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1 Introduction

It is a truism that monetary policy operates under considerable uncertainty about the state

of the economy and the size and nature of the disturbances that hit the economy. This is a

particular problem for a procedure such as in�ation-forecast targeting, under which a central

bank, in order to set its interest-rate instrument, needs to construct conditional forecasts of

future in�ation, conditional on alternative interest-rate paths and the bank�s best estimate of

the current state of the economy and the likely future development of important exogenous

variables.1 Often, di¤erent indicators provide con�icting information on developments in the

economy. In order to be successful, a central bank then needs to put the appropriate weights on

di¤erent information and draw the most e¢cient inference. In the case of a purely backward-

looking model (both of the evolution of the bank�s target variables and of the indicators), the

principles for e¢cient estimation and signal extraction are well known. But in the more realistic

case where important indicator variables are forward-looking variables, the problem of e¢cient

signal-extraction is inherently more complicated. The purpose of this paper is to clarify the

principles for determining the optimal weights on di¤erent indicators in such an environment.

In the case where there are no forward-looking variables, it is well known that a linear

model with a quadratic loss function and a partially observable state of the economy (partial

information) is characterized by certainty-equivalence. That is, the optimal policy is the same as

if the state of the economy were fully observable (full information), except that one responds to an

e¢cient estimate of the state vector rather than to its actual value. Thus, a separation principle

applies, according to which the selection of the optimal policy (the optimization problem) and the

estimation of the current state of the economy (the estimation or signal-extraction problem) can

be treated as separate problems. In particular, the observable variables will be predetermined

and the innovations in the observable variables (the di¤erence between the current realization

and previous prediction of each of the observable variables) contain all new information. The

optimal weights to be placed on the innovations in the various observable variables in one�s

estimate of the state vector at each point in time are provided by a standard Kalman �lter (see,

for instance, Chow [3], Kalchenbrenner and Tinsley [14] and LeRoy and Waud [15]).2

The case without forward-looking variables is, however, very restrictive. In the real world,

many important indicator variables for central banks are forward-looking variables, variables

1 See Svensson [27], [29] and [32] for discussion of in�ation targeting and references to the literature.
2 See Gerlach and Smets [10], Peersman and Smets [22] and Smets [24] for recent applications to estimation

of the output gap in purely backward-looking frameworks.
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that depend on private-sector expectations of the future developments in the economy and

future policy. Central banks routinely watch variables that are inherently forward-looking, like

exchange rates, bond rates and other asset prices, as well as measures of private-sector in�ation

expectations, industry order-�ows, con�dence measures, and the like. Forward-looking variables

complicate the estimation or signal-extraction problem signi�cantly. They depend, by de�nition,

on private-sector expectations of future endogenous variables and of current and future policy

actions. However, these expectations in turn depend on an estimate of the current state of the

economy, and that estimate in turn depends, to some extent, on observations of the current

forward-looking variables. This circularity presents a considerable challenge for the estimation

problem in the presence of forward-looking variables.

It is well known that forward-looking variables also complicate the optimization problem.

For example, optimal policy under commitment ceases in general to coincide with the outcome of

discretionary optimization, as demonstrated for the general linear model with quadratic objec-

tives in Backus and Dri¢ll [2] and Currie and Levine [6]. With regard to the estimation problem,

Pearlman, Currie and Levin [20] showed in a linear (non-optimizing) model with forward-looking

variables and partial symmetric information that the solution can be expressed in terms of a

Kalman �lter, although the solution is much more complex than in the purely backward-looking

case. Pearlman [19] later used this solution in an optimizing model to demonstrate that certainty-

equivalence, and hence the separation principle, applies under both discretion and commitment,

in the presence of forward-looking variables and symmetric partial information.

The present paper extends this previous work on partial information with forward-looking

variables by providing simpler derivations of the optimal weights on the observable variables,

and clarifying how the updating equations can be modi�ed to handle the circularity mentioned

above. We also provide a simple application, in a now-standard model of monetary policy with

a forward-looking aggregate supply relation and a forward-looking �expectational IS� relation.

Section 2 presents a relatively general linear model of an aggregate private sector and a

policy-maker, called the central bank, with a quadratic loss function. It then characterizes

optimizing policy under discretion, demonstrates certainty-equivalence, and derives the corre-

sponding updating equation in the Kalman �lter for the estimation problem. Section 3 does the

same for the optimal policy with commitment.3 Throughout the paper, we maintain the assump-

tion of symmetric information between the private-sector and the central bank; the asymmetric

3 The demonstration of certainty-equivalence under commitment raises some special di¢culties which are
treated in a separate paper, Svensson and Woodford [37].
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case where certainty-equivalence does not hold is treated in Svensson and Woodford [36].

Section 4 discusses the interpretation of the Kalman �lter. It shows how the Kalman �lter

can be modi�ed to handle the simultaneity and circularity referred to above, and that the

current estimate of the state of the economy can be expressed as a distributed lag of current

and past observable variables, with the Kalman gain matrix providing the optimal weights on

the observable variables. Section 5 presents an example of optimal monetary policy in a simple

forward-looking model, where in�ation is forward-looking and depends on expectations of future

in�ation, on a partially observable output gap (the di¤erence between observable output and

a partially unobservable potential output), and on an unobservable �cost-push� shock. Since

the observable rate of in�ation both a¤ects and depends on the current estimates of potential

output and the cost-push shock, this example illustrates the gist of the estimation problem with

forward-looking variables. Finally, section 6 presents some conclusions, while Appendices A�D

report some technical details.

2 Optimization under discretion

We consider a linear model of an economy with two agents, an (aggregate) private sector and a

policymaker, called the central bank. The model is given by264 Xt+1

Ext+1jt

375 = A1
264 Xt
xt

375+A2
264 Xtjt
xtjt

375+Bit +
264 ut+1

0

375 ; (2.1)

where Xt is a vector of nX predetermined variables in period t, xt is a vector of nx forward-

looking variables, it is (a vector of) the central bank�s ni policy instrument(s), ut is a vector of

nX iid shocks with mean zero and covariance matrix §uu, and A1, A2, B and E are matrices

of appropriate dimension. The nx £ nx matrix E (which should not be confused with the

expectations operator E[¢]) may be singular (this is a slight generalization of usual formulations
when E is the identity matrix). For any variable zt, z¿ jt denotes E[z¿ jIt], the rational expectation
(the best estimate) of z¿ given the information It, the information available in period t to the

central bank. The information is further speci�ed below. Let Yt denote a vector of nY target

variables given by

Yt = C
1

264 Xt
xt

375+C2
264 Xtjt
xtjt

375+Ciit; (2.2)

3



where C1, C2 and Ci are matrices of appropriate dimension. Let the quadratic form

Lt = Y
0
tWYt (2.3)

be the central bank�s period loss function, where W is a positive-semide�nite weight matrix.

Let the vector of nZ observable variables, Zt, be given by

Zt = D
1

264 Xt
xt

375+D2
264 Xtjt
xtjt

375+ vt; (2.4)

where vt, the vector of noise, is iid with mean zero and covariance matrix §vv. The information

It in period t is given by

It = fZ¿ ; ¿ · t; A1; A2; B;C1; C2; Ci; D1;D2; E;W; ±;§uu;§vvg; (2.5)

where ± (0 < ± < 1) is a discount factor (to be introduced below). This incorporates the case

when some or all of the predetermined and forward-looking variables are observable.4

Note that (2.1) assumes that the expectations xt+1jt in the second block of equations are

conditional on the information It. This corresponds to the case when the private sector and the

central bank has the same information It, so information is assumed to be symmetric. The case of

asymmetric information when these expectations are replaced by a private sector expectations

E[xt+1jIpt ] where the private-sector information Ipt di¤ers from It is treated in Svensson and

Woodford [36].

Assume �rst that there is no commitment mechanism, so the central bank acts under discre-

tion. Assume that central bank each period, conditional on the information It, minimizes the

expected discounted current and future values of the intertemporal loss function,

E[
1X
¿=0

±¿Lt+¿ jIt]: (2.6)

As shown in Pearlman [19] and in appendix A, certainty-equivalence applies when the central

bank and the private sector has the same information. Certainty-equivalence means that the

estimation of the partially observed state of the economy can be separated from the optimization,

the setting of the instrument so as to minimize the intertemporal loss function.

4 Note that the predetermined and forward-looking variables can be interpreted as deviations from uncondi-
tional means and the target variables can be interpreted as deviations from constant target levels. More generally,
constants, non-zero unconditional means and non-zero target levels can be incorporated by including unity among
the predetermined variables, for instance, as the last element of Xt. The last row of the relevant matrices will
then include the corresponding constants/means/target levels.
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The equilibrium under discretion will be characterized by the instrument being a linear

function of the current estimate of the predetermined variables,

it = FXtjt: (2.7)

Furthermore, the estimate of the forward-looking variables will ful�ll

xtjt = GXtjt; (2.8)

where the matrix G by appendix A ful�lls

G = (A22 ¡EGA12)¡1[¡A21 +EGA11 + (EGB1 ¡B2)F ]; (2.9)

where

A ´ A1 +A2; (2.10)

the matrices A, Aj (j = 1; 2) and B are decomposed according to Xt and xt,

Aj =

264 Aj11 Aj12

Aj21 Aj22

375 ; B =
264 B1
B2

375 ;
and we assume that the matrix A22 ¡ EGA12 is invertible. The matrices F and G depend on

A, B, C ´ C1 + C2, Ci, E, W and ±, but (corresponding to the certainty-equivalence referred

to above) not on D1, D2, §uu and §vv.

Now, the lower block of (2.1) implies

A121(Xt ¡Xtjt) +A122(xt ¡ xtjt) = 0: (2.11)

Combining this with (2.8) and assuming that A122 is invertible gives

xt = G
1Xt +G

2Xtjt; (2.12)

where G1 and G2 ful�ll

G1 = ¡ (A122)¡1A121; (2.13)

G2 = G¡G1: (2.14)

The matrices G1 and G2 depend on G and A1, hence also on B, C ´ C1+C2, Ci, E, W and ±,

but (because of the certainty-equivalence) they are independent of D1, D2, §uu and §vv.

5



It follows from (2.7) and (2.12) that the dynamics for Xt and Zt follows

Xt+1 = HXt + JXtjt + ut+1; (2.15)

Zt = LXt +MXtjt + vt; (2.16)

where

H ´ A111 +A
1
12G

1; (2.17)

J ´ B1F +A
1
12G

2 +A211 +A
2
12G; (2.18)

L ´ D11 +D
1
2G

1; (2.19)

M ´ D12G
2 +D21 +D

2
2G; (2.20)

where Dj = [Dj1 D
j
2] (j = 1; 2) is decomposed according to Xt and xt. (Note that the matrix L

in (2.19) should not be confused with the period loss function Lt in (2.3).)

We note that the problem of estimating the predetermined variables has been transformed to

a problem without forward-looking variables, (2.15) and (2.16). This means that the estimation

problem becomes a simpler variant of the estimation problem with forward-looking variables that

is solved in Pearlman, Currie and Levine [20]. The derivations below is hence a simpli�cation

of that in [20].5

2.1 Optimal �ltering

Assume that the optimal prediction of Xt will be given by a Kalman �lter,

Xtjt = Xtjt¡1 +K(Zt ¡ LXtjt¡1 ¡MXtjt); (2.21)

where the Kalman gain matrix K remains to be determined. We can rationalize (2.21) by

observing that Zt ¡MXtjt = LXt + vt, hence,

Zt ¡LXtjt¡1 ¡MXtjt = L(Xt ¡Xtjt¡1) + vt;

so (2.21) can be written in the conventional form

Xtjt = Xtjt¡1 +K[L(Xt ¡Xtjt¡1) + vt]; (2.22)

which allows us to identify K as (one form of) the Kalman gain matrix.6 From (2.15) we get

Xt+1jt = (H + J)Xtjt; (2.23)

5 Pearlman [19] refers to the complex derivation of the Kalman �lter in Pearlman, Currie and Levine [20] but
doesn�t report that the derivation is actually much easier than in [20].

6 Harvey [12] de�nies the Kalman gain matrix in this way, whereas Harvey [13] de�nes it as the transition
matrix (yet to be speci�ed in our case) times K.
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and the dynamics of the model are given by (2.15), (2.12), (2.22) and (2.23).

It remains to �nd an expression for K. Appendix B shows, by expressing the problem in

terms of the prediction errors Xt ¡Xtjt¡1 and Zt ¡ Ztjt¡1, that K is given by

K = PL0(LPL0 +§vv)¡1; (2.24)

where the matrix P ´ Cov[Xt ¡Xtjt¡1] is the covariance matrix for the prediction errors Xt ¡
Xtjt¡1 and ful�lls

P = H[P ¡ PL0(LPL0 +§vv)¡1LP ]H 0 +§uu: (2.25)

Thus P can be solved from (2.25), either numerically or analytically, depending upon the com-

plexity of the matrices H, L and §uu. Then K is given by (2.24).

Note that (2.24) and (2.25) imply that K only depends on A1, D1, §uu and §vv, and

hence is independent of C1, C2, Ci, W and ±. Thus, K is independent of the policy chosen.

This demonstrates that the determination of the optimal policy given an estimate of the state

of the economy and the estimation of the state of the economy can be treated as separate

problems, as in the case without forward-looking variables treated in Chow [3], Kalchenbrenner

and Tinsley [14] and LeRoy andWaud [15]. This is no longer true under asymmetric information,

as demonstrated in Svensson and Woodford [36].

3 Optimal policy with commitment

Consider again the model described by equations (2.1)�(2.4), but suppose instead that the

central bank commits itself in an initial ex ante state (prior to the realization of any period

zero random variables) to a state-contingent plan for the inde�nite future that minimizes the

expected discounted losses

E

24 1X
t=t0

±tLt

35 :
Here E[¢] indicates the expectation with respect to information in the initial state in period t0,
in which the commitment is made. It is important to consider optimal commitment from such

an ex ante perspective, because, in the case of partial information, the information that the

central bank possesses in any given state depends upon the way that it has committed itself to

behave in other states that might have occurred instead.

As shown in Pearlman [19] for a slightly less general case, certainty-equivalence applies in

this case as well. A more intuitive proof of certainty-equivalence is supplied in Svensson and
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Woodford [37]. Svensson and Woodford [37] show that the optimal policy under commitment

satis�es

it = FXtjt +©¥t¡1; (3.1)

xtjt = GXtjt + ¡¥t¡1; (3.2)

¥t = SXtjt +§¥t¡1; (3.3)

for t ¸ t0, where F , G, S, ©, ¡ and § are matrices of appropriate dimension, and ¥t is the

vector of the nx Lagrange multiplier of the lower block of (2.1), the equations corresponding to

the forward-looking variables. Furthermore, ¥t0¡1 = 0.

Woodford [42] and Svensson and Woodford [35] discuss a socially optimal equilibrium in a

�timeless perspective,� which involves a stationary equilibrium corresponding to a commitment

made far in the past, corresponding to t0 ! ¡1. Then, (3.1)�(3.3) apply for all t > ¡1. Here,
we consider this stationary equilibrium.

Note that (3.3) can then be solved backward to yield

¥t¡1 =
1X
¿=0

§¿SXt¡1¡¿ jt¡1¡¿ :

Thus, the most fundamental di¤erence with respect to the discretion case is that, under the

optimal commitment, xtjt is no longer a linear function of the current estimate of the prede-

termined variable alone, Xtjt, but instead depends upon past estimates Xt¡¿ jt¡¿ as well. The

inertial character of optimal policy that this can result in is illustrated in Woodford [41] and

[42] and in Svensson and Woodford [35].

Svensson and Woodford [35] also show that the socially optimal equilibrium can be achieved

under discretion, if the intertemporal loss function in period t is modi�ed to equal

Et

1X
¿=0

±¿Lt+¿ +¥t¡1(xt ¡ xtjt¡1): (3.4)

That is, the central bank internalizes the cost of letting the forward-looking variables, xt, deviate

from previous expectations, xtjt¡1, using the Lagrange multiplier ¥t¡1 for (5.1) in period t¡ 1,
thus determined in the previous period, as a measure of that cost.7

As explained in detail in Svensson and Woodford [37], the matrices F , G, S, ©, ¡ and §

depend on A;B;C;Ci;W and ±; but that they are independent of §uu: Thus, these coe¢cients

7 Adding a linear term to the loss function is similar to the linear in�ation contracts discussed in Walsh [39]
and Persson and Tabellini [23]. Indeed, the term added in (3.4) corresponds to a state-contingent linear in�ation
contract, which, as discussed in Svensson [28], can remedy both stabilization bias and average-in�ation bias.
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are the same as in the optimal plan under certainty. This is the certainty-equivalence result for

the case of partial information.

Using the same reasoning as in the derivation of (2.12) and substituting in (3.2) for xtjt, we

obtain

xt = G
1Xt +G

2Xtjt + ¡¥t¡1; (3.5)

where G1 and G2 again are given by (2.13) and (2.14). Again, the matrices G1 and G2, like the

others, are independent of the speci�cations of D, §uu; and §vv:

Substitution of (3.1), (3.2) and (3.5) into the �rst row of (2.1) furthermore yields

Xt+1 = HXt + JXtjt +ª¥t¡1 + ut+1; (3.6)

where H and J are again given by (2.17) and (2.18), and

ª ´ A12¡ +B1©: (3.7)

Equations (3.3) and (3.5)�(3.6) then describe the evolution of the predetermined and forward-

looking variables, Xt and xt, once we determine the evolution of the estimates Xtjt of the

predetermined variables.

3.1 Optimal �ltering

Substituting (3.5) into (2.4), we obtain

Zt = LXt +MXtjt +¤¥t¡1 + vt; (3.8)

where L and M are again given by (2.19) and (2.20), and

¤ ´ D2¡: (3.9)

Equations (3.6) and (3.8) are then the transition and measurement equations for an optimal

�ltering problem. Again the transformation into a problem without forward-looking variables

allows us to derive the estimation equations in a manner that is simpler than that used in

Pearlman, Currie and Levine [20].

The optimal linear prediction of Xt is again given by a Kalman �lter,

Xtjt = Xtjt¡1 +K(Zt ¡ LXtjt¡1 ¡MXtjt ¡ ¤¥t¡1); (3.10)

analogously to (2.21). From (3.6) we get

Xt+1jt = (H + J)Xtjt +ª¥t¡1; (3.11)
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and a complete system of dynamic equations for the model is then given by (3.3), (3.5), (3.6),

(3.10) and (3.11).

It remains to �nd an expression for the Kalman gain matrix K: Again, as in appendix B, it

is practical to work in terms of the prediction errors Xt ¡Xtjt¡1 and Zt¡Ztjt¡1, and equations
(B.1)�(B.13) and (2.24)�(2.25) continue to apply, exactly as in the discretion case. Note that

this implies that the Kalman gain matrix K is exactly the same matrix as in the discretion

equilibrium; in fact, it depends only upon the matrices A1, §uu, D1 and §vv:

4 Optimal weights on indicators: General remarks

In this section, we o¤er some general conclusions about the way in which the vector of observed

variables Zt, the indicators, is used to estimate the current state of the economy. As in sections

2 and 3, we assume that the central bank and the private sector have the same information, but

our comments apply both to the discretion equilibrium and the commitment equilibrium. In

either case, the observed variables matter only insofar as they a¤ect the central bank�s estimate

Xtjt of the predetermined states.

Let us restate (2.4) and (3.8),

Zt = D11Xt +D
1
2xt +D

2
1Xtjt +D

2
2xtjt + vt

= LXt +MXtjt +¤¥t¡1 + vt;

where we note that the second equation applies also in the discretion case, if we set ¤ ´ 0 in
that case. When D12 6= 0, the observable variables include or depend on the forward-looking

variables. Then there is a contemporaneous e¤ect of Xtjt on Zt, due to the e¤ect of Xtjt on both

expectations xt+1jt and the equilibrium choice of the instrument it. If D21 6= 0, there is a direct
e¤ect of Xtjt on the observable variables; if D22 6= 0, there is an e¤ect of Xtjt on the observable
variables via xtjt. In the commitment case, if ¤ 6= 0, there is also a lagged e¤ect, through the
e¤ect on ¥t¡1 of Xtjt¡j on for j ¸ 1 (due to (3.3)), which in turn a¤ects Zt through its e¤ect
upon it and xtjt (due to (3.1) and (3.2)).

In order to estimate Xt using a Kalman �lter, we would like to �nd an indicator with the

property that its innovation is a linear function of the forecast error, Xt ¡ Xtjt¡1, plus noise.
The contemporaneous e¤ect on Zt means that its innovation does not meet this condition, since

Zt ¡ Ztjt¡1 = L(Xt ¡Xtjt¡1) +M(Xtjt ¡Xtjt¡1) + vt;

10



which also includes the terms M(Xtjt ¡Xtjt¡1) (we have used that ¥t¡1 = ¥t¡1jt¡1). Thus, the
contemporaneous e¤ect enters via MXtjt. In order to eliminate these e¤ects of the estimated

state upon the indicators, we might consider the vector of �ideal� indicators ¹Zt, de�ned by the

condition

¹Zt ´ Zt ¡MXtjt ¡ ¤¥t¡1; (4.1)

where the contemporaneous e¤ect is subtracted (the redundant component ¤¥t¡1 is also sub-

tracted to get a more parsimonious indicator). These ideal indicators then have the desired

property that their innovation is a linear function of the forecast error of the predetermined

variables plus noise,

¹Zt = LXt + vt;

¹Zt ¡ ¹Ztjt¡1 = L(Xt ¡Xtjt¡1) + vt:

However, these ideal indicators do not provide an operational way of eliminating the contem-

poraneous in�uence. Indeed, (4.1) is only an implicit de�nition, in the sense that the estimates

Xtjt that depend on the observable variables still enters into the identity and is assumed to

be known. The ideal indicators can nonetheless provide a useful representation of the �ltering

problem for computational purposes, as we illustrate in the next section.

To get a recursive updating equation that is operational, we instead need one that only has

current observable variables and previous estimates on the right side. We can use the prediction

equation (3.10) ((2.21) in the discretion case) and solve for Xtjt to get

Xtjt = (I +KM)¡1[(I ¡KL)Xtjt¡1 ¡K¤¥t¡1 +KZt]; (4.2)

where the matrix I+KM must be invertible. We can then use (3.11) and (3.3) (where ¥t¡1 ´ 0
in the discretion case) to express the dynamic equation for Xtjt in terms of Xt¡1jt¡1 and ¥t¡2,

Xtjt = (I +KM)¡1f(I ¡KL)[(H + J)Xt¡1jt¡1 +ª¥t¡2]¡K¤(SXt¡1jt¡1 +§¥t¡2) +KZt]
= (I +KM)¡1f[(I ¡KL)(H + J)¡K¤S]Xt¡1jt¡1 + [(I ¡KL)ª¡K¤§]¥t¡2 +KZtg:

(4.3)

Solving the system consisting of this equation and (3.3) backwards, we can express Xtjt as the

weighted sum of current and past observable variables,

Xtjt =
1X
¿=0

Q¿KZt¡¿ ; (4.4)
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where the matrix Q¿ is [(I +KM)¡1(I ¡KL)(H + J)]¿ in the discretion case and the upper

left submatrix of the matrix264 (I +KM)¡1[(I ¡KL)(H + J)¡K¤S] (I +KM)¡1[(I ¡KL)ª¡K¤§]
S §

375
¿

in the commitment case. The consequence of the contemporaneous e¤ect via the matrix M only

shows up in the premultiplication of the matrix (I +KM)¡1 above.

Thus, the evolution over time of the central bank�s estimate of the predetermined states, and

of the Lagrange multipliers needed to determine its action under the commitment equilibrium,

can be expressed as a function of the observable variables. Furthermore, the Kalman gain matrix

K gives the optimal weights on the vector of observable variables.. Row j of K gives the optimal

weights in updating of element j of Xt. Column l of K gives the weights a particular observable

variable Zlt receives in updating the elements of Xt.

Since the estimate is a distributed lag of the observable variables, the estimate is updated only

gradually. Thus, even under discretion, the observed policy will display considerable inertia, the

more the noisier the current observables and the less the weight on current observations relative

to previous estimates.

The elements of the Kalman gain matrixK depend upon the information structure (by (2.24)

and (2.25) they depend on L, which by (2.19) depends on D1, and on the covariance matrix

§vv). They also depend on part of the dynamics of the predetermined variables (by (2.25), they

depend on H, which by (2.17) and (2.13) depends only on A1, and on the covariance matrix

§uu). However, the elements of K are independent of the central-bank�s objective, described by

the matrices C1, C2, Ci, W and the discount factor ±, or, alternatively, of the central bank�s

reaction function (F;©) in (3.1) (where © = 0 in the discretion case). This again illustrates the

separation of the estimation problem from the optimization problem that arises under certainty-

equivalence.

Suppose that, in row j of L, only one element is nonzero, say element (j; j). Then

Zjt = Xjt +Mj¢Xtjt +¤j¢¥t¡1 + vjt

corresponds to an observation of Xjt with measurement error vjt (we let j¢ denote row j of a

matrix, and we assume that element (j; j) of M , mjj , ful�lls mjj 6= ¡1; this is now a necessary
condition for the matrix I +KM to be invertible). Suppose the variance of the measurement

error approaches zero. Then the elements of row j in the Kalman gain matrix will approach
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zero, except the element (j; j) which approaches unity. This corresponds to Xjt being fully

observable, resulting in Xjtjt = Xjt. Suppose instead the variance of vjt becomes unboundedly

large. Then Zjt is a useless indicator, and the Kalman gain matrix will assign a zero weight to

this indicator; that is, all the elements in column j of K will be zero.

5 Example: Optimal monetary policy with unobservable potential output

Consider the following simple model, a variant of the model used, for example, in Clarida, Galí

and Gertler [4], Woodford [41] and [42] and Svensson and Woodford [35]. The model equations

are

¼t = ±¼t+1jt + ·(yt ¡ ¹yt) + ºt; (5.1)

yt = yt+1jt ¡ ¾(it ¡ ¼t+1jt); (5.2)

¹yt+1 = °¹yt + ´t+1; (5.3)

ºt+1 = ½ºt + "t+1; (5.4)

where ¼t is in�ation, yt is (log) output, ¹yt is (log) potential output (the natural rate of output), ºt

is a serially correlated �cost-push� shock, and it is a one-period nominal interest rate (the central

bank�s monetary-policy instrument). In our speci�cation of the exogenous disturbance processes,

the shocks ´t and "t are iid with means zero and variances ¾
2
´ and ¾

2
", and the autoregressive

coe¢cients ° and ½ satisfy 0 · °; ½ < 1. In our structural equations, the coe¢cient 0 < ± < 1
is also the discount factor for the central bank�s loss function, and the coe¢cients · and ¾ are

positive.8

We assume a period loss function of the kind associated with �exible in�ation targeting with

a zero in�ation target,9

Lt =
1

2
[¼2t + ¸(yt ¡ ¹yt)2]: (5.5)

We assume that there is an imperfect observation, ~yt, of potential output,

~yt = ¹yt + µt; (5.6)

8 Note that yt ¡ ¹yt and ºt here corresponds to xt and ut, respectively, in Svensson and Woodford [35].
Furthermore, current in�ation and output are here forward-looking variables, whereas they are predetermined
one period in [35]. The assumption that in�ation and output are predetermined is arguably more realistic, but in
the present context would not allow us to present a simple example in which one of the observables is a forward-
looking variable. A more elaborate example (for instance, along the lines of Svensson [34]), that would be more
realistic but less transparent in its analysis, would allow in�ation and output to be predetermined, but introduce
other forward-looking indicator variables, such as the exchange rate, a long bond rate, or other asset prices.

9 See Woodford [40] for a welfare-theoretic justi�cation of this loss function, in the case of exactly the micro-
economic foundations that justify structural equations (5.1)�(5.2).
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where the measurement error µt is iid with zero mean and variance ¾2µ. We also assume that

in�ation is directly observable. Then the vector of observables is

Zt =

264 ¹yt + µt

¼t

375 : (5.7)

Since we assume that there are no unobservable shocks in the aggregate-demand equation,

(5.2), in equilibrium output will be perfectly controllable. Then, we can consider a simpli�ed

variant of your model, with output as the control variable and consisting of the equations (5.1),

(5.3) and (5.4). For the resulting equilibrium stochastic processes for yt, yt+1jt and ¼t+1jt, we

can then use the aggregate-demand equation to infer the corresponding interest rates according

to

it = ¼t+1jt +
1

¾
(yt+1jt ¡ yt): (5.8)

We can now rewrite the model (5.1), (5.3) and (5.4) in the form (2.1),

264 Xt+1

xt+1jt

375 ´
266664

¹yt+1

ºt+1

¼t+1jt

377775 =
266664

° 0 0

0 ½ 0

·=± ¡1=± 1=±

377775
266664
¹yt

ºt

¼t

377775+
266664

0

0

¡·=±

377775 yt +
266664
´t+1

"t+1

0

377775 ; (5.9)

where we let thin lines denote the decomposition of A1 and B into its submatrices. We note

that E = 1 and A2 = 0. We can write the equation for the observables, (2.4), as

Zt =

264 1 0 0

0 0 1

375
266664
¹yt

ºt

¼t

377775+
264 µt

0

375 ;

which allows us to identify D1, where the thin lines denotes its decomposition into D11 and D
1
2,

and vt. We observe that D2 = 0.

In this model, the central bank needs to form an estimate of the current potential output

and cost-push shock, ¹ytjt and ºtjt, in order to set policy, the output level yt. It observes an

imperfect measure of potential output, ~yt, and in�ation, ¼t, exactly. Since potential output

is predetermined and independent both of current expectations and of the current instrument

setting, noisy observation of it does not raise any special problems. In contrast, the observed

in�ation is here a forward-looking variable, which depends both on current expectations of future

in�ation and the current instrument setting. Current expectations and the instrument setting,

furthermore, depend on the estimates of both current potential output and the current cost-push
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shock. These depend on the observation of in�ation, completing the circle. Thus the central

bank must sort through this simultaneity problem. Consequently our special case, in spite of its

simplicity, incorporates the gist of the signal-extraction problem with forward-looking variables.

5.1 Equilibrium under discretionary optimization and under an optimal commit-

ment

Due to the certainty-equivalence, in order to �nd the optimal policy, we can directly apply

the solution of the full-information version of this model in Clarida, Galí and Gertler [4] and

Svensson and Woodford [35]. Under discretionary optimization, the solution is10

yt = ¹ytjt ¡
·

·2 + ¸(1¡ ±½)ºtjt;

¼t =
¸

·2 + ¸(1¡ ±½)ºtjt

(where ¼t = ¼tjt since in�ation by assumption is directly observable). Under an optimal com-

mitment, the solution is11

yt = ¹ytjt ¡
·

¸

¹

1¡ ±½¹ºtjt ¡
·

¸
¹¥t¡1; (5.10)

¼tjt =
¹

1¡ ±½¹ºtjt ¡ (1¡ ¹)¥t¡1; (5.11)

¥t =
¹

1¡ ±½¹ºtjt + ¹¥t¡1: (5.12)

In the commitment case, ¥t is the Lagrange multiplier of the constraint corresponding to (5.1),

the last row of (5.9), and ¹ (0 < ¹ < 1) is a root of the characteristic equation of the di¤erence

equation for ¥t that results from substitution of the �rst-order conditions into (5.1).

5.2 An optimal targeting rule

The above characterization of the optimal commitment allows us to derive a simple targeting

rule, that represents one practical approach to the implementation of optimal policy, as discussed

in Svensson and Woodford [35]. By (5.10) and (5.12), we have

yt ¡ ¹ytjt = ¡
·

¸
¥t; (5.13)

10 See section 3.2 of Svensson and Woodford [35]. Recall that yt ¡ ¹yt and ºt here corresponds to xt and ut,
respectively, in [35]. Since the present model has an output target equal to potential output in the period loss
function, (5.5), it corresponds to the case x¤ = 0 in [35].
11 See section 2.1 of Svensson and Woodford [35]. Note that ¥t¡1 here corresponds to 't¡1 in [35]. Because

the present model corresponds to the case x¤ = 0 in [35], '¤ = 0.
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and by (5.11) and (5.12), we have

¼t = ¥t ¡ ¥t¡1. (5.14)

These are just the �rst-order conditions under commitment, the combination of which with

the dynamic equations (5.1), (5.3) and (5.4) then result in (5.10)�(5.12). We can furthermore

eliminate the Lagrange multipliers from (5.13) and (5.14) and get a consolidated �rst-order

condition

¼t = ¡ ¸
·
[(yt ¡ ¹ytjt)¡ (yt¡1 ¡ ¹yt¡1jt¡1)]: (5.15)

In the full-information case, ¹yt and ¹yt¡1 would be substituted for ¹ytjt and ¹yt¡1jt¡1 in (5.15).

As discussed in detail in [35], the full-information analogue of (5.15) can be interpreted as

a targeting rule, which if followed by the central bank will result in the full social optimum

under commitment (when the intertemporal loss function with the period loss function (5.5) is

interpreted as the social loss function). Thus, in�ation should be adjusted to equal the negative

change in the output gap, multiplied by the factor ¸=·.

This targeting rule is remarkable in that it only depends on the relative weight on output-gap

stabilization in the loss function, ¸, and the slope of the short-run Phillips curve, ·. In particular,

the targeting rule is robust to the number and stochastic properties of additive shocks to the

aggregate-supply equation (as witnessed by the lack of dependence on the AR(1) coe¢cient

of the cost-push shock, ½, and the variances of the iid shock, ¾2") and (as long as the interest

rate does not enter the loss function) completely independent of the aggregate-demand equation

(5.2).

An alternative formulation of the targeting rule is in terms of a target for the price level,

rather than the in�ation rate. We observe that (5.15) implies that

pt ¡ p¤ = ¡ ¸
·
(yt ¡ ¹ytjt); (5.16)

where pt is the (log) price level (¼t ´ pt ¡ pt¡1) and p¤ is a constant that can be interpreted as
an implicit price-level target. Similarly, (5.16) implies (5.15), so these are equivalent targeting

rules, each equally consistent with the optimal commitment. (It is worth noting that under

our informational assumptions, pt is also public information at date t.) This illustrates the

close relation between in�ation targeting under commitment and price-level targeting, further

discussed in Vestin [38], Svensson [31] and [33] and Woodford [41] and [42]. We also note that

under the optimal commitment, the Lagrange multipliers satisfy

¥t = pt ¡ p¤:
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This is useful below as an empirical proxy for variation in the Lagrange multipliers.

An interesting feature of both of these characterizations of optimal policy is that, under

partial information, the targeting rule has exactly the same form as under full information,

except that the estimated output gap, yt¡ ytjt, is consistently substituted for the actual output
gap, yt ¡ ¹yt). Thus, policy should respond to exactly the same extent to the estimated output
gap under partial information as to the actual output gap under full information. This is an

important illustration of the certainty-equivalence result demonstrated earlier in the paper.

However, it is important to note that the targeting rules (5.15) and (5.16) are written in

terms of the optimal estimate of the output gap, yt¡¹ytjt, not in terms of the output gap measure
yt¡ ~yt implied by the imperfect observation of potential output, ~yt. As we shall see, the optimal
degree of response to an imperfect observation of the output gap does indeed depend on the

degree of noise in the observation.

5.3 Ideal indicators and optimal �ltering

Let us return to the solutions under discretion and commitment. It follows that we can write

these as

yt =

·
1 f

¸264 ¹ytjt

ºtjt

375+©(pt¡1 ¡ p¤); (5.17)

¼t =

·
0 g

¸264 ¹ytjt

ºtjt

375+ ¡(pt¡1 ¡ p¤); (5.18)

¥t =

·
0 g

¸264 ¹ytjt

ºtjt

375+§(pt¡1 ¡ p¤); (5.19)

where pt = ¼t + pt¡1. Under discretion, we have

f = ¡ ·

·2 + ¸(1¡ ±½) ; g = ¡
¸

·
f =

¸

·2 + ¸(1¡ ±½) ; © = ¡ = § = 0:

This allows us to identify the matrices F and G in (2.7) and (2.8). Under commitment, we have

f ´ ¡ (·=¸)[¹=(1¡ ±½¹)]; © ´ ¡(·=¸)¹; g = ¡¸
·
f = ¹=(1¡ ±½¹); ¡ = ¡(1¡ ¹); § = ¹:

This allows us to identify the matrices F , ©, G and ¡ in (3.1)�(3.3).

Furthermore, ¼t will be given by

¼t =

·
¡· 1

¸264 ¹yt

ºt

375+ · · g ¡ 1
¸264 ¹ytjt

ºtjt

375+ ¡(pt¡1 ¡ p¤); (5.20)
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where ¡ ´ 0 under discretion. The last equation allows the identi�cation of the matrices G1

and G2 in (2.12) and (3.5). We are then able to compute the matrices

H =

264 ° 0

0 ½

375 ; J = 0; L =
264 1 0

¡· 1

375 ; M =

264 0 0

· g ¡ 1

375 : (5.21)

Furthermore, the matrices ª and ¤ in the commitment case are given by

ª = 0; ¤ =

264 0
¡

375 :
In order to solve the estimation problem in this special case, we need to �nd the 2£2 Kalman

gain matrix, K, given by (2.24), where the 2£ 2 matrix of forecast errors, P , is given by (2.25).
The updating equation (3.10) can then be written264 ¹ytjt

ºtjt

375 =
264 ¹ytjt¡1

ºtjt¡1

375+K
0B@
264 ¹yt + µt

¼t

375¡ L
264 ¹ytjt¡1

ºtjt¡1

375¡M
264 ¹ytjt

ºtjt

375¡ ¤(pt¡1 ¡ p¤)
1CA ; (5.22)

where ¤ ´ 0 under discretion. This can be written more simply as264 ¹ytjt

ºtjt

375 =
264 ¹ytjt¡1

ºtjt¡1

375+K h
¹Zt ¡ ¹Ztjt¡1

i

in terms of the ideal indicators ¹Zt given by

¹Zt ´
264 ¹yt + µt

¼t

375¡M
264 ¹ytjt

ºtjt

375¡ ¤(pt¡1 ¡ p¤) =
264 ¹yt + µt

¼t ¡ ·¹ytjt ¡ (g ¡ 1)vtjt ¡ ¡ (pt¡1 ¡ p¤)

375 :
(5.23)

Combining (5.20) and the second row in (5.23), we see that the ideal indicators in fact

correspond to

¹Zt =

264 ¹yt + µt

¡·¹yt + ºt

375 : (5.24)

Thus, the �ltering problem may be reduced to one of observing a noisy measure of potential

output along with a linear combination of potential output and the cost-push shock. That obser-

vation of the forward-looking in�ation rate implies the observability of this linear combination of

the potential output and cost-push shock is quite intuitive. From the aggregate supply equation

(5.1) we see that in equilibrium observability of ¼t, ¼t+1jt and yt implies that the remainder

¡·¹yt + ºt must be observable as well.
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The ideal indicators are not operational, as their construction presumes that ¹ytjt and ºtjt

are already known. However, consideration of the simple problem that would result if these

indicators were available is useful, as a way of determining the Kalman gain matrix K. This

estimation problem consists of the simple transition equation264 ¹yt+1

ºt+1

375 = H
264 ¹yt

ºt

375+
264 ´t+1
"t+1

375 ; (5.25)

where H is given by (5.3) and (5.21), and the measurement equation (5.24). (The transition

equation is this simple because the predetermined variables, ¹yt and ºt, are exogenous, that is,

A112 = 0, A
2
11 = 0, A

2
12 = 0, B1 = 0.) In appendix C, we derive an analytical expression for the

Kalman gain matrix and show that it is of the form

K =

264 k11 k12

·k11 ·k12 + 1

375 : (5.26)

Here

k11 ´ q

¾2µ
(5.27)

and q is the positive root of a quadratic equation, which depends on ·, °, ½ and the variances ¾2´,

¾2" and ¾
2
µ. The element k12 is also reported as a function of these parameters in the appendix.

Having determined K, we may return to the consideration of an operational procedure for

computing the optimal estimates of the underlying exogenous disturbances. For this the central

bank can use the operational recursive updating equations (4.2) and (4.3), which can be written264 ¹ytjt

ºtjt

375 = (I +KM)¡1

0B@(I ¡KL)
264 ¹ytjt¡1

ºtjt¡1

375¡K¤(pt¡1 ¡ p¤) +KZt
1CA

= (I +KM)¡1

0B@(I ¡KL)H
264 ¹yt¡1jt¡1

ºt¡1jt¡1

375¡K¤(pt¡1 ¡ p¤) +KZt
1CA (5.28)

This last equation is simpler than (4.3) because in this example, J = 0 and ª = 0.

Equation (5.28) allows us to solve for the optimal estimates ¹ytjt and ºtjt as functions of the

history of observables (~y¿ and ¼¿ or, equivalently, ~y¿ and p¿ ) up through period t. This solution

for ¹ytjt can then be substituted into (5.16), to obtain an equation for yt as a function of the

history of ~y¿ and p¿ . If yt were actually the central bank�s instrument, this would then represent

a rule for setting that instrument as a function of the observables. However, in practice, a

central bank has no direct control over current output, and instead typically uses a short-term
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nominal interest rate as its instrument. Derivation of an instrument rule then requires that we

consider the evolution of nominal interest rates implied by the above characterization of the

optimal commitment.

5.4 An optimal instrument rule

We consider the evolution of the interest rate it under the optimal commitment. The solution

for output and in�ation are given by (5.17) and (5.18). Combining these with (5.8) results, after

simpli�cation, in the instrument rule

it = ~F

264 ¹ytjt

ºtjt

375+ ~©(pt¡1 ¡ p¤) (5.29)

in terms of responses to the current estimates of the predetermined variables and the lagged

price level, where

~F = GH + FS +
1

¾
[F (H ¡ I) + ©S]

~© = ¡§+
1

¾
©(§¡ I):

(Note that discretionary optimization corresponds to a similar instrument rule, in which however

~© = 0.) Certainty equivalence implies that the matrices ~F and ~© are independent of the variances

of the shocks, ¾2´, ¾
2
" and ¾

2
µ.

As in the previous subsection, we can utilize (5.28) to express the instrument rule in terms of

current observables, lagged estimates and the lagged price level. Let us focus on the response of

the interest rate to the current observables, for given levels of lagged estimates and price level.

This response is by (4.3) and (5.29) given by

~F (I +KM)¡1(K1~yt +K2¼t);

where we have partitioned the Kalman gain matrix according to K = [K1 K2], so K1 is the

�rst column in (5.26).

Of course, this response to the observables, via the Kalman gain matrix, depends on the

variances of the shocks. In particular, we can examine how the response to the observation

of the potential output, ~yt, depends on its noise, i.e., the variance of its measurement error

¾2µ. In appendix C, we show that the root q in (5.27) remains positive and bounded for all

positive ¾2µ. This means that k11 approaches zero when degree of noise becomes large. Thus,
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the optimal weights on the observation of potential output in the submatrix K1 goes to zero

when its information content goes to zero. This is an example of the Kalman �lter assigning

zero weight to useless indicators, mentioned in section 4.

Again, this does not mean that the response to the optimal estimate of potential output,

¹ytjt, changes. By certainty-equivalence, it stays the same. It is only that the direct observation

of potential output, ~yt, is disregarded in the construction of the optimal estimate. Instead, in

this case the central bank will rely only on the observed in�ation rate.

6 Conclusions

In this paper, we have restated the important result that, under symmetric partial information,

certainty-equivalence and the separation principle continue to hold in the case of linear rational-

expectations models and a quadratic loss function. Then optimal policy as a function of the

current estimate of the state of the economy is the same as if the state were observed.

However, policy as a function of the observable variables (and the actual, as distinct from the

estimated, state of the economy) will display considerable inertia, since the current estimate will

be a distributed lag of the current and past observable variables (and actual states of the econ-

omy). Thus,discretionary policy�which as discussed in Woodford [41] and [42] and Svensson

and Woodford [35], often lacks the history-dependence that characterizes optimal policy under

commitment�will in this case display a certain inertial character as a consequence of partial

information. It seems likely that this inertial character will be more pronounced the noisier the

information in the observable variables, as this should lead to slower updating of the current

estimate of the state of the economy. To what extent this may a¤ect the welfare comparison

between discretionary policy and the optimal policy under commitment (which represents the

social optimum), is a topic for future research.

Even given certainty-equivalence and the separation principle, the estimation problem with

forward-looking observable variables presents a challenge, due to the circularity in the way that

the observable variables both a¤ect and depend on the current estimate. The optimal operational

Kalman �lter under these circumstances needs to be modi�ed to circumvent that circularity, as

we have shown.

Our results have been derived under the assumption of symmetric information between the

central bank and the aggregate private sector, as a result of which certainty-equivalence and the

separation between optimization and estimation hold. This case seems to us to be of practical
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interest, since we believe that any informational advantage of central banks consists mainly

of better information about their own intentions (as in the papers of Cukierman and Meltzer

[5] and Faust and Svensson [9]). Any such private information is nowadays increasingly being

eroded by the general tendency toward increased transparency in monetary policy, whether

willingly adopted by the central banks or, in some cases, forced upon them by irresistible outside

demands. Nevertheless, it is of interest to understand how these results are modi�ed when there

is asymmetric information (especially in the direction of central banks having less information

than parts of the private sector); this topic is taken up in Svensson and Woodford [36].

We have illustrated our general results in terms of a forward-looking model of monetary

policy with unobservable potential output and a partially observable cost-push shock, where the

observable variables both a¤ect and depend on the current estimates of potential output and the

cost-push shock. This situation is obviously highly relevant for many central banks, including

the recently established Eurosystem. We note that our analysis of optimal policy does imply

an important role for an estimate of current potential output, and that the proper weight to

be put on such an estimate under an optimal policy rule is una¤ected by the degree of noise

in available measures of potential output. Thus the lack of more accurate measures is not a

reason for policy to respond less to perceived �uctuations in the output gap (though inaccuracy

of particular indicators can be a reason for a bank�s estimate of potential output to be less

in�uenced by those indicators).

On the other hand, in the case of pure indicator variables�variables that are neither target

variables (variables that enter the loss function) nor direct causal determinants of target vari-

ables, and that accordingly would not be responded to under an optimal policy in the case of

full information�the degree to which monetary policy should take account of them is de�nitely

dependent upon how closely they are in fact associated with the (causal) state variables that one

seeks to estimate. This precept does not always play as large a role in current central banking

practice as it might.

As an example, the Eurosystem has put special emphasis on one particular indicator, the

growth of Euro-area M3 relative to a reference value of 4.5 percent per year, elevating this

money-growth indicator to the status of one of two �pillars� of the Eurosystem monetary strategy

(in addition to �a broadly-based assessment of the outlook for future price developments�).12

Money growth in excess of the reference value is supposed to indicate �risks to price stability.�

12See, for instance, European Central Bank [8].
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As discussed by commentators such as Svensson [30], Rudebusch and Svensson [21] and Gerlach

and Svensson [11], it is di¢cult to �nd rational support for this prominence of the money-

growth indicator. Instead, monetary aggregates would seem to be properly viewed as just one

set of indicators among many others, the relative weight on which should exclusively depend on

their performance in predicting the relevant aspects of the current state of the economy; more

speci�cally, how useful current money growth is as an input in conditional forecasts of in�ation

some two years ahead.

Under normal circumstances, the information content of money growth for in�ation forecasts

in the short and medium term seems to be quite low.13 Only in the long run does a high

correlation between money growth a in�ation result. Under the special circumstances of the

introduction of a new common currency, the demand for money is likely to be quite unpredictable

and possibly very unstable, since important structural changes are likely to occur in �nancial

markets and banking. Under such circumstances, the information content of money is likely on

theoretical grounds to be even lower than under normal circumstances. Thus the uncertainty

associated with the introduction of the new currency should provide an argument for relying

less, rather than more, on monetary aggregates as indicators.

13 See Estrella and Mishkin [7] and Stock and Watson [26]; Gerlach and Svensson [11] �nd, for reconstructed
Euro-area data, information for future in�ation in another monetary indicator, the �real money gap,� but little
or no information in the Eurosystem�s money-growth indicator.
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A Optimization under discretion and certainty-equivalence

Consider the decision problem to choose it in period t to minimize (2.6) (with 0 < ± < 1) under

discretion, that is, subject to (2.1)�(2.5) and

it+1 = Ft+1Xt+1jt+1 (A.1)

xt+1jt+1 = Gt+1Xt+1jt+1; (A.2)

where Ft+1 and Gt+1 are determined by the decision problem in period t+ 1.

For the full information case, Oudiz and Sachs [17] have derived an algorithm for the discre-

tionary equilibrium, which is further discussed in Backus and Dri¢ll [2] and Currie and Levin

[6].14 Following Pearlman [19], but with a more explicit proof, this appendix shows that this

algorithm, appropriately adapted, is valid also for the partial-information case.

First, using (A.2), taking expectations in period t of the upper block of (2.1), and using

(2.10), we get

xt+1jt = Gt+1Xt+1jt = Gt+1(A11Xtjt +A12xtjt +B1it): (A.3)

Taking the expectation in period t of the lower block of (2.1), we get

Ext+1jt = A21Xtjt +A22xtjt +B2it (A.4)

(recall that E is a matrix and not the expectations operator). Multiplying (A.3) by E, setting

the result equal to (A.4) and solving for xtjt gives

xtjt = ~AtXtjt + ~Btit; (A.5)

where

~At ´ (A22 ¡EGt+1A12)¡1(EGt+1A11 ¡A21);
~Bt ´ (A22 ¡EGt+1A12)¡1(EGt+1B1 ¡B2)

(we assume that A22 ¡ EGt+1A12 is invertible). Using (A.5) in the expectation of the upper
block of (2.1) then gives

Xt+1jt = A¤tXtjt +B
¤
t it; (A.6)

where

A¤t ´ A11 +A12 ~At;

B¤t ´ B1 +A12 ~Bt:

14 See Söderlind [25] for a detailed presentation.
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Second, by (2.2) and (2.3) we can write

Ltjt =

264 Xtjt
xtjt

375
0

Q

264 Xtjt
xtjt

375+ 2
264 Xtjt
xtjt

375
0

Uit + i
0
tRit + lt; (A.7)

where

C ´ C1 +C2; Q ´ C 0WC; U ´ C 0WCi; R ´ C 0iWCi

lt ´ E
8><>:
264 Xt ¡Xtjt
xt ¡ xtjt

375
0

C10WC1

264 Xt ¡Xtjt
xt ¡ xtjt

375 jIt
9>=>; : (A.8)

Using (A.5) in (A.7) leads to

Ltjt = X 0
tjtQ

¤
tXtjt + 2X

0
tjtU

¤
t it + i

0
tR
¤
t it + lt; (A.9)

where

Q¤t ´ Q11 +Q12 ~At + ~A0tQ21 + ~A0tQ22 ~At;

U¤t ´ Q12 ~Bt + ~A0tQ22 ~Bt + U1 + ~A0tU2;

R¤t ´ R+ ~B0tQ22 ~Bt + ~B0tU2 + U
0
2
~Bt;

and Q and U are decomposed according to Xtjt and xtjt.

Third, since the loss function is quadratic and the constraints are linear, it follows that the

optimal value of the problem will be quadratic. In period t + 1 the optimal value will depend

on the estimate Xt+1jt+1 and can hence be written X 0
t+1jt+1Vt+1Xt+1jt+1 + wt+1, where Vt+1 is

a positive semide�nite matrix and wt+1 is a scalar. Then the optimal value of the problem in

period t is associated with the positive semide�nite matrix Vt and the scalar wt, and ful�lls the

Bellman equation

X 0
tjtVtXtjt +wt ´ minit

n
Ltjt + ±E[X 0

t+1jt+1Vt+1Xt+1jt+1 +wt+1jIt]
o
; (A.10)

subject to (A.6) and (A.9). Indeed, the problem has been transformed to a standard linear

regulator problem without forward-looking variables, albeit in terms of Xtjt and with time-

varying parameters. The �rst-order condition is, by (A.9) and (A.10),

0 = X 0
tjtU

¤
t + i

0
tR
¤
t + ±E[X

0
t+1jt+1Vt+1B

¤
t jIt]

= X 0
tjtU

¤
t + i

0
tR
¤
t + ±(X

0
tjtA

¤0
t + i

0
tB

¤0
t )Vt+1B

¤
t :

25



Here we have assumed that lt is independent of it, which assumption is veri�ed below. The

�rst-order condition can be solved for the reaction function

it = FtXtjt; (A.11)

where

Ft ´ ¡ (R¤t + ±B¤0t Vt+1B¤t )¡1(U¤0t + ±B¤0t Vt+1A¤t )

(we assume that R¤t + ±B¤0t Vt+1B¤t is invertible). Using (A.11) in (A.5) gives

it = GtXtjt;

where

Gt ´ ~At + ~BtFt:

Furthermore, using (A.11) in (A.10) and identifying gives

Vt ´ Q¤t + U¤t Ft + F 0tU¤0t + F 0tR¤tFt + ± (A¤t +B¤t Ft)0 Vt+1 (A¤t +B¤t Ft) :

Finally, the above equations de�ne a mapping from (Ft+1;Gt+1; Vt+1) to (Ft;Gt; Vt). The

solution to the problem is a �xpoint (F;G; V ) of the mapping. It is obtained as the limit of

(Ft; Gt; Vt) when t ! ¡1. The solution thus ful�lls the corresponding steady-state matrix
equations. Thus, the instrument it and the estimate of the forward-looking variables xtjt will be

linear functions, (2.7) and (2.8) of the estimate of the predetermined variables Xtjt, where the

corresponding F and G ful�ll the corresponding steady-state equations. In particular, G will

ful�ll (2.9).

It also follows that F , G and V only depend on A ´ A1+A2, B, C ´ C1+C2, Ci; E; W and

± and are independent of D1, D2, §uu and §vv. This demonstrates the certainty-equivalence of

the discretionary equilibrium.

It remains to verify the assumption that lt in (A.8) is independent of it. Since by (2.12)�

(2.13), xt¡xtjt = ¡ (A122)¡1A121(Xt¡Xtjt), it is su¢cient to demonstrate that E[(Xt¡Xtjt)(Xt¡
Xtjt)0jIt] is independent of it. By (2.22),

Xt ¡Xtjt = Xt ¡Xtjt¡1 +K(L(Xt ¡Xtjt¡1) + vt = (I +KL)(Xt ¡Xtjt¡1) +Kvt:

Since Xt and Xtjt¡1 are predetermined and vt is exogenous, the assumption is true.
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B The Kalman gain matrix and the covariance of the forecast errors

It is practical to express the dynamics in terms of the prediction errors of Xt and Zt, relative to

period t¡ 1 information,

~Xt ´ Xt ¡Xtjt¡1;
~Zt ´ Zt ¡ Ztjt¡1 = Zt ¡ (L+M)Xtjt¡1;

where we have used (2.16). Then the prediction equation can be written

Xtjt = Xtjt¡1 +K(L ~Xt + vt): (B.1)

First, (2.16) implies that

Ztjt¡1 = (L+M)Xtjt¡1

and hence that

~Zt = L ~Xt +M(Xtjt ¡Xtjt¡1) + vt
Substitution of (B.1) into this then yields

~Zt = (I +MK)(L ~Xt + vt): (B.2)

Thus we get the desired expression

~Zt = N ~Xt + ºt; (B.3)

where

N ´ (I +MK)L; (B.4)

ºt ´ (I +MK)vt: (B.5)

In order to �nd the dynamics for the prediction error ~Xt, we subtract (2.23) from (2.15) and

use (B.1), which gives

~Xt+1 = H(Xt ¡Xtjt) + ut+1 = H ~Xt ¡HK(L ~Xt + vt) + ut+1:

Hence we get the desired expression

~Xt+1 = T ~Xt + !t+1; (B.6)

where

T ´ H(I ¡KL); (B.7)

!t+1 ´ ut+1 ¡HKvt: (B.8)
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Now, (B.6) and (B.3) can be seen as the transition and measurement equations, respec-

tively, for a standard Kalman-�lter problem for the unobservable variable ~Xt with ~Zt being the

observable variable. Consequently, the prediction equation for ~Xtjt can be written

~Xtjt = PN 0(NPN 0 +§ºº)¡1(N ~Xt + ºt) (B.9)

where 0 denotes transpose and where we have used ~Xtjt¡1 ´ 0 and P ´ Cov[ ~Xt ¡ ~Xtjt¡1] =

Cov[ ~Xt] is the covariance matrix for the prediction errors (see appendix D). By (B.6) we directly

get

P = TPT 0 +§!!: (B.10)

We also have

§ºº = E[ºtº
0
t] = (I +MK)§vv(I +MK)

0; (B.11)

§!! = HK§vvK
0H 0 +§uu: (B.12)

We express Xtjt in terms of the prediction error ~Zt by solving for Xtjt in (2.21), which gives

Xtjt = (I +KM)¡1[Xtjt¡1 +K(Zt ¡ LXtjt¡1)]
= Xtjt¡1 + (I +KM)¡1K[Zt ¡ (L+M)Xtjt¡1]
= Xtjt¡1 + (I +KM)¡1K ~Zt

= Xtjt¡1 +K(I +MK)¡1 ~Zt; (B.13)

where we have used the convenient identities (I + KM)¡1 ´ I ¡ (I + KM)¡1KM and (I +

KM)¡1K ´ K(I +MK)¡1.
Now, comparing (B.9) and (B.13), using (B.3) and ~Xtjt = Xtjt ¡Xtjt¡1, we see that

K(I +MK)¡1 = PN 0(NPN 0 +§ºº)¡1:

Substituting (B.4) for N and (B.11) for in the right side, we get the �nal expression for K,

(2.24).

Substituting (2.24) for K in T in (B.7) and (B.10) then gives the �nal equation for P , (2.25).

C The Kalman gain matrix in the example of section 5

The transition equation and measurement equations are given by264 ¹yt+1

ºt+1

375 = H
264 ¹yt

ºt

375+
264 ´t+1
"t+1

375 ;
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¹Zt = L

264 ¹yt

ºt

375+ vt;

where H and L are given by (5.21) and vt ´
264 µt
0

375. Since L is invertible in this case, it is prac-
tical to do a variable transformation of the predetermined variables such that the corresponding

L-matrix in the measurement equation is the identity matrix. Thus,

¹Xt ´
264 ¹yt

¡·¹yt + ºt

375 = L
264 ¹yt

ºt

375 ;
in which case the transition and measurement equations are

¹Xt+1 = ¹H ¹Xt + ¹ut+1;

¹Zt = ¹Xt + vt;

where

¹H ´ LHL¡1 =
264 ° 0

·(½¡ °) ½

375 ; ¹ut ´ L
264 ´t
"t

375 =
264 ´t

¡·´t + "t

375 ;

§¹u¹u =

264 ¾2´ ¡·¾2´
¡·¾2´ ·2¾2´ + ¾

2
"

375 ; §vv =
264 ¾2µ 0

0 0

375 :
In order to determine the Kalman gain matrix for the transformed variables, we need to

know the covariance matrix of the corresponding one-period-ahead forecast errors, ¹P ´ Var[ ¹Xt¡
¹Xtjt¡1]. First, we note that the current forecast-error covariance matrix Q ful�lls

Q ´ Var[ ¹Xt ¡ ¹Xtjt] =

264 q 0

0 0

375 ;
where q ´ Var[¹yt ¡ ¹ytjt] is the current forecast error for potential output and remains to be
determined, and we have used that ¡·¹yt+ ºt is observed without error. Then ¹P depends on Q
according to

¹P = ¹HQ ¹H 0 +§¹u¹u: (C.1)

Furthermore, Q depends on ¹P according to the updating equation

Q = ¹P ¡ ¹P ( ¹P +§vv)
¡1 ¹P: (C.2)

We can rewrite this equation as

Q(I + ¹P¡1§vv) = §vv:
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Then we can exploit that Q and §vv are nonzero only in their (1,1) elements, so the matrix

equation reduces to the single equation

q
³
1 + ¹P¡111¾2µ

´
= ¾2µ; (C.3)

where ¹P¡1ij denotes the (i; j) element of the inverse of ¹P (not the inverse of the (i; j) element

of ¹P ).

In order to solve this equation for q, we need to express this element of the inverse in terms

of q. Substitution of ¹H, Q and §¹u¹u in (C.1) results in

¹P = q

264 °2 °·(½¡ °)
°·(½¡ °) ·2(½¡ °)2

375+
264 ¾2´ ¡·¾2´
¡·¾2´ ·2¾2´ + ¾

2
"

375
=

264 °2q + ¾2´ °·(½¡ °)q ¡ ·¾2´
°·(½¡ °)q ¡ ·¾2´ ·2(½¡ °)2q + ·2¾2´ + ¾2"

375 :
We then have

¹P¡111 =
·2(½¡ °)2q + ·2¾2´ + ¾2"¯̄

¹P
¯̄ ; (C.4)

¹P¡112 = ¡
°·(½¡ °)q ¡ ·¾2´¯̄

¹P
¯̄ ;

where ¯̄
¹P
¯̄
= [°2¾2" + (·½)

2¾2´)]q + ¾
2
´¾
2
":

Using (C.4) in (C.3) results in the quadratic equation

aq2 + bq + c = 0; (C.5)

where

a ´ ·2(½¡ °)2¾2µ + (·½)2¾2´ + °2¾2" > 0; (C.6)

b ´ [·2(1¡ ½2)¾2´ + (1¡ °2)¾2"]¾2µ + ¾2´¾2" > 0; (C.7)

c ´ ¡¾2´¾2"¾2µ < 0: (C.8)

The signs of a, b and c imply that the quadratic equation has two real roots, one positive

and one negative. The positive root is the only possible value for the forecast-error variance q,

so we obtain

q =
¡ b+pb2 ¡ 4ac

2a
> 0: (C.9)
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Having determined q, we can now express the Kalman gain matrix in terms of q. The Kalman

gain matrix ¹K for the estimation of the transformed variables ¹Xt is given by

¹K = ¹P ( ¹P +§vv)
¡1 = I ¡Q ¹P¡1;

where we have used (C.2). Using the form of Q, we then get

¹K =

264 1¡ q ¹P¡111 ¡ q ¹P¡112
0 1

375 ´
264 k11 k12

0 1

375 :
From (C.3) we see that

k11 ´ q

¾2µ
: (C.10)

The Kalman gain matrix for the untransformed predetermined variables, K, is �nally given

by

K = L¡1 ¹K =

264 1 0

· 1

375
264 k11 k12

0 1

375 =
264 k11 k12

·k11 ·k12 + 1

375 : (C.11)

It remains to show the limit of K when ¾2µ !1, that is, when ~yt becomes an unboundedly
noisy indicator of ¹yt. We divide (C.5) by ¾2µ and observe in (C.6)�(C.8) that

a

¾2µ
! ~a ´ ·2(½¡ °)2 > 0;

b

¾2µ
! ~b ´ ·2(1¡ ½2)¾2´ + (1¡ °2)¾2" > 0;

c

¾2µ
! ~c ´ ¡¾2´¾2" > 0;

when ¾2µ !1. It follows that q ! ~q > 0, where ~q is bounded. Thus, from (C.10) follows that

k11 ! 0.

D The Kalman �lter

As a convenient reference, we restate the relevant expressions for the Kalman �lter (see Harvey

[12] and [13]) in our notation. Let the measurement and transition equations be, respectively,

Zt = LXt + vt;

Xt+1 = TXt + ut+1;

where E[utv0s] = 0 for all t and s. De�ne the covariance matrices of the one-period-ahead and

within-period prediction errors by

Ptjt¡1 ´ E[(Xt ¡Xtjt¡1)(Xt ¡Xtjt¡1)0];
Ptjt ´ E[(Xt ¡Xtjt)(Xt ¡Xtjt)0]:
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The covariance matrix of the innovations, Zt ¡ Ztjt¡1, ful�lls

E[(Zt ¡ Ztjt¡1)(Zt ¡ Ztjt¡1)0] = LPtjt¡1L0 +§vv:

The prediction equations are

Xtjt¡1 = TXt¡1jt¡1;

Ptjt¡1 = TPt¡1jt¡1T 0 +§uu;

and the updating equations are

Xtjt = Xtjt¡1 +Kt(Zt ¡ LXtjt¡1);
Kt ´ Ptjt¡1L0(LPtjt¡1L0 +§vv)¡1;

Ptjt = Ptjt¡1 ¡ Ptjt¡1L0(LPtjt¡1L0 +§vv)¡1LPtjt¡1:

In a steady state, we have

Ptjt¡1 = P;

Ptjt = P ¡ PL0(LPL0 +§vv)¡1LP;
Kt = K;

K = PL0(LPL0 +§vv)¡1;

P = T [P ¡ PL0(LPL0 +§vv)¡1LP ]T 0 +§uu:
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