

The Effectiveness of Alternative Monetary Policy Tools in a Zero Lower Bound Environment

James D. Hamilton Jing (Cynthia) Wu

Department of Economics UC San Diego

< 回 ト < 三 ト < 三 ト

Introduction	Data	Results for monthly data,	1990-2007	ZLB	Discusssion

What more can monetary policy do when:

- the fed funds rate is 0.18%
- reserves are over a trillion dollars?

(B)

Introduction	Data	Results for monthly data,	1990-2007	ZLB	Discusssion

One possible answer:

change in maturity structure of outstanding Treasury debt

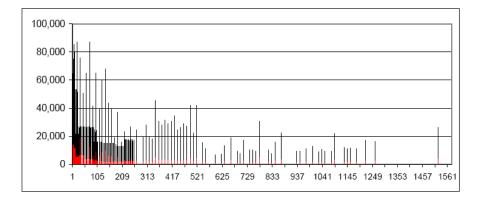
(B)

Introduction	Data	Results for monthly data,	1990-2007	ZLB	Discusssion

One possible answer:

change in maturity structure of outstanding Treasury debt 1) Is there evidence this made any difference historically?

Introduction	Data	Results for monthly data,	1990-2007	ZLB	Discusssion


One possible answer:

change in maturity structure of outstanding Treasury debt 1) Is there evidence this made any difference historically?

2) Is there reason to think it could work at the ZLB?

.

Maturity structure: December 31, 2006

3

(日) (周) (三) (三)

Average maturity in weeks

▲ロ▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで、

Use affine-term-structure model to summarize weekly bond yields in terms of 3 observable factors:

$$f_t = egin{bmatrix} {\sf level} \ {\sf slope} \ {\sf curvature} \end{bmatrix}$$

Estimate 1990-2007.

3

(日) (周) (三) (三)

		Data	Risk measures	Results for monthly data			Discusssion 000
--	--	------	---------------	--------------------------	--	--	--------------------

 $\begin{array}{l} p_{nt} = \text{log price of } n\text{-period pure discount bond} \\ p_{nt} = \overline{a}_n + \overline{b}'_n f_t \\ z_{nt} = \text{fraction of my portolio in bond of maturity } n \\ z_{nt} \overline{b}'_{n-1} \varepsilon_{t+1} = \text{risk exposure} \end{array}$

回下 くぼと くぼとう

Suppose a single mean-variance investor held all the publicly-held Treasury debt

 $\gamma =$ weight on variance in preferences $E(\varepsilon_t \varepsilon'_t) = \Sigma \Sigma'$ $q_t =$ equilibrium price of risk:

$$\begin{array}{c} q_t \\ 3 \times 1 \end{array} = \gamma \Sigma \Sigma' \sum_{n=2}^N z_{nt} \overline{b}_{n-1} \end{array}$$

(日) (周) (三) (三)

Results for monthly data, 1990-2007

Excess holding returns

• Excess holding return e.g. hold 5 year bond over 1 year

$$h_{5,1,t} = \log \frac{P_{4,t+1}}{P_{5,t}} - y_{1,t}$$

э

Excess holding returns

• Excess holding return e.g. hold 5 year bond over 1 year

$$h_{5,1,t} = \log \frac{P_{4,t+1}}{P_{5,t}} - y_{1,t}$$

Regression

$$h_{nkt} = c_{nk} + \beta'_{nk}f_t + \gamma'_{nk}x_t + u_{nkt}.$$

э

- 4 同 6 4 日 6 4 日 6

Excess holding returns

Excess holding return
 e.g. hold 5 year bond over 1 year

$$h_{5,1,t} = \log \frac{P_{4,t+1}}{P_{5,t}} - y_{1,t}$$

.

$$h_{nkt} = c_{nk} + \beta'_{nk}f_t + \gamma'_{nk}x_t + u_{nkt}.$$

- Expectation hypothesis: excess holding returns are unpredictable
- ATSM: f_t contains all the information at t

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Excess holding return regressions

Regressors	6m over $3m$	1yr over 6m	2y over 1y	5y over $1y$	10y over $1y$
c, f_t^*	0.357	0.356	0.331	0.295	0.331
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
c, f_t, z_t^{A*}	0.410	0.420	0.373	0.300	0.336
	(0.020)	(0.119)	(0.311)	(0.728)	(0.665)
c, f_t, z_t^{L*}	0.428	0.501	0.524	0.398	0.357
	(0.003)	(0.008)	(0.006)	(0.035)	(0.196)
c, f_t, z_t^{pc*}	0.368	0.361	0.333	0.297	0.334
	(0.001)	(0.007)	(0.062)	(0.098)	(0.051)
c, f_t, v_t^*	0.385	0.409	0.388	0.339	0.338
	(0.016)	(0.001)	(0.006)	(0.008)	(0.227)
c, f_t, q_t^*	0.444	0.568	0.714	0.617	0.549
	(0.002)	(0.000)	(0.000)	(0.000)	(0.001)
c, f_t, z_t^{pc}, q_t^*	0.452	0.571	0.717	0.618	0.550
	(0.002)	(0.000)	(0.000)	(0.000)	(0.002)
c, f_t, v_t, q_t^*	0.458	0.595	0.737	0.640	0.552
	(0.001)	(0.000)	(0.000)	(0.000)	(0.002)
$c, f_t, z_t^A, z_t^L, q_t^*$	0.476	0.597	0.741	0.670	0.634
	(0.000)	(0.001)	(0.000)	(0.002)	(0.054)

 Z_t^A : average maturity; Z_t^L : fraction 10 years; Z_t^{PC} : 3 principal components

 v_t : Cochrane-Piazzesi; q_t : Treasury factors

Goal: if maturities of outstanding debt change, how would yields change?

Goal: if maturities of outstanding debt change, how would yields change? Conventional regression

$$f_t = c + \beta q_t + \varepsilon_t$$

Goal: if maturities of outstanding debt change, how would yields change? Conventional regression

$$f_t = c + \beta q_t + \varepsilon_t$$

Concerns:

• Is f_t responding to q_t , or is q_t responding to f_t ?

Goal: if maturities of outstanding debt change, how would yields change? Conventional regression

$$f_t = c + \beta q_t + \varepsilon_t$$

Concerns:

- Is f_t responding to q_t , or is q_t responding to f_t ?
- Spurious regression

- 4 同 6 4 日 6 4 日 6

Yield factor forecasting regressions

Our approach:

$$f_{t+1} = c + \rho f_t + \phi q_t + \varepsilon_{t+1}$$

3

Yield factor forecasting regressions

Our approach:

$$f_{t+1} = c + \rho f_t + \phi q_t + \varepsilon_{t+1}$$

Advantages:

answers forecasting question of independent interest

• • = • • = •

Yield factor forecasting regressions

Our approach:

$$f_{t+1} = c + \rho f_t + \phi q_t + \varepsilon_{t+1}$$

Advantages:

- answers forecasting question of independent interest
- avoids spurious regression problem

A B A A B A

Yield factor forecasting regressions

Our approach:

$$f_{t+1} = c + \rho f_t + \phi q_t + \varepsilon_{t+1}$$

Advantages:

- answers forecasting question of independent interest
- avoids spurious regression problem
- nonzero ϕ does not reflect response of q_t to f_t

< 3 > < 3 >

Yield factor forecasting regressions

Our approach:

$$f_{t+1} = c + \rho f_t + \phi q_t + \varepsilon_{t+1}$$

Advantages:

- answers forecasting question of independent interest
- avoids spurious regression problem
- nonzero ϕ does not reflect response of q_t to f_t
- estimate incremental forecasting contribution of q_t beyond that in f_t

Significance of Treasury factors

		F test
	level	3.256
${\sf F}$ test that $\phi=0$		(0.023)
,	slope	4.415
$f_{t+1} = c + ho f_t + \phi q_t + arepsilon_{t+1}$	level slope curvature	(0.005)
	curvature	2.672
		(0.049)

æ

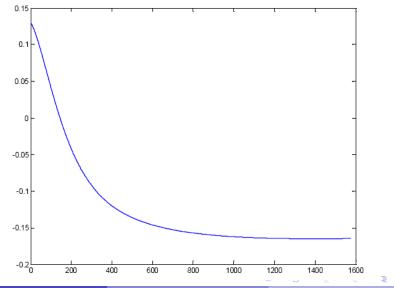
イロト イヨト イヨト イヨト

Quantitative illustration

- Fed sells all Treasury securities < 1 year, and uses proceeds to buy up long-term debt
- E.g. in Dec. 2006, the effect would be to sell \$400B short-term securities and buy all bonds > 10 year

3 K K 3 K

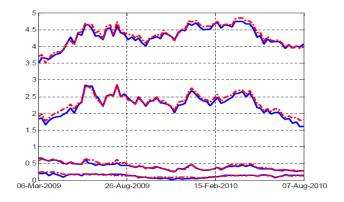
Quantitative illustration


- Fed sells all Treasury securities < 1 year, and uses proceeds to buy up long-term debt
- E.g. in Dec. 2006, the effect would be to sell \$400B short-term securities and buy all bonds > 10 year

	$\phi'_i \Delta$
level	0.005
	(0.112)
slope	-0.250
	(0.116)
curvature	-0.073
	(0.116)

• Δ : average change in q_t

< 3 > < 3 >


Impact on yield curve 1-month ahead

Financial Crisis and Zero Lower Bound

Zero Lower Bond

- Short term yields near zero
- Longer term yields considerable fluctuation.
- Explanation: when escape from ZLB (with a probability), interest rates will respond to f_t as before

Parsimonious Model of ZLB

• Same underlying factors f_t

$$f_{t+1} = c + \rho f_t + \Sigma u_{t+1}$$

same (c, ρ, Σ)

æ

ヘロト 人間 ト くほ ト くほ トー

Parsimonious Model of ZLB

• Same underlying factors f_t

$$f_{t+1} = c + \rho f_t + \Sigma u_{t+1}$$

same (c, ρ, Σ)

Once escape from ZLB

$$ilde{y}_{1t} = extbf{a}_1 + b_1' f_t$$
 $ilde{p}_{nt} = \overline{ extbf{a}}_n + \overline{ extbf{b}}_n' f_t$

 \overline{a}_n and \overline{b}_n calculated from the same difference equations

イロト 不得 トイヨト イヨト

Parsimonious Model of ZLB

At ZLB

$$y_{1t}^* = a_1^*$$
 $p_{nt}^* = \overline{a}_n^* + \overline{b}_n^{*\prime} f_t.$

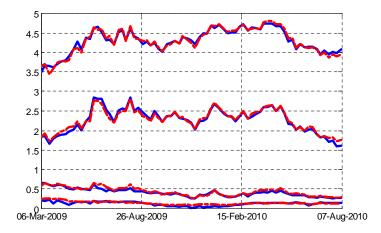
 π^Q : probability still at ZLB next period No-arbitrage:

Can calculate \overline{b}_n^* (how bond prices load on factors at ZLB) as functions of \overline{b}_n (how they'd load away from the ZLB) along with π^Q (probability of remaining at ZLB), ρ (factor dynamics), and Λ (risk parameters).

Parsimonious Model of ZLB

Assume: $(c^Q, \rho^Q, a_1, b_1, \Sigma)$ as estimated pre-crisis $\Rightarrow (\overline{a}_n, \overline{b}_n)$ same as before Estimate two new parameters (a_1^*, π^Q) to describe 2009:M3-2010:M7 data from

$$Y_{2t} = A_2^{\dagger} + B_2^{\dagger} Y_{1t} + \varepsilon_t^{\mathsf{e}}$$

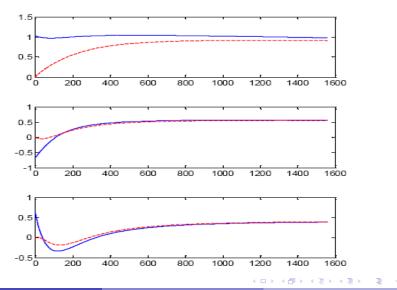

- $Y_{2t} = 3$ -month, 1-year, 5-year, 30-year
- $A_2^{\dagger}, B_2^{\dagger}$ functions of $(c^Q, \rho^Q, a_1, b_1, \Sigma)$ and (a_1^*, π^Q)
- Estimation method: minimum chi square (Hamilton and Wu, 2010)

Parameter estimates for ZLB

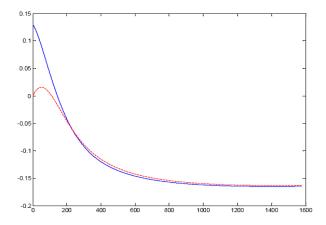
Slightly better fit if allow new value for a_1 after escape from ZLB $5200a_1^* = 0.068$ (ZLB = 0.07% interest rate) $\pi^Q = 0.9907$ (ZLB may last 108 weeks) $5200a_1 = 2.19$ (compares with $5200a_1 = 4.12$ pre-crisismarket expects lower post-ZLB rates than seen pre-crisis)

ヘロト 人間ト 人造ト 人造トー

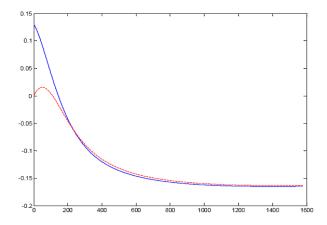
Actual and fitted values



æ


イロト イヨト イヨト イヨト

Factor Loadings



Introduction Data Risk measures Results for monthly data, 1990-2007 ZLB Discussion One-month-ahead predicted effect of Fed swapping shortfor long-term

<ロ>
<日>
<日>
<日>
<日>
<0<</p>
<0</p>
<0</p

Introduction Data Risk measures Results for monthly data, 1990-2007 ZLB Discussion One-month-ahead predicted effect of Fed swapping shortfor long-term

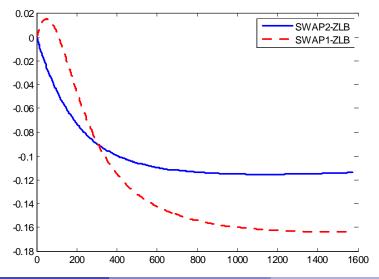
Hamilton and Wu (UCSD)

Introduction

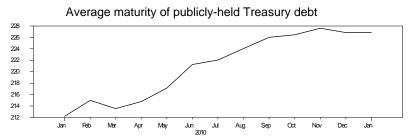
Risk measu

Results for monthly data, 1990-200

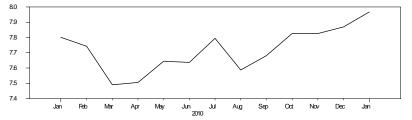
ZLB Discussion


Comparison of alternative estimates

		Original estimates		Hamilton-Wu estima	
Study	Measure	Pre-crisis	ZLB	Pre-crisis	ZLB
Gagnon, et. al.	10 yr yield	20		14	13
Greenwood-Vayanos	5yr-1yr spread	39		17	9
	20yr-1yr spread	74		25	18
D'Amico-King	10yr yield		67	14	13
Deutsche Bank	10yr yield		20	14	13


Table 5: Comparison of different estimates of the effect of replacing \$400 billion in long-term debt with short-term debt.

(日) (同) (三) (三)


Effect of buying intermediate- instead of long-term debt

Combined effect of Fed's QE2 and Treasury operations

Long-term publicly-held Treasury debt as a percent of total publicly-held Treasury debt

Hamilton and Wu (UCSD)

Why the Fed and not the Treasury?

- Possible tool for signaling future short rate plans
- Far from ideal instrument in normal times

(日) (同) (三) (三)