sensible to ask whether Assumptions 2 and 3 are compatible with one another. Proposition

1, proved in Appendix B.2.1, shows that this is the case, deriving admissible expressions for µη

and Fη which will guarantee that Assumption 2.iii holds.

Proposition 1. Let Assumptions 1, 1.i-ii, and 3 hold. Then,

(i) µη = −1/2hη0e1 − lη0(Ψη(1M )− 1M )

(ii) Fη = −1/2e1 ⊗ h′η1 − lη1 � [(Ψη(1M )− 1M )⊗ 1′L],

satisfies E[exp(ηit+1)|yt+1, yt] = 1, where � denotes element-by-element multiplication.

Proposition 1 says that under the distributional assumptions above, there exist choices of µη

and Fη which aggregate properly. Therefore, I can fully decouple any assumptions about the

time-variation in the distribution of idiosyncratic consumption risk from aggregate consumption

while preserving linearity of the process. For purposes of asset pricing, I can assume without

loss of generality that µη and Fη take the forms given in Proposition 1, significantly reducing

the number of free parameters.

5 Asset Pricing

This section characterizes the solution for asset prices within my general theoretical framework.

Section 5.1 presents the general equilibrium conditions, Section 5.2 presents analytical solutions

to a log-linearized model, and Section 5.3 presents an alternative ICAPM characterization of

the stochastic discount factor.

5.1 Equilibrium Conditions

An equilibrium in this economy is a sequence of state-contingent prices {P1,t, . . . , PK,t}∞t=0 and

allocations {Cit , i ∈ I}∞t=0 which solves agents’ optimization problems and satisfies market clear-

ing in the capital markets. I restrict attention to symmetric (no-trade) equilibria where all agents

consume their endowments. Such an equilibrium can obtain since all agents have identical ho-

mothetic preferences and access to the same investments, making their first order conditions
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identical. Market clearing is trivially satisfied. Toda (2014b) establishes the existence and

essential uniqueness of a symmetric equilibrium in a similar environment. In this section, I

characterize its properties.

Mathematically, asset pricing behavior in my incomplete markets economy is identical to that of a

representative agent economy where aggregate consumption is hit with an additional shock with

the same distribution as ηit. My solution method closely follows Eraker and Shaliastovich (2008)

and DY, who present a general solution for representative agent models with jump-diffusion

shocks in continuous time and discrete time, respectively. The key difference is an additional

interaction between aggregate shocks and the shape of the idiosyncratic risk distribution. Thus,

while the resulting expressions for asset prices are quite similar, the testable implications for the

co-movement of aggregate variables and asset prices can be quite different.

From Epstein and Zin (1989), equilibrium requires that, for any asset return R̃t+1, each agent’s

consumption profile satisfies the Euler equation:

1 = Et

δθ (Cit+1

Cit

)− θ
ψ

(Ric,t+1)−(1−θ)R̃t+1

 = Et

[
δθ
(
Cit+1

Cit

)−γ (
WCt+1 + 1

WCt

)−(1−θ)
R̃t+1

]
,(13)

where θ = 1−γ
1−1/ψ , Ric,t+1 ≡

W i
t+1+Cit+1

W i
t

is the return of an (non-traded) asset delivering an

arbitrary agent’s consumption stream, andWCt is the (ex-dividend) wealth-consumption ratio.49

Since all agents face identical consumption risks by Assumption 2, the distribution of Ric,t+1 is

ex-ante identical across households. As such, the marginal rate of substitution of an arbitrary

household is a valid stochastic discount factor. Plugging (10) into (13) yields

1 = Et

[
δθ
(
Ct+1

Ct

)−γ (WCt+1 + 1

WCt

)−(1−θ)

︸ ︷︷ ︸
“representative agent” pricing kernel

exp(−γ · ηit+1))︸ ︷︷ ︸
additional term from

uninsurable idiosyncratic risk

R̃t+1

]
≡ Et[M i

t+1R̃t+1], (14)

so that the pricing kernel, which we will denote by M i
t+1, may be decomposed into the prod-

uct of the two terms in brackets. The first is the standard pricing kernel from representative

agent models with Epstein-Zin preferences, which only depends on aggregate quantities.50 The

second term incorporates idiosyncratic consumption risk, which, since it is undiversifiable and

uninsurable to the agent, also affects risk premia.

49In a symmetric equilibrium, WCt is identical across agents so I suppress i superscripts.
50The equilibrium wealth-consumption ratio will differ from that of a representative agent model with the same

aggregate dynamics, since idiosyncratic risk affects the value of the consumption claim.
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With the sole exception of the consumption claim, ηit+1 is independent of R̃t+1 given the past and

current realizations of the aggregate state, yt+1. I will refer to assets satisfying this independence

restriction, such as the dividend claims, as “financial assets”. When pricing financial assets, I

use the law of iterated expectations to re-write (14) as

1 = Et

[
δθ
(
Ct+1

Ct

)−γ (WCt+1 + 1

WCt

)−(1−θ)
Et[exp(−γ · ηit+1))|yt+1]R̃t+1

]
≡ Et[Mt+1R̃t+1] (15)

= Et

[
δθ
(
Ct+1

Ct

)−γ (WCt+1 + 1

WCt

)−(1−θ)
 ∞∑
j=0

(−γ)j

j! E[ηjt+1|yt+1, yt]

 R̃t+1,

]
(16)

where the second line plugs in a Taylor series expansion of exp(−γ · ηit+1) around zero before

taking the (cross-sectional) expectation.51 This expression shows that, in general, the pricing

kernel is higher in states where even (odd) moments of the cross-sectional distribution of ηit+1

are larger (smaller). For example, all else constant, assets which perform well when idiosyncratic

second (third) moments are high (low) provide a valuable hedging benefit, lowering investors’

required rate or return.

With recursive preferences, the presence of uninsurable risk can have two, often complementary,

effects on risk premia (expected excess returns) relative to the representative agent model. The

first is a direct effect, coming from a cross-sectional correlation between the idiosyncratic risk

term and asset returns. The second is an indirect effect which comes from investors’ preferences

over the temporal resolution of uncertainty. When the EIS (ψ) is greater than 1 and γ > 1,

investors have a preference for the early resolution of uncertainty and may be willing to pay a

premium for assets which offer a hedge against unfavorable news about the distribution of future

idiosyncratic shocks. Such a preference affects investors’ hedging demands, changing the term

in the pricing kernel involving the wealth-consumption ratio. If agents have CRRA preferences,

only contemporaneous covariances are priced, and the indirect effect is zero.

To illustrate the indirect effect, consider the special case when ηit+1 is independent of all of the

other random variables in (14) conditional on yt (as opposed to the yt and yt+1). Under such

an assumption, the distribution of idiosyncratic shocks is known at time t and is independent of

any aggregate shocks which hit between t and t+ 1. Then, I can pull the idiosyncratic risk term

outside of the expectation. In this case, there is no direct effect since the correlation between the

idiosyncratic risk term and excess returns is zero.52 Therefore, the idiosyncratic risk term will

have the same impact on expected returns and the risk-free rate. However, idiosyncratic risk

51The projected kernel will not price assets whose payoffs depend on ηit+1 properly.
52This follows from the identity logEt(R̃t+1)− rft+1 = log[1− cov(M i

t+1, R̃t+1)].
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can still affect asset prices. For example, agents may still be willing to pay a premium to hedge

against bad news about the distribution of idiosyncratic shocks in periods t+ 2 and beyond.53

In equilibrium, (13) and (14) must hold for all assets in the investment opportunity set. Plugging

the consumption claim and financial asset returns into (14) yields

1 = Et

[
δθ
(
Ct+1

Ct

)1−γ (WCt+1 + 1

WCt

)θ
exp((1− γ)ηit+1)

]
(17)

1 = Et

[
δθ
(
Ct+1

Ct

)−γ (WCt+1 + 1

WCt

)−(1−θ)
exp(−γ · ηit+1)

 Pk,t+1

Dk,t+1
+ 1

Pkt
Dkt

 Dk,t+1

Dk,t

]
, (18)

a system of nonlinear equations involving the two key valuation ratios, WCt and Pkt/Dkt. Since

all of exogenous quantities in (17-18) are stationary by Assumptions 1-3, the model may be

solved numerically by finding the value of WCt that satisfies (17) for each value of yt+1 in the

state space. Then, given the solution for WCt, one can use (18) to solve for the equilibrium

price-dividend ratios for the financial assets.

5.2 Solution

In this section, I briefly outline how to solve for asset prices with incomplete markets and time-

varying idiosyncratic risk. Since my model for aggregate dynamics is quite general and has

many properties that have been studied elsewhere, I will primarily focus on the incremental

effects associated with incomplete markets. For brevity, many technical details may be found in

Appendix B.2.54 The only requisite approximation is the standard Campbell and Shiller (1988)

log-linearization of returns, which features in the most common representative agent solution

method. Adding idiosyncratic risk does not necessitate any additional approximations.

5.2.1 Log-linearization

Denote continuously compounded returns by lowercase letters (e.g. ric,t = logRic,t). I linearize the

return on the consumption claim around a constant log wealth-consumption ratio wc, yielding

ric,t+1 ≈ κc + ∆cit+1 + ρcwct+1 − wct, (19)

53Under CRRA utility, θ = 1 and the term involving the wealth-consumption ratio drops out entirely. Under
this assumption, then, there is no means for idiosyncratic risk to affect the equity premium.

54Additional details and discussion are available in Eraker and Shaliastovich (2008) and DY.
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with linearization constants ρc ≡ exp(w̄c)
exp(w̄c)+1 < 1 and κc ≡ log(exp(w̄c) + 1) − exp(w̄c)

exp(w̄c)+1 w̄c.
55

Combining (13) and (19), the log of the one period pricing kernel approximately equals

mi
t+1 = θ log δ − (1− θ)κc − γ∆ct+1 − (1− θ)(ρcwct+1 − wct)︸ ︷︷ ︸

linearized “representative agent” term

− γ · ηit+1︸ ︷︷ ︸
incomplete

markets term

. (20)

Equation (20) is the linearized version of (14), where the representative agent pricing kernel is

augmented by an additional term capturing idiosyncratic risk.

Analogous to the result in (15), for purposes of pricing financial assets, I replace ηit+1 with

its projection onto the aggregate state, logEt[exp(−γ · ηit+1)|y+1], in the log-linearized pricing

kernel. Note that − 1
γ logEt[exp(−γ · ηit+1)|y+1] ≡ νt+1 can be interpreted as the log of an

expected utility maximizer’s certainty equivalent for lottery exp(ηit+1) given yt+1. Thus, I can

equivalently consider the following projection of the pricing kernel

mt+1 = θ log δ − (1− θ)κc − γ(∆ct+1 + νt+1)− (1− θ)(ρcwct+1 − wct), (21)

so an asset’s covariance with the cross-sectional certainty equivalent νt+1 affects its risk premium.

Lemma 1 in the Appendix shows that, under my distributional assumptions, logEt[exp(u ·
ηit+1)|y+1] = β0(u) + β(u)′yt+1, where β(·) is a known function whose expression is given in

Lemma 1. Thus, the certainty equivalent νt+1 is an affine function of yt+1. Then, (21) becomes

mt+1 = κ− γ∆ct+1 − (1− θ)(ρcwct+1 − wct) + β(−γ)′yt+1, (22)

where κ ≡ θ log δ − (1 − θ)κc + β0(−γ). Note that (22) will correctly price financial assets;

the solution method for assets whose payoffs depend on ηit+1, namely the consumption claim, is

somewhat different.

5.2.2 Valuation Ratios

Proposition 2 gives my key result, namely that valuation ratios are affine functions of the ag-

gregate state vector yt.

Proposition 2. Let Assumptions 1-3 hold. The log-linearized model satisfies

55Analogously, the returns on the dividend claims approximately satisfy rk,t+1 ≈ κk+∆dk,t+1+ρkpdk,t+1−pdk,t
where pdk,t is the log price-dividend ratio for the the kth dividend stream. The linearization constants are the
same, except that long-run values of the price-dividend ratios replace wc.
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(i) wct = A0 +A′yt,

(ii) pdk = A0,k +A′kyt, for k = 1, . . . ,K.

where A0, A0,1, . . . , A0,K are scalars and A,A1, . . . , AK ∈ RK .

While most of the details are in Appendix B.2.2, a brief outline of the solution method is as

follows. I begin by conjecturing (and later verifying) that the log of the wealth-consumption ratio

is an affine function of yt.
56 I solve for A0 and A using the Euler equation for the consumption

claim and the method of undetermined coefficients. Given my restrictions on the law of motion

for the state vector, I can evaluate the Euler equations analytically.57 Since the Euler equations

must hold for each yt in the state space, I get a system of L+ 1 nonlinear equations which pin

down the coefficients. Analytical solutions are available in special cases, but, in general, the

system must be solved numerically.

A similar procedure yields solutions for the valuation ratios for the K other risky assets. I guess,

then verify, that the log price-dividend ratio for the kth risky asset is pdk = A0,k +A′kyt. Given

the solution for the wealth-consumption ratio, I calculate the projected version of the pricing

kernel in (22) and use the method of undetermined coefficients to solve for A0,k and Ak.

Plugging the affine form into (22), the projected pricing kernel, and subtracting off terms known

as of time t yields

mt+1 − Et(mt+1) = −[γS′c − β(−γ)′ + (1− θ)ρcA′][yt+1 − Et(yt)] ≡ −Λ′[yt+1 − Et(yt)], (23)

a multi-factor CAPM-like formula. Λ captures the sensitivity of investors’ intertemporal marginal

rate of substitution to shocks to the vector of aggregate state variables. The first two terms

in Λ capture news about contemporaneous consumption risk; the first is the usual representa-

tive agent term capturing the aggregate consumption innovation, and the second term captures

contemporaneous news about the distribution of idiosyncratic risk (i.e. the certainty equivalent

νt+1). The former captures preferences over the first moment of the cross-sectional distribution

of consumption growth, while the latter captures preferences over its higher moments. The third

term in Λ captures investors’ hedging demands, incorporating the indirect effect.

In Appendix B.1, I provide affine expressions which can be used to price a single risky payment,

56Since lagged values of ηit cannot help forecast future values of yit+1 and yt is a first order Markov process,
the wealth-consumption ratio will only depend on the aggregate state, yt.

57An expression for the the conditional moment generating function of yt+1 given yt is given in Lemma 2 in
Appendix B.2.2. This expectation is an exponential affine function of yt.
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such as a single dividend Dk,t+h, as of time t. These expressions can be used to derive the term

structure of (real or nominal) interest rates as well as the term structure of risk premia–see,

e.g. Lettau and Wachter (2007) and Van Binsbergen et al. (2012). Understanding the pricing of

risky cash flows at different points in time can help to clarify the mechanics of the model, and,

in some cases, generate additional testable predictions. See Appendix B.1 for further details.

5.2.3 Risk Premia

Conditional on the vector with the prices of risk (Λ), and the dividend-price ratio coefficients

(A0,k and Ak), the representative agent solutions in DY go through with almost no modifications.

For example, the vast majority of the excellent discussion in DY describes the model conditional

on the valuation ratios and, as such, is directly applicable here. Thus, my discussion is quite brief.

It is worth emphasizing, however, that these ratios–the key objects governing risk premia and

the transformation between the physical and risk-neutral measures–differ from those obtained

in the absence of idiosyncratic risk.

Given my solution for the price-dividend ratio, the log-linearized market return is

rk,t+1 = κk + (ρk − 1)A0,k + (S′k + ρkA
′
k)yt+1−A′kyt ≡ κk + (ρk − 1)A0,k +B′kyt+1−A′kyt. (24)

Proposition 3 gives the solution for the equity premium, which is derived in Appendix B.2.4.

Proposition 3. Let Assumptions 1-3 hold. The risk premium for the kth risky asset is

log(Et[Rk,t+1])− rft+1 = B′kGy,tG
′
y,tΛ + λ′y,t[Ψy(Bk)− 1L]− λ′y,t[Ψy(Bk − Λ)−Ψy(−Λ)]. (25)

The first term reflects the covariance between the Gaussian innovation to returns and the pricing

kernel. The second term is the expected value of the jump component of returns under the

physical measure, while the last term subtracts off its expected value under the risk-neutral

measure. The difference between the two reflects the compensation for jump risk. The terms

are additive because of the independence of Gaussian and jump shocks. If Gy,t or λy,t vary over

time, then the equity premium can also be time-varying.58

An immediate corollary to Proposition 3 is that a necessary condition for a variable to predict

excess returns is that it is correlated with uncertainty about shocks to the aggregate state. In the

next section, I present evidence that this condition holds in the data. When the distribution of

58For additional details and discussion, I also refer the reader to DY, sections 3.3.3 and A.4.
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idiosyncratic shocks is particularly negatively skewed (i.e. large negative shocks are more likely),

it is generally the case that uncertainty about future skewness is high.

5.3 ICAPM Representation

Campbell (1993) proposes an alternative method to derive the pricing kernel which substitutes

out consumption growth, therefore relying only on returns data. The result is an intertemporal

capital asset pricing model (ICAPM), which can be implemented empirically when the return of

aggregate wealth is observable. Even if the return on wealth is unobservable, such a representa-

tion highlights the key sources of priced risk in a model. In addition to allowing for incomplete

markets, I generalize Campbell et al. (2012) to allow for general affine jump-diffusion dynamics

in the aggregate state vector, yt.

Proposition 4, proved in Appendix B.2.3, provides an ICAPM representation of the pricing

kernel. Define Rc,t+1 ≡ E
[
Ric,t+1|yt+1

]
and rc,t+1 = logRc,t+1.

Proposition 4. Let Assumptions 1-3 hold. Then, the pricing kernel satisfies:

mt+1 − Etmt+1 = −γ (νt+1 − Et[νt+1])︸ ︷︷ ︸
contemporaneous

idiosyncratic
risk news

+(1− γ) NFIR,t+1︸ ︷︷ ︸
future

idiosyncratic
risk news

+NDR,t+1 − γNCF,t+1 + 1
2NUNC,t+1︸ ︷︷ ︸

representative agent terms

,

(26)

where ν∗t+1 ≡ 1
1−γ logEt+1[exp(1− γ)ηit+1|yt+1] ,

NFIR,t+1 ≡ [Et+1 − Et]
∞∑
j=1

ρjcν
∗
t+1+j , NDR,t+1 ≡ [Et+1 − Et]

∞∑
j=1

ρjcrc,t+1+j ,

NCF,t+1 ≡ [Et+1 − Et]
∞∑
j=0

ρjc∆ct+1+j , NUNC,t+1 ≡ [Et+1 − Et]
∞∑
j=1

ρjcϑt+j ,

and ϑt is defined in Appendix B.2.3.

Relative to the representative agent model, idiosyncratic risk adds two news terms to the pricing

kernel, which are likely to be positively correlated in practice. As discussed above, the first term

captures the “direct effect”, news about contemporaneous idiosyncratic risk. Agents dislike

assets that perform badly when the cross-sectional certainty equivalent, νt+1, is unexpectedly

low. This is the primary source of risk considered in the literature on testing household Euler

equations using the higher moments of cross-sectional household consumption growth.
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The second term provides compensation for news about the future trajectory of idiosyncratic

risk–the indirect effect, which is more transparent in the ICAPM representation. Again, ν∗t+1 is

a certainty equivalent, but the associated power (γ − 1) is lower, reflecting the fact that ric,t+1

is also exposed to the idiosyncratic shock ηi,t+1. Given the high persistence of my skewness

measure, this term is likely to be substantially larger in magnitude than the contemporaneous

term. The additional hedging demands associated with this second term provide the primary

amplification mechanism in my theoretical framework.

The first two representative agent terms reflect the differential pricing of news about future

discount and cash flow growth rates, respectively. Within a homoskedastic representative agent

model, only these terms are present. All else constant, investors’ intertemporal hedging motives

make them willing to offer a discount for stocks that positively covary with discount rate news.

The opposite is the case with cash flow news. Marginal utility is low when expected future

consumption growth is high, so assets that covary positively with cash flow news carry higher

risk premiums. The decomposition, which is due to Campbell and Vuolteenaho (2004), also

implies that cash flow news carries a risk price which is γ times larger than discount rate

news. Intuitively, discount rate shocks are transitory in nature, whereas cash flow shocks are

permanent, making the latter more important to an investor with a long time horizon.

Equation (26) indicates that the price of risk on NFIR,t+1 is γ − 1, one unit smaller than the

coefficient on cash flow news. For standard choices of γ, this implies that the cross-sectional price

of risk for news about future higher moments of consumption growth is much closer in absolute

value to the price of risk for cash flow news (that is, news about the mean of consumption

growth) than discount rate news.59 Moreover, if the cross-sectional certainty equivalent ν∗t+1 is

more persistent and/or volatile than aggregate consumption growth, this term can play a very

important quantitative role in amplifying risk premia.

Finally, in the presence of stochastic volatility and/or jumps, there is a final representative agent

term which captures news about state variables governing the higher moments of aggregate

shocks. The Jensen’s inequality term ϑt is high when uncertainty is high. All else constant,

risk averse agents are willing to pay a premium for assets which hedge against increases in

uncertainty. Thus, the price of risk on NUNC,t+1 is negative. For additional discussion, I refer

the interested reader to Campbell et al. (2012).

Empirical implementations of the ICAPM include rc,t+1, which is assumed to be observable, as

an element of the state vector yt+1. Under our assumptions, ϑt and ν∗t+1 are affine function

59Popular choices for γ in the theoretical literature with Epstein-Zin preferences often range between 5 and 15.
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functions of yt and yt+1, respectively. Therefore, one can express all of the news terms above as

linear combinations of the VAR residuals. Thus, the ICAPM provides an alternative approach

for deriving the prices of risk Λ, which can potentially be more robust to misspecification of

the high frequency dynamics of ∆ct+1. Analytical expressions for these linear combinations are

straightforward to derive and are available upon request.

6 Interactions between Idiosyncratic Risk and Stock Returns

In this section, I discuss the implications of our incomplete markets model for return predictabil-

ity, and I consider the dynamic interactions between proxies for idiosyncratic risk and asset

returns. In my model, a necessary condition for a variable to predict returns is for it to govern

uncertainty about the aggregate state vector. I begin by demonstrating that initial claims for

unemployment is a very good proxy for uncertainty about labor market conditions, suggesting

that this necessary condition is satisfied. Next, I present new evidence that initial claims for

unemployment predicts excess returns on the market portfolio, as well as Fama and French’s

(1992) SMB portfolio, outperforming a number of conventional predictors. I also explore the

covariance structure between initial claims and these predictor variables.

6.1 Uncertainty about idiosyncratic risk is countercyclical

From Proposition 3 above, the risk premium is constant when shocks to the state vector are

homoskedastic. Idiosyncratic risk can only affect risk premium dynamics if uncertainty about

future idiosyncratic risk is time-varying. In this section, I provide evidence that my skewness

index, xt, is heteroskedastic, and I identify three variables which capture uncertainty about

future idiosyncratic risk.

My preferred uncertainty measure is initial claims for unemployment insurance (UI). I divide

the number of claims filed in each month by the size of the workforce (from the BEA) to obtain a

stationary measure. An individual is only eligible for UI if he/she becomes “unemployed through

no fault of his/her own” (e.g. laid off).60 Thus, the normalized series may be interpreted as the

rate of involuntary job loss in the cross-section of employed individuals in the private sector.

Earlier, I demonstrated that my skewness index is most closely linked with measures of real

activity and employment growth. Initial claims is a leading indicator of future labor market

60Source: http://www.edd.ca.gov/unemployment/Eligibility.htm.

44



conditions (Barnichon and Nekarda (2012)), which is available on a very timely basis and is

subject to little measurement error.

While initial claims plausibly proxies for expected future labor market conditions, it is reasonable

to ask why it should proxy for uncertainty. One would expect more layoffs when aggregate

productivity is low. An elegant justification for a link between aggregate productivity and labor

market uncertainty comes from Ilut et al. (2014). Using establishment-level Census data, they

find strong evidence that firm-level hiring and firing decisions respond more strongly to bad

news relative to good news about productivity. Ilut et al. (2014) show that, when this condition

holds, the conditional volatility of aggregate employment growth is higher in bad times (i.e. when

average firm productivity is low), even if all productivity shocks are iid. The same condition

also implies that cross-sectional dispersion of employment growth is countercyclical.

Second, filing a claim for unemployment insurance benefits is time-consuming. Individuals must

fill out a lengthy application, and there is a waiting period while the UI benefits office verifies

the reason for the separation with employers. If a worker is fairly certain that he/she will be able

to find a job quickly, such a process may not be worth the effort. In contrast, when uncertainty

about one’s future job prospects is high, the expected benefit from filing a claim is higher.

I also consider two alternative uncertainty measures. The first is, xt, the level of my skewness

index. If, for example, xt follows a square-root process, then its conditional mean and volatility

are perfectly correlated with one another. The argument from Ilut et al. (2014) also applies to xt.

The second is a measure of cross-sectional volatility of employment growth across states. While

uncertainty about aggregate employment growth is more directly tied to the theory, aggregate

employment data are, at best, available at a monthly frequency, implying that realized volatility

measures are very imprecisely estimated.

To construct the cross-sectional measure, I use quarterly, seasonally-adjusted, state-level em-

ployment growth data from Hamilton and Owyang (2011).61 For each state, I estimate

∆emps,t = αs + βs∆empt + σsus,t, (27)

where empt is the cross-sectional average employment growth. My uncertainty measure is the

cross-sectional volatility of the fitted residuals: V olt ≡
√

1
S

∑I
s=1 û

2
s,t.

Figure 5 plots the three (standardized) measures, initial claims for unemployment (Claimst),

the skewness index (xt), and V olt over the time period for which both series are available. xt

61I am grateful to James Hamilton for making the data available. I extend the data to the present by aggregating
the monthly, seasonally-adjusted series which are now provided by the Bureau of Economic Analysis.
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Figure 5: Co-movement of labor market uncertainty proxies

This figure plots the co-movement of initial claims for unemployment, as a fraction of private payroll

employment, my idiosyncratic skewness index, and a measure of cross-sectional employment growth

volatility across U.S. states. Series are standardized to have mean zero and unit variance.

and Claimst are strongly negatively correlated and highly cyclical. Further, Claimst slightly

leads xt; bivariate Granger-causality tests provide strong evidence that Claimst Granger-causes

xt when 2 or more lags are included in the VAR. The business-cycle frequency movements of all

three series are quite similar, though the cross-sectional measure differs somewhat during the

double-dip recession of 1982. Initial claims is a very good proxy for cross-sectional uncertainty

about labor market conditions.

Within my model, risk premium dynamics depend on uncertainty about aggregate shocks, par-

ticularly about shocks to persistent state variables. Recall that the cross-sectional measure,

V olt, already strips out the effect of average employment growth. Next, I show that all three

measures are good proxies for time series uncertainty about future idiosyncratic risk. In the

labor market, cross-sectional and time series uncertainty are closely related.
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To demonstrate this relationship more formally, I perform two tests which are similar to the

ARCH test of Engle (1982). Using xt and Claimst, I estimate

xt = a0 +

p∑
j=1

aj x̂t−1 +

q∑
k=1

ap+kClaimst−1 + vt (28)

for different choices of p and q. Then, I estimate b1 and c1 in

|v̂t| = b0 + b1Unct + ε1t (29)

v̂2
t = c0 + c1Unct + ε2t, (30)

where Unct is one of our uncertainty measures. Under the null hypothesis that shocks to xt are

homoskedastic, b1 and c1 are zero. I test this restriction in the second stage regression.62 I also

repeat the analysis with Claimst is the dependent variable in (28).

Table 5 presents the results from these heteroskedasticity tests. Rows correspond with different

specifications for the conditional mean–i.e. choices of p and q in (28). The third column reports

the first stage R2’s for each conditional mean model, which are generally quite high. The

remaining columns report Newey-West t-statistics on b1 and c1 in (29-30) for different uncertainty

measures. We use 4 lags, though results are insensitive to this choice. R2’s from these second-

stage regressions are in brackets.

The results are qualitatively identical regardless of the specification considered. Increases in

initial claims, decreases in the skewness index, and increases in cross-sectional employment dis-

persion are highly significant predictors of the volatility of both sets of residuals. The statistical

tests also appear to be fairly insensitive to the use of absolute of squared residuals. In terms of

R2, lags of the skewness index and initial claims have roughly the same degree of explanatory

power for xt residuals. Turning to the bottom panel, Claimst−1 continues to be a good proxy

for initial claims residual volatility, while the skewness index has less explanatory power. V olt

also captures initial claims residual volatility reasonably well.

6.2 Labor market uncertainty predicts returns

My primary objectives is to study the ability of an asset pricing model with incomplete markets

to generate large, time-varying equity premia. In this section, I test a necessary condition for

such a model by considering the ability of my preferred labor market uncertainty measure,

62The standard errors, as currently calculated, are conditional on the estimated first stage coefficients.
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Dependent Mean First Absolute residuals Squared residuals
variable specification stage R2 Claimst−1 xt−1 V olt Claimst−1 xt−1 V ol2t
Skewness (xt) AR(1) 75.0 3.50 -4.31 3.35 2.63 -3.65 -4.31

[19.1] [18.1] [10.6] [16.8] [17.6] [18.1]
Skewness (xt) AR(2) 80.6 2.73 -3.21 3.19 2.43 -3.08 -3.21

[12.6] [12.9] [8.9] [12.8] [13.7] [12.9]
Skewness (xt) AR(4) 80.8 2.69 -3.22 3.07 2.44 -3.15 -3.22

[12.6] [13.2] [8.4] [12.4] [14.1] [13.2]
Skewness (xt) VAR(1) 75.3 3.22 -4.09 3.39 2.55 -3.57 -4.09

[17.5] [17.3] [10.1] [14.6] [17.2] [17.3]
Skewness (xt) VAR(2) 88.0 3.73 -3.06 2.85 3.30 -3.27 -3.06

[12.7] [8.6] [5.6] [12.4] [10.0] [8.6]
Skewness (xt) VAR(4) 92.2 2.16 -2.35 3.15 2.23 -2.06 -2.35

[2.8] [3.5] [6.4] [2.6] [3.8] [3.5]

Claimst AR(1) 87.8 6.74 -3.42 4.08 3.94 -2.85 -3.42
[21.4] [6.7] [27.4] [10.1] [3.1] [6.7]

Claimst AR(2) 89.4 4.93 -2.98 4.25 2.70 -2.38 -2.98
[23.6] [5.4] [27.6] [9.5] [1.9] [5.4]

Claimst AR(4) 89.5 4.99 -2.95 4.25 2.65 -2.34 -2.95
[22.8] [4.9] [27.6] [9.3] [1.7] [4.9]

Claimst VAR(1) 87.9 6.50 -2.98 4.24 3.80 -2.57 -2.98
[20.2] [5.8] [28.2] [9.5] [2.7] [5.8]

Claimst VAR(2) 89.6 4.64 -2.79 4.19 2.68 -2.26 -2.79
[22.5] [5.2] [27.1] [9.6] [1.9] [5.2]

Claimst VAR(4) 89.9 4.72 -2.83 4.13 2.62 -2.30 -2.83
[20.3] [4.9] [26.6] [8.5] [1.6] [4.9]

Number of residuals 179 179 179 179 179 179

Table 5: Tests for heteroskedasticity of skewness index and initial claims residuals

This table presents the results of a test for the heteroskedasticity of my estimated skewness index

(xt, top panels) as well as initial claims for unemployment, Claimst. Test statistics are generated

using a two-step procedure. In the first stage, I estimate an AR(p) or VAR(p) model using xt

and Claimst. I report the R2 from this regression is in the third column. The left and right panels

report Newey-West t-statistics (4 lags) and R2 (in brackets) from regressions of absolute and squared

residuals, respectively. The sample period is 1967:1 through 2012:3.
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initial claims, to predict returns in the data. I also consider its covariance with and compare

its forecasting power with other leading predictor variables from the extant literature. I find

that initial claims for unemployment outperforms essentially all of the univariate predictors at

short horizons (3 months to 1 year) and the vast majority of variables at a 2 year horizon.

Moreover, I find that common components of the associated univariate forecasts track labor

market conditions. Many variables which are motivated as proxies for aggregate consumption

risk also contain important information about idiosyncratic risk.

In the previous section, I identify three observable proxies for uncertainty about future idiosyn-

cratic risk. In this section, I emphasize initial claims relative to the other two measures. I do so

for a number of reasons. First, initial claims is available at a higher frequency, does not require

the estimation of any parameters, and is less likely to be prone to measurement errors. Second,

as discussed above, Granger-causality tests suggest that initial claims leads the skewness index,

suggesting that initial claims is likely to outperform in a predictive setting. Finally, in contrast

to the other two measures, initial claims has substantial explanatory power for uncertainty about

future skewness as well as its own volatility.

Since a wealth of potential predictors have been suggested in the literature, I focus on a subset

of 12 monthly variables considered in Goyal and Welch (2008), which are compiled and updated

regularly by Ivo Welch. As the vast majority of these variables are quite standard in the

literature, I refer the reader to Goyal and Welch (2008) for detailed descriptions of variable

construction, as well as references to the original studies which proposed each variable.

In addition to the univariate predictors, I summarize the predictive content of all 12 variables

by taking equal-weighted combinations of the fitted values from a univariate regression of 1

year-ahead excess returns on each predictor. I emphasize these combination forecasts in lieu of

estimating multivariate models because the finite sample properties of these forecasts are much

more desirable, and, as emphasized by Goyal and Welch (2008), estimation error is a first-order

concern within this context. Indeed, these combinations generally outperform all but the best

univariate models in-sample, and Rapach et al. (2010) demonstrate that combinations perform

much better out-of-sample.

I produce three combination forecasts. The first is an equal weighted combination of the univari-

ate forecasts from each of the variables over the entire sample period: 1928-2012. The second

begins the estimation in 1967, the first period for which initial claims data are available. Finally,

I orthogonalize each of the predictors with respect to initial claims, then form combinations of

the fitted values from univariate regressions of returns on these orthogonalized predictors.
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Initial Equity premium combination forecasts
Predictor claims 1928-2012 1967-2012 1967-2012 (orth.)
Employment cuts 0.38∗ 0.10∗ 0.35∗ 0.41∗

Equal-weighted equity premium forecast combinations
1928 - 2012 0.67∗

1967 - 2012 0.58∗ 0.77∗

1967 - 2012 (orth.) 0.00 0.29∗ 0.72∗

Goyal and Welch (2008) predictors
Dividend yield (dy) 0.74∗ 0.72∗ 0.41∗ -0.27∗

Earnings-price ratio (ep) -0.46∗ -0.59∗ -0.10∗ 0.47∗

Book-to-market ratio (bm) 0.76∗ 0.67∗ 0.28∗ -0.41∗

Stock market realized variance (svar) 0.01 0.13∗ 0.35∗ 0.38∗

3 month T-bill rate (tbl) 0.41∗ 0.23∗ -0.11∗ -0.72∗

Term spread (tms) 0.09∗ 0.23∗ 0.63∗ 0.79∗

Default yield: BAA - AAA spread (dfy) 0.69∗ 0.62∗ 0.71∗ 0.31∗

Long term yield (lty) 0.57∗ 0.43∗ 0.24∗ -0.41∗

Net issuance (ntis) 0.08 -0.39∗ -0.26∗ -0.36∗

Inflation (infl) 0.24∗ 0.09∗ -0.37∗ -0.69∗

Corporate - govt bond return (dfr) 0.07 -0.05 0.04 0.00
Long term bond return (ltr) 0.08 0.24∗ 0.31∗ 0.28∗

Table 6: Correlations between labor market variables and predictor variables

This table reports univariate correlation coefficients between a number of monthly time series. Initial

claims for unemployment insurance, divided by private sector employment, is my proxy for labor

market uncertainty. Future employment cuts, is the negative of the logarithmic growth rate in private

payroll employment over the next 3 months. The table also includes the Goyal and Welch (2008)

predictors and combination forecasts which are constructed from these predictors. The first two

combination forecasts are estimated using different sample periods. The last combination forecast

uses predictors which are orthogonalized with respect to initial claims. Stars indicate statistical

significance at the 1% level.

Table 6 presents a number of pairwise correlations between initial claims, each of the predic-

tors, and a measure of employment declines over the next three months–a simple measure of

labor market conditions. Initial claims has a 38% correlation with future employment declines

and both of the combination forecasts (67% and 58%, respectively). It is even more strongly

correlated with the dividend yield (74%), the book-to-market ratio (76%), and the default yield

(69%). It is also positively correlated with the T-bill rate (41%), the long term yield (41%)

on government bonds, and the inflation rate (24%), which is primarily driven by the period in

the 1970s where both inflation and labor market uncertainty were elevated. More surprising

is the negative correlation with the earnings-price ratio (-46%), which appears to be driven by
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Figure 6: Co-movement of initial claims with representative equity premium forecasts

This figure plots the co-movement of initial claims for unemployment, expressed as a fraction of

private payroll employment, with two measures of the equity risk premium: the market dividend-

price ratio and an equal-weight combination of univariate forecasts from the Goyal and Welch (2008)

predictors. All series are standardized to have mean zero and variance 1.

differences in low frequency variation between the two measures.63

Next, I report the pairwise correlations between each of the equity premium combination fore-

casts and our predictor variables. The first of the combination forecasts is most strongly cor-

related with the dividend yield (72%), the book-to-market ratio (67%), and the default yield

(62%). All three measures are highly correlated with initial claims, suggesting that they are

all capturing a common macroeconomic risk factor. Figure 6 overlays initial claims with the

dividend yield, as well as the first of the combination forecasts. These measures are highly

correlated with one another; spikes or troughs in initial claims are generally accompanied by

similar movements in one or both of the other risk premium measures.

63An even stronger negative correlation (-72%) arises between the dividend yield and the earnings price ratio.
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Turning to the second combination model for the 1967-2012 sample, the combination forecast

is most strongly correlated with the default yield (71%) and the term spread (63%). While the

individual pairwise correlations change a lot, the two combination forecasts are fairly highly

correlated with one another (77%), consistent with time variation in the implied risk premium

from the combinations being somewhat more robust to estimation error relative to univariate

models. The dividend yield and book-to-market ratio track this combination forecast less closely.

During this period, the pairwise correlation between initial claims and the combination forecast

is still higher than any of the remaining univariate predictors.

Finally, when I form a combination forecast using the orthogonalized predictors, the resulting

series loads most heavily on the term spread, inflation, and the yield curve. Orthogonal com-

ponents of the dividend yield, the book-to-market ratio, and the default yield, variables which

are most highly correlated with initial claims, are much less strongly correlated with these com-

bination forecasts. Note that this combination forecast, despite being uncorrelated with initial

claims, captures information about the conditional mean of employment growth. The combi-

nation forecast which is constructed using the orthogonalized predictors has a 41% correlation

with future cuts in employment, which is actually higher than the pairwise correlation between

employment cuts and initial claims (38%).

Table 7 summarizes the forecasting performance of each of our predictor variables for cumulative

returns. I report the R2 and the t-statistic on βh from the following predictive regression:

h∑
j=1

rt+j ≡ rt:t+h = αh + βhxt + ut:t+h, (31)

where rt is the log return on a given portfolio, xt is the predictor variable, and h is the forecast

horizon. Rows correspond with different predictors, while columns correspond with different

portfolios and forecast horizons. I consider forecasts of the log excess return on the CRSP value-

weighted index, as well as the Fama and French (1993) SMB portfolio.64 I consider forecast

horizons (h) of 3, 12, and 24 months, though results are similar at other horizons. My sample

period is 1967-2012. In order to make an apples-to-apples comparison, when looking at the other

predictors, I limit my attention to the period for which initial claims data are available.

The results in Table 7 suggest that initial claims for unemployment is a powerful, highly robust

predictor of broad market returns (left columns). At a three month horizon, initial claims

64Results are qualitatively similar for the HML portfolio, though the statistical evidence is much weaker. None
of the variables (including the combinations) forecast HML well at short horizons, though I find weak evidence
that initial claims forecasts HML at long horizons.
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Market Excess Return SMB Return
Predictor 3 mo 1 yr 2 yr 3 mo 1 yr 2 yr
Initial claims 2.40∗∗ 6.37∗∗ 4.96 4.29∗∗∗ 10.82∗∗∗ 9.47∗∗∗

(2.42) (2.44) (1.58) (3.63) (3.90) (2.58)

Equal-weighted forecast combinations
1928 - 2012 2.22∗∗ 8.96∗∗∗ 9.34∗∗ 3.25∗∗∗ 5.52∗ 2.69

(2.07) (2.71) (2.15) (2.61) (1.91) (0.92)
1967 - 2012 3.39∗∗ 14.88∗∗∗ 16.95∗∗∗ 3.84∗∗∗ 4.73∗∗ 1.50

(2.05) (4.19) (3.38) (3.30) (2.27) (0.96)
1967 - 2012 2.41 9.49∗∗∗ 10.70∗∗∗ 2.10∗∗ 1.62 0.32
(orth. predictors) (1.64) (2.82) (3.57) (2.53) (1.51) (0.32)

Univariate regressions with Goyal and Welch (2008) predictors
dy 0.97 3.12 4.29 1.16 1.71 0.48

(1.44) (1.47) (1.31) (1.44) (1.06) (0.33)
ep 0.32 0.79 0.54 0.36 0.50 0.31

(-0.48) (-0.60) (-0.42) (-0.70) (-0.48) (-0.21)
bm 0.29 0.76 0.38 1.32∗ 4.23∗ 4.18

(0.50) (0.63) (0.31) (1.73) (1.91) (1.26)
svar 0.31 0.85∗ 1.72∗∗ 0.47 1.59∗∗ 2.10∗

(-0.44) (1.75) (2.26) (1.58) (2.06) (1.84)
tbl 0.67 1.13 1.33 0.63 0.52 0.24

(-1.10) (-0.84) (-1.03) (-1.35) (-0.64) (-0.19)
tms 1.76∗∗ 8.04∗∗∗ 13.11∗∗∗ 0.98 1.48 0.20

(2.01) (2.67) (3.45) (1.55) (1.24) (0.13)
dfy 1.29 3.82∗ 3.62 2.89∗∗∗ 5.22∗∗∗ 5.26∗∗

(1.30) (1.88) (1.50) (3.17) (2.75) (2.52)
lty 0.19 0.42 0.91 0.26 0.18 0.23

(-0.17) (0.40) (0.61) (-0.63) (-0.04) (-0.17)
ntis 0.21 0.43 0.43 0.22 0.20 0.22

(-0.20) (-0.31) (-0.34) (-0.37) (-0.13) (-0.13)
infl 0.70 2.95∗∗ 1.57∗ 0.35 0.82 1.85

(-0.94) (-2.09) (-1.90) (-0.88) (1.26) (1.42)
dfr 0.92 0.31 0.23 0.37 0.44∗ 0.23

(1.46) (0.88) (0.55) (1.21) (1.78) (0.86)
ltr 0.62 1.64∗∗∗ 0.78∗∗∗ 0.48 0.23 0.19

(1.27) (3.41) (2.74) (1.31) (0.53) (-0.27)

Table 7: Predictive regressions for excess returns on Market and SMB portfolios

This table plots the R2 values (in percentage points) from predictive regressions of cumulative

returns on a number of univariate state variables. I consider the market excess return as well as the

Fama and French (1993) SMB portfolio. I use overlapping monthly data for the regressions, and

the sample period is 1967-2012, the period for which initial claims data are available. Newey-West

t-statistics, with lag length equal to the forecast horizon minus 1, are in parentheses.
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achieves an R2 of 2.4%. Initial claims outperforms every one of the Goyal and Welch (2008)

predictors, and its performance is comparable with the first and third combination forecasts.

The only other statistically significant univariate predictor is the term spread, which achieves

an R2 of 1.76%. At a 1 year horizon, the R2 is 6.4%, which is statistically significant. Only

the term spread performs better with an R2 of 8%. At a 2 year horizon, claims performs a

bit worse, though the magnitude of the R2 is still reasonably high. The combination forecasts

perform extremely well at the 1-2 year horizons.

A couple of other points are worth noting about the left panel of Table 7. First, the 1967-2012

sample period is a tough one for the Goyal and Welch (2008) variables. Many of the most

frequently emphasized predictors, including the dividend yield, book-to-market ratio, and the

default yield fail to achieve statistical significance. Stock market realized volatility is statisti-

cally significant at longer horizons, though the associated magnitudes are quite small. Inflation

achieves significance, though its sign is (arguably) wrong. Second, the second combination fore-

cast outperforms all other models by a wide margin at all horizons. This is not surprising,

given that I am taking an average of fitted values from 12 univariate regressions, all of whose

coefficients are estimated using data from the period over which evaluation takes place.

Turning to the right panels, I find that initial claims is an even stronger predictor of the excess

return on the Fama and French (1992) SMB portfolio. The R2 values are 4.3%, 10.8%, and 9.5%

at 1 quarter, 1 year, and 2 year horizons, respectively. This performance is better than any of the

Goyal and Welch (2008) predictors or any of the combination forecasts at all horizons. The term

spread, which performed the best at predicting the market return, has essentially no predictive

content for the SMB portfolio. Further, initial claims is the only predictor which is statistically

significant at the 95% level at the 2 year horizon. These results suggest that small stocks may

be disproportionately exposed to deterioration in labor market conditions, causing their risk

premia to increase more when labor market uncertainty is high relative to larger stocks.

Table 8 repeats the analysis where each of the variables from Table 7 is orthogonalized with

respect to initial claims prior to running the predictive regressions. Initial claims effectively

captures the predictive content of many of the variables, particularly the dividend yield (dy), the

earnings-price ratio, and the default yield (dfy). Variables related to inflation and/or the yield

curve appear have additional predictive content. However, as discussed above, these variables

are not unrelated to the health of the labor market, given the 41% correlation between the

combination forecast constructed with orthogonalized predictors and future cuts in employment.
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Market Excess Return SMB Return
Predictor 3 mo 1 yr 2 yr 3 mo 1 yr 2 yr
Initial claims 2.40∗∗ 6.37∗∗ 4.96 4.29∗∗∗ 10.82∗∗∗ 9.47∗∗∗

(2.42) (2.44) (1.58) (3.63) (3.90) (2.58)

Equal-weighted forecast combinations, orthogonalized
1928 - 2012 0.52 3.23 4.62 0.47 0.22 0.55

(0.81) (1.34) (1.53) (0.90) (0.19) (-0.42)
1967 - 2012 1.50 8.82∗∗∗ 12.27∗∗∗ 1.03∗ 0.30 0.69

(1.22) (2.90) (3.50) (1.76) (0.43) (-0.65)
1967 - 2012 2.41 9.49∗∗∗ 10.70∗∗∗ 2.10∗∗ 1.62 0.32
(orth. predictors) (1.64) (2.82) (3.57) (2.53) (1.51) (0.32)

Univariate regressions with Goyal and Welch (2008) predictors, orthogonalized
dy 0.28 0.21 0.56 0.75 3.22∗ 6.57∗

(-0.50) (-0.14) (0.40) (-1.17) (-1.66) (-1.86)
ep 0.31 0.35 0.39 0.52 1.31 1.57

(0.49) (0.36) (0.35) (1.19) (1.27) (0.87)
bm 1.70∗∗ 3.15 3.62 0.69 0.66 0.39

(-1.98) (-1.44) (-1.33) (-1.16) (-0.59) (-0.28)
svar 0.31 0.81∗ 1.67∗∗ 0.45 1.57∗∗ 2.08∗

(-0.45) (1.70) (2.23) (1.57) (2.06) (1.82)
tbl 2.25∗∗ 5.01∗∗ 4.86∗∗ 2.90∗∗∗ 4.64∗∗ 2.88

(-2.30) (-2.25) (-2.08) (-3.15) (-2.37) (-1.16)
tms 1.50∗ 6.94∗∗ 11.95∗∗∗ 0.72 1.03 0.19

(1.82) (2.44) (3.35) (1.28) (1.02) (-0.06)
dfy 0.18 0.25 0.42 0.31 0.18 0.26

(0.05) (0.24) (0.42) (0.72) (0.05) (0.19)
lty 1.49∗ 1.45 0.40 3.21∗∗∗ 5.24∗∗∗ 5.59∗

(-1.80) (-1.09) (-0.34) (-3.90) (-2.93) (-1.84)
ntis 0.26 0.66 0.63 0.31 0.35 0.38

(-0.34) (-0.42) (-0.46) (-0.66) (-0.35) (-0.30)
infl 1.40 5.65∗∗∗ 3.27∗∗∗ 1.03∗∗ 0.18 0.57

(-1.38) (-3.07) (-3.38) (-1.98) (0.09) (0.76)
dfr 0.71 0.21 0.18 0.25 0.22 0.19

(1.22) (0.45) (0.13) (0.74) (0.73) (-0.33)
ltr 0.48 1.21∗∗∗ 0.54∗∗ 0.33 0.18 0.31

(1.07) (2.80) (2.00) (0.93) (-0.09) (-0.98)

Table 8: Predictive regressions for excess returns on Market and SMB portfolios with orthog-
onalized predictors

This table plots the R2 values (in percentage points) from predictive regressions of cumulative

returns on a number of univariate state variables. I consider the market excess return as well as

the Fama and French (1993) SMB portfolio. All of the forecast combinations and Goyal and Welch

(2008) predictors have been orthogonalized with respect to initial claims. I use overlapping monthly

data for the regressions, and the sample period is 1967-2012, the period for which initial claims data

are available. Newey-West t-statistics, with lag length equal to the forecast horizon minus 1, are in

parentheses.
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6.3 Market returns are informative about future labor market conditions

When investors have Epstein-Zin preferences, an asset’s risk premium depends on the covariance

between its return and news about both contemporaneous and future idiosyncratic risk. In

addition, agents are willing to pay a premium to hedge against labor market uncertainty shocks.

In this section, I explore the covariance structure between market return innovations and my

proxies for the level of and uncertainty about idiosyncratic risk. Empirically, I find that while

return innovations have little predictive content for contemporaneous measures, they are highly

informative about future labor market conditions.

To demonstrate this relationship in as parsimonious of a way as possible, I estimate model-free

impulse response functions. My method closely relates to the local projection method of Jordà

(2005). Jorda’s method uses direct forecasts to estimate impulse responses at longer horizons,

as opposed to iterating on a (potentially misspecified) one-period model for the evolution of

the state vector. However, I identify the shocks via different means, using an argument from

Lamont (2001) which is frequently used to construct portfolios whose returns are informative

about innovations in economic state variables: factor-mimicking or economic tracking portfolios.

For a given observable variable yt, my definition of the impulse response is E[yt+k|rt+1 −
Et[rt+1] = v,Ft] − E[yt+k|rt+1 − Et[rt+1] = 0,Ft] for different values of k. Given a set of

conditioning variables, zt, I decompose yt+k as

yt+k = proj(yt+k|zt) + [Et(yt+k)− proj(yt+k|zt)] + εt:t+k ≡ β′kzt + ξkt + εt:t+k, (32)

where ξt:t+k is a term reflecting potential misspecification of the conditional mean of yt+k and

εt:t+k is the “true” innovation. I additionally assume that, as is the case in my general theoretical

framework, the conditional mean of returns takes the linear form

rt+1 = γ′zt + vt+1, (33)

where vt+1 has mean zero. Then, the impulse response may be rewritten as E[εt:t+k|vt+1 = v].

One obtains consistent estimates of ξkt + εt:t+k and vt+1 by taking the residuals from regressions

of yt+k and rt+1 on zt, respectively. Given these residuals, I estimate proj(εt:t+k|vt+1 = 1) ≡ αh
by regressing ξ̂kt + ε̂t:t+k on v̂t+1. Inference is straightforward, since the estimate of αh from this

two step procedure is identical to the coefficient on rt+1 from a regression of yt+k on zt and rt+1.

This approach works because vt+1 has mean zero and is independent of ξkt , so misspecification

of the conditional mean adds noise to the dependent variable (ξ̂kt + ε̂t:t+k) of the second stage
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Figure 7: Model-free impulse responses to market excess return innovations

This figure plots model-free impulse responses of key macroeconomic variables to market excess

return innovations. The impulse response is the slope coefficient on the market return, rm,t+1, from

a univariate regression of yt+k on a vector of predictors, xt, and rm,t+1. The vector zt includes yt,

the dividend yield, initial claims for unemployment, the term spread, and the 3 month T-bill rate.

Shaded regions are pointwise 95% confidence bands, calculated using Newey-West standard errors,

where the number of lags equals the horizon minus 1.

regression. As long as I have estimated the return innovation correctly, I need not have spec-

ified the mean of yt+k correctly. The advantage of such an approach is that, in contrast with

macroeconomic time series, returns are almost serially uncorrelated. While the conditional mean

of returns does vary over time, this variation is second order compared with its highly volatile

unforecastable component. However, the use of a direct estimation method places practical

constraints on the maximum lag length which can be considered.

Figure 7 shows the estimated impulse response functions to market excess returns for six different

macroeconomic variables over twelve quarters. The vector zt includes 4 lags of the target variable,

the dividend yield, initial claims for unemployment, the term spread, and the 3 month T-bill rate.

For purposes of identification, it is more important that the variables zt capture the conditional

mean of returns, as opposed to the target variables. Including lags of the target helps to reduce

noise in the estimation of the news terms, though, consistent with my identification argument,

the results are insensitive to the inclusion of one or more lagged terms.

The top left panel shows the responses of real aggregate consumption growth (real consumption
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of nondurables and services from the National Income and Product Accounts). The estimated

response is positive and significant for the first few quarters, though it quickly trails off to

zero at longer horizons. Note however that the associated magnitudes are quite small. A 1

standard deviation (+8.5%) quarterly return innovation is associated with a cumulative con-

sumption response of only about 30 basis points, which is 15% of the standard deviation of

annual consumption growth. Note that the absence of a response after the first year is incon-

sistent with the presence of a highly persistent component in expected consumption growth.

However, my regression-based test could have low power to detect news about an extremely

persistent component if its variance is sufficiently small.

Next, I consider the response of my conditional skewness index. Since xt is normalized to have an

unconditional variance equal to one, the response is measured in standard deviation units. The

response is small and insignificant on impact, peaking at about 1/3 of one standard deviation 3 to

4 quarters after the return innovation is observed. The response turns statistically insignificant

around 7-8 quarters later. My point estimates are slightly negative, though insignificant, in

the last four quarters. Such a result is consistent with a transitory component in idiosyncratic

skewness which subsequently reverses itself.65 The magnitude of the skewness response is quite

substantial; the cumulative response over the first two years is 1.35 standard deviations.

Finally, I plot the response of my labor market uncertainty proxy, initial claims for unem-

ployment, to return innovations. The response is hump-shaped and unambiguously negative.

A positive return innovation is associated with a decrease in future labor market uncertainty,

where the news is most informative about initial claims 6-18 months in the future. Here, the

magnitudes are fairly substantial, given that the high persistence of initial claims.

7 Quantitative Model

Sections 4 and 5 show how to integrate my incomplete markets mechanism into a general, jump

diffusion model for aggregate cash flows. The novel mechanism is that agents are exposed to

rare, idiosyncratic disasters, where the idiosyncratic disaster probability is time-varying. In

this section, I work with a fairly standard specification for aggregate risk so as to highlight

the amplification in risk premia associated with incomplete markets. Despite its simplicity, the

stylized model is matches key asset pricing moments quite well, without relying on low-frequency

variation in state variable dynamics.

65If I reestimate the regressions with only lags of the targets in zt (which would be valid if returns were
unpredictable), these negative point estimates disappear.
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7.1 Setup

I perturb the representative agent model so that agents are exposed to idiosyncratic, uninsurable

event risk. For parsimony, I abstract away from diffusion (Gaussian) shocks and assume that all

uninsurable risk comes from compound Poisson shocks.66 Further, while my empirical results

provide evidence of state dependence in both tails of the idiosyncratic risk distribution, the

stylized model only emphasizes downside risk to keep the model as transparent as possible.

As such, the novel mechanism in the model is the inclusion of a time-varying probability of

uninsurable idiosyncratic disasters within an otherwise standard endowment economy.

My model for aggregate dynamics adopts the general structure of the Bansal and Yaron (2004)

long-run risk model. Aggregate cash flows evolve according to

∆ct+1 = µc + φcxt + σtεc,t+1 (34)

∆dt+1 = µd + φdxt + σtεd,t+1, (35)

where dt+1 is the log dividend on the market portfolio. Asset pricing dynamics are driven by two

persistent state variables. The first is xt, a small but persistent component governing expected

cash flow growth. The second, σ2
t , captures the conditional variance of shocks in the economy.

The persistent component, xt, plays a second role in my model. In addition to affecting ex-

pected cash flow growth rates, it also controls the higher moments of idiosyncratic shocks to

consumption. Agents are exposed to a single jump component, J iη,t+1, and its Poisson intensity

λη,t+1–the personal disaster probability–is λ0 − λ1xt. λ1 is positive, so that personal disasters

become more likely in states when expected cash flow growth is low. As above, I normalize xt to

have mean zero and variance one, so that λ0 and λ1 can be interpreted as the unconditional dis-

aster probability, and λ1 is the sensitivity of the conditional disaster probability to a 1 standard

deviation change in xt.

The personal disaster magnitude (the jump size) is normally distributed with mean µb and

standard deviation σb. Note that this choice is inconsistent with the calibration in Section 3.2

assumed exponentially-distributed jumps. In the interest of conservatism, I choose the thin-

tailed normal shocks. In my calibration, µb is a large, negative number, and σ2
b is very large

relative to uncertainty about aggregate consumption. Analogously with rare macroeconomic

disasters, these infrequent labor market events are associated with extremely high marginal

utilities, so they have a large impact on asset prices despite their relative infrequency.

66An i.i.d diffusion component primarily affects the risk-free rate and thus has little effect on excess returns.
Adding such a component is similar to changing the discount rate δ.
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The state variables evolve according to

xt+1 = ρxxt + σtεx,t+1 (36)

σ2
t+1 = 1− ρσ + ρσσ

2
t + σtεσ,t+1 (37)

where we normalize E[xt] = 0 and E[σ2
t ] = 1. In Bansal and Yaron (2004), the shock to σ2

t is

homoskedastic. I allow σ2
t to follow a square-root process, which is consistent with evidence from

Table 5. This restriction also guarantees that σ2
t is nonnegative in the continuous time limit.

Whereas popular calibrations of xt emphasize very low frequency movements in expected growth

rates and volatility, both state variables are considerably less persistent in my calibration.

Relative to Bansal and Yaron (2004), I allow for a somewhat richer correlation structure among

the residuals in the model. The covariance matrix for the shocks is

Et[εt+1ε
′
t+1] =


ϕ2
c πcϕ

2
c 0 0

πcϕ
2
c π2

cϕ
2
c + ϕ2

d + π2
xϕ

2
x + π2

σϕσ πxϕ
2
x πσϕ

2
σ

0 πxϕ
2
x ϕ2

x χϕxϕσ

0 πσϕ
2
σ χϕxϕσ ϕ2

σ

 . (38)

The Bansal and Yaron (2004) specification assumes that πc, πx, πσ, and χ are zero. Bansal

et al. (2012) allow πc 6= 0, which permits for a nonzero covariance between consumption and

dividend innovations. Analogously, πx and πσ allow for a nonzero correlation between news

about dividend growth and the state vector. χ permits a nonzero correlation between xt and σ2
t

innovations, which has considerable support in the data.

7.2 Amplification

Under these assumptions, Ax, the sensitivity of the wealth consumption ratio–the key determi-

nant of hedging demands in the pricing kernel–to xt innovations is

Ax =

[
1− 1

ψ

1− ρxρc

] [
φc + ρx

∂ν∗t
∂xt

]
, (39)

where ν∗t+1 ≡ 1
1−γ logEt[exp(1 − γ)ηit|xt+1] and ρc is the log-linearization constant. Assuming

that γ > ψ > 1, as is standard in the long-run risk literature, the first term in brackets is

positive. The second term captures the sensitivity of the household’s flow utility to changes in

xt. The first piece, φc, comes from the predictability of aggregate consumption growth (it is
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common to normalize φc = 1 in the long-run risk literature), while the second piece involving

the cross-sectional certainty equivalent, ν∗t , comes from predictability of the higher moments of

idiosyncratic consumption growth shocks. Assuming that λ1 > 0 and ρx > 0, the contribution

from this term is also positive. Disasters states are associated with extremely high marginal

utility, so this second term dominates in my model.

From inspection of (39), the amplification mechanism associated with idiosyncratic risk becomes

quite clear. Marginal utility becomes more sensitive to xt as the cross-sectional certainty equiva-

lent becomes more sensitive to xt. Households face more risk, so their hedging demands against

future increases in that risk are larger. In addition, as in the representative agent case, the sensi-

tivity also increase as xt becomes more persistent and/or aggregate consumption becomes more

predictable. Though the algebraic expression for the coefficient on σ2
t is considerably messier, a

similar amplification is present. Under my preference configuration, the price of volatility risk

is negative. The addition of idiosyncratic risk makes it larger in absolute value relative to the

representative agent case.

Turning to the price dividend ratios, one can also show

Ax,m =
1

1− ρxρm

(
φx − φc

ψ − ρx
[
γ

(
∂νt
∂xt
− ∂ν∗t
∂xt

)
+

1

ψ

∂ν∗t
∂xt

])
. (40)

The contribution from the first two terms in parentheses come from the representative agent

solution, whereas the last term (in brackets) comes from incomplete markets. The first term

within the brackets in (40), which is generally positive, compares the sensitivity of the certainty

equivalents of two invidividuals, where one is more risk averse than the other, to changes in the

higher moments of exp(ηit+1) given yt+1.67 The second term within the brackets is the incomplete

markets analogue to the − φ
ψ term coming from the representative agent solution.

Inspection of the bracketed term in (40) reveals one of the potentially counterintuitive implica-

tions of the incomplete markets model. Idiosyncratic risk generally increases the sensitivity of

the pricing kernel to shocks to the aggregate state vector. However, idiosyncratic risk pushes

in the opposite direction for the price dividend ratios. All else constant, for a given degree

of dividend predictability, returns will tend to fall less in response to bad news relative to the

representative agent case.

67Recall that νt+1, which appears in the projected pricing kernel (21), is the log of a CRRA individual’s
certainty equivalent for lottery exp(ηit+1) given xt+1 when the risk aversion parameter is γ. Analogously, ν∗t+1 ≡

1
1−γ logEt[exp((1− γ)ηit+1)|xt+1] is a certainty equivalent for the same lottery when the risk aversion parameter

is γ − 1. When γ ≥ 2, the two partial derivatives will have the same sign, and
∂νt+1

∂xt+1
≥ ∂ν∗t+1

∂xt+1
.
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What is the intuition behind this term? In the representative agent model, when aggregate

consumption becomes more risky, standard calibrations assume that the dividend claim becomes

even riskier. This gives agents an incentive to shift away from dividends, causing the price-

dividend ratio to fall. In my model, given the interactions between aggregate and idiosyncratic

risk, idiosyncratic risk also increases when dividends becomes more risky. All else constant,

this additional channel makes the dividend claim–which is not exposed to idiosyncratic shocks–

appear more favorable than it otherwise would, increasing the precautionary savings demand

for financial assets. The last term captures the strength of this precautionary savings motive.

So, the price-dividend ratio will be less responsive to changes in the state variables than it would

be in the representative agent model.

Taking stock, within the context of this stylized model, idiosyncratic risk increases the sensitivity

of household marginal utility (the pricing kernel) to news about the state variables, but it reduces

the sensitivity of returns. My quantitative exercise suggests that the increased sensitivity of

the pricing kernel is more important. However, one can find parameter configurations where

consumption is substantially riskier than dividends, causing stock prices to increase in response

to bad news, which is counterfactual (see, e.g. the impulse responses in Figure 7). In order to

generate a substantial risk premium, dividends must fairly predictable.68

7.3 Calibration

Table 9 provides an overview of the parameters in the quantitative model, along with the cal-

ibrated values. While the number of parameters is somewhat larger than Bansal and Yaron

(2004), most of the key parameters will be tied directly to estimates from the data. I calibrate

the model to the quarterly frequency, to match the frequency of my estimated skewness index,

as well as the calibrated income process parameters from section 3.2.

I begin with the parameters governing idiosyncratic shocks. I set λ1, the sensitivity of the

disaster probability to a change in xt, exactly equal to its calibrated value from Table 3. Given

my emphasis only on the state-dependent component of idiosyncratic risk, I set the unconditional

disaster probability equal to 2.5 × λ1, which implies that the probability of the fitted intensity

68Constantinides and Ghosh (2014) calibrate a model with a relatively similar structure, except that idiosyn-
cratic risk is driven by a single variable which follows a square root process. In their calibration, aggregate
consumption and dividends are i.i.d. When idiosyncratic risk is sufficiently persistent, they generate a large eq-
uity premium even in the absence of predictability. This occurs because the level and volatility of idiosyncratic
risk are perfectly correlated, so agents’ preference for an early resolution of uncertainty causes prices to fall in
response to bad news about future idiosyncratic risk.
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Parameter Value Description

λ0 0.0065 Average idiosyncratic jump intensity
λ1 0.0026 Sensitivity of quarterly jump intensity to a one

standard deviation change in xt
µb -0.18 Average consumption decline given a disaster
σb 0.115 Standard deviation of disaster magnitude

ρx 0.8847 Persistence of xt process
ρσ 0.9446 Persistence of σ2

t process
µc 0.02 / 4 Drift of consumption growth
µd 0.0075 / 4 Drift of dividend growth
φc 0.000366 Loading of expected consumption growth on xt
φx 0.025 Loading of expected dividend growth on xt

ϕc 0.0125 Standard deviation of shock to ∆ct
ϕd 0.045 Standard deviation of independent shock to ∆dt
ϕx

√
1− ρ2

x Standard deviation of shock to xt
ϕσ 0.1674 Standard deviation of shock to σ2

t

πc 2.5 Loading of dividend innovation on ∆ct innovation
πx 0.04 Loading of dividend innovation on xt innovation
πσ -0.0896 Loading of dividend innovation on σ2

t innovation
χ -0.66 Correlation of shocks to xt and σ2

t

γ 11 Relative risk aversion coefficient
δ 0.9745 Rate of time preference (quarterly)
ψ 2 Intertemporal elasticity of substitution

Table 9: Summary of Parameters for the Quantitative Model

This table describes the parameters of the quantitative asset pricing model, along
with the calibrated values. The time horizon of the model is quarterly. The additional
free parameters, µη and Fη, are assumed without loss of generality to equal the
expressions given in Proposition 1.
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going negative is very small, though still nonzero.69

Turning to the distribution of jump sizes (idiosyncratic disaster magnitudes), I choose param-

eters with an eye towards conservatism. I set µb = −18% and σb = 11.5%, values which are

considerably smaller than the values in Table 3. Stockholders have some means with which to

smooth their consumption over time, and households often have more than one earner. As such,

I do not assume that income shocks translate one-for-one into consumption shocks. Instead, I

make an assumption about the extent to which shocks to permanent income “pass through” to

consumption–i.e. the elasticity of consumption growth to permanent income growth. These val-

ues of µb and σb translate to an elasticity of about 23%, which is on the lower end of reduced-form

estimates from Blundell et al. (2008).70

By far, the most controversial parameters in the long-run risk literature govern the persistence

of the state variables xt and σ2
t , an well as the degree of consumption and/or dividend growth

predictability required to generate a sizable risk premium. I choose the persistence parameters,

ρx and ρσ, to match the first order dynamics of my skewness index and initial claims, respectively.

I estimate the AR(1) parameters using a regression which is adjusted for finite-sample bias

following the approach in Bauer et al. (2012).71 Analogously, the correlation between the AR(1)

innovations, χ, is estimated directly from the bias-corrected regression residuals. I choose the

volatility of σ2
t to match the Kelley’s skewness of initial claims in the data.

µc and ϕc are set to generate a mean and volatility of aggregate consumption growth which is

roughly in line with the data. Note that, given that I have chosen the idiosyncratic risk pa-

rameters to correspond with the income risk faced by relatively high earners, it is not immedi-

ately obvious that “aggregate consumption” in the model should be tied to NIPA consumption

data. For instance, Malloy et al. (2009) find evidence that the average consumption growth

of stockholders is more highly correlated with returns relative to non stockholders. Parker and

Vissing-Jorgensen (2010), Guvenen et al. (2014c), and Guvenen et al. (2014a) provide additional

evidence of above-average cyclicality of high earners. Nonetheless, as predictability of average

consumption growth is not the main focus of the paper, I maintain the NIPA benchmark for

ease of comparison with the literature.

69My calibration embeds a negative correlation between xt and σ2
t shocks, implying that the unconditional

distribution of xt is negatively skewed (consistent with the data). Since the disaster probability decreases in xt,
the likelihood that the fitted intensity goes negative is quite small.

70Blundell et al. (2008), Table 7 estimates a 22.5% elasticity for male earnings. All other estimates are higher.
71The OLS coefficient in an AR(1) model suffers from a downward finite sample bias, which can be nontrivial

when the dependent variable is fairly persistent. Bauer et al. (2012) develop an algorithm which corrects for this
bias and show that it improves the ability of an estimated affine term structure model to fit the data.

64



I choose the level of consumption predictability φc so that an agent’s consumption is i.i.d.

conditional on not receiving a jump shock. This choice implies that, unlike the Bansal and

Yaron (2004) calibration, aggregate consumption growth is essentially unpredictable. φc exactly

offsets the location adjustment (Fη) which is subtracted off to ensure proper aggregation. Given

this restriction, the only source of predictability in ∆ct+1 is the conditional expectation of the

jump shock–a restriction which approximately holds in the income data (see Figure 4).72 If,

instead, I were to set φc = 0, ∆ct+1 is a random walk. However, the location adjustment would

counterintuitively imply that, for all individuals who do not receive jump shocks, the distribution

of consumption growth shifts to the right as the personal disaster probability increases.

I set the drift of aggregate dividend growth (µd) equal to 75 basis points per year, somewhat lower

than the mean of aggregate consumption growth. I assume that a 1 standard deviation increase

in xt increases expected dividend growth by 2.5% in the following quarter. AGiven the degree

of persistence in xt, dividends are fairly predictable at short horizons, but are fairly difficult

to predict at longer horizons. I set the loading of the dividend innovation on the consumption

growth innovation, πc, equal to 2.5, which is identical to the value in Bansal et al. (2012). The

correlation between consumption growth and dividend growth innovations is 52%. My choice

of ϕd implies that the quarterly volatility of the dividend growth innovation is just shy of 6%.

The parameters πx and πσ imply that dividend innovations are moderately correlated with xt

and σ2
t shocks; pairwise correlations are 31% and -25%, respectively.

Table 10 compares my assumptions about state variable dynamics and cash flow predictability

with two popular calibrations of the long run risk model: Bansal and Yaron (2004, BY) and

Bansal, Kiku, and Yaron (2012, BKY). The top panel compares the persistence coefficients,

which are expressed as monthly autocorrelations. In my model, the half life of an xt shock is 1.4

years, which is considerably shorter than the half lives of 2.7 and 2.3 years in the BY and BKY

calibrations, respectively. σ2
t is also less persistent. σ2

t shocks have a half life of 2.9 years versus

4.4 years in the BY model. The BKY model emphasizes extremely low frequency movements in

volatility, so their choice of ρσ implies that a σ2
t shock has a half life of 57.7 years.

It is useful to clarify my purpose in making such a comparison. The BY and BKY models

generate large risk premia which are quite close to those in my baseline calibration. While

the first order autocorrelations of my skewness index and initial claims are indeed lower than

standard choices of ρx and ρσ in the long run risk literature, this need not imply that idiosyncratic

risk and labor market uncertainty feature important sources of low frequency variation. Rather,

my key objective is to illustrate the amplification associated with incomplete markets.

72Wachter (2013) makes a similar assumption in a model with rare microeconomic disasters.
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Statistic Baseline BY BKY
Persistence of xt (monthly) 0.96 0.979 0.975
Half-life of xt shocks 1.4 years 2.7 years 2.3 years

Persistence of σ2
t (monthly) 0.980 0.987 0.999

Half-life of σ2
t shock 2.9 years 4.4 years 57.7 years

Volatility of expected consumption growth (annualized) 0.15% 2.0% 1.5%
Volatility of expected dividend growth (annualized) 10.0% 6.1% 3.7%

Dividend growth predictability: Et

[∑∞
j=0 ρ

j [∆dt+1+j − E(∆dt+1+j)|xt = σ(xt)
]

0% annual discount rate 21.7% 24.6% 12.6%
5% annual discount rate 19.8% 20.6% 10.9%
10% annual discount rate 18.1% 17.6% 9.5%

Table 10: Comparison with benchmark long-run risk calibrations

This table compares several features of my calibrated model with comparable values
implied by the parameters in Bansal and Yaron (2004, BY) and Bansal, Kiku, and
Yaron (2012, BKY).

The next panel reports the volatility of expected consumption and dividend growth, expressed

as an annualized percentage. Given my focus on idiosyncratic risk, I deliberately shut off almost

all consumption predictability, so the volatility of annualized expected consumption growth is 15

basis points. Predictable variation in aggregate consumption is the primary source of the equity

premium in BY and BKY, so the volatility of expected consumption growth is considerably

higher (2% and 1.5%, respectively).

Given the lower persistence of xt in my model, dividends are more predictable at short horizons

but less predictable at longer horizons. The volatility of the conditional mean of dividend growth

is 10% when expressed as an annualized rate, as compared with 6.1% and 3.7% in the BY and

BKY calibrations. As such, I report a measure of the overall level of dividend predictability,

which is the change in the expected discounted sum of future dividend growth associated with

a 1 standard deviation increase in xt. I calculate these sums with 0%, 5%, and 10% annual

discount rates. Regardless of the discount rate, overall dividend predictability in my model is

roughly comparable with BY and somewhat higher relative to BKY.

For the preference parameters, I set γ = 11 and ψ = 2, which fall in the standard range of choices

in the literature with Epstein-Zin preferences. Given that ψ > 1, agents have a preference for

the early resolution of uncertainty, implying that they are willing to pay a premium for assets
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whose returns hedge against bad news about the state vector (low xt or high σ2
t ). The discount

factor δ is chosen to roughly match the real risk free rate. It is worth noting that matching

observed risk-free rates the presence of idiosyncratic risk necessitates the use of discount factors

which are substantially lower relative to standard choices in representative agent models.

7.4 Performance

Table 11 demonstrates the ability of the quantitative model to match a number of key asset

pricing moments. Data moments are taken from BKY, who calculate statistics using annual

time series of real returns and cash flow growth rates from 1930-2008. I refer the reader to their

paper for further details about the underlying data sources. Next, I use the model to simulate

50,000 annual time series of the same length, then report a number of quantiles of the finite

sample distribution of the calibrated model. These quantiles can also be interpreted as robust

standard errors for the model-implied moments.

Most importantly, my model with idiosyncratic disaster risk generates a large and time-varying

equity premium of about 6.5% per year. It easily replicates the excess volatility puzzle; the

volatility of the market return is 10% larger than that of dividend growth. The addition of

incomplete markets leads to a fairly volatile real interest rate, whereas long run risk models

with complete markets tend to exhibit too little volatility. The model also matches the level

of the price-dividend ratio almost exactly, though it understates its volatility (a shortcoming

of the BY and BKY models as well). The price dividend ratio also exhibits a lower degree of

autocorrelation relative to the data, which is unsurprising given that the state variables in my

model are not very persistent.

Looking at the cash flow moments, the biggest differences between the model and the data are

the first order autocorrelations of consumption and dividend growth, which are significantly

lower and higher than the corresponding values in the data, respectively. The former is by

construction, given that I deliberately shut off almost all consumption predictability to highlight

the amplification coming from incomplete markets.

The autocorrelation of dividend growth deserves more discussion. In my model (and the BY

and BKY models), the leading term in the equity premium is (1− θ)σ2
tϕ

2
xAxAx,m, which is the

covariance between returns and the hedging demand for xt shocks. The addition of idiosyncratic

disaster risk makes Ax large and positive. However, dividends need to be riskier than consump-

tion in order for Ax,m to be positive. This ensures that, consistent with the data, valuation

ratios are procyclical. I achieve this by assuming that dividends are fairly predictable over short
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Data Model
Moment Estimate Median 2.5% 5% 25% 75% 95% 97.5%
E[Rm −Rf ] 7.09 6.46 2.19 2.90 5.02 7.91 9.93 10.61
σ(Rm) 20.28 23.61 18.50 19.27 21.73 25.69 29.12 30.47
E[Rf ] 0.57 0.46 -1.61 -1.22 -0.19 1.05 1.83 2.07
σ(Rf ) 2.86 3.46 2.50 2.63 3.08 3.87 4.58 4.83

E[pd] 3.36 3.37 3.25 3.27 3.33 3.41 3.45 3.46
σ(pd) 0.45 0.21 0.15 0.16 0.19 0.23 0.28 0.30
AC1(pd) 0.87 0.58 0.35 0.39 0.51 0.65 0.73 0.76

E[∆c] 1.93 2.00 1.43 1.53 1.81 2.19 2.46 2.54
σ(∆c) 2.16 2.04 1.59 1.66 1.87 2.21 2.47 2.57
AC1(∆c) 0.45 0.21 -0.01 0.02 0.13 0.28 0.39 0.42
E[∆d] 1.15 0.83 -5.64 -4.46 -1.27 2.77 5.33 6.15
σ(∆d) 11.05 13.78 10.33 10.83 12.50 15.20 17.68 18.61
AC1(∆d) 0.21 0.50 0.28 0.32 0.43 0.57 0.66 0.68
Corr(∆c,∆d) 0.55 0.41 0.16 0.21 0.33 0.49 0.58 0.61

Table 11: Bootstrapped distribution of model-implied moments

This table presents several moments of aggregate cash flows and asset prices, both
from the data and the model. The data moments are reproduced from Bansal,
Kiku, and Yaron (2012), who use real, annual data from 1930-2008. The remaining
columns show the Monte Carlo distributions of 50,000 simulated paths of analogous
quantities, which are simulated from the calibrated model and time-aggregated to an
annual frequency. Each simulated path has the same length as the historical data.

to medium-term horizons, increasing the autocorrelation of model-implied dividend growth. As

discussed above, the overall level of dividend growth predictability in my model is comparable

with Bansal and Yaron (2004).

Table 12 highlights the incremental contribution from incomplete markets by comparing the

asset pricing moments from my model with those obtained from a comparable representative

agent model. The Markets column indicates whether the relevant moment is obtained from the

incomplete markets or representative agent version of the model. It reports the average of the

moments in Table 11 of a long simulation of 1 million quarters. I shut off idiosyncratic risk by

setting λ0 and λ1 equal to zero. In addition, I raise the rate of time preference considerably to

0.996, which generates a risk-free rate of about 2%.73 In addition, I demonstrate the effects of

shutting down several dimensions of risk which are embedded in my baseline calibration.

73In some of the specifications, price-dividend ratios approach infinity if I try to match the observed risk-free
rate from the data.
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Data Simulated Model-Implied Moments
Moment Estimate Markets Baseline No Covariance Less CF Vol IID Cons
E[Rm −Rf ] 7.1 Inc 6.5 5.5 5.8 5.3

RA 3.2 3.1 2.5 2.0
σ(Rm) 20.3 Inc 24.2 20.2 23.4 23.1

RA 26.9 23.5 26.0 25.5
E[Rf ] 0.6 Inc 0.4 0.4 0.6 0.7

RA 2.0 2.0 2.0 2.0
σ(Rf ) 2.9 Inc 3.7 3.7 3.5 3.3

RA 0.3 0.3 0.1 0.0

E[pd] 3.4 Inc 3.4 3.4 3.5 3.6
RA 4.5 4.1 5.1 6.2

σ(pd) 0.45 Inc 0.22 0.21 0.21 0.20
RA 0.25 0.25 0.24 0.24

AC1(pd) 0.87 Inc 0.62 0.64 0.60 0.60
RA 0.59 0.62 0.58 0.57

E[∆c] 1.9 Both 2.0 2.0 2.0 2.0
σ(∆c) 2.2 Both 2.1 2.1 2.1 2.1
AC1(∆c) 0.45 Both 0.23 0.23 0.23 0.23
E[∆d] 1.15 Both 0.68 0.75 0.70 0.80
σ(∆d) 11.1 Both 14.5 12.8 14.4 14.4
AC1(∆d) 0.21 Both 0.53 0.50 0.53 0.53
Corr(∆c,∆d) 0.55 Both 0.40 0.44 0.41 0.36

Table 12: Data and model-implied moments for different specifications

This table presents several moments of aggregate cash flows and asset prices, from
the data and different versions of the model. The data moments are reproduced
from Bansal, Kiku, and Yaron (2012), who use real, annual data from 1930-2008.
The remaining columns show the averages over a simulation of 1 million quarters
of analogous quantities, which are simulated from the calibrated model and time-
aggregated to an annual frequency. Please see the text for the parameter restrictions
associated with the different specifications.
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In the representative agent version of my baseline specification, the equity premium is generated

by three distinct channels. The first is a contemporaneous covariance between consumption and

dividend growth innovations. Second, since φc 6= 0, there is a small amount of predictability

in aggregate consumption growth. Third, there is stochastic volatility about aggregate con-

sumption innovations, as well as shocks to the state vector. The Baseline column of Table 12

indicates that these channels combine to generate an equity premium of 3.2% per annum. Thus,

the addition of incomplete markets doubles the risk premium in the baseline specification.

Looking at several of the other asset pricing moments, some general patterns emerge. The risk-

free rates are considerably more volatile in the incomplete markets model, and price-dividend

ratios are somewhat more autocorrelated. Returns are even more volatile in the representative

agent versions of the model. This follows from (40), the expression for Ax,m. Holding dividend

predictability constant, the additional precautionary savings motive associated with incomplete

markets reduces the sensitivity of the price-dividend ratio to changes in xt.

The baseline model allows for a contemporaneous correlation between dividend growth inno-

vations and shocks to xt and σ2
t via the parameters πx and πσ. The next column, titled “No

Covariance”, sets both of these parameters to zero. Eliminating these contemporaneous covari-

ances reduces the incomplete markets equity premium by 1%, whereas it leads to a substantially

smaller reduction in the representative agent equity premium. This restriction reduces the

volatility of returns and cash flow growth and generates a mild reduction in the autocorrelation

of dividend growth.

The next column reduces the importance of stochastic volatility relative to the baseline model.

While shocks to xt and σ2
t continue to be heteroskedastic, the terms involving ϕc and ϕd in the

covariance matrix (38) are now assumed to be homoskedastic. This restriction affects both risk

premia symmetrically, reducing both by about 0.7%.

The final column of Table 12, “IID Cons”, keeps the reductions on the role of stochastic volatility

from the “Less CF Vol” column and, in addition, sets φc = 0. These restrictions imply that

aggregate consumption is i.i.d. Again, the associated reduction in the risk premium of about

0.5% is the same across models. With i.i.d. aggregate consumption, the incomplete markets

model generates a risk premium of 5.3% versus a 2% risk premium with complete markets.
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8 Conclusion

This paper presents evidence for the quantitative importance of idiosyncratic tail events as

an important driver of variation in risk premia over time. The vast majority of theoretical

research on time varying risk premia exclusively emphasizes risks associated with the level of

aggregate consumption over time. My analysis suggests that risks associated with redistribution

of consumption across across agents can be just as important, if not more important, than

aggregate consumption risks. I view this paper’s contribution as a “proof of concept”; there

remains plenty of room for additional work.

Labor market event risk is likely to provide a novel mechanism for the amplification of aggregate

shocks. If the uninsurability of labor market shocks causes discount rates to rise much more

sharply in response to bad news than they would if markets were complete, firms’ incentives

to invest are likely to be substantially distorted. My model can be easily embedded within a

production setting, and I plan to explore these interactions in future work.

In the data, aggregate and idiosyncratic risks are tightly linked with one another. While my

general model easily accommodates the study of these interactions, I deliberately downplay risks

associated with aggregate consumption so as to highlight the potential of the incomplete markets

mechanism. My model simply takes labor market event risk and its relationship with aggregate

shocks as an exogenous input. A richer model would endogenize these interactions, enabling it

to address a larger number of policy questions.

My estimates of the distribution of idiosyncratic shocks are intended to provide an order of

magnitude for the degree of tail risk agents face via the labor market. Given recent increases

in the quality of panels of earnings records, one should be able to pin down these distributions

fairly precisely. Its tails are effectively observable given the cross-sectional sample sizes available.

This feature make the key parameters of the incomplete markets model much easier to estimate

relative to those governing aggregate tail risk.
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Appendix [Under Construction]

A Idiosyncratic Risk Process - Calibration and Estimation

A.1 Additional summary statistics for income growth rates

Table 1 reported a number of statistics for the cross-sectional distribution of income growth

rates, which were averaged over the 91st through 95th percentiles of the earnings distribution.

Table 13 reports the same statistics, averaged over different percentiles of the distribution. These

ranges are indicated by different columns, where [96,100] in the first column indicates that we

are describing the risk faced by the top 5% of earners. Thus, row one, column three of Table

1 reports the median changes in log income, averaged over the top 5 percentiles of the 5-year

average income distribution and over 5 expansion periods.

Regardless of the specific group (column of Table 13) considered, the results are consistent with

the discussion in the main text. The overall level of idiosyncratic risk is extremely high, with

the level of the 90-10 spread exceeding 100 log percentage points for all groups. The entire

distribution shifts to the left in recessions. Scale measures are relatively insensitive to the

business cycle, while the extreme tails move much more strongly. Finally, including the highest

group of earners increases the overall degree of risk substantially.

A.2 Time Aggregation of Third Central Moments

A.2.1 Log-linear approximation

This section derives expressions for the moments of time-aggregated wages from my quarterly

model in (1-2). For notational simplicity, I suppress i subscripts here. As in (3) A first-order
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Average over percentiles of 5-year average income distribution
Statistic Period [96,100] [91,100] [91,95] [76,100] [76,95] [76,90]

Median E 2.71 2.12 1.53 1.22 0.84 0.61
R -4.46 -3.44 -2.41 -2.99 -2.62 -2.68

R - E -7.50 -5.65 -3.81 -4.19 -3.37 -3.22
10th Percentile E -76.48 -69.55 -62.62 -63.99 -60.87 -60.28

R -95.34 -84.79 -74.23 -76.09 -71.27 -70.29
R - E -18.35 -14.93 -11.51 -11.91 -10.31 -9.90

90th Percentile E 76.63 64.91 53.19 52.59 46.58 44.37
R 53.51 47.23 40.96 39.27 35.72 33.97

R - E -20.47 -16.20 -11.93 -12.80 -10.88 -10.53
Kelley’s Skewness E -3.22 -7.03 -10.85 -12.65 -15.01 -16.40

R -22.30 -23.52 -24.73 -27.23 -28.46 -29.70
R - E -19.09 -16.49 -13.89 -14.58 -13.45 -13.31

Scale Measures
Inter-Quartile Range R - E 0.43 0.86 1.30 0.78 0.87 0.73
90-10 Percentile Spread R - E -4.26 -2.44 -0.62 -1.22 -0.46 -0.40

Left Tail Width Measures
50-25 Percentile Spread R - E 4.08 3.55 3.01 2.67 2.32 2.09
50-10 Percentile Spread R - E 10.85 9.28 7.70 7.72 6.94 6.69

Right Tail Width Measures
75-50 Percentile Spread R - E -3.66 -2.69 -1.72 -1.89 -1.45 -1.36
90-50 Percentile Spread R - E -12.97 -10.54 -8.12 -8.61 -7.52 -7.32
95-50 Percentile Spread R - E -19.06 -17.26 -15.47 -15.46 -14.56 -14.26
99-50 Percentile Spread R - E -29.81 -28.26 -26.71 -25.82 -24.82 -24.19

Table 13: Summary statistics for the cross sectional distribution of income growth rates

This table summarizes a number of statistics from the cross-section of 5-year log income growth

rates, which are calculated from statistics reported by GOS using annual data from 1978-2011.

Columns indicate averages of the statistic over different percentiles of the 5-year average income

distribution (see GOS for a detailed definition), where 1 and 100 indicate the lowest and highest

1% of earners, respectively. The second column indicates the period over which the average value

of the statistic is calculated, where “E”, “R”, and “R - E” denote expansions, recessions, and the

difference between recessions and expansions, respectively.

78



Taylor expansion yields that, for k ≥ 4,

wA,t − wA,t−k ≈ 1
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4
(εt−k + εt−k−1 + εt−k−2 + εt−k−3)︸ ︷︷ ︸

≡εA,t−εA,t−k

≡ β · k + θk(L; ρ)ηt + εA,t − εA,t−k, (41)

where θk(·) is a polynomial in the lag operator whose second argument is the vector of coefficients

for ρ(L). Next, I link the third central moments of time-aggregated wages with moments from

the quarterly model. Since ηt is independent of ηt−j given the path of the aggregate state, then

M3[yA,t − yA,t−k] = k3M3[β] +
∞∑
j=0

[θk,j(ρ)]3M3[ηt−j ] +M3[εA,t − εA,t−k],

≡ φk(L; ρ)M3[ηt] + k3M3[β] +M3[εA,t − εA,t−k], (42)

where M3(·) denotes the third central moment, conditional on aggregate information.74 If we

further assume that M3(ηt) = a+ b′yt, where yt is a vector of observable state variables, then

M3[wA,t − wA,t−k] = ck + b′φk(L; ρ)zt, (43)

where φk(L; ρ) is a known lag polynomial and ck ≡ φk(1; ρ)a+k3M3[β]+M3[εA,t−εA,t−k], which

is constant given our assumption that the third moments of βi and εt are state independent.

A.2.2 Approximation accuracy

[Under Construction]

74This follows because, given two independent random variables x and z with µx ≡ E[x] and µz ≡ E[z],

E[(x+ z − µx − µz)3] = E[(x− µx)3] + 3E[(x− µx)2(z − µz)] + 3E[(x− µx)(z − µz)2] + E[(z − µz)3]

= E[(x− µx)3] + E[(z − µz)3] ≡M3[x] +M3[z],

where we use independence to replace terms such as E[(x− µx)2(z − µz)] with E[(x− µx)2]E[(z − µz)] = 0.
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A.3 Skewness Index Estimation

A.3.1 Skewness Indices - Parametric Approach

Motivation for Explanatory Variables

I consider four macroeconomic time series for inclusion in the vector yt. The first variable,

∆empt, is the quarterly change in the logarithm of private payroll employment. In section 2,

I found that the tails of the income growth distribution are much more sensitive to the cycle

relative to the center. If tail events are related to transitions between jobs, one would expect to

see more large positive shocks and fewer large negative shocks when firms are hiring, generating

a positive relation between ∆empt and cross-sectional skewness.

The second variable, ∆yt, is the quarterly change in real compensation to private sector employ-

ees, which is essentially the first moment of the cross-sectional distribution of income growth

rates. If changes in the first moment are driven by changes in the tails, one would expect to see a

positive relation between ∆yt and cross-sectional skewness. All nominal variables are converted

to real variables using the personal consumption expenditures (PCE) deflator.

The third variable, pwt−1, is the lagged ratio of corporate profits to wages, detrended using a HP

filter.75 This variable captures a potential timing mismatch between shocks received by firms

and those received by workers. Relative to profits, the response of wages to aggregate shocks

is more sluggish, generating cyclical variation in overall profitability. If profits and wages are

cointegrated, pwt−1 can be interpreted as an error-correction term. Thus, when profits are high

relative to wages, it is likely that firm recently experienced a series of favorable shocks. Future

wages are likely to be higher and firms are more likely to be hiring than firing, causing the right

tail of the income growth distribution to expand and the left tail to contract.

Additional motivation for ∆yt and pwt−1 comes from Berk et al. (2010). They derive the

optimal contract between a risk averse worker and a risk-neutral firm when the productivity of

the match varies over time, extending Harris and Holmstrom (1982) to a setting where firms have

a financial incentive to issue debt. Under the optimal contract, firms partially insure workers

against productivity shocks. In normal times, wages rise less than 1 for 1 in response to positive

shocks and stay constant in response to negative shocks. This insurance breaks down when

75I filter the series to eliminate very low frequency movements in this ratio, which could be related to changes
in the composition of the private sector relative to the economy as a whole over time. As such, I use a smoothing
parameter of 12,800, 8 times higher than the standard quarterly choice of 1600. Similar results obtain if the series
is detrended by using a 10-year backward-looking moving average.
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firms encounter financial distress, dissolving completely if the firm goes bankrupt. Workers

whose contracts are terminated experience sudden, large declines in wages–i.e. idiosyncratic

“disaster risk” arises as an equilibrium outcome of the model.76

Berk et al. (2010) is a partial equilibrium model, lacking any sources of aggregate risk. However,

if one takes the structure of their optimal contract as given and applies it to a world where

aggregate productivity is time-varying, the implications for the cross-sectional distribution of

income growth rates are relatively clear. When productivity increases, firms’ average profit

margins increase, making it easier for firms to insure workers against bad shocks in the future.

When profitability increases, average wages also increase. Conversely, firms have lower risk-

bearing capacity when overall profitability is low and wages are falling, increasing the risk that

workers experience large negative shocks and making the income growth rate distribution more

negatively skewed.77

The last variable, ∆ct, is the change in the logarithm of real aggregate consumption (nondurables

plus services). The intuition for aggregate consumption is essentially identical to that for ∆yt.

One would expect the distribution of income growth rates to be more negatively skewed when

household consumption is falling. However, compared with ∆yt, there is more scope for a timing

mismatch between ∆ct and cross-sectional skewness. For example, households with a strong

precautionary savings motive could cut consumption today in response to bad news about the

distribution of future labor income growth, causing ∆ct to lead the cross-sectional moments.

Results

As a precursor to our regressions, Figure 8 summarizes the univariate forecasting performance

of the employment and compensation growth, perhaps two of the most natural candidates for

zt. It plots the time series of 1-year and 5-year third central moments from GOS, and weighted

moving averages of these first two variables, φk(L; 0)∆empt and φk(L; 0)∆yt, respectively. For

purposes of generating these graphs, we calculate the moving averages assuming that ρ(L) = 0,

which assumes that transitory shocks are completely state-independent. As we discuss in greater

detail below, changing ρ(·) primarily impacts the level of φk(L; 0)zt rather than its time series

variation. Similar results obtain with other choices of ρ(·).

At both horizons, the time-aggregated employment and income growth measures track the cross-

76Berk et al. (2010) write: “employees’ wages at the moment of termination will typically be substantially
greater than their competitive market wages. As a result, these entrenched employees face substantial costs
resulting from a bankruptcy filing.”

77Giving workers occasional opportunities to switch firms, as in on-the-job search models, could potentially
generate procyclical variation in the likelihood of experiencing large positive shocks as well.
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Panel A: 5 year trailing measures
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Panel B: 1 year trailing measures
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Figure 8: Co-movement of aggregate variables with third central moment of idiosyncratic
income growth rates

Panel A plots the co-movement of 5-year idiosyncratic third central moments from GOS with weighted moving

averages of logarithmic employment growth and real compensation growth. Panel B repeats the analysis for a 1

year measures. Series are standardized to have mean zero and unit variance. The weights are the lag polynomials

φ20(L; 0) and φ4(L; 0) for 5 year and 1 year changes, respectively, which are defined in equation (42).

sectional moments quite closely. The latter works slightly better at the 5-year horizon, while

both measures perform equally well at the 1-year horizon. The R2’s from univariate regressions

of 5-year moments on employment and income growth are 61% and 72%, respectively. For 1-year

measures, these R2’s are 68% and 67%, respectively.78 At these frequencies, the two moving

averages are fairly highly correlated. This is perhaps unsurprising, because changes in the size

of the workforce likely generate the lion’s share of variation in aggregate wages. In the data,

the asymmetry of the idiosyncratic labor income growth distribution is tightly linked with the

extensive margin.

78 See Table 14, Panel A.
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Table 14 estimates the vector b in (4) by regressing the time-aggregated skewness measures on

several aggregate variables. Given the sample size, we limit attention to univariate and bivariate

specifications. Panel A sets ρ(L) = 0, while Panel B allows for a restricted MA(1) structure:

ρ(L) = ρ · [1 + L].79 In this latter specification, the partial derivative of yit with respect to ηit

on is [1 + ρ] in quarters t and t+ 1, and 1 in later periods; thus, the temporary effect reinforces

(dampens if ρ < 0) the permanent effect by an additional ρ%. All estimates are obtained by

minimizing the sum of squared residuals, which is an OLS regression when ρ is held fixed, and

nonlinear least squares otherwise.80

Each panel includes the coefficients from three different estimations. In the left columns, we

report coefficients from pooled GMM regressions which include both 1 and 5-year third central

moments as dependent variables. Next, we reestimate the model using data from each horizon

separately. The center columns use 5-year measures only, while the right columns use 1-year

measures only. When estimating these univariate regressions in Panel B, we fix the value of ρ

at its estimated value from the bivariate model.81

Qualitatively, the picture is essentially the same across specifications. In models 1-4, each of the

four proxies always has the expected (positive) sign and is highly statistically significant. When

we allow ρ 6= 0 in Panel B, our estimates are generally positive, suggesting that permanent

shocks have additional transitory effects. In the bivariate models 5 and 6, both variables always

enter positively and are generally statistically significant. A combination of contemporaneous

income or employment growth with a proxy for future labor market conditions pwt−1 matches

the skewness measures quite well. Our estimates in Model 7, where ∆yt and ∆ct are both

generally significant but enter with opposite signs, are somewhat less intuitive. However, the

time series of quarterly skewness measures from this model track those from the other, more

intuitive models relatively closely.

Panel A of Figure 9 plots our estimates of quarterly conditional third central moments, b̂′zt,

from the pooled GMM estimates of models 5-7 from Panel B of Table 14. The picture from

the corresponding models in Panel A are essentially identical. Model 5, which includes employ-

ment growth and the profit-wage ratio, appears to capture a common, low-frequency component

around which the more volatile estimates from Models 6 and 7 fluctuate. While all three time

series are highly cyclical, peaking in expansions and bottoming out in recessions, these idiosyn-

cratic risk measures exhibit substantial time series variation, even in periods without recessions.

79Similar results obtain with different lag lengths.
80We calculate standard which are robust to the presence of heteroskedasticity and autocorrelation. We use a

Newey-West estimator for the long-run variance with 4 lags.
81 Thus, the associated standard errors are best interpreted as conditional on ρ̂.
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Panel A: Specifications with ρ(L) = 0
Pooled GMM 5 year only 1 year only

Model Variable Coefficient ρ̂ R2
5, R2

1 Coefficient R2 Coefficient R2

1 ∆empt 1.7959*** 0 0.599 1.5640*** 0.612 6.1042*** 0.677
(0.415) 0.340 (0.424) (0.865)

2 ∆yt 1.1325*** 0 0.708 0.9944*** 0.722 3.1307*** 0.666
(0.143) 0.395 (0.152) (0.434)

3 pwt−1 0.0438*** 0 0.610 0.0402*** 0.615 0.1303*** 0.366
(0.006) 0.205 (0.007) (0.020)

4 ∆ct 1.5459*** 0 0.233 1.3163*** 0.241 6.0070*** 0.348
(0.383) 0.156 (0.388) (1.691)

5 ∆empt 1.2245*** 0 0.766 0.9908*** 0.780 5.1872*** 0.715
(0.236) 0.353 (0.214) (0.991)

pwt−1 0.0257*** 0.0256*** 0.0497***
(0.006) (0.006) (0.018)

6 ∆yt 0.8456*** 0 0.808 0.6895*** 0.823 2.7027*** 0.689
(0.129) 0.391 (0.093) (0.666)

pwt−1 0.0202*** 0.0210*** 0.0407
(0.007) (0.006) (0.026)

7 ∆yt 1.8210*** 0 0.853 1.6517*** 0.866 3.5460*** 0.673
(0.123) 0.432 (0.104) (0.584)

∆ct -1.9281*** -1.8194*** -1.4021
(0.230) (0.249) (1.840)

Panel B: Specifications with ρ(L) = ρ · [1 + L]
Pooled GMM 5 year only 1 year only

Model Variable Coefficient ρ̂ R2
5, R2

1 Coefficient R2 Coefficient R2

1 ∆empt 1.5676*** 0.5763 0.545 1.3332*** 0.562 2.9610*** 0.629
(0.473) (0.371) 0.489 (0.371) (0.455)

2 ∆yt 0.9565*** 0.6002** 0.676 0.8390*** 0.690 1.4730*** 0.651
(0.160) (0.237) 0.571 (0.152) (0.196)

3 pwt−1 0.0433*** -1.3590*** 0.614 0.0393*** 0.620 0.0891*** 0.374
(0.007) (0.285) 0.275 (0.008) (0.016)

4 ∆ct 1.2088*** 0.8957* 0.239 1.0426*** 0.246 1.7950*** 0.278
(0.376) (0.448) 0.248 (0.369) (0.650)

5 ∆empt 1.1851*** 0.4639 0.702 0.9456*** 0.720 2.8498*** 0.676
(0.261) (0.313) 0.495 (0.208) (0.617)

pwt−1 0.0221*** 0.0217*** 0.0295***
(0.007) (0.005) (0.010)

6 ∆yt 0.7952*** 0.5240** 0.752 0.6568*** 0.768 1.3848*** 0.678
(0.125) (0.243) 0.566 (0.116) (0.326)

pwt−1 0.0154* 0.0158*** 0.0224*
(0.008) (0.005) (0.012)

7 ∆yt 1.5525*** 0.4392** 0.810 1.4137*** 0.822 2.1247*** 0.670
(0.140) (0.217) 0.574 (0.115) (0.372)

∆ct -1.5139*** -1.4530*** -1.1432
(0.305) (0.246) (1.124)

Table 14: Regressions of third central moment of income growth on aggregate variables

This table presents the results from estimating equation (4) for different choices of zt by least squares.

The dependent variable is the time series of third central moments from the cross section of income

growth rates from GOS. Panel A restricts ρ(L) = 0, while Panel B estimates ρ(L) = ρ · [1 + L].

The “pooled GMM” column combines information from 1 and 5 year moments, while the next two

columns reestimate the models using data on 5 year and 1 year measures only, conditioning on ρ̂ from

the pooled specification. Newey-West standard errors, calculated with 4 lags, are in parentheses.
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Figure 9: Key features from estimated regression models

Panel A plots pooled GMM estimates of quarterly conditional third central moments from the

estimated specifications in Panel B of Table 14, i.e. b̂′zt. A dashed vertical line indicates the

beginning of the sample period used to estimate the skewness measures. Panel B plots the coefficients

of the lag polynomial φ4(L; ρ) in the regression equation (4) for 1 year skewness measures. The first

series imposes ρ(L) = 0, while the second corresponds with the estimated ρ(L) = ρ̂(1 + L) from

Model 5. The third line rescales the first line so that the sum of the weights is the same as that

from the estimated specification. Panel C repeats the analysis in Panel B for 5 year measures.

Moreover, a quarterly NBER recession indicator has almost no explanatory power.

With the exception of ∆ct, all of our proxies are capable of capturing the variation in the 5-year

measures quite well. Models 1-3 and 5-7 generate R2’s in excess of 60% at a 5-year horizon. The

inferior performance of Model 4 is somewhat unsurprising in light of our discussion above about

a potential timing mismatch between ∆ct and idiosyncratic labor market shocks. Moreover, the

5-year R2’s are similar between the pooled GMM and univariate specifications in the left and

middle columns, respectively. At a 1-year horizon, R2’s are also in excess of 60% for Models
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1-2 and 5-7 in the univariate specifications in the middle and right columns. However, the

differences between the pooled GMM and univariate specifications are larger. In the pooled

GMM specifications, these R2’s are between 10 and 20 percentage points lower in Panel B and

substantially lower in Panel A.

If the data are generated according to equation (5), the slope coefficients from a regression of

M3[yA,t − yA,t−k] on φk(L; ρ) is the same for all horizons k. Our pooled GMM estimations im-

pose this restriction, while the univariate regressions in the middle and right columns allow us

to test it. Therefore, we can check the validity of this assumption by comparing the estimated

coefficients and R2’s in the middle and right columns with those from the pooled estimation.

Comparing the the middle and right columns, the coefficients estimated using the 1-year skew-

ness measures only are generally much larger in magnitude than the pooled estimates. These

differences are particularly stark in Panel A, where unrestricted 1-year specifications outperform

the pooled GMM estimates by a wide margin.

These discrepancies, though still present, shrink substantially once we allow ρ 6= 0 (Panel B).

When comparing the R2’s from the pooled GMM specifications in Panels A and B, the first

order effect of allowing ρ 6= 0 is an improvement in the fit for 1-year skewness measures. Panels

B and C of Figure 9 offer an explanation for such a result. Panel B plots the coefficients of the

lag polynomial φ4(L; ρ) in the regression equation (4) for 1 year skewness measures. First, we

plot the weights when ρ(L) = 0. Second, we plot the weights implied by ρ(L) = ρ̂(1 + L) from

model 5. The third line rescales the first so that the sum of the weights matches the second,

making it easier to compare the shapes of the two fitted polynomials.

At a 1-year horizon, both lag polynomials are tent-shaped, giving the highest weight to the

third lag (the shock received in first quarter of the end year). The biggest difference is that the

model with ρ > 0 has a much higher peak. The sum of weights is about 75% larger relative

to the specification with ρ = 0. Second, the weighting function with ρ > 0 is asymmetric,

overweighting more recent lags. Relative to the change in the sum of the weights, the change in

the shape induced by ρ 6= 0–the difference between the solid gray and dashed blue lines–is less

substantial. As such, the primary effect of allowing ρ > 0 is to increase the variance of φk(L; ρ)zt

by a factor of around 3, shrinking the 1-year regression coefficients towards zero.

Figure 9, Panel C shows the corresponding weights in the lag polynomials for 5 year measures.

Once again, the specification with ρ > 0 puts higher weight on recent lags. However, as we

are summing over a much larger number of lags, the overall effect is quite minor. The sum of

the weights is much less sensitive to changes in ρ, and the weighting functions have essentially

identical shapes after the 5th lag. Accordingly, changes in ρ will have much larger effects on the
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1-year moving averages relative to the 5-year moving averages.

Looking at Panel B of Table 14, there remains room for improvement. The coefficients from the

unrestricted 1-year models in the right columns are still larger and the R2’s are somewhat lower

than their counterparts from the pooled GMM specifications. There appear to be additional

dimensions of transitory risk which are not captured by our relatively simplistic model for ρ(L).

For example, models 5-6 in the right column tend to place higher weights on ∆yt and ∆empt

relative to the other columns, so contemporaneous labor market factors might have a closer

connection with transitory risk than the forward-looking pwt−1. The dynamics of the quarterly

skewness measures are relatively insensitive to our specification of ρ(L). However, we are more

concerned with the model’s performance at longer frequencies, which is quite strong.

[Volatility Tests]

A.3.2 Implementation Details - 3PRF Approach

Table 15 lists the variables which I use to construct my skewness index. Following Wu and Xia

(2014), 97 of the variables are obtained from Global Insight, which is the subset of 120 series

from Bernanke et al. (2005) which are available through the present. I augment these time series

with 12 variables from the literature on return predictability, which are taken from Ivo Welch.

The second column provides the Global Insight or Goyal and Welch (2008) mnemonic for each

series, and the final column indicates which transformation, if any, I perform to the original time

series.

[Estimation details - under construction]

A.3.3 Quasi-analytic calculation of conditional quantiles

[Characteristic functions]

[Fourier inversion]

[Approximation accuracy]
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B Theoretical Model Appendix

B.1 The Term Structure of Risk Premia

In this section, I derive expressions for the term structure of risk premia. At least three types

of claims are of potential interest:

• Dividend strips / “Zero-coupon” equity: Dk,t+h, a single dividend payment from one of

the risky assets,

• Non-defaultable bonds: a real or nominal risk-free payment at time t+ h, or

• Consumption strips: Cit+h, an individual agent’s consumption at time t+ h.

Prices for the first two types of assets are (mostly) observable and, as such, supply additional

dimensions with which to test the model. While the prices for individual consumption strips are

unobservable due to market incompleteness, they help to reveal information about the nature

of discounting over different time horizons.

Within our framework, we can use identical methods to price zero-coupon bond and equity claims

by judiciously parameterizing the selector vectors for the financial assets. For example, we can

price an asset that delivers a risk-free, constant real payoff by assuming that its selector matrix

is zero. The associated “dividend” prices are real bond prices, up to an irrelevant constant of

proportionality. Nominal, default-free bonds are also easy to price. If we assume that the log

of the inflation rate (πt) equals S′πyt+1, then the real log change in the value of a fixed coupon

payment is −πt. By assuming that the “dividend” of one of the risky assets grows at rate

−S′πyt+1, the prices of its “dividends” are proportional to nominal bond prices.

Let P hk,t be the price of a zero-coupon equity claim, an asset which pays Dk,t+h at time t + h.

Trivially, no arbitrage requires that P 0
k,t = Dk,t. Then Rhk,t+1 ≡ P

h−1
k,t+1/P

h
k,t is the holding period

return from t to t + 1 for an investor who purchased an h-period zero-coupon equity claim at

time t. No arbitrage also implies Pk,t =
∑∞

h=1 P
h
k,t, so

Rk,t+1 =
Pk,t+1 +Dk,t+1

Pk,t
=

∞∑
h=0

P hk,t+1

Pk,t
=

∞∑
h=0

P h+1
k,t

Pk,t
·
P hk,t+1

P h+1
k,t

=

∞∑
h=1

P hk,t
Pk,t
·Rhk,t+1, (44)

meaning that Rk,t+1, the return of the claim on the entire dividend stream, is a weighted average

of the claims on the individual zero-coupon equity claims. It follows that the risk premium for
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asset k is a weighted average of the risk premia for its associated zero-coupon equity claims.

Proposition 5 says that the valuation ratios for the zero-coupon consumption and dividend

claims are affine functions of yt.

Proposition 5. Let Assumptions 1-3 hold. The log-linearized model satisfies

(i) log(P hc,t/Ct) ≡ wcht = Ah0 + y′tA
h,

(ii) log(P hk,t/Dk,t) ≡ pdhk,t = Ah0,k + y′tA
h
k, for k = 1, . . . ,K.

for all t and h ≥ 0, where Ah0 , A
h
0,1, . . . , A

h
0,K are scalars and Ah, Ah1 , . . . , A

h
K ∈ RK .

An immediate implication, in light of the discussion above, is that real and nominal bond

yields are also affine functions of yt. Expressions such as logEt[Dk,t+h/Dk,t] are affine as well.

Therefore, we can study how the term structures of real bond yields, expected dividend growth

rates, and risk premia evolve over time.

B.2 Proofs of Propositions

B.2.1 Proof of Proposition 1 (Aggregation Restrictions)

Using the independence on ziη,t+1 and J iη,t+1, it follows that

E[exp(ηit+1)|yt+1, yt] = exp(1′Mµη + 1′MFηyt + 1/2(hη0 + h′η1yt))E[exp(1′MJ
i
η,t+1)|yt+1, yt]

= exp[1′Mµη + 1′MFηyt + 1/2(hη0 + h′η1yt)]

× exp(1′M (lη0(Ψη(1M )− 1M ) + lη1 � [(Ψη(1M )− 1M )⊗ 1′L]yt)),

where we used the moment-generating function of the normal distribution and a compound

Poisson process to go from the first to the second line. In order to satisfy Assumption 2.iii, the

log of this expression has to equal zero for all values of yt. Substituting in the given expressions

for µη and Fη yields zero, so the restriction holds.

B.2.2 Proof of Proposition 2 (Wealth-Consumption Ratios)

We will begin by solving for the wealth-consumption ratio coefficients, then proceed to solve for

the price-dividend ratios. However, before working with the Euler Equations, we introduce two
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lemmas, which provide analytical expressions for expectations of linear functions of the state

vector, ηit+1 and yt+1, respectively.

Lemma 1. Let Assumptions 2 and 3.iii-iv hold. Then,

E[exp(u · ηit+1)|yt+1] = exp[β0(u) + β′(u)yt+1], (45)

where β0(u) : R→ R and β(u) : R→ RL for u ∈ R are given by

(i) β0(u) = µ′η1Mu+ 1
2u

2hη0 + l′η0(Ψη(u1M )− 1M ) and

(ii) β(u) = F ′η1Mu+ 1
2u

2Hη1 + l′η1(Ψη(u1M )− 1M ).

Proof. By definition, ηit+1 = 1M η̃
i
t+1. By the conditional independence of ziη,t+1 and J iη,t+1,

logE[exp(u · ηit+1)|yt+1] = u1′M [µη + Fηyt+1] + logE[exp(u1′MGη,t+1z
i
η,t+1)|yt+1]

+ logE[exp(u1′MJ
i
η,t+1])|yt+1]

logE[exp(u1′MGη,t+1z
i
η,t+1)|yt+1] = 1

2u
21′MGη,t+1G

′
η,t+11M = 1

2u
2[hη,0 +H ′η1yt+1]

logE[exp(u1′MJ
i
η,t+1])|yt+1] = λ′η,t+1[Ψη(u1M )− 1M ] = [lη0 + lη1yt+1]′[Ψη(u1M )− 1M ],

where we evaluate expectations using the moment generating functions of the multivariate nor-

mal and compound Poisson distributions then plug in the assumed affine functional form from

Assumptions 3.iii-iv. Collecting the constants and terms multiplying yt+1 yields the desired

result.

Lemma 2. Let Assumptions 1 and 3 hold. Then,

Et[exp(u′yt+1)] = exp[f(u) + g(u)′yt], (46)

where f(u) : RL → R and g(u) : RL → RL for u ∈ RL are given by

(i) f(u) = µ′yu+ 1
2u
′hyu+ l′y0(Ψy(u)− 1L)

(ii) g(u) = F ′yu+ 1
2 [u′Hyiu]i∈{1,...,L} + l′y1(Ψy(u)− 1L)

and [u′Hyiu]i∈{1,...,L} is the L× 1 vector whose ith component equals u′Hyiu.
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Proof. The proof is virtually identical to that from the previous proposition. We start by using

the conditional independence of zy,t+1 and Jy,t+1 to write

logEt[exp(u′yt+1)] = u′[µy + Fyyt] + logEt[exp(u′Gy,t+1zy,t+1)] + logEt[exp(u′Jy,t+1])]

logEt[exp(u′Gy,tzy,t+1)] = 1
2u
′Gy,tG

′
y,tu = 1

2u
′hyu+ 1

2

L∑
j=1

u′Hy,ju · yj,t

logEt[exp(u′Jy,t+1])] = λ′y,t[Ψy(u)− 1L] = [ly0 + ly1yt]
′[Ψη(u)− 1L].

As before, we use moment generating functions to evaluate expectations, plug in the functional

forms from Assumptions 3.i-ii, then collect terms. See also DY section A.1.

We will assume that the wealth-consumption ratio wct = A0 + A′yt. By Assumptions 1-2, we

can write consumption growth in vector notation as ∆cit = S′cyt + ηit. Combining (20) with our

assumption, the log-linearized Euler equation for the consumption claim is

1 = Et
[
exp

{
θ log δ + θκc + θ(ρc − 1)A0 + (1− γ)(S′cyt+1 + ηit+1) + θ(ρcA

′yt+1 −A′yt)
}]

= exp(θ log δ + θκc + θ(ρc − 1)A0 − θA′yt)Et
[
exp

{
[(1− γ)S′c + θρcA

′]yt+1 + (1− γ)ηit+1

}]
= exp(θ log δ + θκc + θ(ρc − 1)A0 − θA′yt)

× Et[exp{[(1− γ)S′c + θρcA
′]yt+1 + logEt[(1− γ)ηit+1|yt+1]}]

= exp(θ log δ + θκc + θ(ρc − 1)A0 − θA′yt)

× Et[exp{[(1− γ)S′c + θρcA
′]yt+1 + β0(1− γ) + β(1− γ)′yt+1}],

where the second and third equalities use the law of iterated expectations and the last line

follows from Lemma 1. Using Lemma 2 to evaluate the expectation yields

θ(log δ + κc + (ρc − 1)A0)− θA′yt = −f((1− γ)Sc + θρcA+ β(1− γ)) + β0(1− γ)

−g((1− γ)Sc + θρcA+ β(1− γ))′yt.

Since the Euler equation holds for each yt in the state space, the solution must satisfy

f((1− γ)Sc + θρcA+ β(1− γ)) + β0(1− γ) = −θ(log δ + κc + (ρc − 1)A0) (47)

g((1− γ)Sc + θρcA+ β(1− γ)) = Aθ, (48)

an (L + 1)-dimensional system of equations in A and A0. This system does not have an ana-

lytical solution in the general case; however, it is relatively straightforward to solve the system

numerically.
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In addition to the primitive parameters governing preferences and cash flows, the system (47-

48) also depends on the log-linearization constants κc and ρc. Following DY and Eraker and

Shaliastovich (2008), we choose the linearization point to equal the unconditional mean of the

wealth-consumption ratio. In particular, we choose wc so that

log(ρc)− log(1− ρc) = wc = E(wct) = A0 +A′E(yt), (49)

which, when combined with the definition of κc, implies that (see DY equation A.2.2)

κc + (ρc − 1)A0 = − log ρc − (ρc − 1)A′E(yt). (50)

We can then substitute (50) into (47), yielding

f((1− γ)Sc + θρcA+ β(1− γ)) + β0(1− γ) = −θ(log δ − log ρc − (ρc − 1)A′E(yt)), (51)

leaving (48) and (51), an exactly identified system of equations in A and ρc. Then, given these

solutions, we can use the expressions above to derive A0, κc, and κ.

We will assume that the price-dividend ratio for asset k, pdk,t = A0,k + A′kyt. By Assumption

1, we can write dividend growth as ∆dkt = S′kyt. Since the dividend claims are financial assets,

we can price them using the projected pricing kernel in (22). Plugging in the projected kernel,

the log-linearized Euler equation for the kth dividend claim is

1 = exp[κ− (1− θ)(ρc − 1)A0 + κk + (ρk − 1)A0,k + (1− θ)A′yt −A′kyt]

× Et
[
exp

{
[−Λ′ + S′k + ρkA

′
k]yt+1

}]
.

As before, using Lemma 2 to evaluate the expectation and taking logs yields the (L + 1)-

dimensional system of equations

f(−Λ + Sk + ρkAk) = −[κ− (1− θ)(ρc − 1)A0 + κk + (ρk − 1)A0,k] (52)

g(−Λ + Sk + ρkAk) = Ak − (1− θ)A. (53)

Once again, we choose the linearization constants in order to linearize around the unconditional

mean log price-dividend ratio. In order to obtain a more accurate solution, we allow the lin-

earization constants κk and ρk to differ across assets. This amounts to replacing equation (52)

with

f(−Λ + Sk + ρkAk) = −[κ− (1− θ)(ρc − 1)A0 − log ρk − (ρk − 1)A′kE(yt)]. (54)
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B.2.3 Proof of Proposition 4 (ICAPM)

In this section, I derive an ICAPM representation for my incomplete markets economy. Many

of the steps of the derivation follow Campbell et al. (2012), so I highlight the incremental

effects of adding incomplete markets. From Proposition 2, the log of the average return on the

consumption claim is an affine function of the state vector, yt. Following Campbell (1993), we

substitute out ∆ct+1 using the identity

∆ct+1 ≈ rc,t+1 − κc − ρcwct+1 + wct. (55)

Plugging (55) into the log-linearized pricing kernel (20), one obtains

mi,t+1 = const.− γ(rc,t+1 + ηi,t+1) + θ
ψ (ρcwct+1 − wct). (56)

Plugging (56) into the Euler equation for ric,t+1 and projecting out ηi,t+1 yields

1 = Et

[
exp

(
const. + (1− γ)(rc,t+1 + ν∗t+1) + θ

ψ (ρcwct+1 − wct)
)]
, (57)

where ν∗t+1 ≡ 1
1−γ logEt+1[exp(1− γ)ηi,t+1|yt+1]. Our distributional assumptions imply

wct = const. + (ψ − 1)[Etrc,t+1 + Etν
∗
t+1] + ρcEtwct+1 + 1

2
ψ
θ ϑt, (58)

where ϑt is a Jensen’s inequality term. In the absence of jump risk, this term equals V art[m
i
t+1+

ric,t+1], i.e. the risk-neutral variance of the consumption claim. When jumps are present, there

is an analogous term capturing Gaussian volatility and jump risk.

Iterating forward on (58) and assuming that limj→∞ ρ
jwct+1 = 0, one obtains

wct = const. + Et

∞∑
j=0

ρjc[(ψ − 1)(rc,t+1+j + ν∗t+1+j) + 1
2
ψ
θ ϑt+j ] (59)

ρc[wct+1 − Etwct+1] = [Et+1 − Et]
∞∑
j=1

ρjc[(ψ − 1)(rt+1+j + ν∗t+1+j) + 1
2
ψ
θ ϑt+1+j ] (60)

≡ (ψ − 1)[NDR,t+1 +NFIR,t+1] + 1
2
ψ
θNUNC,t+1, (61)

where discount rate news NDR,t+1 are also defined using the decomposition

rc,t+1 − Etrc,t+1 = [Et+1 − Et]
∞∑
j=0

ρjc[∆ct+1+j − ρ · rc,t+2+j ] ≡ NCF,t+1 −NDR,t+1. (62)
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The key difference with respect to the representative agent model is the second term, NFIR,t+1.

The subscript FIR is shorthand for future idiosyncratic risk, which captures news about the

higher moments of idiosyncratic shocks.82 Equation (61) says that, when the EIS is greater than

1, the wealth-consumption ratio is higher when agents get good news about the distribution of

idiosyncratic risk, as summarized by the cross-sectional certainty equivalent ν∗t+1. The third

term NUNC,t+1 captures news about uncertainty, i.e. the higher moments of future aggregate

shocks. Plugging (61-62) into the projected pricing kernel (21), (26) obtains.

[Still need to add moment condition for ϑt here.]

B.2.4 Proof of Proposition 3 (Risk Premia)

Following DY, we decompose the projected pricing kernel and the return on a risky asset into

jump and Gaussian components

mt+1 = κ− (1− θ)(ρc − 1)A0 + (1− θ)A′yt − Λ′(µy + Fyyt +Gy,tzy,t+1)︸ ︷︷ ︸
≡mgt+1

+−Λ′Jy,t+1︸ ︷︷ ︸
≡mJt+1

rk,t+1 = κk + (ρk − 1)A0k −A′kyt +B′k(µy + Fyyt +Gy,tzy,t+1)︸ ︷︷ ︸
≡rgk,t+1

+B′kJy,t+1︸ ︷︷ ︸
≡rJk,t+1

DY show that the risk premium may be decomposed as

log(Et[Rk,t+1])− rft+1 = −covt(m
g
t+1, r

g
k,t+1) + log(Et[exp(rJk,t+1)])

+ log(Et[exp(mJ
t+1)])− log(Et[exp(rJk,t+1 +mJ

t+1)])

= B′kGy,tG
′
y,tΛ + λ′y,t[Ψy(Bk)− 1L]− λ′y,t[Ψy(Bk − Λ)−Ψy(−Λ)].

See DY, section A.4, for further details.

B.2.5 Proof of Proposition 5 (Term Structure)

We will begin by establishing the result for the dividend claim, then proceed to the consumption

claim. The proof is by induction. First, we establish that pd0
k,t = A0

0,k + (A0
k)
′yt. By our no

82This term is related but not identical to the indirect effect discussed in the previous section. It captures the
intuition that agents may be willing to pay a premium to hedge against increases in idiosyncratic risk in future
periods. However, idiosyncratic risk also affects the average return on consumption, so the appropriate definition
of discount rate news may be different.
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arbitrage restriction that Dk,t = P 0
k,t, implying that pd0

k,t = 0 and thus that A0
0,k = 0 and

A0
k = 0. Next, we must show that pdhk,t = Ah0,k + (Ahk)′yt implies pdh+1

k,t = Ah+1
0,k + (Ah+1

k )′yt.

Combining the Euler equation with (??) yields

pdh+1
k,t = logEt[exp{mt+1 + ∆dk,t+1 + pdhk,t+1}]

Ah+1
0,k + (Ah+1

k )′yt = logEt[exp{mt+1 +Ah0,k + (Sk +Ahk)′yt+1}]

= logEt[exp{m0 + (1− θ)A′yt +Ah0,k + (Sk +Ahk − Λ)′yt+1}]

= m0 +Ah0,k + f(Sk +Ahk − Λ) + [g(Sk +Ahk − Λ) + (1− θ)A]′yt}]

where m0 ≡ κ− (1− θ)(ρc − 1)A0. Matching coefficients yields the recursions

Ah+1
0,k = m0 +Ah0,k + f(Sk +Ahk − Λ) (63)

Ah+1
k = g(Sk +Ahk − Λ) + (1− θ)A, (64)

which establishes the claim. One obtains coefficients for the real risk-free asset, by setting

Sk = 0 in (63-64). Analogously, the coefficients for expected real dividend growth are obtained

by setting m0 = 0 and Λ = 0. Next, we turn to the consumption claim. The only substantive

difference is that, since the return on the consumption claim depends on ηit+1, we cannot use the

projected version of the pricing kernel. Instead, we work with Euler equation directly to evaluate

expectations. All other steps in the proof are the same. Again, no arbitrage requires that A0
0 = 0

and A0 = 0. Then, we show that wcht = Ah0 + (Ah)′yt implies wch+1
t = Ah+1

0 + (Ah+1)′yt:

wch+1
t = logEt[exp{mi

t+1 + ∆ct+1 + ηit+1 + wcht+1}]

Ah+1
0 + (Ah+1)′yt = logEt[exp{mi

t+1 + ηit+1 +Ah0 + (Sc +Ah)′yt+1}]

= θ log δ − (1− θ)(κc + (ρc − 1)A0) +Ah0 + (1− θ)A′yt
+ logEt[exp{[(1− γ)Sc − (1− θ)ρcA+Ah]′yt+1 + (1− γ)ηit+1}]

= m̃0 +Ah0 + (1− θ)A′yt
+ logEt[exp{[(1− γ)Sc − (1− θ)ρcA+ β(1− γ) +Ah]′yt+1}]

= m̃0 +Ah0 + f(Sc +Ah − Λ̃) + [g(Sc +Ah − Λ̃) + (1− θ)A]′yt

where m̃0 ≡ θ log δ − (1− θ)(κc + (ρc − 1)A0) + β0(1− γ) and Λ̃ ≡ γSc + (1− θ)ρcA+ β(1− γ).

The third equality uses the law of iterated expectations and Lemma 1, and the fourth equality
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follows from Lemma 2. Matching coefficients yields the recursion

Ah+1
0 = m̃0 +Ah0,k + f(Sk +Ahk − Λ̃) (65)

Ah+1 = g(Sk +Ahk − Λ̃) + (1− θ)A, (66)

so the only substantive difference between (63-64) and (65-66) comes from the definitions of m̃0

and Λ̃. Further note that m̃0 = m0 − β0(−γ) + β0(1− γ) and Λ̃ = Λ− β(−γ) + β(1− γ), so the

difference between the recursions comes entirely from the projection terms.

B.2.6 Risk-free rate

From the Euler equation, we know that the one-period risk-free rate satisfies

rft+1 = − log (Et[exp(mt+1)])

= −
[
κ− (1− θ)(ρc − 1)A0 + (1− θ)A′yt + log (Et[exp(−Λyt+1)])

]
= rf0 − [g(−Λ) + (1− θ)A′]yt,

where rf0 ≡ −[κ− (1− θ)(ρc − 1)A0 + f(−Λ)]. Terms involving η drop out from the expression

because of the conditional independence of rk,t+1 and ηit+1.
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