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Abstract

This paper develops and empirically implements an arbitrage-free, dynamic term struc-
ture model with “priced” factor and regime-shift risks. The risk factors are assumed to follow
a discrete-time Gaussian process, and regime shifts are governed by a discrete-time Markov
process with state-dependent transition probabilities. This model gives closed-form solutions
for zero-coupon bond prices and an analytic representation of the likelihood function for bond
yields. Using monthly data on U.S. Treasury zero-coupon bond yields, we document notable
differences in the behaviours of the market prices of factor risk across high and low volatility
regimes. Additionally, the state-dependence of the regime-switching probabilities is shown
to capture an interesting asymmetry in the cyclical behaviour of interest rates. The shapes
of the term structures of bond yield volatilities are also very different across regimes, with
the well-known hump in volatility being largely a low-volatility regime phenomenon.



1 Introduction

This paper develops and empirically implements an arbitrage-free, dynamic term structure
model (DTSM) with “priced” factor and regime-shift risks. The risk factors are assumed to
follow a discrete-time Gaussian process, and regime shifts are governed by a discrete-time
Markov process with state-dependent transition probabilities. Agents are assumed to know
both the current state of the economy and the regime they are currently in. This leads to
regime-dependent pricing kernels and an equilibrium term structure that reflects the risks of
both changes in the state and shifts in regimes.

There is an extensive empirical literature on bond yields (particularly short-term rates)
that suggests that “switching regime” models describe the historical interest rate data better
than single-regime models (see, for example, Cecchetti, Lam, and Mark [1993], Gray [1996],
Garcia and Perron [1996], and Ang and Bekaert [2002a]).1 In spite of this evidence, largely
for reasons of tractability, most of the empirical literature on DTSMs has continued to focus
on single-regime models (see Dai and Singleton [2003] for a survey). Recently Naik and
Lee [1997], Landen [2000], and Dai and Singleton [2003] have proposed continuous-time
regime-switching DTSMs that yield close-form solutions for zero-coupon bond prices, but
multi-factor versions of their models have yet to be implemented empirically.

We develop a discrete-time multi-factor DTSM in which (i) there are two regimes charac-
terized by low (L) and high (H) volatility, (ii) the regime-shift probabilities πPij (i, j = H, L)
under the historical measure P depend on the risk-factors underlying changes in the shapes
of the yield curve, and (iii) regime-shift (and factor) risks are priced. This model yields
exact closed-form solutions for bond prices, and an analytic representation of the likelihood
function that we use in our empirical analysis of U.S. Treasury zero-coupon bond yields.

We find that the accommodation of economy-wide regime-shift risk is important for un-
derstanding the nature of the market prices of factor (MPF) risks that underlie variation in
expected excess returns on bonds.2 Duffee [2002] and Dai and Singleton [2002] have shown
that sufficiently persistent and variable factor risk premiums in single-regime affine DTSMs
resolve the expectations puzzles summarized in Campbell and Shiller [1991]. Nevertheless,
consistent with the descriptive evidence on regime-switching models, Figure 1 suggests that
these single-regime models fail to accurately represent expected excess returns (and im-
plicitly, factor risk premiums) in U.S. Treasury markets. The swings in excess returns are
notably larger in the two-regime model ARS

0 (3) for those periods with largest absolute excess
returns (e.g., during the period of the “monetary experiment” in the early 1980’s). On the
other hand, during more “normal” times, variation in the excess returns appears larger in the

1Ang and Bekaert [2002b] suggest that the mixing of regime-dependent state processes inherent in our
DTSM can potentially replicate the nonlinear conditional means of short-term yields documented by Ait-
Sahalia [1996] and Stanton [1997]. While the non-parametric evidence for non-linearity in the short-rate
process is somewhat controversial (see, e.g., Chapman and Pearson [2000]), the findings of Ang and Bekaert
for a Gaussian autoregressive model of a short rate suggest that our regime-dependent state process intro-
duces the flexibility to match such nonlinearity if it is present.

2The analyses by Pan [2002] and Liu, Longstaff, and Pan [2002] are, in different contexts, premised on a
similar point.
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single-regime model A0(3). We document subsequently that the source of these differences
is the very different behaviours of the MPF risks in regimes H and L, a difference that (by
construction) is absent from single-regime models. This observation is robust to whether or
not the πPij are state-dependent.
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Figure 1: Expected excess returns on two- and ten-year zero-coupon Treasury bonds in
Models A0(3) and ARS

0 (3).

Where the state-dependence of πPij appears to matter most is in the persistence of
regimes. A standard result in the empirical literature on regime switching models of interest
rates with constant πP (e.g., Ang and Bekaert [2002b] and Bansal and Zhou [2002]) is that
πPHH

t >> πPHL
t and πPLL >> πPLH ; i.e., both regimes are highly persistent. On the other

hand, with state-dependent πP, on average, we replicate the finding that πPLL >> πPLH , but
now πPHL > πPHH– high volatility regimes are less persistent than low volatility regimes.
Importantly, this asymmetry is equally present in a descriptive model of Treasury yields,
suggesting that models (descriptive or pricing) that impose a constant πP are missing an
empirically important asymmetry in the cyclical behaviour of interest rates.

In developing our model we build upon a growing literature on discrete-time DTSMs by
extending the Gaussian, discrete-time DTSMs in Bekaert and Grenadier [2001], Ang and
Piazzesi [2002], and Gourieroux, Monfort, and Polimenis [2002] to allow for multiple regimes
and priced regime-shift risk.3 However, rather than adopting Hamilton [1989]’s convention
of specifying the distribution of the state conditional on the future regime, we condition on
the current regime. Under our convention, all of the conditioning variables at date t reside in
agents’ date t information set, which includes knowledge of the current regime. This leads to
an intuitive interpretation of the components of agents’ pricing kernel that parallels standard
formulations in the continuous-time literature.

3To the extent that changes in regimes are related to business-cycle developments, multiple switches within
a monthly, or even a quarterly, time frame seem unlikely. Therefore, we see little cost to a discrete-time
framework, with the obvious benefit of being able to link our results directly with the descriptive literature
on regime shifts in the distributions of interest rates.
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Our analysis of a Gaussian DTSM is complementary to Bansal and Zhou [2002]’s study
of an (approximate) discrete-time “CIR-style” DTSM with regime shifts. Model ARS

0 (3)
extends their framework by allowing for state-dependent πP

t (Bansal and Zhou assumed
that πP = constant), and priced regime-shift risk ( they assumed that the market price
of regime-shift (MPRS) risk is zero).4 Furthermore, though model ARS

0 (3) precludes (by
assumption) within-regime stochastic volatility, we find that it produces a level-dependence
of the volatilities of yields conditional on the their past history. Finally, the added flexibility
in the correlation structure of the risk factors in model ARS

0 (3) (as contrasted with the
independence in CIR-style models) allows us to replicate the well known hump in the term
structure of volatility, and to explore the regime-dependence of the shape of this hump.

In a concurrent study, with a different objective, Ang and Bekaert [2003] also examine a
regime-switching Gaussian DTSM.5 They assume that regime-shift risk is not priced, πP is
constant, and the historical rates of mean reversion of the risk factors are the same across
regimes. Model ARS

0 (3) relaxes all of these assumptions thereby facilitating an exploration
of the state-dependence of πP and of the MPRS and MPF risks.

The remainder of this paper is organized as follows. Section 2 develops our model and
derives the arbitrage-free bond pricing relations in the presence of regime shifts. We also
compare the nature of the various market prices of risk in our setup to those in previous
studies. The likelihood function that is used in estimation is derived in Section 3. Section 4
describes the data and presents the estimates of our models. The dependence of the model-
implied market prices of risks on the shape of the yield curve and the regime of the economy
are explored in more depth in Section 5. Finally, concluding remarks are presented in
Section 6.

2 A Regime-Switching, Gaussian DTSM

There are S + 1 “regimes” that govern the dynamic properties of the N -dimensional state
(factor) vector Yt. Formally, the joint process (Y, s) is modelled as a marked point process.
Heuristically, the regime variable st may be thought of as a (S + 1)-state Markov process,
with the historical probability of switching from regime st = j to regime st+1 = k given
by πPjk

t , 0 ≤ j, k ≤ S. In general πPjk
t may be state-dependent (functions of Yt), but the

Markov process governing regime changes is assumed to be independent of the Y process.
By definition, for all j,

∑S
k=0 πPjk

t = 1. Agents are presumed to know the current and past
histories of both the N -dimensional state vector Yt and regime the economy is in, st. Thus
expectations Et[·] are conditioned on the information set It+1 generated by {Yt+1−`, st+1−` :
` ≥ 0}. We use the notation Et[·|st = j] in cases where we wish to highlight the current
value of st ∈ It.

Within regime st = j the evolution of the economy under the physical (historical) measure

4As we explain more formally below, neither of our models is nested within the other with regard to the
specifications of the MPF risks.

5In another related study, Wu and Zeng [2003] derive a general equilibrium, regime-switching model,
building upon the one-factor CIR-style model of Naik and Lee [1997], with constant πP.

3



P is described by the discrete-time process

Yt+1 = µPj
t + Σjεt+1, (1)

where the conditional mean µPj
t may depend on {Yt−` : ` ≥ 0}, Σj is a constant conditional

volatility matrix, and εt+1 ∼ N(0, I). We assume that the parameters determining µPj
t and

Σj depend on the regime st = j, but not on st+1, in which case

f(Yt+1|Yt−` : ` ≥ 0; st = j, st+1 = k) = f(Yt+1|Yt−` : ` ≥ 0; st = j) ∼ N(µPj
t , ΣjΣj′); (2)

equivalently, the conditional moment generating function (MGF) of Yt+1 is, given st = j,

Et

[

eu′Yt+1

∣

∣

∣
st = j

]

= eu′µ
Pj
t +u′

Σ
j
Σ

j′u
2 , u ∈ RN . (3)

This differs from Hamilton [1989]’s formulation where f(Yt+1|Yt−k : k ≥ 0; st+1 = k) is
specified parametrically. As the sampling interval of the data shrinks toward zero (in the
continuous time limit), these two formulations are equivalent. We adopt our discrete-time
formulation for the tractability that it offers in constructing a DTSM with regime shifts.6

The pricing kernel underlying the time-t valuation of payoffs at date t + 1 is denoted
by Mt,t+1 = M(Yt, st; Yt+1, st+1) ∈ It+1. To accommodate regime-dependence of the pricing
kernel, while staying within a discrete-time affine setting, we assume that

Mt,t+1 = e−rt−Γt,t+1−
1

2
Λ′

tΛt−Λ′

tΣ
−1
t (Yt+1−µP

t ), (4)

where rt = r(Yt, st) is the one-period zero-coupon bond yield, Γt,t+1 = Γ(Yt, st; st+1) is
the MPRS from st to st+1, Λt = Λ(Yt, st) is the MPF factor risk, µP

t = µP(Yt, st) is the
conditional mean of Yt+1 and Σt = Σ(st) is the conditional volatility of Yt given current
regime st. Mt,t+1 ∈ It+1 depends implicitly on the regimes (st, st+1), because agents know
both the current regime st+1 and the regime from which they transitioned, st.

7 For later
development, we define rj

t ≡ r(Yt, st = j), Γjk
t ≡ Γ(Yt, st = j; st+1 = k), Λj

t ≡ Λ(Yt, st = j),
µPj

t ≡ µP(Yt, st = j), and Σj ≡ Σ(st = j).
Interpreting our formulation of the pricing kernel is facilitated by introducing the risk-

neutral pricing measure Q for this setting. To this end, consider a security with payoff
Pt+1 ≡ P (Yt+1, st+1). No arbitrage implies that its price at time t in regime st = j, P j

t , is

P j
t = Et [Mt,t+1 Pt+1| st = j] = e−r

j
t EQ

t [Pt+1| st = j] , (5)

6A similar timing convention was adopted by Cecchetti, Lam, and Mark [1993] in their descriptive study of
equity returns. In the context of descriptive regime-switching model (i.e., there is no pricing), the specification
(2) and Hamilton’s specification lead to identical likelihood functions, except for the interpretation of the
initial values of certain conditional regime probabilities. Once pricing is introduced, the interpretations of
the pricing kernels are not the same for reasons discussed subsequently.

7Expression (4) can be constructed by extending the specification of the exponential affine pricing kernel

used by Gourieroux, Monfort, and Polimenis [2002] to M
j,st+1

t,t+1 = eγ
j
t +λ

j′
t Yt+1 . This differs from their single-

regime formulation both in the regime dependence of (γj
t , λ

j
t ) and in the state-dependence of λ

j
t . The

empirical relevance of these extensions is discussed subsequently.
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where the risk-neutral measure Q is defined by8

Q(dYt+1, st+1|It) = e−Γt,t+1 × e−
1

2
Λ′

tΛt−Λ′

tΣ
−1
t (Yt+1−µP

t ) × P(dYt+1, st+1|It). (6)

Under Q, µQ
t ≡ EQ

t [Yt+1] is given by

µQ
t =

∫

Yt+1 × e−
1

2
Λ′

tΛt−Λ′

tΣ
−1
t (Yt+1−µt) × P(dYt+1|It) =

∂

∂u
log Et[e

u′Yt+1]

∣

∣

∣

∣

u=−Σ
′
−1

t Λt

. (7)

Substitution of (3) gives
µQ

t = µP
t − ΣtΛt. (8)

Similarly, under Q, the regime switching probabilities are given by

πQjk
t = EQ

t

[

1{st+1=k}

∣

∣ st = j
]

= πPjk
t e−Γjk

t . (9)

Thus given the physical measure P, Λt and Γt,t+1 completely determine the risk-neutral
measure Q, and vice versa.

No arbitrage requires that Et[Mt,t+1|st = j] = e−r
j
t . Substituting (4), and using the MGF

(3) of Yt+1, it follows that

1 = Et

[

e−Γt,t+1

∣

∣ st = j
]

=
S
∑

k=0

πPjk
t e−Γjk

t , 0 ≤ ∀j ≤ S. (10)

From (9) it follows that πQjk = πPjk
t e−Γjk

t . Therefore, the (S + 1) no-arbitrage restrictions
(10) hold for any parameterisation that imposes (9) and

∑

k πQjk = 1.
Equipped with Q, we next link the market prices of risk to equilibrium expected excess

returns. The security with payoff e−b′Yt+1, which has exposure only to factor risks at date
t + 1, has price

P j
t = e−r

j
t EQ

t [e−b′Yt+1|st = j] = e−r
j
t e−b′µ

Qj
t + 1

2
b′ΣjΣj′b (11)

and P-expected payoff Et[e
−b′Yt+1] = e−b′µ

Pj
t + 1

2
b′ΣjΣj′b in regime st = j. Therefore, the ex-

pected excess return (continuously compounded) for this security is

log
Et[e

−b′Yt+1|st = j]

P j
t

− rj
t = −b′ΣjΛj

t . (12)

Since b′Σj is the “risk exposure” or volatility of the security associated with the factor risk,
Λj

t – the MPF risk in regime st = j – gives the expected excess return per unit of factor risk
exposure.

Next, consider a security with payoff 1{st+1=k}, which has exposure only to the risk of
shifting to regime k at date t+1. Conditional on the current regime st = j, its (risk-neutral)

8Q is strictly positive whenever P is strictly positive, and
∑

st+1

∫

dYt+1Q(dYt+1, st+1|It) = 1. Thus, Q

is an equivalent measure to P.
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expected payoff is πQjk
t , and its current price is P j

t = e−r
j
t πQjk

t . Thus, its expected excess
return (continuously compounded) is given by

log
Et[1{st+1=k}|st = j]

P j
t

− rj
t = Γjk

t . (13)

That is, Γjk
t,t+1 is naturally defined as the MPRS risk from regime j to regime k.

To derive a regime-switching DTSM that gives closed-form solutions for zero-coupon
bond prices,9 we impose further structure on the dependence of rj

t on Yt and on the risk
neutral distribution of (Yt+1, st+1). Specifically, we assume that rt is an affine function of Yt:

Assumption Ar: rj
t = δj

0 + δ′Y Yt.

The regime-dependence of δj
0 implies that the long-run mean of rj

t is allowed to change under
both the P and Q measures. However, to facilitate bond pricing, we constrain the “loadings”
δY on Y in this expression for rj

t to be the same across regimes.
Additionally, the risk-neutral drifts of Y and risk-neutral regime-shift probabilities are

assumed to satisfy:

Assumption AµQ: µQj
t = Yt+κQ(θQj−Yt), for constant θQj ∈ RN , j = 0, . . . , S and N×N

constant matrix κQ with κQ
ij <∈ R;

Assumption AπQ: the πQjk
t are constants, for all j and k.

Assumption (AµQ) allows the long-run mean of Y under Q to be regime-dependent, while im-
posing the constraint that the state-dependent component of µQj is common across regimes.

These assumptions give us “risk-neutral” pricing. Specifically, let Dt,n = Dn(Yt, st) de-
note the time-t price on a zero-coupon bond with maturity of n periods, and Dj

t,n denote the
price when the current regime is st = j.

Proposition 1 (Zero-Coupon Bond Prices) Assuming that Yt+1 follows the process (1)
and Assumptions (Ar), (AµQ), and (AπQ) hold, zero-coupon bond prices are given by

Dj
t,n = e−A

j
n−B′

nYt, (14)

where, Aj
n+1 = δj

0 + (κQθQj)′Bn − 1

2
B′

nΣjΣj′Bn − log

(

S
∑

k=0

πQjke−Ak
n

)

, (15)

Bn+1 = δY + Bn − κQ′Bn, (16)

with initial conditions: Aj
0 = 0 and B0 = 0.

9As discussed in Dai and Singleton [2003] for the case of a continuous-time, regime-switching model, the
affine structure does not in general admit closed-form solutions for bond prices in the presence of regime
shifts. The additional structure imposed here parallels the restrictions imposed in Dai and Singleton for
their continuous-time model.
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Proof: Substituting (14) into the risk-neutral pricing equation,

Dj
t,n+1 = EQ

t

[

e−r
j
t Dt+1,n

∣

∣

∣
st = j

]

,

we have

e−A
j
n+1

−B′

n+1Yt = EQ
t

[

e−r
j
t Dt+1,n|st = j

]

= e−r
j
t

S
∑

k=0

πQjkEQ
t

[

Dk
t+1,n|st = j

]

= e−r
j
t

S
∑

k=0

πQjke−Ak
nEQ

t

[

e−B′

nYt+1|st = j
]

= e−r
j
t

[

S
∑

k=0

πQjke−Ak
n

]

e−B′

nµQj+ 1

2
B′

nΣjΣj′Bn .

Equations (15) and (16) are necessary and sufficient for the above equation to hold for any
Yt and st = j. It is easy to check that Aj

0 = 0, Bj
0 = 0, Aj

1 = δj
0, and Bj

1 = δ1 satisfy the
recursion. Thus, the recursion can start either at n = 0 or at n = 1.

To complete our econometric model of bond prices, it remains to specify the market
prices of factor and regime-shift risks. Importantly, Assumption (AµQ) does not constrain
the state- or regime-dependence of µPj

t . Given our parameterisation of µQj
t and the regime-

dependence of Σj, we can match any desired state- and regime-dependence of µPj
t under

P,
µPj

t = µQj
t + ΣjΛj

t , 0 ≤ j ≤ S, (17)

by appropriate choice of the market prices of factor risks, Λj
t . Indeed, there is no requirement

that µPj
t be affine in Yt.

10 Similarly Assumption (AπQ) does not restrict the state-dependence
of πPjk

t . Given the πQjk, by appropriate choice of the Γjk
t , we can match any desired state-

dependence of the πPjk
t .

In our parametric DTSM, we extend Duffee [2002]’s essentially affine, Gaussian model to
the case of multiple regimes by assuming that

Λj
t =

(

Σj
)−1 (

λj
0 + λj

Y Yt

)

. (18)

Duffee [2002] and Dai and Singleton [2002] found that A0(3) models with MPF risks given
by (18) (without the regime index) were able to match many features of historical expected
excess returns on bonds. This formulation extends the specifications of the MPF risks
in the A0(3) models of Duffee [2002], Dai and Singleton [2002], Ang and Piazzesi [2002],
and Gourieroux, Monfort, and Polimenis [2002] by allowing both λj

0 and λj
Y to be regime-

dependent, and it extends the regime-switching model of Naik and Lee [1997] by allowing
for non-zero, regime-dependent λj

Y .11

10This same flexibility is, of course, present in single-regime, affine DTSMs. The assumption that the drift
of the state is affine under both measures P and Q has been made for convenience in formulating estimation
strategies.

11Relative to continuous-time Gaussian models, our discrete-time setting embodies the added flexibility
of allowing µ

Pj
t to depend on a distributed lag function of (Yt, Yt−1, . . . , Yt−`), ` > 0, and not only on Yt.

However, we do not explore this flexibility in the econometric analysis in this paper.
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We are free to choose any parameterisations of state-dependent historical regime-shift
probabilities πP and MPRS risks Γt, subject to the constraint that (10) is satisfied. Following
Gray [1996], Boudoukh, Richardson, Smith, and Whitelaw [1999], and many subsequent
studies, we assume that (for two-regime case)

πPjk
t =

1

1 + eη
jk
0

+η
jk

Y
·Yt

, j 6= k, πPjj = 1 −
∑

k 6=j

πPjk. (19)

Then, to assure that the no-arbitrage constraints are satisfied, we parameterise the MPRS
risks as

Γjk
t = log

(

πPjk
t

πQjk

)

, ∀ j, k. (20)

The unknown parameters to be estimated are the (constant) risk-neutral regime-shift prob-
abilities πQjk and the N × 1 vectors ηjk

0 and N × N matrices ηjk
Y . Unlike in descriptive

regime-switching models for interest rates, the elements of πP in our DTSM depend directly
on the latent risk factors Y .

The state-dependence of the Γjk
t implied by (19) and (20) is key to achieving our objective

of an improved understanding of the nature of market prices of risk, and regime-shift risk in
particular. As in Naik and Lee [1997] and Bansal and Zhou [2002], we assume that the πQjk

are constant (Assumption (AπQ)). However, these studies also assume that regime-shift risk
is not priced (Γjk

t = 0). The latter assumption means that the state- and regime-dependence
of Λj

t and Σj (the volatility matrix of Y ) must explain the time-series properties of expected
excess returns. By allowing for priced regime-shift risk, we have added a third source of
regime-dependence of expected returns.

A potential weakness of our Gaussian DTSM, relative to say multiple-regime versions
of AM(N) DTSMs, with 0 < M , is that the conditional variances of the Y ’s are constants.
However, our experience with single-regime affine DTSMs is that the conditional volatility in
bond yields induced by conditional volatility in the Y ’s is, in fact, very small relative to the
volatility of excess returns. Furthermore, by overlaying regime shifts on top of a Gaussian
state vector we introduce stochastic volatility into our DTSM, perhaps at least to the same
degree as in square-root processes. The degree of time variation in the conditional variance
of Y will depend on the nature of the state dependence of the πP

t (equivalently, on the state
dependence of the Γjk

t ). Even in the case of constant πP
t , the conditional variances of bond

yields will be time varying. This is the only source of time-varying volatility in models that
assume that πP is a constant matrix (e.g., Ang and Bekaert [2003]).

Additionally, Assumptions (AπQ) and (20) imply that our model cannot accommodate
state-dependent regime-shift risk that is not priced. That is, we nest the special cases of
πQ = πP = constant with Γjk being either a non-zero constant (priced regime-shift risk) or
zero (non-priced regime-shift risk). However, our formulation does not nest the case of state-
dependent πP

t with Γjk
t = 0. Nevertheless, we view the accommodation of state-dependent

πP and rich regime dependence of Λj
t as potentially important extensions of the literature on

A0(3) models that are worthwhile exploring empirically.
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Finally, a notable difference between our formulation and that in Bansal and Zhou [2002]
and Ang and Bekaert [2003] is that we have assumed that (Λj

t , Γ
jk
t ) ∈ It, consistent with the

continuous-time regime-switching model developed in Dai and Singleton [2003]. In contrast,
using our notation for the one-factor case, these authors adopted the pricing kernel

Mt,t+1 = exp

[

−rf,t − λ2
st+1

Yt

2
− λst+1

εt+1

]

, (21)

in which λst+1
depends on st+1. In our formulation, the components Λj

t and Γjk
t can be

directly interpreted as market prices of risk. On the other hand, under the formulation (21),
λst+1

is not the MPF risk, since it is not in It. The MPF risk depends on both λst+1
and the

regime-switching probabilities πPjk
t .12

3 Maximum Likelihood Estimation

Given the Gaussian structure of the risk factors, we proceed with maximum likelihood (ML)
estimation of the regime-switching DTSMs. Following common practice (e.g., Chen and
Scott [1995], Duffie and Singleton [1997]), we assume that the yields on a collection of N
zero-coupon bonds are priced without error, and the yields on a collection of M zero-coupon
bonds are priced with error. Additionally, we let ∆ denote the sampling interval (measured
in years) of the data, and proceed to construct the likelihood function based on parameters
in annual units.

Let R̂t be the vector of yields for the bonds priced exactly by the model. In regime
st = j, R̂t = âj + b̂Y j

t , where aj is the N × 1 regime-dependent vector with aj
n = Aj

n/n, b is
the N ×N regime-independent matrix of factor loadings [bni ≡ Bni/n], and Y j is the N × 1
vector of state variables implied by the model. Inverting for fitted yields we obtain

Y j
t = b̂−1(R̂t − âj). (22)

Conditional on st = j and st+1 = k, we have

R̂t+1 = âk + b̂Y k
t+1 = âk + b̂µPj

t + b̂Σj
√

∆εt+1

= R̂t + (âk − âj) + κ̂j(θ̂j − R̂t)∆ + Σ̂j
√

∆εt+1, (23)

where, letting µPj
t = Yt + κPj(θPj − Yt)∆, κ̂j = b̂κPj b̂−1, θ̂j = âj + b̂θPj, and Σ̂j = b̂Σj. It

12More precisely, in their setting, the continuously compounded expected excess return for a security with
regime-independent, time-(t + 1) payoff of e−bYt+1 is given by

log

∑S

k=0
πPjke−bµk

t +
Yt
2

bΣk
Σ

kb

∑S
k=0

πPjke−bµk
t +

Yt
2

bΣkΣkb+bλkYt

.
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follows that

f(R̂t+1|R̂t, st = j, st+1 = k)

=
e−

1

2
(R̂t+1−R̂t−(âk−âj)−κ̂j(θ̂j−R̂t)∆)′[Σ̂jΣ̂j′∆]−1(R̂t+1−R̂t−(âk−âj)−κ̂j(θ̂j−R̂t)∆)

√

(2π)N

∣

∣

∣
Σ̂jΣ̂j′∆

∣

∣

∣

. (24)

Notice that f(R̂t+1|R̂t, st = j) is obtained by integrating out the dependence of (24) on st+1,
so conditioning only on st = j (and R̂t) gives a mixture of normals distribution.

The remaining M yields used in estimation are denoted by R̃t, with corresponding load-
ings ãj and b̃ when st = j: R̃t = ãj + b̃Y j

t . Conditional on st = j,

R̃t = (ãj − b̃b̂−1âj) + b̃b̂−1R̂t + uj
t , (25)

where ut is i.i.d. with zero mean and volatility Ωj. Thus, the conditional density for R̃t+1,
conditional on R̂t+1, st = j and st+1 = k, is given by

f(R̃t+1|R̂t+1, st = j, st+1 = k) =
e−

1

2
(R̃t+1−(ãk−b̃b̂−1âk)−b̃b̂−1R̂t+1)′[ΩkΩk′ ]−1(R̃t+1−(ãk−b̃b̂−1âk)−b̃b̂−1R̂t+1)

√

2π |ΩkΩk′|
.

(26)
To construct the likelihood function for the data, we introduce the econometrician’s

information set Jt = {R̂τ , R̃τ , τ ≤ t} ⊂ It, and let Qj
t = f(st = j|Jt) be the probability of

regime j given Jt. Define the following matrices:

Qt =
[

f(st = 0|Jt) f(st = 1|Jt)
]

,

fR
t,t+1 =

[

f(R̂t+1|R̂t, st = 0, st+1 = 0) f(R̂t+1|R̂t, st = 0, st+1 = 1)

f(R̂t+1|R̂t, st = 1, st+1 = 0) f(R̂t+1|R̂t, st = 1, st+1 = 1)

]

,

fu
t,t+1 =

[

f(R̃t+1|R̂t+1, st+1 = 0) f(R̃t+1|R̂t+1, st+1 = 1)

f(R̃t+1|R̂t+1, st+1 = 0) f(R̃t+1|R̂t+1, st+1 = 1)

]

.

Using this notation, the conditional density of observed yields is

f(R̂t+1, R̃t+1|Jt) =
∑

j

f(R̂t+1, R̃t+1|Jt, st = j)Qj
t

=
∑

j,k

f(R̂t+1, R̃t+1|Jt, st = j, st+1 = k)Qj
tπ

Pjk
t

=
∑

j,k

f(R̂t+1, |R̂t, st = j, st+1 = k)Qj
tπ

Pjk
t f(R̃t+1|R̂t+1, st+1 = k).

10



Qj
t is updated using Bayes rule:

Qk
t+1 = f(st+1 = k|Jt+1)

=

∑

j f(st+1 = k, R̂t+1, R̃t+1|Jt, st = j)Qj
t

f(R̂t+1, R̃t+1|Jt)

=

∑

j Qj
tf(R̂t+1|R̂t,≤ t, st = j, st+1 = k)πPjk

t f(R̃t+1|R̂t+1, st+1 = k)

f(R̂t+1, R̃t+1|Jt)

Thus, the log-likelihood function L is given by

L =
1

T − 1

T−1
∑

t=1

log f(R̂t+1, R̃t+1|Jt), (27)

f(R̂t+1, R̃t+1|Jt) = Qt ×
(

fR
t,t+1 � fu

t,t+1 � πP
t

)

× 1, (28)

Qt+1 =
Qt ×

(

fR
t,t+1 � fu

t,t+1 � πP
t

)

f(R̂t+1, R̃t+1|Jt)
, (29)

where A � B means element by element multiplication of matrix A and B with the same
dimensions, and 1 is the two-dimensional unit vector.

In interpreting our empirical results, we follow the standard practice of using the ”smoothed
regime probabilities” qj

t ≡ f(st = j|JT ) to classify observations into regimes. (Recall that
we do not observe which regime the economy is in at date t, st.) For our case of two regimes,
we classify the yield observation at date t into regime j if qj

t > .5, where

qj
t =

gj
t Q

j
t

∑

k gk
t Q

k
t

, (30)

gj
T ≡ 1 and, for 1 ≤ t ≤ T − 1,

gj
t ≡ f(R̂s, R̃s : t + 1 ≤ s ≤ T |st = j, Jt) =

∑

k

πPjk
t f jk

t,t+1g
k
t+1.

In matrix notation, we have

qt ≡
[

q0
t

q1
t

]

=
Q′

t � gt

Qtgt

, 1 ≤ t ≤ T,

gt ≡
[

g0
t

g1
t

]

=
(

πP
t � fR

t,t+1 � fu
t,t+1

)

× gt+1, 1 ≤ t ≤ T − 1; gT =

[

1
1

]

.

4 Empirical Results

We estimate a two-regime, three-factor (N = 3) model, ARS
0 (3), using the Fama-Bliss

monthly data on U.S. Treasury zero-coupon bond yields for the period 1970 through 1995.

11



The vector R̂ includes the yields on bonds with maturities of 6, 24, and 120 months, and
M = 1 with R̃ chosen to be the yield on the 60-month bond. The two regimes are denoted
L and H, corresponding to “low” and “high” values of the diagonal entries of Σj.

In parameterising model ARS
0 (3), we impose several normalisations. Analogous to the

normalisations imposed in Dai and Singleton [2000] for single-regime affine DTSMs, in regime
L, we set ΣL to an identity matrix, κPL to a lower triangular matrix, and θPL to zero. Second,
in regime H, ΣH was set to a lower diagonal matrix, because the Brownian motions in regime
H can be rotated independent of any rotations on the Brownian motions in regime L. Third,
across regimes, δL

0 = δH
0 = δ0, which allows the identification of the long-run mean of the

state vector in regime H. Beyond these normalisations, the restrictions κQH = κQL ≡ κQ and
δH
Y = δL

Y = δY were imposed so that zero-coupon bonds are priced in closed form.
Even with these normalisations/constraints, the resulting maximally flexible ARS

0 (3)
model (with restrictions for analytical pricing) involves a high dimensional parameter space:
there are 55 parameters in

δ0, δY , κPL, ΛL
0 , ΛL

Y , θH , ΣH , ΛH
0 , ΛH

Y , πQ, ηLL
0 , ηHH

0 , ηLL
Y , ηHH

Y , ΩL, ΩH .

To facilitate numerical identification of the free parameters, we imposed several additional
over-identifying restrictions. First, we set δL

0 = 6.86%, the historical mean of the one-
month Treasury bill yield during our sample period. Additionally, the constraints λL

0 =
(0, 0, λL

0 (3))′ and λH
0 = (0, 0, 0)′ were imposed, because of the difficulty in distinguishing

the levels of the MPF risks, Λj
0, from the level of short rate. The only free parameter in

λj
0, λL

0 (3), allows the means of the slope of the yield curve to vary across regimes. Also,
after a preliminary exploration of model ARS

0 (3) we set the parameters κPL(2, 1), ΣH(2, 1),
ΣH(3, 1), ΣH(3, 2), λL

Y (1, 1), λL
Y (1, 3), λL

Y (2, 1), λL
Y (2, 2), λH

Y (1, 3), λH
Y (2, 1), λH

Y (3, 2), λH
Y (3, 3),

ηLL
Y (2), and ηHH

Y (1) to 0, because they were small relative to their estimated standard errors.
Finally, preliminary estimates revealed that ηLL

Y (3) was approximately equal to −ηLL
Y (1), so

we imposed equality of these parameters in estimation.
ML estimates for model ARS

0 (3) (there are 34 free parameters after various normalisations
and restrictions) and their associated asymptotic standard errors are reported in Tables 1 and
3, and equation (34) (note that δH

Y and κPH are not free parameters). The diagonal elements
of ΣH are all larger than their counterparts in ΣL, which motivates our labelling of the two
regimes. The estimates of the κP show that the rates of mean reversion of the risk factors Y
change across regimes. Equivalently, there are statistically significant differences in the state-
dependence of the MPF risks (in the estimated values of λY ) across regimes. Comparing
diagonal elements of κPL and κPH , it is seen that all three factors tend to exhibit less mean
reversion in regime L. This finding, which we elaborate on subsequently, is consistent with
past studies of descriptive regime-switching models (e.g., Gray [1996] and Ang and Bekaert
[2002b]).

In arriving at model ARS
0 (3), we initially estimated model ARS

0 (3)′ that allowed all six of
the components of (ηLL

Y , ηHH
Y ) to be free. However, we found that, in estimating our preferred

model ARS
0 (3) with the constraints ηLL

Y (3) = −ηLL
Y (1) and ηLL

Y (2) = ηHH
Y (1) = 0 imposed,

the value of the log-likelihood function changed very little (compare rows three and four of
Table 2).
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log (L) = 19.70402
Regime L Regime H

δ0 6.86% - - 6.86% - -
δY 0.00515 -0.00297 0.0105 0.00515 -0.00297 0.0105

(0.00094) (0.00118) (0.00047) (0.00094) (0.00118) (0.00047)
0.486 5.827 2.412
(0.052) (2.036) (1.066)

κ 0.0615 0.687 0.802
(0.0266) (0.346) (0.415)

-2.001 -0.352 1.089 -0.781 0.036 1.498
(0.447) (0.274) (0.244) (1.361) (0.254) (0.117)

θ 0.753 -1.909 1.246
(0.610) (1.398) (1.005)

diag(Σ) 1 1 1 2.082 1.785 4.425
(0.205) (0.521) (0.262)

λ0 0.283
(0.658)

0.190 -5.340 -2.222
(0.0569) (2.019) (1.032)

λY 0.0753 -0.626 -0.727
(0.0340) (0.340) (0.415)

-0.177 0.388 0.409 -1.402
(0.450) (0.173) (0.258) (1.345)

Ω 6.0 bp - - 7.9 bp - -
(2.0 bp) (4.5 bp)

Table 1: ML estimates and asymptotic standard errors for model ARS
0 (3). Parameters in

bold face are significantly different from 0 at the 5% significance level.

We also investigated the nature of priced regime shift risk in two ways. First, the con-
straint that πQ = πP (constant) – regime-shift risk is not priced and the regime switching
probabilities are state-independent – was tested (Table 2, row 1). Second, the constraint
that πP = constant – regime-shift risk is priced, but the regime-shift probabilities, and hence
the MPRS risks, are constants – was tested (Table 2, row 2). Both null hypotheses were
strongly rejected by the data at conventional significance levels. Accordingly, we focus pri-
marily on model ARS

0 (3), occasionally comparing the results for this model with those from
model ARS

0 (3)[πQ = πP].
The estimated values of the “intercepts” âj

n and factor loadings b̂ in (22) are displayed in
Figure 2. The regime-dependence of the aj translates into different slopes of the mean yield
curves (see below) across regimes. The patterns across maturities exhibited by the estimated
factor loadings suggest that state 1 is a “curvature” factor and that states 2 and 3 have the
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Null logL −2(T − 1) log L
L′

d.f. p-value (%)
ARS

0 (3)[πP = πQ] 19.63681 46.5318 8 1.9e-5
ARS

0 (3)[πP constant] 19.63826 45.6299 6 3.5e-6
ARS

0 (3) 19.70423 4.5966 2 10.043
ARS

0 (3)′ 19.71162

Table 2: Likelihood ratio tests of constrained versions of model ARS
0 (3).

characteristics of “slope” factors. We confirmed this impression by regressing the fitted state
variables, Ŷjt (j = 1, 2, 3), on the six-month, two-year, and ten-year bond yields,

Y1 = const − 75.15 × R6 + 192.22 × R24 − 85.73 × R120 + u1,

Y2 = const − 24.47 × R6 + 109.83 × R24 − 183.41 × R120 + u2, (31)

Y3 = const + 200.11 × R6 − 163.63 × R24 + 16.44 × R120 + u3.

The first factor, Y1, is roughly the yield on the butterfly (long the 2-year and short both the
6-month and 10-year). The second factor is roughly minus the 2-year and 10-year slope (the
“long slope”), and the third factor is approximately minus the 6-month and 2-year slope
(the “short slope”). Figure 3 plots the fitted state variables against spreads on these slopes
and the butterfly position.

This “rotation” of the factors obtained from the pricing model is different from what
is obtained in standard principal component analyses, in that Y2t and Y3t are two different
slope factors, rather than the typical finding of level and slope (e.g., R120

t − rt) from principal
components. Of course, unlike in a principal components analysis, the components of Y
exhibit substantial correlation induced by the non-zero off-diagonal elements of the κP.

4.1 Regime Probabilities

The filtered regime probabilities (QH
t = f(st = H|Jt) for models ARS

0 (3) and ARS
0 (3)[πQ =

πP] are displayed in Figure 4. For comparison we also plot (dashed lines) the corresponding
filtered probabilities from a descriptive regime-switching (DRS) model. To estimate the
descriptive regime-switching model the vector PCt of the first three principal components
was computed using the covariance matrix of the 6-, 24-, and 120-month zero coupon bonds.
Then a descriptive model for PCt in which the state-dependent regime-switching probabilities
πPC

t were assumed to depend on PCt as in (19) was estimated. The shaded periods in Figure 4
represent the periods of recessions according to NBER business-cycle dating.

Focusing first on model ARS
0 (3), we confirm the widely documented observation that

regime H tends to be associated with recessions: QH
t and its counterpart from the DRS

model are larger during recessions. The model-based QH
t often gives the stronger signal in

the sense that it is closer to one during recessions than the QH
t computed from model DRS.

Additionally, both model ARS
0 (3) and DRS suggest that the economy was in regime H in

1985, and they both signal a weak economy prior to the NBER’s dating of the 1990 recession.
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Figure 2: Estimates of the factor loadings, the aj and b in the affine expression for bond
yields.

At the same time, there are several notable differences between the QH implied by models
ARS

0 (3) and ARS
0 (3)[πQ = πP]. For the first three recessions, QH from model ARS

0 (3)[πQ = πP]
tends to predict longer periods in regime H; indeed, model ARS

0 (3) tends to signal a shift out
of regime H well before the NBER judges these recessions to be over. Further, throughout
the late 1980’s, model ARS

0 (3)[πQ = πP] shows several periods of substantially increased
likelihood of being in regime H compared to model ARS

0 (3). The reverse is true during the
1990s. Some intuition for these differences will be developed subsequently.

The parameters governing πPij
t are displayed in Table 3.13 Equation (19) and the OLS

regression results in (31) imply that

πP,LH =
[

1 + e3.98+296×(R24−R6)+110×(R120−0.78R24)
]−1

πP,HL =
[

1 + e−13.57+167×R6+(151×R6−342×R24+191×R120)
]−1

.

That is, the probability of switching from regime L to regime H increases as the short-term
and long-term slopes flatten (particularly the slope of the short end of the curve), and the
probability of switching from regime H to regime L increases as the short-term yields or

13As noted previously, for reasons of parsimony, we have constrained the π
Pij
t such that πPLL

t or πPLH
t

does not depend on Y2 and πPHHt or πPHL
t does not depend on Y1. If we free up these constraints, i.e., let

πP to be a function of all three state variables, the likelihood function increases from 19.70402 to 19.71162.
Thus, these constraints are not rejected at 99% confidence interval by a likelihood ratio test.
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Figure 3: Implied state variables plotted against butterfly and slope spreads.

the butterfly spread decline. Given the relative magnitudes of the short rate and butterfly
spread, it turns out that πP,HL is driven virtually entirely by R6.

ηLL
0 ηLL

Y (1) ηLL
Y (2) ηLL

Y (3) ηHH
0 ηHH

Y (1) ηHH
Y (2) ηHH

Y (3)
2.414 1.074 -1.074 -1.759 -0.907 1.479
(0.460) (0.319) - (0.319) (1.169) - (0.379) (1.009))

Table 3: ML estimates of parameters governing the regime switching process, with asymp-
totic standard errors in parentheses.

Figure 5 displays the probabilities πPLH
t and πPLH

t , evaluated at the ML estimates, from
models ARS

0 (3) and DRS. Both the ARS
0 (3)-based and DRS-based estimates of πPLH

t are
higher during the recessionary periods in our sample. Pursuing our interpretation of regimes
H and L as different stages of the business cycle, towards the end of an expansionary phase
of the economy, short-term rates are often rising faster than long-term rates as a central
bank’s concerns about inflation puts upward pressure on short-term yields. Consistent with
these observations, our econometric model shows πPLH increasing as the yield curve flattens,
both at the short and long end of the curve. On the other hand, if we are already in regime
H (a recession), then short-term rates typically have to come down far enough to induce an
expansion. This is consistent with πPHL rising as short-term rates fall.

During the recessionary periods in our sample, πLH and πHL tend to move in opposite
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Figure 4: This graph displays the filtered probabilities QH
t from models ARS

0 (3) (top panel)
and ARS

0 (3)[πQ = πP] (lower panel). In each panel we have overlayed the periods of recessions
according to dating by the NBER (shaded portions) and the implied QH

t from our descriptive
model (dashed lines).

directions. That is, when the U.S. economy was in a recession, the conditional probability
of moving to regime L from regime H was lower. A notable departure from this inverse
relationship occurred during 1985. As noted above, πPHL was driven almost entirely by
the short-term rate, R6. During 1984 the Federal Reserve temporarily tightened monetary
policy. Then in late 1984 and throughout 1985 there was a monetary easing and concurrent
decline in short-term interest rates. Additionally, the striking decline in U.S. inflation rates,
instigated by Volker’s anti-inflation policy of the early 1980’s, continued. These events show
up in our model as an increase in πPHL from near zero in 1984 to near unity by the end of
1985. The monetary easing in late 1984 also explains the sharp increases in the estimated
filtered probabilities QH

t in all three models (model DRS and the two pricing models). Bond
yield movements had many of the salient features of a shift to regime H.

One interesting difference between models ARS
0 (3) and DRS is that πPHL

t is larger in
model DRS than in model ARS

0 (3) during much of the period between 1983 and 1985. That
is, the pricing model shows much more persistent risk of a staying in regime H during this
period, suggesting that bond markets did not view the announced shift in monetary policy
in 1982 as fully credible. We find this interesting in the light of the fact that the Federal
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Figure 5: This graph displays the estimated probabilities πPLH
t and πPHL

t , evaluated at the
ML estimates, from model ARS

0 (3). In each panel we have overlayed the periods of recessions
according to dating by the NBER (shaded portions).

Reserve only weakened its dedication to monetary growth targets in October, 1982 (the
ending date for the “monetary experiment”) and, in fact, maintained a target for M1 until
1987 (Friedman [2000]).14

The relative sensitivities of the πP to the level and slope of the yield curve may also be
relevant for recent findings on the predictability of GDP growth using yield curve variables.
Ang, Piazzesi, and Wei [2003] find that both level and slope have predictive content within
a single-regime DTSM. Our two-regime model suggests that the relative predictive contents
of these variables may vary with the stage of the business cycle.

The sample means of the fitted time-varying πPij
t (together with the sample means of the

fitted transition matrix from the descriptive model, πDRS) are

π̄P =

[

89.34% 10.66%
64.36% 35.64%

]

, π̄DRS =

[

88.12% 11.88%
76.06% 23.94%

]

. (32)

14Based on their statistical analyses, Friedman and Kuttner [1996] argue that deviations from the Federal
Reserve’s target for M1 remained a significant determinant of their monetary policy rule until mid-1984,
and deviations from M2 were significant until mid-1985.
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The vector of stable probabilities implied by the mean transition matrix πP is15

π̃P =

[

85.79%
14.21%

]

, π̃DRS =

[

86.49%
13.51%

]

,

which match roughly the sample mean of the fitted probabilities (QL
t , QH

t ), (79.97%, 20.03%).
These findings are different than those for model ARS

0 (3)[πQ = πP], which are:

π̄P =

[

0.9525 0.0475
0.1355 0.8645

]

, π̃P =

[

0.7405
0.2595

]

. (33)

Notably, with πQ = πP = constant, πPHH is much larger than πPHL. This finding is similar
to those in previous studies, both for descriptive and pricing models (e.g., Ang and Bekaert
[2002b] and Bansal and Zhou [2002]) that assume constant ratings transitions probabilities.
However, our descriptive model with time-varying regime-switching probabilities calls for
πPHH

t to be less than πPHL
t on average. That is, the data on US treasury bonds suggests that

regime H was less persistent on average than regime L. If we view regime H as capturing
periods of downturns and regime L as periods of expansions, consistent with our previous
discussion of NBER business cycles and the probabilities QH

t , then this finding can be viewed
as a manifestation of the well documented asymmetry in U.S. business cycles: recoveries
tend to take longer than contractions (see, e.g., Neftci [1984] and Hamilton [1989]). Model
ARS

0 (3) with priced, state-dependent regime shift risk captures this asymmetry, but model
ARS

0 (3)[πQ = πP] with constant regime-shift probabilities does not.
The estimated risk-neutral transition probabilities (from model ARS

0 (3)), and their asso-
ciated asymptotic standard errors, are

πQ =









93.13% 6.87%
(5.53%) −
0.00% 100.00%
− (11.36%)









, (34)

with associated stable probabilities π̃Q = [0.00%, 100.00%]′. Comparing the stable probabil-
ities π̃Q and π̃P, it is seen that the economy spends more time in regime H under Q than
under P, but less time in regime L under Q than under P. This is intuitive since, with
risk-averse bond investors, risk-neutral pricing will recover market prices for bonds only if
we treat the “bad” H regime as being more likely to occur than in actuality. The diagonal
elements of πQ are statistically not different from 1, but they are statistically different from
the means of the corresponding elements in πP.

4.2 Model-Implied Means and Volatilities of Bond Yields

Figure 6 plots the model-implied population unconditional means and standard deviations
(volatilities) of the Treasury yields implied by our model. These are obtained by computing

15For a constant transition matrix Π, the stable probabilities x are defined by the equation Π′x = x.

Equivalently, x is the limit of Πn′

x, as n → ∞.
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the population moments implied by the distribution of the state in each regime, evaluated
at the ML estimates of the model. To construct a sample counterpart, we computed the
smoothed probabilities qj

t given by (30), and then classified a date as being in regime L if
qL
t > .5 or in regime H if qH

t > .5. After sorting the dates, we computed the sample means
and volatilities of the yields in each regime. These are reported as Sample in Figure 6. Even
if our model is correctly specified, the Model and Sample results need not coincide exactly, of
course, because of sampling variation in data, the use of ML parameter estimates, and our
allocation based on qj

t is an approximation. Nevertheless, Figure 6 suggests that the model
does a quite good job at matching the first and second unconditional moments in the data.16

The mean yield curves are upward sloping in both regimes, with the yields being notably
higher in regime H.
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Figure 6: Term structures of unconditional means and volatilities of Treasury bond yields
implied by models ARS

0 (3) and ARS
0 (3)[πQ = πP]. Population moments for the models are

evaluated at the ML estimates. “Sample” results are obtained by computing sample means
and volatilities after allocating dates to regimes based on the smoothed probabilities qj

t .

16We stress that we are comparing population moments implied by the model to sample moments in
the data. If, instead, we computed say model-implied mean curves based on fitted yields from the model
within each regime, then the Model and Sample results would lie virtually on top of each other. Thus, the
comparisons in Figure 6 place greater demands on the model.
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Of particular note are the shapes of the volatility curves in the two regimes. It is well
known that in many U.S. fixed-income markets (e.g., Treasury bond, swaps, etc.), the term
structures of unconditional yield volatilities are are humped-shaped (see, e.g., Litterman,
Scheinkman, and Weiss [1988]), with the peak of the hump being approximately at two
years to maturity.17 Under our classification of dates into regimes, the hump in volatility is
an L-regime phenomenon. Fleming and Remolona [1999] present evidence linking the hump
to market reactions to macroeconomic announcements. Through the lens of our model, it
appears that these, and possibly other, sources of yield volatility show up as a hump in
volatility primarily during relatively tranquil, expansionary phases of the business cycle.

When the economy is in regime H volatility is high and the risk factors mean revert
to their long-run means relatively quickly (Table 1). The fast mean reversion in regime
H swamps a humped reaction (if any) to macroeconomic news, and induces the steeply
downward sloping term structure of (unconditional) volatility.

Superimposed on the same graph are the corresponding results for Model ARS
0 (3)[πQ =

πP], in which regime-shift risk is not priced and regime-switching probabilities are state-
independent. By and large, there is not a large difference between the model-implied first
and second unconditional moments across these two models.

We examine the model-implied conditional volatilities in Section 6 as part of our assess-
ment of the robustness of the properties of model ARS

0 (3) to the presence of within-regime
time-varying volatility.

5 Excess Returns and the Market Prices of Risk

In this section we return to one of the primary motivations for our analysis, namely, an
investigation of the contributions of factor and regime-shift risk premiums to the temporal
variation in expected excess returns. Figure 7 displays the MPF risks for model ARS

0 (3) (first
three quadrants), as well as the MPF risks from a single-regime A0(3) model (lower right
quadrant). The three MPF risks from model ARS

0 (3) are much smoother in regime L (solid
lines) than in regime H (dashed lines). This is consistent with the common impression that
expected returns should not fluctuate dramatically under “normal” circumstances. A very
different impression comes from inspection of the MPF risks from the corresponding single-
regime Gaussian A0(3) model. They look much more like those of regime H than those of
regime L. This supports our remarks in the introduction to the effect that omission of the
regime-switching process tends to distort the model-implied excess returns both in tranquil
and turbulent times.

Turning to the MPRS risk (see Figure 8), on average the MPRS from H to L is higher than
the MPRS from L to H. This implies that bond investors are more willing to buy insurance
against an economic down turn (from L to H) than against an economic expansion (from

17Figure 6 also shows the “snake” shaped pattern in historical yield volatilities for very short-term bonds.
This pattern is not captured by our three-factor model. However, the findings in both Longstaff, Santa-Clara,
and Schwartz [2001] and Piazzesi [2001] suggest that the addition of a fourth factor would allow our model
to replicate this pattern.
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Figure 7: Market Prices of Factor Risks for Models ARS
0 (3) and A0(3).

H to L). Intuitively, this may reflect the fact that agents’ marginal rates of substitution
of consumption tend to be low during economic expansions and high during recessions.
Although insurance contracts with payoffs 1{st+1=j} are not traded, the demand for (or the
risk premium associated with) such contracts may be interpreted as inter-temporal hedging
demands (in the sense of Merton [1973]) or the associated risk premium against business
cycle fluctuations.

A comparison of the MPF risks in models ARS
0 (3) and ARS

0 (3)[πQ = πP] is revealing
about the effects of state-dependent MPRS risks on the dynamic properties of the MPF
risks. The estimated κQ in these models are similar. However, the estimated κP are different,
particularly elements κP

31 and κP
33. From Figure 9 it is seen that these differences show up

primarily in the dynamic properties of the market price of risk of Y3 in regime L. The MPF
risk for Y3 is somewhat larger on average and notably less volatile in model ARS

0 (3) with
priced regime shift risk. A portion of the volatility in the MPF risk for Y3 is shifted to
variation in the MPRS risk in model ARS

0 (3).
Since the elements of πQ

t are constants, the dynamic properties of the MPRS risks are
determined by those of the elements of πP

t . The correlation between ΓLH and Y3, which we
recall is well described as −(R24 − R6), is 0.93. The third state variable, Y3 has the fastest
rate of mean reversion among the three state variables in regime L. This shows up in ΓLH in
the form of notable variation over short horizons (several months). At the same time, from
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Figure 8 it is seen that there is clear cyclical component to ΓLH induced by its dependence
on the other state variables.

The MPRS risk of moving from H to L is most strongly correlated with −R6
t , the level of

the short rate (corr(R6, ΓHL) = −0.88). The dominant feature of the time path of ΓHL is the
big dip during the Fed experiment, though there are smaller dips around other recessions.
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Figure 9: Market prices of risk for the third state variable in regime L for Models ARS
0 (3)

and ARS
0 (3)[πQ = πP].

These findings reinforce our earlier discussion of the links between the temporal behaviour
of the Γij and business cycles. When the economy is expanding, the yield curve is typically
upward sloping, and the excess return on a “down-turn” insurance contract is relatively low
(investors are apprehensive about increasing rates and a potential downturn and are willing
to buy insurance). When the economy is contracting, the yield curve is typically flat or even
downward sloping, and so ΓLH is relatively high. On the other hand, a large dip in ΓHL

reflects the expectation that the recession will be protracted and the expected return to a
contract that pays off in the event of recovery is low.

Finally, regarding the predictability of excess returns on bonds, the empirical results in
Duffee [2002] and Dai and Singleton [2002] suggest that, within the family of single-regime
affine DTSMs, the rich state-dependence of the market prices of factor risks accommodated
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by Gaussian models is essential for predictability puzzles associated with violation of the
“expectations theory” of the term structure (e.g., Campbell and Shiller [1991]). Since our
ARS

0 (3) model nests single-regime Gaussian models it is not surprising that it also does a
reasonable job of matching the Campbell-Shiller evidence against the expectations theory.

6 Concluding Remarks

In this paper, we show that regime switching term structure models in which regime tran-
sition probabilities are constant and equal under both physical and risk-neutral measures
may potentially give a mis-leading impression of the dynamics of expected bond returns and
the relationship between the shape of the term structure and business cycle fluctuations.
Likelihood ratio tests formally reject the case of constant regime transition probabilities in
favor of a model with state-dependent regime transition probabilities and market prices of
regime-shift risk. In concluding this paper, we point out some limitations/caveats of our
analysis.

First, in order to price bonds analytically, we have imposed some parametric restric-
tions on the joint dynamics of the state vector and the Markov regime switching process
under the risk-neutral measure. These restrictions preclude examination of a model in
which regime-shift risk is priced and the regime transition probabilities are state-dependent
under both physical and risk-neutral measures (as in Boudoukh, Richardson, Smith, and
Whitelaw [1999]), or a model in which factor loadings on bond yields are allowed to be
regime-dependent. We could relax these constraints, but at the cost of introducing ap-
proximations to both pricing and likelihood functions. Following the tradition of the large
single-regime term structure literature, it seemed worthwhile to explore how far one could
go in improving the fits over single-regime affine models, while preserving the analytical
tractability of this family.

Perhaps of greater concern is the fact that our empirical study is based on the assumption
that the state vector is an autoregressive Gaussian state process. The regime-dependence of
both the level and the volatility of the short-term interest rates in model ARS

0 (3) induce time
varying, and in particular level-dependence, of the volatilities of bond yields of all maturities.
However, we are unable to accommodate level-dependence of volatilities within each regime,
as incorporated in the models of Naik and Lee [1997] and Bansal and Zhou [2002].

To gain some insight into how models ARS
0 (3) and ARS

0 (3)[πQ = πP] perform relative to a
model with time-varying volatility within each regime, we extended our descriptive model for
the first three principal components of bond yields to allow the volatility of each principal
component in each regime to follow a GARCH(1, 1) process (model DRSG).18 Figure 10
displays the one-month ahead conditional volatilities for the ten-year bond yield from our

18The parameters of the GARCH processes were allowed to differ both across principal components and
across regimes. The spirit of this analysis is a multi-variate version of the switching GARCH model examined
by Gray [1996]. However, we set up our switching GARCH model using the same timing conventions as in
our pricing model.
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Figure 10: Conditional volatilities of ten-year bond yields from Models ARS
0 (3)[πQ = πP] and

ARS
0 (3) plotted against the implied volatility from a descriptive regime-switching GARCH

model (DRSG).

pricing models against those from model DRSG.19 Perhaps the most striking feature of this
figure is the fact that our pricing models understate conditional volatility relative to model
DRSG during the monetary experiment of the early 1980’s. (This is also true, but to a lessor
degree, for the spike up in volatility during late 1974.)

However, we find it equally notable that model ARS captures (at least some of) the
increased volatility associated with the Gulf War during 1990 and the turbulence in bond
markets during 1994 (Borio and McCauley [1997]). In contrast, the volatility during this
period is missed entirely by models ARS

0 (3)[πQ = πP] and DRSG. Moreover, during the high
volatility periods in the early 1970’s and the mid-1980’s, the implied volatilities from models
ARS

0 (3) and DRSG are very similar. Together, these observations suggest that the GARCH-
based likelihood function of model DRSG may have over-weighted the “outliers” of 1980’s
at the expense of not capturing the volatility during the 1990’s.20

19The analogous pictures for yields on bonds with shorter maturities show higher levels of volatility, but
very similar temporal patterns.

20Comparing the time paths of volatility in model ARS
0 (3) and ARS

0 (3)[πQ = πP], it is evidently the
absence of priced, state-dependent regime-shift risk from the latter model that underlies its failure to match
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Of particular concern to us was the robustness (to the presence of time-varying volatil-
ity) of our finding that regime-switching DTSMs with state-independent regime switching
probabilities (constant πP) are over-stating the persistence of the high volatility regime H.
Equation (35) presents the average value of πP from our pricing model ARS

0 (3) along with
the corresponding average from the descriptive model DRSG. The estimates are very similar.
Indeed, the estimates of π̄P from model DRSG are even closer to those in model ARS

0 (3) than
are those from model DRS. Thus, the results from model DRSG reinforce the finding from
model ARS

0 (3) of an asymmetry in the persistence of regimes: πPHH << πPHL.

π̄P =

[

89.34% 10.66%
64.36% 35.64%

]

, π̄DRSG =

[

90.35% 9.65%
68.39% 31.61%

]

. (35)

This extended descriptive analysis with model DRSG does not, of course, allow us to
assess the implications of within-regime time-varying volatility for the structure of the market
prices of factor or regime-shift risks. Such an assessment would require a regime-shifting
DTSM that allows for both within regime stochastic volatility and state-dependent regime-
shift probabilities. The development and implementation of such a model will be explored
in future research.

the volatility during the 1990’s. Further, when yield volatility was high, the conditional volatility of R10

tended to be much choppier in Model ARS
0 (3)[πQ = πP] than in Model ARS

0 (3). These findings are mirrored in
the behaviours of the filtered probabilities QH

t . During the 1970’s and 1980’s, the QH
t implied by the pricing

model without priced regime shift risk is much choppier. In contrast, during the 1990’s, QH
t in Model ARS

0 (3)
exhibits notable upward spikes (see Figure 4) that are absent from the QH

t in Model ARS
0 (3)[πQ = πP].
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