Thoughts on Event Forecasting: Idiosyncratic and Systemic Aspects

Francis X. Diebold

Prepared for FRB San Francisco Conference on:
"Predicting Rare Events:
Evaluating Systemic and Idiosyncratic Risk" September 28-29, 2012

September 21, 2012
$1 / 32$

A Difficult Problem (So Set Your Expectations Low)

Consider a currency collapse:

- Comparatively easy to identify overvalued exchange rates
- Notoriously difficult to predict whether/when a crash will occur

Consideration: The Forecast Object

Time series

Cross section

Event

- Event timing
- Event outcome or magnitude
e.g., default, loss given default

Financial and Economic Events

- Financial:
- Corporate bond default
- Sovereign bond default
- Margin call
- $\alpha \% \mathrm{VaR}$ breach
- Crisis: Stock market, currency, banking, current account, ...
- Circuit breaker tripped
- Yields hit zero lower bound
- Economic:
- Two firms merge
- Recession begins or ends
- A firm fails to meet analysts' earnings expectations
- Country X leaves EMU
- EMU collapses
- Europe collapses and resumes feudalism
- Broader: Marketing, insurance, politics, ...

Consideration: The Forecast Statement

Point
Interval
Density

Probability

- Event forecasts are probability forecasts
- Can be interpreted as a point forecast p_{t} of a 0-1 indicator I_{t}
- Can be interpreted as a complete density forecast
\Longrightarrow Cross-fertilization possibilities with density forecasting (construction, evaluation, combining)

Consideration: The Loss function

Prob. forecast evaluation from a point forecasting perspective:

$$
Q P S=\frac{1}{T} \sum_{t=1}^{T}\left(p_{t}-I_{t}\right)^{2}
$$

- Most relevant loss function? False alarms vs. missed calls.

Prob. forecast evaluation from a density forecasting perspective:

$$
\left\{p_{t}\right\}_{t=1}^{T}=\left\{p_{t}^{*}\right\}_{t=1}^{T} \Longrightarrow P I T \sim \operatorname{iidU}(0,1)
$$

- Subsumes measures of global calibration, local calibration, resolution, sharpness, etc.?

Evaluation of Rare-Event Forecasts is Challenging

Events come at different frequencies:

- High: Transactions in liquid financial assets, ...
- Less high: Annual (seasonal) peaks in retail sales
- Medium: Business cycle expansions and recessions
- Low: Government bond defaults, binding zero-lower-bound constraints, systemic financial collapses, depressions, apocalypse

It's hard to assess the conditional calibration of rare event forecasts, precisely because of their rarity!

- Theory, Bayesian priors, introspection

Consideration: The Information Set

Covariates hold special appeal for event forecasting:

- Beyond "lagged dependent variables"
- Useful "leading indicators"?
(e.g., A leverage regime switch
may presage a credit market regime switch)

A Model for Dynamic Event Forecasting

$$
\begin{gathered}
p\left(y_{t} \mid \pi_{t}\right)=\pi_{t}^{y_{t}}\left(1-\pi_{t}\right)^{1-y_{t}} \\
P(y \mid \pi)=\prod_{t=1}^{T} p\left(y_{t} \mid \pi_{t}\right) \\
\theta_{t}=\log \left(\frac{\pi_{t}}{1-\pi_{t}}\right) \\
P\left(y_{t} \mid \theta_{t}\right)=\exp \left[y_{t} \theta_{t}-\log \left(1+\exp \left(\theta_{t}\right)\right)\right] \\
P(y \mid \theta)=\prod_{t=1}^{T} p\left(y_{t} \mid \theta_{t}\right) \\
\theta_{t}=\mu+x_{t}^{\prime} \beta+\varepsilon_{t} \\
(1-L)^{d} \Phi(L) \varepsilon_{t}=\eta_{t} \\
\eta_{t} \sim i i d\left(0, \sigma_{\eta}^{2}\right)
\end{gathered}
$$

Multivariate

Everything so far has been univariate

> But we really want multivariate:
> - Idiosyncratic aspects
> - Common aspects

- Connectedness and systemic behavior
$10 / 32$

Financial and Economic Connectedness

- Market Risk, Portfolio Concentration Risk (return connectedness)
- Credit Risk (default connectedness)
- Counterparty Risk, Gridlock Risk (bilateral and multilateral contractual connectedness)
- Systemic Risk (system-wide connectedness)
- Business Cycle Risk (local or global real output connectedness)

Factor Structure, Single Factor, Fully Orthogonal

$$
\begin{gathered}
r_{i t}=\lambda_{i} f_{t}+\varepsilon_{i t} \\
\Longrightarrow \sigma_{i t}^{2}=\lambda_{i}^{2} \sigma_{f}^{2}+\gamma_{i}^{2} \\
i=1, \ldots, N
\end{gathered}
$$

Fraction of i 's variance coming from others:

$$
\frac{\lambda_{i}^{2} \sigma_{f}^{2}}{\lambda_{i}^{2} \sigma_{f t}^{2}+\gamma_{i}^{2}}=\frac{1}{1+\frac{\gamma_{i}^{2}}{\lambda_{i}^{2} \sigma_{f}^{2}}}
$$

So take:

$$
C_{i}=\frac{\lambda_{i}^{2} \sigma_{f}^{2}}{\gamma_{i}^{2}}
$$

Obtain system total by adding over i :

$$
C=\sigma_{f}^{2} \sum_{i=1}^{N}\left(\frac{\lambda_{i}}{\gamma_{i}}\right)^{2}
$$

$12 / 32$

Now Move to Factor Structure for Event Indicator

Linear probability model analog:

$$
\begin{gathered}
I\left(r_{i t}\right)=\lambda_{i} l\left(f_{t}\right)+\varepsilon_{i t} \\
\sigma_{i t}^{2}=\lambda_{i}^{2} \sigma_{l(f)}^{2}+\gamma_{i}^{2} \\
i=1, \ldots, N
\end{gathered}
$$

- Connectedness measures remain intact

$$
\begin{gathered}
\text { Logit/probit analog: } \\
I\left(r_{i t}\right)=\operatorname{squash}\left(\lambda_{i} I\left(f_{t}\right)+\varepsilon_{i t}\right)
\end{gathered}
$$

- What happens to connectedness measures?

What We Really Want

- General framework not necessarily assuming factor structure
- Based on conditional as opposed to unconditional variation
- General connectedness and systemic risk measures
- Links to stress testing?
$14 / 32$

Two Natural Questions

A natural modeling question:
What fraction of the H-step-ahead prediction-error variance of variable i is due to shocks in variable $j, \forall i, j$?

Variance decomposition: $d_{i j}^{H}, \forall i, j$

A natural financial/economic connectedness question:
What fraction of the H-step-ahead prediction-error variance of variable i is due to shocks in variable $j, \forall j \neq i$?

Non-own elements of the variance decomposition: $d_{i j}^{H}, \forall j \neq i$
$15 / 32$

Variance Decompositions and the Connectedness Table

N-Variable Connectedness Table

	x_{1}	x_{2}	\cdots	x_{N}	From Others to i
x_{1}	d_{11}^{H}	d_{12}^{H}	\cdots	$d_{1 N}^{H}$	$\sum_{j=1}^{N} d_{1 j}^{H}, j \neq 1$
x_{2}	d_{21}^{H}	d_{22}^{H}	\cdots	$d_{2 N}^{H}$	$\sum_{j=1}^{N} d_{2 j}^{H}, j \neq 2$
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
x_{N}	$d_{N 1}^{H}$	$d_{N 2}^{H}$	\cdots	$d_{N N}^{H}$	$\sum_{j=1}^{N} d_{N j}^{H}, j \neq N$
To Others	$\sum_{i=1}^{N} d_{i 1}^{H}$	$\sum_{i=1}^{N} d_{i 2}^{H}$	\cdots	$\sum_{i=1}^{N} d_{i N}^{H}$	$\sum_{i, j=1}^{N} d_{i j}^{H}$
From j	$i \neq 1$	$i \neq 2$		$i \neq N$	$i \neq j$

Upper-left block is variance decomposition matrix, D
Connectedness involves the non-diagonal elements of D Penn

Connectedness Measures

- Pairwise Directional: $C_{i \leftarrow j}^{H}=d_{i j}^{H} \quad$ ("i's imports from j ")
- Net: $C_{i j}^{H}=C_{j \leftarrow i}^{H}-C_{i \leftarrow j}^{H} \quad($ "ij bilateral trade balance" $)$
- Total Directional:
- From others to $i: C_{i \leftarrow \bullet}^{H}=\sum_{\substack{j=1 \\ j \neq i}}^{N} d_{i j}^{H} \quad$ ("i's total imports")
- To others from $j: C_{\bullet \leftarrow j}^{H}=\sum_{\substack{i=1 \\ i \neq j}}^{N} d_{i j}^{H} \quad$ (" j 's total exports")
- Net: $C_{i}^{H}=C_{\bullet \leftarrow i}^{H}-C_{i \leftarrow \bullet}^{H} \quad$ ("i's multilateral trade balance")
- Total: $C^{H}=\frac{1}{N} \sum_{\substack{i, j=1 \\ i \neq j}}^{N} d_{i j}^{H} \quad$ ("total world exports")

Networks I: Representation

$$
A=\left(\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Adjacency Matrix (Symmetric) $A_{i j}=1$ if nodes i, j linked
$A_{i j}=0$ otherwise

18 / 32

Networks I: Degree

$$
\begin{aligned}
& \text { Degree of node } i, d_{i} \text { : } \\
& \qquad d_{i}=\sum_{j=1}^{N} A_{i j}
\end{aligned}
$$

Discrete degree distribution, $P(d)$, on $0, \ldots, N-1$
Mean degree, $E(d)$, is the key connectedness measure

Beautiful results (e.g., "small world") involve the mean degree:

$$
\text { diameter } \approx \frac{\ln N}{\ln E(d)}
$$

$19 / 32$

Networks II: Representation (Weighted, Directed)

$$
A=\left(\begin{array}{cccccc}
0 & .5 & .7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & .3 & 0 \\
0 & 0 & 0 & .7 & 0 & .3 \\
.3 & .5 & 0 & 0 & 0 & 0 \\
.5 & 0 & 0 & 0 & 0 & .3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$20 / 32$

Networks II: Degree (Weighted, Directed)

$$
A_{i j} \in[0,1] \text { depending on connection strength }
$$

Two degrees:

$$
\begin{aligned}
d_{i}^{\text {from }} & =\sum_{j=1}^{N} A_{i j} \\
d_{j}^{\text {to }} & =\sum_{i=1}^{N} A_{i j}
\end{aligned}
$$

Continuous "from" and "to" degree distributions on [0, N - 1]
Mean degrees $E(d)$ remain key for connectedness

Central Observation: D is a Weighted, Directed Network

 Connectedness Table| | x_{1} | x_{2} | \cdots | x_{N} | From Others |
| :--- | :---: | :---: | :---: | :---: | :---: |
| x_{1} | d_{11}^{H} | d_{12}^{H} | \cdots | $d_{1 N}^{H}$ | $\sum_{j \neq 1} d_{1 j}^{H}$ |
| x_{2} | d_{21}^{H} | d_{22}^{H} | \cdots | $d_{2 N}^{H}$ | $\sum_{j \neq 2} d_{2 j}^{H}$ |
| \vdots | \vdots | \vdots | \ddots | \vdots | \vdots |
| x_{N} | $d_{N 1}^{H}$ | $d_{N 2}^{H}$ | \cdots | $d_{N N}^{H}$ | $\sum_{j \neq N} d_{N j}^{H}$ |
| To | | | | | |
| Others | $\sum_{i \neq 1} d_{i 1}^{H}$ | $\sum_{i \neq 2} d_{i 2}^{H}$ | \cdots | $\sum_{i \neq N} d_{i N}^{H}$ | $\sum_{i \neq j} d_{i j}^{H}$ |

$$
\begin{gathered}
C_{i \leftarrow \bullet}^{H}=\sum_{\substack{i=1 \\
j \neq i}}^{N} d_{i j}^{H} \text {, are the "from degrees" } \\
C_{\bullet \leftarrow j}^{H}=\sum_{\substack{i=1 \\
i \neq j}}^{N} d_{i j}^{H} \text {, are the "to degrees" } \\
C^{H}=\frac{1}{N} \sum_{\substack{i, j=1 \\
i \neq j}}^{N} d_{i j}^{H} \text {, is the mean degree (to or from) Penn }
\end{gathered}
$$

Relationships to Other Market-Based Measures I:

 Marginal Expected Shortfall (MES)$$
M E S_{T+1 \mid T}^{j \mid m k t}=E_{T}\left[r_{j, T+1} \mid \mathbb{C}\left(r_{m k t, T+1}\right)\right]
$$

- Sensitivity of firm j's return to extreme market event \mathbb{C}
- Market-based "stress test" of firm j’s fragility
- Like "total directional connectedness from" (from degree)

析

Relationships to Other Market-Based Measures II:

 CoVaR and $\triangle \mathrm{CoVaR}$$$
p=\operatorname{Pr}_{T}\left(r_{m k t, T+1}<-\operatorname{CoVa} R_{T+1 \mid T}^{m k t \mid} \mid \mathbb{C}\left(r_{i, T+1}\right)\right)
$$

- Measures tail-event linkages
- Leading choice of $\mathbb{C}\left(r_{i, T+1}\right)$ is that firm i breaches its VaR
- Like "total directional connectedness to" (to degree)

$$
\Delta \operatorname{CoVaR}_{T+1 \mid T}^{m k t \mid i}=\operatorname{CoVa}_{T+1 \mid T}^{m k t \mid} \mid \operatorname{VaR}_{\text {a }}(i)-\operatorname{CoVa}_{T+1 \mid T}^{m k \mid \operatorname{Med}(i)}
$$

24 / 32

Estimating Connectedness

Thus far we've worked under correct specification, in population:

$$
C(x, H, B(L))
$$

Now we want:

$$
\widehat{C}(x, H, B(L), M(L ; \hat{\theta}))
$$

and similarly for other variants of connectedness
$25 / 32$

Many Interesting Issues

- x objects: Returns? Return volatilities? Real activities?
- x universe: How many and which ones?
(≈ 15 major financial institutions)
- x frequency: Daily? Monthly? Quarterly?
- H: Match VaR horizon? Holding period?
- M : VAR? Structural?
- Identification of variance decompositions: Cholesky? Generalized? Structural?
- Estimation: Classical? Bayesian?

Connectedness of Major U.S. Financial Institutions

$$
\widehat{C}(x, H, B(L), M(L ; \hat{\theta}))
$$

- x : Thirteen daily realized stock return volatilities

Commercial banks: JP Morgan Chase (JPM), Bank of America (BAC), CitiGroup (C), Wells Fargo (WFC), Bank of New York Mellon (BK), U.S.
BankCorp (USB), PNC Bank (PNC)
Investment Banks: Goldman Sachs (GS), Morgan Stanley (MS)
GSEs: Fannie Mae (FNM), Freddie Mac (FRE)
Insurance: AIG (AIG)
Specialized: American Express (AXP)

- H: 12 days
- $M(L ; \theta)$: logarithmic $\operatorname{VAR}(3)$, generalized identification, 5/4/1999-4/30/2010

Full-Sample Connectedness Table

AXP BAC BK C GS JPM MS PNC USB WFC AIG FNM FRE FROM

AXP	20.0	8.5	7.1	10.3	5.8	9.8	8.8	5.1	8.0	7.8	3.2	2.6	3.0	80.0
BAC	8.3	19.1	6.0	10.6	5.8	8.0	7.4	6.1	7.1	9.2	4.2	3.5	4.6	80.9
BK	8.4	8.3	18.8	8.4	6.2	9.3	8.5	5.7	8.4	8.3	4.2	2.4	3.0	81.2
C	9.5	9.6	5.4	20.4	4.9	8.7	7.8	5.2	7.0	8.0	5.4	3.5	4.7	79.6
GS	8.2	8.6	6.8	7.6	22.1	8.8	13.3	4.0	6.0	7.6	2.4	1.9	2.6	77.9
JPM	10.2	8.6	7.1	10.6	6.2	18.8	9.5	5.2	7.8	7.3	3.6	2.5	2.6	81.2
MS	9.2	8.3	7.1	8.9	9.8	9.7	20.5	4.2	5.5	7.1	3.4	2.8	3.6	79.5
PNC	7.7	8.8	7.4	8.5	4.6	7.6	6.6	18.1	7.6	8.8	5.2	4.2	4.9	81.9
USB	9.3	9.9	7.6	9.9	5.7	8.7	6.4	5.4	20.1	8.5	4.3	1.6	2.7	79.9
WFC	8.3	10.2	6.5	9.8	6.2	7.6	7.1	5.9	7.3	18.0	3.8	3.8	5.3	82.0
AIG	5.3	7.3	4.9	8.8	2.6	5.2	4.9	6.2	6.0	5.6	27.5	6.6	9.0	72.5
FNM	4.2	5.4	2.5	6.0	2.3	3.5	3.8	5.5	1.9	6.8	6.5	29.6	22.0	70.4
FRE	4.3	6.3	2.9	6.5	2.6	3.3	4.1	5.2	2.9	7.3	7.4	17.6	29.6	70.4
TO	92.9	99.7	71.3	106.1	62.7	90.2	88.2	63.7	75.5	92.2	53.8	53.1	68.1	$\mathbf{7 8 . 3}$

Estimating Time-Varying Connectedness

Before:

$$
\begin{array}{r}
C(x, H, B(L), M(L ; \theta)) \\
\widehat{C}(x, H, B(L), M(L ; \hat{\theta}))
\end{array}
$$

Now:

$$
\begin{aligned}
& C_{t}\left(x, H, B_{t}(L), M\left(L ; \theta_{t}\right)\right) \\
& \widehat{C}_{t}\left(x, H, B_{t}(L), M\left(L ; \hat{\theta}_{t}\right)\right)
\end{aligned}
$$

- Time-varying parameters: Rolling estimation? Smooth TVP model? Regime-switching?
(100-day estimation window)

Rolling Total Connectedness

$30 / 32$

Net Pairwise Directional Connectedness:
The Lehman Bankruptcy, September 17, 2008

$31 / 32$

Rare Event Forecasting:

Swallow Hard and March Onward
(There's no Alternative)

- Probability forecasts and their evaluation
- Flexible multivariate modeling
- Systemic risk and network connectedness
[- Theory, Bayesian priors, model averaging]

