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1. Introduction

This paper is an attempt to model the joint behavior of prices and wages in a way consistent

with intertemporal optimization and rational expectations. Its ultimate goal is to construct

a ‘Phillips curve’ specification that is consistent both with U.S. data and with optimizing

behavior, to respond to the well known “Lucas critique”.

The Phillips curve relationship has undergone a fruitful re-exploration in recent years.

The effort has been devoted to explain the relation between nominal and real variables

in rigorously specified general equilibrium, optimizing models1. For example, the so-called

“New Keynesian” Phillips Curve (NKPC), which describes current inflation as a function

of expected future inflation and a measure of output gap, is derived in the context of a

general equilibrium, optimizing model, that allows some form of nominal rigidities, either

by assuming staggered price-setting (for example, in the style of Calvo (1983) model), or by

assuming staggered wage-setting, or both (for ex. Erceg et al. 1999)2. Models with nominal

rigidities have been explored mostly in the context of monetary policy analysis. Providing

a channel for real effects of monetary disturbances, staggered wage and price settings are in

fact a suitable framework to investigate issues such as the optimality of alternative monetary

policies.

However, the standard NKPC model predicts counterfactual comovement of output and

inflation, unless there are large cyclical variations in potential output. For this reason, there

have been some attempts to dismiss altogether the particular model of price-setting that lies

at the heart of the model.

Some recent studies, in particular, have questioned the importance of the forward-looking

component in pricing behavior, by focusing on the empirical failure of the inflation-output

equation that it seems to imply. For example, Fuhrer’s (1997) empirical results point to

a negligible role of future inflation in an estimated inflation-output relationship, specified

1See the contributions in the special issue of the Journal of Monetary Economics on “The Return of the
Phillips Curve”, vol. 44, n.2, 1999.

2An early estimation of such a curve is in Roberts (1995).
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in a way that is intended to nest the ‘New Keynesian’ Phillips Curve specification, the

more complex variant proposed by Fuhrer and Moore (1995), and purely backward-looking

Phillips Curve specifications. Roberts (1997, 1998) argues instead that the New Keynesian

Phillips Curve fits reasonably well when survey measures are used to approximate inflation

expectations, but it does not fit well under the hypothesis of rational expectations. He thus

proposes a model with an important backward-looking component in inflation expectations,

which amounts to weakening the weight put on the forward-looking terms in his aggregate

supply relation.

Some other recent work has shown, however, that, unlike tests of the standard NKPC

model, tests of the pricing equation alone, derived from a staggering price model, seem to

fit inflation data quite well, providing empirical support for the hypothesis of nominal price

rigidity, and for the importance of forward-looking determinants of price-setting behavior3.

In particular, Sbordone (1998) shows that, taking as given the evolution of unit labor costs,

the dynamic of inflation predicted by sticky price models tracks actual data very closely,

and implies a degree of price stickiness very much in line with that found through survey

evidence.

But if one accepts the hypothesis that the evolution of inflation is well described by the

evolution of future labor costs, then one should argue that the failure of NKPC models is

not due to the theoretical link between inflation and real marginal costs, but may be due

to the additional assumptions commonly made to obtain proportionality between marginal

costs, and therefore wages, and real output.

In this paper I therefore seek to develop a more accurate optimizing model of wage

dynamics: I first investigate, using a partial equilibrium approach, the predictions of an

optimal labor supply model for the aggregate nominal wage, taking as given the evolution

of prices and quantities. Together with the evolution of productivity, this model yields a

quantitative model of the evolution of unit labor costs.

3See Sbordone (1998, 1999) and Gali and Gertler (1999). Both contributions use unit labor costs to proxy
for variation in nominal marginal costs, but follow different estimation procedures.
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Then, combining the predictions of this model with the predictions of an optimizing

model of price setting for the evolution of the aggregate price level, I provide a joint model

of price and wage dynamics, taking as given the evolution of real quantities.

In developing the wage model, I first analyze the fit of the baseline optimizing model

used in standard RBC models, where a representative household chooses hours of work to

maximize an expected lifetime utility function. The optimality condition for labor supply

gives a desired real wage as a function of consumption and hours. Then I consider the

hypothesis that the actual real wage adjusts only sluggishly to the desired wage, and compare

the prediction of models with perfectly flexible wages to those of models with different kinds

of wage rigidity4.

The price-setting side of the model has one sector of production, monopolistic competi-

tion, and nominal price rigidity: these assumptions deliver the evolution of the price level

as a function of expected future labor costs. The optimizing model of wage dynamics with

wage rigidities, combined with this staggering price model, provides a complete optimizing

model of wage-price dynamics.

The rest of the paper is organized as follows. In section 2 I discuss the inadequacy of the

New Keynesian Phillips curve, and motivate my investigation of the behavior of labor costs.

In section 3 I analyze the predictions of a baseline model of wage setting, and in section 4 I

study the implications of removing the flexible-wage assumption. I first introduce a model of

nominal wage rigidity, then show how to nest it in more general models of indexed nominal

wages. Section 5 contains the central result of the paper: I discuss the joint modeling of

wage and price dynamics, and present the fit of price and wage dynamics obtained with a

set of calibrated parameters. Section 6 concludes.

4Although sticky wages are often postulated in theoretical models, the recent optimizing models with
sticky wages have not yet been subject to much empirical testing. A recent piece of evidence for these
models is Amato and Laubach (1999), where the structural parameters are estimated to match the impulse
response functions to an exogenous monetary shocks implied by the model with those estimated in the data.
Christiano et al. (2001) also estimate the degree of wage rigidity, with a different methodology, in the context
of a general equilibrium model with several other frictions.
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2. The Inadequacy of the New Keynesian Phillips Curve

An optimization based Phillips curve relationships results from the combination of the price

setting behavior of monopolistically competitive firms, which links the evolution of prices

to the evolution of marginal costs, and the wage setting behavior of the households, which

links the evolution of wages to the evolution of consumption and hours. Firms produce

differentiated goods, and have some degree of market power necessary to be able to set the

prices.

In the wage-setting sector, a representative household chooses hours of work to maximize

an expected lifetime utility

E0{Σ∞t=0 βt U(Ct, Ht; ξt)}

subject to an intertemporal budget constraint

∞X
t=0

E0{R0,tCt} ≤
∞X
t=0

E0{R0,tωtHt}+ a0

where β is a subjective discount factor, ξt is a stochastic disturbance to household’s prefer-

ences, ωt is the real wage, a0 is initial wealth, and Rt,T is the product of stochastic discount

factors. Ct is a constant elasticity of substitution aggregator of the differentiated goods:

Ct =
hR 1
0
C
(θ−1)/θ
it di

iθ/(θ−1)
, with where θ > 1 denoting the Dixit-Stiglitz elasticity of substi-

tution among differentiated goods. The first order condition for optimal labor supply gives

a desired real wage, which I will denote throughout the paper by vt

vt = −UH
UC
(Ct, Ht; ξt) ≡ w(Ct, Ht; ξt) (2.1)

In the price-setting sector, a continuum of monopolistic firms, indexed by i, produce differ-

entiated goods, also indexed by i, and face a demand curve for their product of the form:

Yit = (Pit/Pt)
−θ Yt (2.2)
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where Yt is the aggregator function defined as Yt =
hR 1
0
Y
(θ−1)/θ
it di

i θ
θ−1
, and Pt =

hR 1
0
P 1−θit di

i 1
1−θ

is the corresponding price index . The production technology of each firm i is of the form:

Yit = f(ΘtHit) (2.3)

where capital is assumed as being allocated to each firm in a fixed amount5, so that one can

consider labor Ht as the only factor of production, and Θt is a stochastic labor augmenting

technological factor.

To obtain a Phillips Curve in this optimization based model, NKPC models assume that

not all firms adjust prices in full every period. According to the Calvo (1983) model of

random intervals between price changes,6 in every period, a fraction (1 − α) of the firms

can set a new price, independently of the past history of price changes, which will then be

kept fixed until the next time the firm is drawn to change prices again.7 The expected time

between price changes is therefore 1
1−α .

The pricing problem of a firm that revises its price in period t is to choose a price Xit to

maximize its expected stream of profits

Et{Σ∞j=0Rt,t+jΠit+j}

The solution to this problem leads to an optimal pricing condition of the form

Σ∞j=0 α
jEt

(
Rt,t+jYt+j

µ
Xt
Pt+j

¶−θ ·
Xt − θ

θ − 1 St+j,t
¸)

= 0

where the subscript i on Xit is suppressed, since all the firms that change price solve the

5It is also assumed that capital doesn’t depreciate, and cannot be reallocated across firms.
6Alternatively, nominal price rigidity can be introduced by assuming that firms face some convex cost

of adjusting prices (Rotemberg 1982) and therefore, although all firms are allowed to change prices at any
time, it is not optimal to do so.

7By letting α vary between 0 and 1, the model nests a wide range of assumptions about the degree of
price stickiness, from perfect flexibility (α = 0) to complete price rigidity (the limit as α→ 1).
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same problem, and St+j,t denotes the marginal cost of producing , at date t+j, goods whose

price was set at time t (St+j,t ≡ 1
1−a

Wt+jHit+j
Yit+j

). Dividing by Pt, and defining xt ≡ Xt/Pt and
st+j,t ≡ St+j,t/Pt+j, one can rewrite this expression as

Σ∞j=0 α
jEt

(
Rt,t+jYt+j

µ
Xt
Pt+j

¶−θ "
xt − θ

θ − 1 st+j,t
jY
k=1

πt+k

#)
= 0 (2.4)

Here st+j,t is in general different from the average marginal cost st+j (which is equal to
1
1−a

Wt+jHt+j
Pt+jYt+j

), since capital, as we said, cannot be reallocated across firms to equate the

shadow price of capital services at all times, and is related to st+j by

st+j,t ≡ 1

1− a
Wt+jHit+j
Pt+jYit+j

= st+j ∗
"µ

Xt
Pt+j

¶−θ# a
1−a

(2.5)

The optimal pricing condition (2.4), combined with the distribution of aggregate prices

at any point in time

Pt =
£
(1− α)X1−θ

t + αP 1−θt−1
¤ 1
1−θ (2.6)

allows one to describe the path of aggregate prices and inflation as a function of real marginal

costs, shifted by expected inflation.

Specifically, combining the log-linear approximation of equations (2.4) and (2.6) around

steady state values x∗(≡ 1), s∗(≡ θ−1
θ
), and π∗(≡ 1), with a log linear approximation of

the equation (2.5), one obtains that the dynamics of inflation (deviation of inflation from

long-run equilibrium) is described by an equation of the form8

bπt = α1Etbπt+1 + ζbst (2.7)

where the parameter ζ measures the degree of stickiness in the adjustment of prices9, α1 is

8A more complete derivation of this equation can be found in Sbordone (‘98).
9Further specifying the production technology as of the Cobb-Douglas form, one can show that ζ depends

on the probability of changing prices (the fraction of firms that are allowed to change prices every period),
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a discount factor10, and hat variables indicate deviations from steady state values.

Solving this equation forward one obtains that inflation is a function of expected future

real marginal costs; one can then estimate the inflation dynamics by proxying the unob-

servable marginal costs with some observable variable, and computing its forecast into the

infinite future.

Using this methodology, and using unit labor cost as a proxy for nominal marginal cost11,

Sbordone (1998) shows that the dynamic of inflation predicted by this model tracks very

closely the actual dynamic of U.S. inflation, and the point estimate of ζ implies a degree of

nominal price inertia consistent with survey evidence12.

To obtain the “New Keynesian Phillips Curve” in the standard form of a relationship

between inflation and output gap, where again expectations of future inflation are a shifting

factor, one has to show that labor costs are proportional to output gap. A proportionality of

this kind is derived in Woodford (2001). From the first order condition of the flexible wage

model, using market clearing to substitute out Ct , and the production function to substitute

out Ht, eq. (2.1) can be written as

vt = v(Yt; ξt,Θt) (2.8)

Moreover, the marginal product of labor for each firm i can be written as some function

on the elasticity of substitution among differentiated goods, and on the Cobb-Douglas output elasticity.
Equation (2.7) can also be obtained under the assumption that the nominal rigidity stems from the existence
of costs of adjusting prices: in this case the parameter ζ is the inverse of the curvature of the adjustment
cost function.
10α1 = Rγ

∗
y, where R is the steady state value of the discount factor, and γ∗y is the steady state growth

rate of output.

11This basic measure of marginal cost is correct if the production technology is CRS, and there are no other
friction which might break the proportionality between average and marginal costs (for ex., the existence
of costs of adjusting hours, or of overhead labor). See Sbordone (‘99) for a discussion of the empirical
implications of using alternative measures of marginal costs when estimating inflation dynamics.
12See also Gali-Gertler (1999), and Gali, Gertler, and Lopez-Salido (2000).
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g(Yit;Θt), implying that real marginal cost is

sit =
vt

MPLt
=
v(Yt; ξt,Θt)

g(Yit;Θt)
= s(Yit, Yt; ξt,Θt) (2.9)

If one denotes by Y pt the level of output, at each time t, for which real marginal cost would

remain at a constant level, then Y pt must solve

s(Y pt , Y
p
t ; ξt,Θt) = µ

−1 (2.10)

where, with standard notation, µ = (θ − 1)/θ denotes the markup of prices over marginal
costs. Using a log-linear approximation to (2.10), the log-linear approximation of (2.9) gives

bsit = εs1bYit + εs2bYt − (εs1 + εs2)bY pt
where εsi denotes the elasticity of the marginal cost function to component i. This implies

that bst = εsy
³bYt − bY pt ´

where I set εsy = εs1 + εs2. Since Y
p
t can be thought of as a measure of potential output,

(bYt − bY pt ) can be thought of as a measure of output gap. One then obtains the NKPC
bπt = α1Etbπt+1 + γ

³bYt − bY pt ´ (2.11)

where γ = ζεsy.

Note, however, that in the above derivation potential output stands for the ‘efficient’

level of output, and therefore need not be a smooth trend; in particular, it depends on the

stochastic disturbances (ξt,Θt). Empirical estimates of the NKPC curve, instead, routinely

approximate potential output Y pt by some deterministic function of time (for ex., Roberts

‘95 uses a quadratic trend); this is equivalent to arbitrarily assuming that consumption and

hours move exactly in proportion to output.
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To analyze the problems of such a specification, I first solve equation (2.11) forward and

obtain an expression of inflation as a function of current and expected future output gaps.

Then, as in the standard NKPC approach, I define the output gap as the deviation of output

from a quadratic trend, and compute expected future output gaps by the forecast of this

component derived from a multivariate VAR13. The parameter γ is estimated to maximize

the fit of the model (minimize the distance between actual inflation and inflation as predicted

by the model). The results of this exercise are presented in figure 1. Graph (a) compares

actual inflation (in deviation from the mean - solid line) to inflation predicted by eq. (2.11)

(dotted line). The ability of this model to predict inflation is clearly poor, as the figure

shows; predicted and actual inflation are in fact negatively correlated.

Panel (b) of the figure shows a further dimension in which the model fails, by comparing

the lead-lag correlations of inflation and output gap [ρ(gapt, πt+k)]. While in the data output

gap leads inflation (the highest correlation occurs at k = 6), in the model output gap lags

inflation (the highest correlation occurs at k = −3). Overall, the dynamic cross correlations
predicted by the model are outside the standard deviation bands, and can therefore judged

to be significantly different from those computed in the data.

By contrast, figure 2 shows that a much better approximation to actual inflation is

obtained when inflation is predicted according to eq. (2.7), where real marginal cost is

proxied by real unit labor cost.14 To understand why predicted inflation dynamics is so

different when unit labor costs, as opposed to output gap, proxies real marginal cost, I

compare these two measures in figure 3: output gap and unit labor cost are negatively

correlated (-.34)15. Clearly U.S. data do not support the hypothesis that output gap should

13This exercise is in the same spirit of the analysis of Sbordone (98) which evaluates the dynamics of prices
as driven by nominal unit labor costs. The output measure I use is gdp for the private, non farm business
sector. See later for the details of all the data used. The forecasting VAR includes detrended output, real
unit labor cost, and the rate of growth of nominal unit labor cost.
14This figure is obtained with the same methodology of the previous one, and a bivariate VAR including

real unit labor cost and the rate of growth of nominal labor cost is used to forecast real ulc. This is the
result shown in Sbordone (1998) and Gali-Gertler (1999).
15A qualitatively similar, although less dramatic result, obtains if one alternatively measures output gap
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proxy the evolution of labor costs; as a result, if the sticky-price model is true, the NKPC

cannot fit the data well.

This evidence suggests that the empirical problems of NKPC models are not due to a

misspecification of the price setting mechanism, but to the incorrect assumption of pro-

portionality between marginal costs and output. Output gap, measured as deviation from

a deterministic trend, is not the correct forcing variable of the inflation process: a better

approach to the construction of an empirical Phillips curve would seem to look for an appro-

priate measure of real unit labor cost. The task I am taking next.is therefore an investigation

of the wage setting mechanism.16

3. A More General Flexible Wage Model

In the baseline optimizing model (see eq. (2.1)) the desired real wage is a function of the

marginal rate of substitution between leisure and consumption, to examine the prediction

of this model I therefore directly analyze the joint behavior of real wages, consumption,

and hours. To overcome the problem of unobservability of the preference shock, I make the

hypothesis that ξt is a random walk (i.e. I assume that there is no forecastable component

in the preference shock), and derive the following log-linear approximation to eq. (2.1)

bvt = λbct + νbht
I then denote the empirical counterpart of this equation as

vcyct = λccyct + νhcyct (3.1)

as deviation from a stochastic trend (as discussed below, this specification would seem more appropriate
with the data used here). This measure of output gap has a smaller negative correlation with unit labor
cost, -.08, but still misses the lead-lag correlation with inflation.

16An alternative approach would be to construct a measure of output gap consistent with the model, as
defined by (2.10). An attempt in this direction is Neiss-Nelson (2001).
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where the superscript ‘cyc’ indicates that I proxy bvt, bct, and bht with the cyclical components,
respectively, of real wage, consumption, and hours, which are in turn defined as the log

deviation from their trend (as explained below, real wages and consumption share a stochastic

trend, while hours are trend stationary). The parameters λ and ν , respectively the

elasticity of the marginal rate of substitution with respect to consumption and hours, are

then preference parameters to be estimated.17

The estimation of this equation consists of two steps. I first construct the cyclical com-

ponents of real wages, consumption and hour; then, denoting by φ the vector of parameters

of interest, φ = [λ ν]0, I define the distance between model and data as

εvt = v
mod
t (φ)− vdatat

and compute the value of the parameters λ and ν that minimize (a square measure of )

this distance bφ = argmin var(εvt ) (3.2)

3.1. Constructing the cyclical components

All data are non-farm private business sector (NFB) data of the U.S. economy, as published

by the BLS. The price index is the implicit GDP deflator, nominal wage is hourly compensa-

tion, real wage is nominal compensation divided by the price index 18, output is value added,

and hours is total hours of work. Consumption is the NIPA aggregate for nondurables and

services19.

To address the presence of stochastic trends, I tested for the presence of unit roots in

171/λ represents the elasticity of consumption to the real wage (holding hours constant), and 1/ν represents
the elasticity of hours to the real wage (holding consumption constant).
18Note that this is different from what is reported in the statistics as ‘real compensation’ in the same

sector, which is instead obtained by deflating the nominal compensation by a consumer price index.
19Al the data are retrieved from the FRED database at the St. Louis Fed.
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all the variables of interest:20 the unit root hypothesis is rejected for hours and for the

labor share, and the consumption/output ratio is stationary around a small, (negative) de-

terministic trend. Consistently with these results, I decompose the nonstationary series into

permanent and transitory components using the Beveridge-Nelson decomposition, namely

defining the stochastic trend as the forecasting profile of the series, and obtaining the cycli-

cal component as deviation from this trend. The forecasting profile is constructed using a

multivariate forecasting model which includes productivity, hours (output/productivity ra-

tio), consumption/output ratio, labor share and inflation. Specifically, the forecasting model

is

A(L) Xt = ut

where the vector Xt is defined as21

Xt = [∆qt yt − qt ct − yt sht ∆pt]
0 (3.3)

The V AR matrix polynomial is A(L) = I −A1L−A2L2, and ut are i.i.d. innovations.
Figure 4 plots the cyclical components of productivity, real wage, consumption and hours.

The cyclical component of the real wage (in the upper right corner of the figure) is the variable

that the model of real wage below will try to approximate.

20I conducted univariate unit root tests on these variables, allowing for the presence of a deterministic
trend. Specifically, I test the joint hypothesis of a zero coefficient on the deterministic trend, and a unit
coefficient on the first lag, in a regression of the level of the variable on its lagged level and two lags of its
first difference.

21Lowercase letters denote the natural log of the corresponding upper case variables; Qt is labor produc-
tivity, Yt is real output, Ct is real consumption expenditures on non durables and services, SHt = WtHt

PtYt
is

the labor share (ratio of total compensation to nominal output), which is also the real unit labor cost (ratio
of real wage to labor productivity), and ∆ is the first difference operator. Output and productivity share
the same stochastic trend (so hours are trend stationary), as do consumption and output, and real wage and
productivity: this justifies the ratios in the V AR.

12



3.2. Parameter estimates

The criterion (3.2) leads to the estimates reported in the first row of table 1. The table also

reports the correlation between the estimated cyclical component of the real wage and the

cyclical component of the real wage predicted by the model (corr(wa, wp)), and the residual

variance (var(²wt )). This variance is the criterion function for estimation, and is taken as a

benchmark for evaluating, below, whether wage rigidities may improve the fit with the data.

The fitted value of the cyclical wage, constructed using these parameter values, is plotted

against the cyclical component of the actual real wage in fig. 5a. The model fits the data

significantly well - predicted and actual series are remarkably close, and they also share very

similar serial correlation patterns (fig. 5b). However, as the last two panel of fig. 5 show,

the implied growth rate of both real and nominal wage are more volatile than the actual

growth rates (their standard deviations are, respectively, about 13% and 16% higher than

the standard deviation of the data). This result suggests that it is worth attempting to

incorporate some degree of inertia in the adjustment either of the real or the nominal wage,

and examine whether allowing for such inertia improves the fit with the data: this task will

be taken up in section 4, after further discussion of these results.

3.3. A Stronger Hypothesis on Preference Shock

The stimate of the flexible wage model is conditional upon the assumption that the preference

shock follows a random walk. However, since the VAR model contains a single real unit root,

we may wish to interpret this single source of non stationarity as a technology shock, that

should not affect preferences. Here therefore I explore the alternative assumption that ξt is

a deterministic trend: in this case the model implies

vtrend = λctrend + νhtrend + trend

As a consequence, (vt − λct) should be a trend stationary series, and the parameter λ

can be determined from the cointegrating vector, without reference to cyclical components
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of the series. Since the estimated V AR model implies that the variable (vt − ct) is trend
stationary, this hypothesis about the preference shock requires that λ = 1.

I re-estimated therefore the model imposing this parameter restriction. The estimation

still gives a negative value for the elasticity ν, although lower in absolute value (ν = −.465
(s.e. 0.05)); however, the restriction on λ is strongly rejected, and the resulting cyclical

component of the real wage is approximated to a much lower degree, as the top panel

of figure 6 shows. When the constraint on λ is imposed, the criterion function used for

estimation is about three times as large.

Before turning to the interpretation of the estimated parameter values, I examine another

possible restriction, a non-negativity constraint on the elasticity ν. Not surprisingly, the

optimal value of ν under such a restriction is zero, and the estimated value for λ is reduced

to 1.29 (s.e. 0.05). Under this restriction as well, the fit of the model deteriorates significantly

(see fig. 6b). The statistics for the two restricted models are reported in the second and

third row of table 1.

3.4. Evaluating the Baseline Wage-Setting Model

3.4.1. Interpretation of the estimated parameter values

The estimates obtained, both in the unconstrained and the constrained case, imply that

the elasticity of hours to wages, keeping consumption constant, is negative, and the elastic-

ity of consumption to wages, keeping hours constant, is less than 1. Although I have not

parametrized household’s preferences, one can gain some intuition on which kind of prefer-

ences are consistent with the estimated parameters by using the correspondence between the

parameters of this ‘cyclical wage’ model and the more familiar Frisch elasticities.

Appropriately transforming the economy into a stationary one, one can solve the first

order conditions of the consumer maximization problem of the transformed economy to

obtain the Frisch demand for consumption and hours

eCt = C(evt, eµt), and eHt = H(evt, eµt)
14



Here stationary variables are denoted with a tilde, and eµt is the (transformed) marginal
utility of income. Denoting by (v∗, µ∗, c∗, h∗) the steady state value of (evt, eµt,ect,eht), a log-
linearization of the Frisch demands around the steady state values gives

bct = ²cwbvt + ²cµbµt (3.4a)bht = ²Hwbvt + ²Hµbµt (3.4b)

where hat variables indicate again log deviation from steady state values, and ²ij are Frisch

elasticities. Combining eqs. (3.4a) and (3.4b), the desired real wage can be expressed as a

function of consumption and hours

bvt = ²Hµ
²Hµ²cw − ²cµ²Hwbct − ²cµ

²Hµ²cw − ²cµ²Hw
bht (3.5)

The parameters λ and ν are therefore the following transformations of the Frisch elasticities

λ =
²Hµ

²Hµ²cw−²cµ²Hw , and ν = − ²cµ
²Hµ²cw−²cµ²Hw

The concavity of the utility function requires that ∂H
∂w
> 0, which means that ²Hw > 0 as

well. The assumption that consumption is a normal good requires that ∂C
∂µ
< 0, which implies

that ²cµ < 0 as well. Therefore, in order for λ and ν to have opposite signs (as delivered

by the estimation), since they share the same denominator, it must be the case that the

denominator is negative, (²Hµ²cw − ²cµ²Hw) < 0 , and ²Hµ < 0.
These theoretical restrictions suggest two major departures from standard parametriza-

tion of preferences. First, and most obvious, preferences should be non-separable in con-

sumption and leisure. Were the utility function separable, ²cw would be 0, and one would

not obtain opposite signs for the two parameters; so work must increase the marginal utility

of consumption. Moreover, from the above derivation, it results that leisure should be an

inferior good22.

22Alternatively, a negative ν and a positive λ could be obtained by assuming that leisure is a normal good
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One can then conclude that these empirical results are not consistent with the theoretical

framework of a representative household for which both consumption and leisure are normal

goods. Furthermore, the result that λ 6= 1 implies that preferences are not consistent with
balanced growth, unless they have a secular drift in them - which I have assumed with both

my alternative hypotheses about the preference shock ξ.

3.4.2. Alternative interpretations

There are a number of ways, however, to rationalize these results. One alternative, more

simplistic interpretation, is that part of consumers are ‘rule of thumb’ consumers. These

consumers will tend to increase consumption when income increases; as a result, keeping

consumption constant, all increases in hours must be accompanied by a decline in wages.

Alternatively, one can assume that the economy is populated by a number of heteroge-

neous households, with different preferences for consumption and leisure, but for whom both

consumption and leisure are normal goods. One can then show that, at least in some partic-

ular cases, the aggregation of consumption and labor supply behavior of these heterogeneous

agents may as well deliver the estimated signs of the parameters.23

Another alternative is to maintain the representative household framework, but specify its

preferences as in the “high substitution economy” of King and Rebelo (2000), a generalized

indivisible-labor model. In this economy, there is a stand-in representative agent whose

preferences are

u(c,N) =
1

1− σ
{c1−σv∗(1−N)1−σ − 1}

where

v∗(1−N) =
·
N

H
v
( 1−σσ )
1 +

µ
1− N

H

¶
v
( 1−σσ )
2

¸ σ
σ−1

and H is the shift length of those who work, N indicates the average hours of work in the

and consumption is the inferior good: in this case in fact ²Hµ > 0 and ²cµ > 0 (in that case the denominator
of the two parameters needs to be positive, and it is required that (²Hµ²cw − ²cµ²Hw) > 0).
23An example is in Sbordone 2001, appendix A.
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economy, and v1 = v(1−H) and v2 = v(1) are respectively the utility of leisure of those who
work and those who do not work. A log-linear approximation to the first order conditions

of the consumer24 can be written as

−σbct − (1− σ)η bNt = bµt (3.6)

(1− σ)bct + (1− σ)2

σ
η bNt = bµt + bwt (3.7)

where bµt is the marginal utility of consumption, bwt is the real wage, and η = v∗0(1−N)
v∗(1−N)N

∗.

Substituting (3.6) into (3.7) one gets

bwt = λbct + ν bNt
It is clear then that ν = 1−σ

σ
η has a negative value for any σ > 1. This model is able to

rationalize the empirical result that non separable preferences are a necessary condition to

obtain a negative value for the parameter ν, but also implies that, contrary to the empirical

result obtained here, λ should be equal to 1.

4. Introducing sluggish wage adjustment

To address the high volatility of wage growth implied by the baseline real wage model I

consider here the possibility that the actual wage departs in some way from the ‘desired’

wage that would hold under perfectly flexible wages. I first consider the standard case of

nominal wage rigidity, and then show how it can be nested in models with some degree of

wage indexation to the price level.

4.1. Nominal wage rigidity

I assume a wage setting structure of the kind described by Erceg et al. (2000), which is

the analogue to the structure developed by Calvo to model price stickiness. The model

24These are eqs. (6.8) and (6.9) in King and Rebelo, rewritten as function of hours, as opposed to leisure.
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features monopolistic competition among households with respect to the supply of labor:

each household offers a differentiated type of labor services to the firms. I further assume that

households stipulate wage contracts in nominal terms, and that at the stipulated wage they

supply as many hours as are demanded. Furthermore, to be consistent with the empirical

results of the flexible wage model, I allow preferences to be non-separable in consumption

and leisure, which implies that the marginal utility of consumption depends on hours of

work.

Total labor employed by any firm j is an aggregation of individual differentiated hours

Hj
t =

·Z 1

0

h
(θ−1)/θ
it di

¸θ/(θ−1)
(4.1)

where θ is the Dixit-Stiglitz elasticity of substitution among differentiated labor services

(θ > 1). The wage index is defined as

Wt =

·Z 1

0

W 1−θ
it di

¸1/(1−θ)
Household i faces the following demand function for her labor services from each firm j25

hjit = (Wit/Wt)
−θHj

t (4.2)

which, aggregated across firms, gives the total demand of labor hours hit equal to

hit = (Wit/Wt)
−θHt (4.3)

where Ht =
hR 1
0
Hj
t dj
i
.

To introduce staggered wage changes, I assume that at each point in time only a fraction

(1− ψ) of the households can set a new wage, which I denote by Xit, independently of the

25This demand is obtained by solving firm j0s problem of allocating a given wage payment among the
differentiated labor services, i.e. the problem of maximizing (4.1) for a given level of total wages to be paid.
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past history of wage changes, and this wage will then remain fixed until the next time the

household is drawn to change wages again.26 Letting ψ vary between 0 and 1, the model nests

a wide range of assumptions about the degree of wage inertia, from perfect wage flexibility

(ψ = 0) to complete nominal wage rigidity (ψ −→ 1). The expected time between wage

changes is 1
1−ψ . I also assume (as in Erceg et al. (2000)), that households have access to a

complete set of state contingent contracts; in this way, although workers that work different

amount of time also have different consumption paths, in equilibrium they have the same

marginal utility of consumption.

The wage setting problem is defined as the choice of the wage Xit that maximizes the

expected stream of discounted utility from the new wage, defined as the difference between

the gain (measured in terms of the marginal utility of consumption) derived from the hours

worked at the new wage and the disutility of working the number of hours associated with

the new wage

Et

½
Σ∞j=0 (βψ)

j

·
UC(Cit+j, ht+j,t)

Pt+j
(Xtht+j,t − Pt+jCit+j) + U(Cit+j, ht+j,t)

¸¾
(4.4)

Here ht+j,t denotes the hours worked at t+ j at the wage set at time t, and I eliminate the

index i on Xt since all the households that change wage at t solve the same problem.

The first order condition for this problem can be written as

Et

½
Σ∞j=0 (βψ)

j
³
xtΠ

j
k=1

¡
πwt+k

¢−1´−θ
Ht+j

·
xtωt+jΠ

j
k=1

¡
πwt+k

¢−1 − θ

θ − 1mrst+j,t
¸¾

= 0

(4.5)

where xt ≡ Xt/Wt, π
w
t ≡Wt/Wt−1 is the wage inflation, and mrst+j,t is the marginal rate of

26Erceg et al. (2001) assume that wages that are not reset are nonetheless adjusted to the steady state
inflation. Since here I consider a steady state with zero inflation, the wages that are not reset remain constant
until next draw.
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substitution between consumption and hours, evaluated at the level of hours ht+j,t.27.

A log-linear approximation of (4.5) around x∗(≡ 1), mrs∗(≡ θ
θ−1), and πw∗(≡ 1), com-

bined with a similar approximation to the distribution of aggregate real wages, allows to

obtain the following equation for the Calvo model of adjustment of nominal wage contracts

∆wt = γ((vt + pt)− wt) + βEt∆wt+1 (4.6)

where vt is the desired real wage, defined as before as the real wage at which the marginal

benefit of an increase in real wage is zero, and whose cyclical component is determined

according the model above in (2.1). The parameter γ ≡ (1−ψ)(1−βψ)
ψ(1+χθ)

, which I will refer to as

the inertia parameter, is a measure of the degree of stickiness in the nominal wage.28

The solution of this model can be written as

wt = λ1wt−1 + (1− λ1)(1− λ−12 )
∞X
j=0

λ−j2 Et(vt+j + pt+j) (4.7)

where λ1 and λ2 (|λ1| < 1, |λ2| > 1) denote the roots of the polynomial associated with the
difference equation (4.6), which satisfy λ1 + λ2 =

1+γ+β
β

and λ1λ2 =
1
β
.

The approach I use for estimation is to take as given the evolution of the real variables

that determine the evolution of the desired real wage vt, and the evolution of prices, and

construct the path of expected future desired nominal wage.29 The structural parameters λ

and ν, and the roots λ1 and λ2, are then estimated by minimizing the distance between the

model and the data. From these estimates, fixing the subjective discount factor at β = .99,

one can then retrieve an estimate for the inertia parameter γ.

The estimated parameters are reported in row (b) of table 1. They show a statistically

significant degree of nominal wage inertia, although the estimated elasticities λ and ν are

27See section 7.1.1 of the appendix for a complete derivation of this expression.
28Eq. (4.6) is derived in section 7.1.2 of the appendix.

29Since the desired real wage is modeled, as before, as a function of consumption and hours, its expected
future value is constructed using forecasts of hours and consumption according to the V AR model discussed
above.
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not statistically different from those of the flexible wage model. The last row of the table

indicates the gain, in terms of goodness of fit, of removing the assumption of perfect wage

flexibility: the model improves significantly over the flexible wage model, by reducing the

discrepancy between actual and estimated cyclical wage by slightly more than 30%. The

contemporaneous correlation between the two series is also slightly higher than in the flexible

wage case (.96 vs. .93). As expected, introducing inertia in the wage adjustment process

smooths the volatility of wage growth: predicted and actual nominal wage growth have

virtually the same volatility, and a correlation of .78. Similarly, in this model, the volatility

of the predicted real wage growth is about 85% of that of the actual series.

4.2. Indexation of Nominal Wages to the Price Level

While it is most common to assume nominal wage rigidity, one can alternatively assume

that households may be able to negotiate their contracts in real terms, or at least be able to

partially index their nominal contracts to the price level. In this case, a similar version of

the Calvo model delivers the following equation for the evolution of wages

∆wt − ϑ∆pt = γ(vt − (wt − pt)) + βEt(∆wt+1 − ϑ∆pt+1)

where the parameter ϑ ² [0, 1] represents the degree of indexation. Such a formulation nests

the ‘nominal’ wage stickiness case discuss above (ϑ = 0) and a case of stickiness in the ‘real’

wage (ϑ = 1).30 The solution to this model is

wt − ϑpt = λ1 (wt−1 − ϑpt−1) + (1− λ1)(1− λ−12 )
∞X
j=0

λ−j2 Et(vt+j + (1− ϑ) pt+j)

Estimates imposing ϑ = 1 are reported in row (c) of table 1, while in the last row I report

the estimates corresponding to the ‘best’ indexation coefficient, namely the one that, by

improving about 35% over the flexible wage model, allows the best approximation of the

30A complete derivation of a model with sticky real wages is in the appendix of Sbordone (2001).
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cyclical component of the real wage. The partially indexed model marginally outperforms

the strictly nominal or real rigidity cases in all the other dimensions considered in the table,

increasing the correlation between predicted and actual cyclical real wage (.96), and the

correlation of predicted nominal and real wage growth with actual data (respectively .81

and .64). Figure 7 shows the extent to which the partially indexed wage model approximate

actual data. Comparing this figure with the previous one of the flexible wage case one sees

the significant reduction in the volatility of both nominal and real wage growth. It’s worth

pointing out, however, that while the best fit is obtained with a partial indexation model, the

estimated preference parameters are virtually the same under any degree of indexation, and

they are also not statistically different from those of the flexible wage model. In particular,

the hypotheses that λ = 1, and ν ≥ 0 are still strongly rejected.

4.3. Backward-looking wage indexation

In a recent contribution that estimates the importance of nominal rigidities in a general

equilibrium model, Christiano, Eichenbaum and Evans (2001) modify the Calvo wage-setting

model by introducing a backward-looking indexation rule, with the objective of allowing for

further inertia in inflation and greater persistence in output.31 Instead of assuming, as we

do here, that the wage of those households that are not allowed to reset their wage contracts

remain constant until next adjustment, they assume that the wage of household l at time t,

if not reset, is indexed to the average inflation rate of the previous period:

W l
t = πt−1W l

t−1

Here I consider this hypothesis in the slightly more general formulation of Woodford

(2001), allowing for any intermediate degree of indexation %, so that

W l
t = π%t−1W

l
t−1

31The objective of their paper is to provide a general equilibrium model that accounts for the dynamic
response of a number of endogenous variables to a monetary policy shock.
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This formulation is convenient because it allows to nest both the case of full indexation to past

price changes considered by Christiano et al. (% = 1), and the simple sticky nominal wage

model with no indexation estimated above (% = 0) . Backward-looking indexation determines

two modifications to the model analyzed in section 4.1. First, the wage set at time t by the

household which optimizes, Xt, is allowed to grow during the time in which the contract is

in place, so that at time t+ j the wage is XtΨtj, where

Ψtj =

 1 if j = 0Qj−1
k=0 π

%
t+k if j ≥ 1


Second, the aggregate wage at any time t, which is an average of the wage set by the workers

that optimize and those who do not, is now

Wt =
h
(1− ψ) (Xt)

1−θ + ψ
¡
π%t−1Wt−1

¢1−θi 1
1−θ

(4.8)

The objective function is therefore modified as

Et

½
Σ∞j=0 (βψ)

j

·
UC(Cit+j, ht+j,t)

Pt+j
(XtΨtjht+j,t − Pt+jCit+j) + U(Cit+j, ht+j,t)

¸¾

and the first order condition is

Et

½
Σ∞j=0 (βψ)

j
³
xtΨtjΠ

j
k=1

¡
πwt+k

¢−1´−θ
Ht+j

·
xtΨtjωt+jΠ

j
k=1

¡
πwt+k

¢−1 − θ

θ − 1mrst+j,t
¸¾

= 0

With similar methodology one then derives the following wage adjustment equation

∆wt − %∆pt−1 = γ ((vt + pt)− wt) + βEt (∆wt+1 − %∆pt)

where the parameter γ is still defined as in the simple Calvo model of section 4.1. Estimates

for this model are reported in the last row of table 1. The estimated elasticities are again
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remarkably similar to those of the simple Calvo specification while the inertia parameter is

quite higher. The fit of the model is however worse than that of the two models studied above

with respect to the measures considered in the table The objective function, compared to the

flexible wage model, is reduced by about 21%, and decreasing the degree of indexation (i.e.

moving towards the purely sticky nominal wage model) improves all dimensions of the fit. At

the same time, when the value of % moves from 1 to 0, the estimate of γ also monotonically

decreases, implying that this variant has a moderately lower degree of wage rigidity than

the Calvo model. While Christiano et al. show that in their general equilibrium model wage

rigidity with this type of indexation helps to better fit the inertia of output and inflation,

these results show that this form of indexation doesn’t provide the best fit to the dynamics

of wages.

4.4. Implied wage rigidity

Here I try to translate the estimate of the ‘inertia’ parameter γ into an estimate of the degree

of wage rigidity. γ is a combination of various structural parameters:

γ =
(1− ψ)(1− βψ)

ψ(1 + χθ)

where ψ is the parameter that drives the frequency of wage changes, θ is the elasticity of

substitution among differentiated labor services, and χ is a parameter which depends upon

the elasticity of the marginal rate of substitution between leisure and consumption

χ =
−UcHH
UccC

ηmrs,c + ηmrs,h =
−UcHH
UccC

λ+ ν (4.9)

Given χ, β and θ, a higher γ implies a lower degree of stickiness. Except for the case of

backward indexation, a higher degree of indexation, quite intuitively, lowers the estimated

valued of γ, increasing the expected time between wage adjustments. The value of the

parameter χ, on the other hand, is not affected by the degree of indexation, since, as noted,

the estimates of λ and ν are virtually the same in any sticky wage models. The value of χ
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instead increases with the degree of non-separability between consumption and hours.

To parametrize χ, I first consider a slight transformation of expression (4.9)

χ =
−UcHUc
UccUH

µ
UHH

UcC

¶
λ+ ν (4.10)

and then write the expression for λ as

λ = −UccC
Uc

+
UHcC

UH
= σ +

UHcC

UH
= σ +

UHc
Ucc

µ
UccC

Uc

¶
Uc
UH

= σ

µ
1− UHc

Ucc

Uc
UH

¶
(4.11)

where, with conventional notation, I indicate with σ the inverse of the intertemporal elasticity

of substituition in consumption. Expression (4.11) implies that

UHc
Ucc

Uc
UH

=
σ − λ

σ

Substituting this result in (4.10), I obtain

χ =

µ
σ − λ

σ
∗ τ
¶
λ+ ν

Therefore, given the estimated λ and ν, one can determine the value of χ for any value that

one wishes to assign to σ, and to the ratio wH/C, which I have denoted by τ .

Table 2 reports various coefficients of inertia for the model with wages partially indexed

to current prices (panel a) and, as a comparison, for the model with nominal wage rigidity

without indexation (panel b), and the model with backward indexation (panel c). The

computations are based on three different assumptions about the value of the intertemporal

elasticity of substitution in consumption (corresponding to σ = 4, 5, or 10), and three

possible values of the steady state wage mark-up (10%, 30% and 50%, respectively). Note

that every value of σ implies in turn a different degree of non-separability in preferences.

Allowing the best degree of indexation to the current level of prices, the implied wage

inertia ranges between about 3 and 6 months. In particular, the estimates show that, for
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any given degree of wage mark up, a higher χ (i.e. a higher degree of non separability in

preferences) is consistent with a lower degree of wage inertia. Comparing the estimates of

this model with the simple sticky wage model, one notes that eliminating indexation reduces

slightly the interval between wage adjustment. The high estimate of γ in the model with

backward indexation, instead, brings the average interval between wage changes around 3.5

months, an interval quite shorter than that estimated in Christiano et al. (2001).

5. Wage-price dynamics with staggered wages and prices

The wage model discussed above provides the link between the evolution of real quantities

and the evolution of marginal costs we were seeking. It therefore allows to go from a forward-

looking theory of price determination to a well specified Phillips curve that describes the

dynamic path of inflation as function of the path of output and productivity. Specifically,

one obtains such a specification by combining the wage model (I choose here the partially

indexed model)

∆wt − ϑ∆pt = γ(vt − (wt − pt)) + βEt(∆wt+1 − ϑ∆pt+1) (5.1)

with a price equation derived from a staggered price model of price determination, which I

rewrite here as

∆pt = ζ((wt − pt)− qt) + α1Et∆pt+1 (5.2)

qt denotes, as before, average labor productivity.32 The desired real wage vt is in turn the sum

of a stochastic trend and a cyclical component which is, according to eq. (3.1), a function

32Although it has been shown that it is possible to improve moderately on the empirical specification
by adding a backward looking component (for example by adding a backward-looking indexation to the
price-setting model as in the cited paper by Christiano et al. (2001), I prefer here to consider the purely
forward-looking model to make my point more clearly.
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of the cyclical components of consumption and hours

vt = v
tr
t + (λc

cyc
t + νhcyct ) (5.3)

Instead of specifying all the remaining equations of a fully general model, the evolution of

the real variables is taken as given. Specifically, I assume that the evolution of productivity,

consumption, and hours (the last two in turn determining the evolution of the desired real

wage), is well described by the stochastic process

Zt = ΓZt−1 + εzt (5.4)

where Zt = [Xt Xt−1]0, and Xt is defined as in (3.3).

Equations (5.1), (5.2), and (5.4) form a system that can be solved for equilibrium

processes {wt, pt}, given stochastic processes for {vt, qt}, and initial conditions {w−1, p−1}.
To write this system in the form of a first order expectational difference equation system,

using the identities

qt = qt−1 +∆qt (5.5)

wt − pt = wt−1 − pt−1 +∆wt −∆pt (5.6)

I first rewrite the wage equation and the price equation respectively as

Et∆wt+1 − ϑEt∆pt+1 =
1 + γ

β
∆wt − γ + ϑ

β
∆pt +

γ

β
(wt−1 − pt−1)− γ

β
vt (5.7)

and

Et∆pt+1 =
1 + ζ

α1
∆pt − ζ

α1
∆wt − ζ

α1
(wt−1 − pt−1) + ζ

α1
qt−1 +

ζ

α1
e01Zt (5.8)

Then, from (5.3), using the definition of stochastic trend, and the model for the cyclical
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components of hours and consumption, I write vt as a function of the variables in Zt

vt = qt + ΞZt (5.9)

where Ξ = ((1− λ)e01(I − Γ)−1Γ+ (λ+ ν)e02 + λe03) , and e
0
i denotes a 10-dimensional row

vector which has a 1 in the i-th position, and zeros elsewhere. Finally, substituting (5.8) and

(5.9) into (5.7), I write the nominal wage as following function of observables

Et∆wt+1 =

µ
α1 (1 + γ)− βϑζ

α1β

¶
∆wt +

µ
βϑ (1 + ζ)− α1 (γ + ϑ)

α1β

¶
∆pt

+

µ
α1γ − βϑζ

α1β

¶
(wt−1 − pt−1) +

µ
βζϑ− α1γ

α1β

¶
qt−1 +ΨZt (5.10)

where Ψ =
³
βζϑ−α1γ

α1β

´
e01 − γ

β
Ξ.

Defining

Yt = [∆wt ∆pt (wt−1 − pt−1) qt−1 Zt]0,

the system of equations (5.10), (5.8), (5.4), and identities (5.5) and (5.6) can be written as

EtYt+1 =MYt (5.11)

This system has a unique solution since the matrix M has exactly two unstable eigen-

values33. Letting µ1 and µ2 denote these two eigenvalues, and x1 and x2 denote respectively

the eigenvectors associated with them, the solution is given by the two equations

x01[∆wt ∆pt (wt−1 − pt−1) qt−1 Zt] = 0 (5.12)

and

x02[∆wt ∆pt (wt−1 − pt−1) qt−1 Zt] = 0 (5.13)

33The conditions for uniqueness are verified in the Appendix, sect. 7.3.
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5.1. A calibration exercise

To experiment with the ability of this model to reproduce the simultaneous dynamics of

prices and wages observed in the data, I calibrate the parameters of the model on the basis

of single equation estimates, and compute the series of wages and prices according to the

solution (5.12)-(5.13). Specifically, I choose parameter values α1 = .99, γ = .76, β =

.99, λ = 2.36, ν = −.996, ζ = .03934, ϑ = .5. Inflation and nominal wage growth predicted
by the model are plotted against the corresponding actual U.S. series in fig. 7.

The fit of the inflation process appears quite good: although predicted inflation overstates

actual inflation in the late ‘80s, and overstates as well the decline in inflation in the second

half of the ‘90s, it does nonetheless reproduce the major inflation waves of the middle and

late ‘70s. Actual and predicted inflation have a correlation of .85. The model seems to be

able to reproduce also quite closely the major features of the wage process, although slightly

overpredicting wage growth in ‘74-‘75 and before the ‘82 recession. The correlation between

actual and predicted nominal wage growth is .78.

The interesting question is whether the inflation dynamics predicted by this model is

able to match the comovement between inflation and the deterministic measure of output

gap observed in the data. As discussed in section 2, and emphasized in fig. 1 of this

paper, the “standard” NKPC, which assumed proportionality between real marginal costs

and this deterministic measure of output gap fails dramatically in this dimension. Quite to

the contrary, as panel b. of figure 8 shows, the model presented here succeeds in accounting

for the lead of output over inflation observed in the data35. Estimated and actual dynamic

correlations peak at about the same lag, and are overall statistically close. Furthermore, the

predicted inflation series has a significant degree of persistence.

34This parameter is the coefficient of price inertia estimated in eq. (2.7) and used to construct the predicted
inflation in fig. 2.
35Consistent with the assumption, made in estimating the VAR, that output contains a unit root, the

appropriate measure of output gap used here is the deviation from a stochastic trend, and it is therefore
indicated as ycyc.

29



6. Conclusion

This paper provides some evidence that, for a given evolution of real variables, it is possible

to reproduce quite closely the evolution of U.S. prices and wages with a fully microfounded

model with staggered prices and wages.

I view the contribution of the paper as twofold. First, its result shows that it is indeed

possible to fit to U.S. data a Phillips curve specification consistent both with rational expec-

tations and with optimizing behavior. The task of a simultaneous estimation of the dynamic

wage and price equation is taken up in a follow-up paper, which addresses also the issue of

whether further inertia in the price equation would help fit the data better.36

Secondly, the empirical investigation of the wage setting mechanism implies that the stan-

dard form of preferences used in business cycle literature is at odd with the data. Although

this is not a new result, it has not been too much acknowledged in the business cycle liter-

ature. Early estimates of intertemporal substitution models (for ex. Mankiw, Rotemberg,

and Summers (1985), Eichenbaum, Hansen, and Singleton (1988)) show that, when fit to the

data, these models imply that leisure should be an inferior good, both when preferences are

imposed to be separable in consumption and leisure, and when non-separability is allowed.

Only recently a new line of research seems to be interested in addressing the theoretical

consequences of alternative forms of preferences (for example, Baxter and Jermann (‘99),

King and Rebelo (‘99)).

7. Appendix

7.1. Derivation of the wage equations

In this section I first derive the first order condition (4.5) and then obtain the log-linearizations

that lead to eq. (4.6).

36For example, Gali-Gertler (1999) estimated a significant, although small, coefficient on past inflation in
the inflation equation.
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7.1.1. Derivation of eq. (4.5)

To derive the first order condition for optimal wage, observe that, by (4.3), ht+j,t =
³

Xt
Wt+j

´−θ
Ht+j,

and therefore
∂ht+j,t
∂Xt

= − θ

Xt

µ
Xt
Wt+j

¶−θ
Ht+j = − θ

Xt
ht+j,t

Using UA,t+j as short notation for UA(Cit+j, ht+j,t), A = C,H, the derivative of the terms in

square brackets of the objective function (4.4) with respect to Xt is

∂[.]

∂Xt
= ht+j,t

UC,t+j
Pt+j

+ ht+j,t
Xt
Pt+j

∂UC,t+j
∂Xt

+Xt
UC,t+j
Pt+j

∂ht+j,t
∂Xt

− Cit+j ∂UC,t+j
∂Xt

+ UH,t+j
∂ht+j,t
∂Xt

Efficient risk sharing implies that the marginal utility of consumption is the same across

households, and therefore ∂UC,t+j
∂Xt

= 0, so

∂[.]

∂Xt
= ht+j,t

UC,t+j
Pt+j

+
∂ht+j,t
∂Xt

(Xt
UC,t+j
Pt+j

+ UH,t+j) = ht+j,t

·
(1− θ)

UC,t+j
Pt+j

− θ
UH,t+j
Xt

¸
= ht+j,t

·
Xt
Pt+j

− θ

θ − 1
µ−UH,t+j
UC,t+j

¶¸

where θ
θ−1 denotes a wage mark up.

The first order condition can therefore be written as

Et

(
Σ∞j=0 (βψ)

j

µ
Xt
Wt+j

¶−θ
Ht+j

·
Xt
Pt+j

− θ

θ − 1
µ−UH,t+j
UC,t+j

¶¸)
= 0 (7.1)

which has the usual interpretation that the optimal wage sets the discounted sum of labor

income equal to the discounted expected sum of future marginal rates of substitution between

consumption and leisure.

Defining now the variables xt ≡ Xt/Wt, π
w
t ≡ Wt/Wt−1, ωt = Wt/Pt, and letting

mrst+j,t ≡ −UH,t+j
UC,t+j

, one obtains eq. (4.5) in the text by noting that Xt
Wt+j

= Xt
Wt

Wt

Wt+j
=

xtΠ
j
k=1

¡
πwt+k

¢−1
, and Xt

Pt+j
= Xt

Wt+j

Wt+j

Pt+j
.
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7.1.2. Derivation of eq. (4.6)

Taking a log-linear approximation of (4.5) around x∗(≡ 1), mrs∗(≡ θ
θ−1), and πw∗(≡ 1), one

obtains

Σ∞j=0 (βψ)
j ¡bxt − Σjk=1cπwt+k + bωt+j¢ = Σ∞j=0(βψ)

j Etdmrst+j,t
This gives

1

1− βψ
bxt = Σ∞j=0(βψ)

j Et
¡dmrst+j,t + Σjk=1cπwt+k − bωt+j¢

or

bxt = (1− βψ) Σ∞j=0(βψ)
j Et

¡dmrst+j,t − bωt+j + Σjk=1cπwt+k¢ (7.2)

Solve for mrst+j,t in terms of the marginal rate of substitution evaluated at average aggre-

gate consumption and hours, mrst+j (which is the desired real wage in the baseline model,

=−UH
UC
(ct+j, ht+j)). To do that, rewrite mrst+j,t as

mrst+j,t ≡ −UH
UC

(ct+j,t, ht+j,t) =

−UH
UC
(ct+j,t, ht+j,t)

−UH
UC
(ct+j, ht+j)

∗ −UH
UC

(ct+j, ht+j) (7.3)

A log-linearization of (7.3) gives therefore

dmrst+j,t = ηmrs,c(bct+j,t − bct+j) + ηmrs,h

³bht+j,t − bHt+j´+ dmrst+j (7.4)

where ηmrs,x (x = c, h) indicates the elasticity of the marginal rate of substitution with

respect to x, evaluated at the steady state.

By the assumption that changes in consumption occur in a way to maintain the marginal

utility of consumption equal across households, bct+j,t and bct+j are respectively function of

32



bht+j,t and bht+j. Moreover, since ht+j,t = ³ Xt
Wt+j

´−θ
Ht+j,

bht+j,t = −θ ¡bxt − Σjk=1cπwt+k¢+ bht+j
so that (7.4) becomes

dmrst+j,t = −χ θ
¡bxt − Σjk=1cπwt+k¢+ dmrst+j (7.5)

where χ = −UcHH
UccC

ηmrs,c + ηmrs,h.

Consider now that the distribution of nominal wages at time t is a mixture of the distri-

bution of wages of the previous period (since all previous wages have the same probability

of being changed), with weight ψ, and the new wage Xt, with weight (1− ψ)

Wt =
£
(1− ψ)X1−θ

t + ψW 1−θ
t−1
¤ 1
1−θ (7.6)

Dividing both sides by Wt, a log linear approximation of this expression is:

0 = (1− ψ)bxt − ψbπwt
or bxt = ψ

1− ψ
bπwt (7.7)

Substituting (7.7) and (7.5) into (7.2) one gets

ψ(1 + χ θ)

1− ψ
bπwt = (1− βψ) Σ∞j=0(βψ)

jEt
¡dmrst+j + (1 + χ θ)Σjk=1bπwt+k − bωt+j¢

so that bπwt = γ Σ∞j=0(βψ)
j Et

¡dmrst+j + (1 + χ θ)Σjk=1bπwt+k − bωt+j¢ (7.8)

where γ ≡ (1−ψ)(1−βψ)
ψ(1+χθ)

.

I compute now (βψ)Etbπwt+1 (by evaluating expression (7.8) at t + 1, pre-multiplying it
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by (βψ)), and taking expectations as of time t), and subtract the resulting expression from

(7.8), to obtain bπwt − (βψ)Etbπwt+1 = (1− ψ)(1− βψ)

ψ(1 + χθ)
Jt (7.9)

where

Jt = Σ∞j=0(βψ)
j Et

¡dmrst+j + (1 + χθ)Σjk=1bπwt+k − bωt+j¢−
Σ∞j=0(βψ)

j+1 Et
¡dmrst+1+j + (1 + χθ)Σjk=1bπwt+1+k − bωt+j+1¢

= Σ∞j=0(βψ)
jEt

 (dmrst+j − (βψ)dmrst+1+j) + (1 + χθ)
¡
Σjk=1bπwt+k − (βψ)Σjk=1cπwt+1+k¢

− (bωt+j − (βψ)bωt+j+1)


= (dmrst − bωt) + βψ(1 + χθ)

1− βψ
Etbπwt+1

Expression (7.9) becomes then

bπwt − (βψ)Etbπwt+1 = (1− ψ)(1− βψ)

ψ(1 + χθ)
(dmrst − bωt) + β(1− ψ)Etbπwt+1

so that wage inflation is

bπwt = βEtbπwt+1 + (1− ψ)(1− βψ)

ψ(1 + χθ)
(dmrst − bωt) (7.10)

Finally, using the fact that dmrst = bvt, we obtain the wage equation (4.6) of the text
bπwt = βEtbπwt+1 + (1− ψ)(1− βψ)

ψ(1 + χθ)
(bvt − bωt)

7.1.3. Solving for the optimal path of nominal wage

I first write explicitly the wage inflation equation as

wt − wt−1 = γ(vt + pt)− γwt + βEtwt+1 − βwt
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so that

vt + pt =
1 + γ + β

γ
wt − 1

γ
wt−1 − β

γ
Etwt+1 = −β

γ
Et

·
1− 1 + γ + β

β
L+

1

β
L2
¸
wt+1

= −β

γ
Et
£
L2P (L−1)

¤
wt+1 = −β

γ
Et [(1− λ1L)(1− λ2L)] wt+1

where P (L−1) = L−2 − 1+γ+β
β
L−1 + 1

β
has real roots λ1,λ2 satisfying 0 < λ1 < 1, and

λ2 > β−1 ≥ 1.
Then, defining xt+1 = (1− λ1L) wt+1, I rewrite vt + pt as

vt + pt = −β

γ
Et(1− λ2L) xt+1 = −β

γ
Et xt+1 +

βλ2
γ
xt

from which

xt =
γ

βλ2
(vt + pt) + λ−12 Etxt+1

Solving forward

xt =
γ

βλ2

∞X
j=0

λ−j2 Et (vt+j + pt+j) = (1− λ1)(1− λ−12 )
∞X
j=0

λ−j2 Et (vt+j + pt+j)

where the equality γ
βλ2

= (1− λ1)(1− λ−12 ) follows from the fact that λ1 + λ2 =
1+γ+β

β
and

λ1λ2 = 1/β. Finally, from the definition of xt, I obtain

wt = λ1wt−1 + (1− λ1)(1− λ−12 )
∞X
j=0

λ−j2 Et (vt+j + pt+j)

which is expression (4.7) in the text.
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7.2. Solution of the system (5.11)

For the system (5.11) to have a unique solution, the matrix M, which is

M =



α1(1+γ)−βϑζ
α1β

βϑ(1+ζ)−α1(γ+ϑ)
α1β

α1γ−βϑζ
α1β

−α1γ−βϑζ
α1β

Ψ

− ζ
α1

(1+ζ)
α1

− ζ
α1

ζ
α1

ζ
α1
e01

1 −1 1 0 0

0 0 0 1 e01

0 0 0 0 Γ


must have two eigenvalues with modulus strictly bigger than one. One can see that it is

enough to check the eigenvalues of the upper left 3x3 matrix, call it fM , which solve
P (µ) =| fM − µI |= µ3 + µ2M2 + µM1 +M0 = 0

where
M2 = −(1 + 1+γ

β
+ 1

α1
(1 + ζ(1− ϑ)))

M1 = 1
α1
+ 1

β
+ 1

α1β
(1 + γ + ζ(1− ϑ))

M0 = − 1
α1β

The coefficients (M0,M1,M2) satisfy the following necessary and sufficient conditions for

determinacy

i. 1 +M2 +M1 +M0 > 0

ii. −1 +M2 −M1 +M0 < 0

and either

iii. M2
0 −M0M2 +M1 − 1 > 0

or37

iv. M2
0 −M0M2 +M1 − 1 < 0

v. |M2| > 3

37These conditions are stated in Woodford (2000).
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TABLE 1
Estimates of wage models†

λ ν γ ϑ ρ(ωa,ωp) var(εwt ) % var red
[∗e−5]

a. Flexible wage 2.15 -.84 .93 8.5
(.066) (.037)

λ− restricted 1 -4.65 .92 25 -195
(.030)

ν− restricted 1.29 0 .68 36 -328
(.054)

b. Sticky nominal wage 2.32 -.987 1.699 0 .96 5.8 31.6
(.077) (.045) (.26)

c. Sticky real wage 2.40 -.988 .266 1 .95 6.6 22.3
(.058) (.058) (.079)

d. Partial wage indexation 2.32 -.996 .76 .5 .96 5.5 34.8
(.077) (.047) (.14)

e. Backward-looking 2.30 -.965 4.19 .94 6.7 20.7
wage indexation (.072) (.045) (.74)

† Standard errors are in parenthesis.ρ(ωa,ωp) indicates the correlation between the cyclical
component of the real wage estimated from the data (ωa), and the one predicted by each model
(ωp).
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TABLE 2
Estimated average time between wage changes (months)

(a) Partially indexed wages

low wage mark-up mid wage mark-up high wage mark-up
(µw∗ = 1.1) (µw∗ = 1.3) (µw∗ = 1.5)

τ = 1; σ = 4 5.6 5.4 5.3
(low non-sep.)
τ = 1; σ = 5 3.8 4.3 4.5
(mid non-sep.)
τ = 1; σ = 10 3.4 3.7 3.9
(high non-sep.)

(b) Sticky nominal wages

low wage mark-up mid wage mark-up high wage mark-up
(µw∗ = 1.1) (µw∗ = 1.3) (µw∗ = 1.5)

τ = 1; σ = 4 4.4 4.3 4.3
(low non-sep.)
τ = 1; σ = 5 3.4 3.7 3.8
(mid non-sep.)
τ = 1; σ = 10 3.2 3.3 3.4
(high non-sep.)

(c) Sticky nominal wages with backward indexation

low wage mark-up mid wage mark-up high wage mark-up
(µw∗ = 1.1) (µw∗ = 1.3) (µw∗ = 1.5)

τ = 1; σ = 4 3.6 3.6 3.6
(low non-sep.)
τ = 1; σ = 5 3.2 3.3 3.3
(mid non-sep.)
τ = 1; σ = 10 3.1 3.1 3.2
(high non-sep.)
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