Flow and Stock Effects of Large-Scale Treasury Purchases

D'Amico and King

FRB of San Francisco February 25, 2011

Overview

- Fed announced plan to buy up to \$300 billion of longer-term Treasuries on March 18, 2009.
- Intent was to decrease long-term interest rates.
- From a theoretical perspective, it is not obvious this should work.
 - Perfect arbitrage models suggest that supply/demand factors do not affect financial asset prices.
- Our question: Did it work?

Overview

- Why does this matter?
 - Immediate policy relevance
 - Broader academic importance test of 'preferred habitat' models
- Previous work on effects of supply fluctuations is somewhat inconclusive.
- Innovations of our approach:
 - Security-level panel data
 - Controls for purchases of "substitutes"
 - Sample splits by security characteristics
 - Stock and flow effects

Plan of the talk

- Previous theory and evidence
 - Preferred habitat / portfolio balance / imperfect asset substitution theories generate a role for supply in pricing
 - Previous work is consistent with this idea, but it is hard to say for sure because of the aggregate nature of the data
- Overview of the LSAP program and our data
- Estimates of Stock Effects
 - Explain cross-section of returns during the program
 - Results:
 - Purchases shifted the yield curve persistently down by 20 to 50 bp.
 - Effects were more segmented for less liquid securities
- Estimates of Flow Effects
 - Explain change in prices on days when purchases occurred (panel)
 - Results:
 - Purchase operations on average shifted yields in the purchased sector down by 3.5 bp.
 - Effects were more segmented and more persistent for less liquid securities

Theoretical motivation

- In standard arbitrage-free models with risk-neutral traders and exogenous short-term rate there is no role for Treasury supply.
- In order for changes in bond supply to affect pricing, a friction must exist that limits arbitrage across different types of assets: imperfect substitutability.
- Models with preferred-habitat investors and riskaverse arbitrageurs formalize this view. Greenwood-Vayanos(2008) and Vayanos-Vila (2009).

Preferred-habitat view generates 4 hypotheses that we test:

- H1. Changes in Treasury supply have significant effects on Treasury yields
- H2. Those effects are larger for purchased securities, somewhat smaller for similar maturities, and minimal for distant maturities
- H3. These differences in responses are more pronounced in segmented portions of the market
- H4. For securities in those portions, even anticipated purchases might have effects when they actually occur, resulting in persistent price changes

Previous Evidence

- Bernanke et al. (2004) studied responses of yield curve during several episodes of government interventions.
- Taharan(1995), and Kuttner (2006) test responses of yields to Fed interventions
- Greenwood and Vayanos (2008), Krishnamurthy and Vissing-Jorgenson (2007), Hamilton and Wu (2010) look at aggregate measures of supply
- Time-series and event studies of the LSAP programs Gagnon et al. (2010) and others.
- All aggregate-level studies suggest negative effects of supply on yields, but substantial variance across magnitudes and statistical significance of estimates
- Aggregate data complicate identification and limit what can be learned about differences in impact across term structure

Review of Treasury LSAP

- Program announced March 18, 2009.
- Extension through October and tapering announced on August 12.
- \$300 billion purchased, 95% in nominal securities.
- 60 operations in bi-weekly cycles from March 25 – October 29.
 - Maturity ranges pre-announced.
 - Excluded securities announced the morning of the operation.
 - Offers accepted through ~11 AM.
 - Purchases settled the following day.

	Average of LSAP purchases	Average of all outstanding coupon securities
Remaining maturity	6.5 years	5.7 years
Coupon	3.7%	3.8%
Yield	2.4%	1.9%
Time since issued	4.0 years	3.9 years
% On-the-run	29.0%	4.9%
% Notes	79.5%	82.8%

Table 1. Characteristics of Nominal Treasury LSAP Purchases

Note: All figures are dollar-weighted.

Table 2. Indicators of Liquidity in the Nominal Treasury Market

	Daily market volume	10-year on-the-run premium	Fails to deliver	Average absolute fitting errors of Svensson curve
March 25-July 6 2009	\$100 bil	38 bp	\$73 bil	6.4 bp
July 7-October 29 2009	\$120 bil	28 bp	\$15 bil	3.3 bp

Notes: Volume data come from Bloomberg, and fails-to-deliver data come from the FR 2004 reports. The on-the-run premium is the difference between the yield on the on-the-run 10-year note and 10-year value from a Svensson curve fit to off-the-run securities.

Nominal Treasury coupon yields: 17 March 2009

Selected Treasury Yields during Treasury LSAP Program

Data

- Daily percentage price changes on 204 Treasury coupon securities (including 44 never purchased).
 - Exclude:
 - TIPS
 - Remaining maturities < 90 days
- For each LSAP operation:
 - CUSIPS eligible for purchase
 - Amount of each CUSIP actually purchased
- Amounts of each CUSIP outstanding, vintage, coupon, maturity, fitting error, accrued coupon payments, % held by SOMA.

Why CUSIP-level data?

- To capture differences in returns between securities that were purchased in different amounts, identifying impact of purchases.
- To parse price reactions more finely (for example, examine differential effects of purchases across securities characteristics).
- To estimate substitution effects across securities by constructing for each CUSIP buckets of Treasuries with similar maturities.

Stock effects

- The fact that yields generally moved up does not mean that the program was ineffective.
 - Yields might have been even higher without LSAPs.
 - Hard to get at this with time-series information alone.
- Our identification comes from *cross-sectional* variation in yields.
 - Did yields rise less for securities we purchased more of?

Stock effects

- Some issues:
 - Our use of *total cumulative* changes avoids having to deal with expectations and timing issues.
 - Includes effects of March 18 announcement
 - But, it leads to a possible endogeneity problem:
 - What if we were more likely to purchase those securities whose yields rose most?
 - To deal with this, we use IV, where our instruments are pre-determined.

Substitutes

- We might also think that a security's yield is affected by purchases of other, similar securities.
- Thus, for each security *i*, we define buckets of substitutes, based on maturity:
 - Near substitutes: within 2 years of i
 - For the flow effects
 - *Mid-substitutes*: 2 6 years from *i*
 - Far substitutes: 6 14 years from i
- We also instrument these variables.
 - Same instruments, plus average each instrumental variables over the bucket of substitute.

Stock effects

- IV cross section of returns from March 17 October 30, 2009.
- Our basic setup is

 allow for the coefficients to depend on the security characteristics – old and new bonds and notes

Coefficient interpretation

- β reflects the own-price elasticity
- Its magnitude is mainly indicative of purchase effects on yield-curve fitting error
- γ reflects cross-elasticity of Treasury prices with respect to other Treasury securities
- Its magnitude affects aggregate level and term structure of yields

Dependent Variable: Actual LSAP Purchases

Independent Variables: Security Characteristics as of March 17

Intercept	0.051*** (0.015)
Remaining maturity	0.015*** (0.003)
Remaining maturity squared	-0.0006*** (0.00009)
Svensson fitting error	0.208*** (0.038)
% of issue held by Fed	-0.271*** (0.083)
On-the-run dummy	0.091*** (0.024)
< 2-years dummy	-0.044*** (0.014)
# Obs	148
Adjusted R ²	0.431

Stock Effects—IV Second-Stage Pooled

	Gross returns	Adjusted returns
Own Purchases (IV)	2.17***	1.15***
	(0.43)	(0.25)
Purchases of near substitutes (IV) (maturity w/in 2 yrs of own)	0.13** (0.07)	0.09** (0.04)
Remaining maturity	-0.003** (0.001)	-0.0004 (0.0006)
Remaining maturity squared	0.00003 (0.00004)	-0.00004* (0.00002)
Intercept	0.011*** (0.002)	0.009*** (0.0012)
# Obs	148	148
Adj. R ²	0.695	0.847

Stock Effects (IV)—Subsamples

	Notes Far off-the- run	Bonds < 15 years	Notes Near-on the- run	Bonds > 15 years
Own Purchases (IV)	1.39	1.13***	0.32	0.22
	(0.93)	(0.37)	(0.53)	(0.34)
Purchases of near substitutes				
(IV)	0.07*	0.14***	0.08*	0.19**
(maturity w/in 2 yrs of	(0.04)	(0.05)	(0.05)	(0.08)
own)				
Remaining maturity	-0.0009 (0.0007)			
Remaining maturity squared	-0.00002 (0.00003)			
Intercept	0.010*** (0.001)			
# Obs	148			
Adj. R ²	0.893			

Counterfactual yields

- We use these results to estimate cumulative effects of LSAPs on aggregate yield curve.
 - For each security, using actual value of own purchases and its near substitutes, together with coefficients of appropriate subsamples, compute estimated total price change due to LSAP.
 - Subtract this value from actual end-of period price to get counterfactual price of each security.
 - Prices are then smoothed using Svensson curve to obtain counterfactual end-of-period yields

Stock effect of LSAP on nominal yield curve

FLOW EFFECTS

- Response of prices to ongoing purchases operations.
- Purchase operations are announced in advanced, list of CUSIPs and sizes of operations are predictable, so no significant response at aggregate level.
- The particular CUSIPs that are purchased and the distribution of amount purchased should matter, causing portfolio rebalancing activity.
- On top of portfolio rebalancing, significant response should reflect liquidity and microstructure issues.

Flow effects

- Panel framework: CUSIP level data on operation days.
- Our basic setup is

Notes

- The time dummies control for lots of things in a limited portion of the curve(maturity sector)
 Macro data, Treasury issuance
- The fixed effects control for lots of things.
 Vintage, maturity, coupon rate
- Market participants don't know in advance total amount to be purchased and distribution of purchased across CUSIPs.

Timing and Sample

- Eligible vs. non-eligible
- Notes vs. Bonds
- Near on-the-run vs. Far off-the-run
- First half vs. second half of the program
- Day of purchase vs. day after

Flow Effects on Day of Purchase—Eligible Securities <15y

		117 0	Notes	Bonds	Near on-the-	Far off-the-
	Mar $25 - Jul$	Jul 7 - Oct.			run	run
	6	29				
Own Purchases	0.04404545	0.00754444	0.2669***	0.2498***	0.2318**	0.2488***
	0.3442***	0.2975***	(0.068)	(0.090)	(0.107)	(0.065)
	(0.094)	(0.089)				
Purchases of:						
Near substitutes	0.2863***	0 3038***	0.2503***	0.1694**	0.2435**	0.1584***
(maturity w/in 2 yrs of own)	(0.086)	(0.083)	(0.062)	(0.083)	(0.105)	(0.057)
	(0.000)	(0.005)				
Mid substitutes	0 1090***	0.2027**	0.2088**	0.0929	0.2501***	0.0744
(maturity 2 to 6 years away)	(0.082)	$(0.205)^{44}$	(0.055)	(0.080)	(0.092)	(0.055)
(maturity 2 to 6 years away)	(0.082)	(0.073)				
# Obs.	563	360	769	154	249	674
			123	23	53	11/
	131	121	123	25	55	114
Adj. R ²	0.974	0.975	0.976	0.986	0.986	0.977

Flow Effects on Day of Purchase—All Securities

	Elig	jible	Ineli	gible
	<15y to maturity	>15y to maturity	<15y to maturity	>15y to maturity
Own Response (β)	0.2763*** (0.053)	-0.1063 (0.098)		
Cross Responses (γ_j) :				
Near substitutes (within 2 years)	0.2403*** (0.048)	-0.1238*** (0.044)	0.0665*** (0.018)	-0.0268 (0.053)
Mid-substitutes (2 to 6 years away)	0.1700*** (0.045)	0.0501* (0.026)	0.0047 (0.0099)	-0.007 (0.021)
Far substitutes (6 to 14 years away)			-0.0238** (0.008)	0.0021 (0.003)
# Obs.	923	145	8008	1104
# CUSIPS	146	23	181	23
Adj. R ²	0.976	0.985	0.52	0.96

Flow Effects on Day of Purchase, by Sub-Period

	Elig	ible	Ineli	gible
	Mar 25 – Jul 6	Jul 7 – Oct. 29	Mar 25 - Jul 6	Jul 7 – Oct. 29
Own Response (β)	0.3442*** (0.094)	0.2975*** (0.089)		
Cross Responses (γ_j) :				
Near substitutes (within 2 years)	0.2863*** (0.086)	0.3038*** (0.083)	-0.127*** (0.025)	0.3844*** (0.031)
Mid-substitutes (2 to 6 years away)	0.1989*** (0.082)	0.2037** (0.073)	-0.143*** (0.015)	0.2021*** (0.017)
Far substitutes (6 to 14 years away)			-0.153*** (0.014)	0.0925*** (0.011)
# Obs.	563	360	4529	3479
# CUSIPS	131	121	167	172
Adj. R ²	0.974	0.975	0.51	0.57

Day after, Notes	Elig	gible	Ineli	gible
	Mar 25 – Jul 6	Jul 7 – Oct. 29	Mar 25 – Jul 6	Jul 7 – Oct. 29
Own Response (β)	-0.379*** (0.143)	-0.145 (0.116)		
Near substitutes (within 2 years)	-0.478*** (0.145)	-0.152 (0.108)	-0.464*** (0.039)	-0.135*** (0.049)
Mid-substitutes (2 to 6 years away)	-0.620*** (0.139)	-0.106 (0.087)	-0.436*** (0.035)	-0.009 (0.039)
Far substitutes (6 to 14 years away)			-0.308*** (0.039)	0.134*** (0.038)
# Obs.	442	327	3891	2960
# CUSIPS	108	111	144	149
Adj. R ²	0.986	0.974	0.573	0.51

Day after, Bonds	Eligible		Ineli	gible
Own Response (β)	0.377*** (0.145)	0.58*** (0.117)		
Near substitutes (within 2 years)	0.157 (0.098)	0.556*** (0.119)	-0.047 (0.046)	0.086* (0.047)
Mid-substitutes (2 to 6 years away)	0.111 (0.082)	0.472*** (0.125)	-0.057*** (0.018)	-0.046*** (0.020)
Far substitutes (6 to 14 years away)			-0.049*** (0.014)	0.015*** (0.013)
# Obs.	121	33	638	519
# CUSIPS	23	10	23	23
Adj. R ²	0.99	0.99	0.94	0.93

Robustness

- Same exercise using yields: similar conclusion
- Clustered errors by maturity: similar conclusions
- Estimation of balanced panel by FGLS: very similar results
- Role for expectations: actual purchase distribution vs expected purchase distribution. The cross section responses are not affected by the surprise effect.

Conclusions

We estimate that:

- average purchase operation temporarily reduced yields by about 3.5 basis points.
- The program as a whole shifted the yield curve down by 23 basis points on average.
- Effects are larger in less-liquid segments of the market.

A motivating exercise: Explaining the cross-section of yield changes on March 18

Dependent variable: Percentage price changes on 3/18, by CUSIP			
Intercept	-0.008*** (0.0007)		
Fitting error	0.013*** (0.003)		
Fitting error squared	0.068*** (0.012)		
Remaining maturity	0.006*** (0.0001)		
Remaining maturity squared	-0.0002*** (0.0000)		
On-the-run dummy	-0.0009 (0.0013)		
Vintage	0.00009** (0.00002)		
Adj. R ²	0.97		

Nominal Treasury coupon yields: 30 October 2009

