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Introduction

• Over the past decade or so, financial firms have greatly
increased use of financial models to measure and manage
their risk exposures.

• Financial regulators have focused their attention on the use
of such models for two reasons:

– supervision of banks= risk management systems
– the possibility of setting regulatory capital

requirements that more accurately reflect banks=
risk exposures



Model Validation

A key component to the implementation of model-
based risk management is model validation.

That is, determining whether the model chosen is
accurate and performing consistently?
Important both to firms and their regulators.

Q:  How should we conduct model validation?

Fortunately, we have available a large number of
tools from the statistical and econometric
literature.
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The industry has used Abacktesting@ and Astress-testing@

Backtesting: compare observed
outcomes with
model=s expected
outcomes

º forecast evaluation;

established empirical
issue with a large
academic literature

Stress-testing: examine model=s
expected outcomes
under extreme
conditions

º projection analysis
º outlier analysis
º scenario analysis/
     case studies
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How can we backtest market risk models?

General notation for risk models:
• yt = value of market risk portfolio at time t

• yt+h|t = future value of portfolio at time t+h at time t

• yt+h|t = M( yt , et+h ); based on chosen risk model M

• et+h = random portfolio shock with distribution f ( 0, S )

Output of risk model M:
• FM(yt+h|t) = forecasted distribution of yt+h|t
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Distribution of e(t+h)
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Object of interest:
 VaR estimates / tail percentiles of FM(yt+h|t)

Evaluation of VaR estimates is based on three numbers:
• the horizon of the forecast (denoted h)
• tail coverage required (the lower x% of FM(yt+h|t))
• number of observations to be evaluated

The backtesting component of the MRA regulation specifies:
• one-day horizon
• the lower 1% tail
• 250 observations (effectively 1 year)
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Object of interest:
 VaR estimates / tail percentiles of FM(yt+h|t)

• The MRA uses the binomial method for VaR evaluation

• Statistically tests the hypothesis that the observed
frequency of VaR exceptions equals the expected
frequency.

• For example, for 250 days / observations, we expect to see
2.5 exceptions; do we see that?

• Simple, straightforward, well understood test
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Object of interest:
 VaR estimates / tail percentiles of FM(yt+h|t)

• However, the binomial test has poor power characteristics.

• That is, the probability of the test indicating that a set of
VaR estimates is accurate when they are not is very high;
limits its usefulness

• Intuition: we are discarding alot of information regarding
the forecast; we only create an indicator variable

• How can we take greater advantage of the information
within the VaR estimate framework?
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Object of interest:
 VaR estimates / tail percentiles of FM(yt+h|t)

Multinomial tests:
• requires multiple VaR estimates; ex., lower 1% & 5%
• research ongoing to determine power
• requires reporting further VaR estimates

Magnitude tests:
• proposed by Berkowitz (2000, FRBOG)
• compares magnitude of exceptions with model=s value
• shown to have reasonably good power properties
• requires no further reporting, but more complicated test
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Object of interest:   Probability forecasts

• Analyzed by Lopez (1999, Journal of Risk)

• Idea: FM(yt+h|t) is transformed into probability forecasts of
what might happen to yt+h;  ex. what is the probability that
yt+h is above some fixed threshold value?

• Probability scoring rules and statistical tests can be used to
compare probability forecasts to what actually occurs

• Intuition: does it actually rain 10% of the times that you
forecast a 10% chance of rain?



12

Object of interest: Distribution forecasts

• Proposed by Berkowitz (2000, FRBOG)

• Transform forecasted distribution into an observed quantile
using observed change in portfolio value and integration

• The empirical quantiles should be independent and
uniformly distributed if accurate

• Benefit: good power properties; uses all the information
• Drawback: requires much more reporting

• For extensive example, see Lopez and Walter (2000)
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Actual experience under the MRA:

Study by the BIS Committee on Banking Supervision (1999):
• 40 banks from 9 countries over 1998 Q3 and Q4

• No losses exceeding regulatory capital
• Half of sample had no one-day VaR exceptions!

Study by Berkowitz and O=Brien (2000, FRBOG):
• U.S. banks over the two-year implementation period
• Preliminary analysis finds that nearly all VaR exceptions

occur during the third quarter of 1998.
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How can we stress-test market risk models?

What are stress-tests?
• internally consistent possible states of the world
• possible, but unlikely, future events
• storylines that test risk managers= skills

No set criteria; practice varies widely and rightly so

Some formalization has been attempted in the literature:
• Kupiec (1998, Journal of Derivatives):

– How to shock specific risk factors and not others in an
internally consistent way?
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Stress-testing within a backtesting framework

• Developed by Berkowitz (1999, FRBOG)

• Stress-testing is typically scenario analysis outside of the
market risk model; the scenarios don’t have probability
attached to them as do the more standard outcomes

• Fold stress-test scenarios into backtesting framework:
et+h ~ f ( 0, S ) with probability (1-a)
et+h ~ fstress ( 0, Sstress ) with probability a

• Thus, calculate FM,stress(yt+h|t) and examine specific stress
scenarios using VaR calculations
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Validating Credit Risk Models
Much more difficult for various reasons:
• Definition of loss: default mode vs. MTM mode
• Planning horizon: longer than market risk; greater 

dependence on the business cycle
• Asymmetric loss distribution with long tail:

power properties not known, but should be fine
• Portfolio issues, such as default correlations, are harder

How can we backtest credit risk models?
• Basically, the same tools as before
• FM(yt+h|t) is still a probability distribution function, just

asymmetric credit loss distribution
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Probability Density Function of Portfolio Credit Losses (PDF)

Credit Losses Over Planning Horizon
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How can we backtest credit risk models?

The main challenge is the lack of credit risk observations due
to the longer forecast horizons; typically, one year.

• 250 observations is 250 years!
• If move to monthly, still need to wait more than 20 years!

What can we do?
Lopez & Saidenberg (2000, J. Banking & Finance)
• Mainly work in cross-section using simulation techniques
• Create many sample portfolios and run through model M
• Simulation results can be used for some model validation
• Note: still dependent on when in the business cycle
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How can we stress-test credit risk models?

• Same as before:
generate stories and scenarios to see what the model says.

• Again, scenarios are harder to construct for credit risk
because of a lack of data and the greater degree of
complexity present in the within portfolio correlations.
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Conclusion

• Backtesting and stress-testing are key components to
model-based risk measurement and management systems.

• Many tools are available for these purposes.  No common
criteria has been set as of yet; more work using different
tools is needed to assist in this choice.


